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Abstract

In this paper a multiple routing path problem in wide area Wavelength Division Multiplexing (WDM) networks is considered, which is to
find K edge-disjoint lightpaths/semilightpaths from a source to a destination, if they exist, such that they meet some specified optimization
objective. Two versions of the problem are studied. One is to minimize the total cost of the K paths, and the other is to minimize the cost of
the maximum cost one among the K paths. An efficient algorithm for the first version is proposed, which takes O(kK(kn + m + n log(kn)))
time and delivers an exact solution, where n, m, and k are the number of nodes, links and wavelengths in the network, respectively. The
second version of the problem is shown to be NP-hard, instead an approximation algorithm is devised which delivers a solution within K

times of the optimum, where K>2.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

It becomes increasing evident that wavelength-division
multiplexing (WDM) providing multigigabit rates per
wavelength will soon become the core technology for the
next-generation Internet [8]. The emerging WDM optical
network offers the possibility of interconnecting hundreds
of thousands of users, covering local to wide area. The
key to the high speed in the network is to maintain the
signal in optical form rather than traditionally electronic
form. The high bandwidth of fiber-optic links is utilized
through Wavelength-Division Multiplexing (WDM) tech-
nology, which supports propagating multiple laser beams
through a single fiber-optic link, provided that each laser
beam uses a distinct optical wavelength. The major
applications of this type of network are video conferen-
cing, scientific visualization, real-time medical imaging,
supercomputing, and distributed computing [2,15,18]. A
comprehensive overview of its physical theory can be
found in [9,14].
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Routing in a WDM network is a fundamental problem.
The data transfer in the network is through first establishing
a lightpath and then proceeding the transfer. Lightpaths thus
provide a powerful approach to utilize the vast available
bandwidth in optical networks [1,5,10], while a lightpath is
implemented by assigning a unique wavelength to all the
links in the path. Data transmitted through a lightpath does
not need wavelength conversion or electronic processing at
intermediate nodes. Although transmitting all traffic
between every pair of nodes over lightpaths is desirable, it
is not generally feasible to establish such lightpaths and
accommodate the traffic by the lightpaths due to physical
constraints imposed by the network such as the limited
number of wavelengths, limited tunability of optical
transceivers at each node. To cope with these limits,
Chlamtac et al. [4] introduced the semilightpath concept,
which is a transmission path by chaining several lightpaths
together. Therefore, for a semilightpath, the wavelength
conversions at some intermediate nodes are required. The
cost of a semilightpath/lightpath is the sum of the costs of
its links and nodes, where the link cost is associated
with traversing the link using some wavelength, and
the node cost is associated with wavelength conversion
when it has to switch to a different wavelength at the node.
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Thus, a minimum cost semilightpath is called the optimal
semilightpath, for which Chlamtac et al. [4] presented an
0(k2n+kn2) time algorithm, Liang et al. [12,13] later gave
an improved algorithm, which requires O(k’n+ km +
kn log(kn)) time, where n is the number of nodes, m is the
number of physical optic links, and k is the number of
wavelengths in the network.

In this paper we consider a multiple routing path
problem as follows. Given a WDM network and a source
s and a destination ¢, find K edge-disjoint semilightpaths
from s to ¢ such that the K paths meet some specified
optimization objective, where K>2. Here we deal with
two versions of the problem. The first version is to
minimize the total cost of the K semilightpaths and the
second version is to minimize the cost of the maximum
cost one among the K semilightpaths. This is a
fundamental problem in communications networks and
has wide application backgrounds. For example, the
multiple routing paths from a source to a destination is
fault-tolerant and the data from the source to the
destination can still be delivered even if there are r
semilightpaths failures (r<K). Also, in some real-time
critical applications, it is necessary to establish multiple
semilightpaths from a source to a destination for data
transmission to guarantee the quality of service (QoS).

In this paper our major contributions are as follows. The
two versions of the multiple routing path problem have been
formulated. An efficient algorithm for the first version is
presented, which takes O(kK (kn + m + n log(kn))) time and
delivers an exact solution. The second version of the
problem is shown to be NP-hard, and an approximation
algorithm is devised. The solution delivered by the
approximation algorithm is K times of the optimum,
where K> 2.

The rest of this paper is organized as follows. In Section 2
the network model is provided, followed by the introduction
of the measure parameters used in the network. The multiple
routing path problem is also defined precisely. In Section 3 an
auxiliary weighted directed graph is defined. In Section 4 the
first version of the problem is considered and an exact
algorithm is presented. In addition, the second version of the
problem is shown to be NP-hard and an approximation
solution is proposed. In Section 5 the distributed implemen-
tation issues of the proposed algorithms are discussed. The
conclusion is given in Section 6.

2. Preliminaries

The optical network is modeled by a directed graph
G=(V,E,A), where V is the set of nodes (vertices), E is
the set of directed links (edges), and 4 is a set of
wavelengths in G, n=|V|, m=|E|, and |A|=kA=
{A1,4A2,...,At}. Associated with each node vEV, there is
a switch converter, which can convert an incoming
wavelength to another outgoing wavelength if necessary.

The switching operation at a node uses a wavelength
conversion table and this table is given in advance.
Associated with each link e€FE, there is a set A(e) (&)
of wavelengths available on it initially.

Following the cost definition of semilightpath by
Chlamtac et al. [4], the cost structure of using network
resources in G is defined as follows. For each link e and
wavelength A;€ A(e) a nonnegative weight w(e,4;) is
associated, representing the ‘cost’ of using wavelength A;
on link e. The ‘cost’ of wavelength conversion is modeled
via cost factors of the form c,(4,,4,), which is the cost of
wavelength conversion at node v from wavelength A, to
wavelength 4,. If 4,=2,, then ¢,(4,,4,) =0.

A semilightpath ® in G is a sequence ej,es,...,e; of
directed links such that the tail of e¢;,; coincides with the
head of ey, i=1,...,/. Furthermore, a specific wavelength
Aj, € A(e;) is associated with each e; that is the wavelength
used on link ¢; in the path. Denote by head(e) and tail(e) the
head and tail of a directed link e, which are the two
endpoints of link e. The cost C (&) of the semilightpath & is
C(P) =3 ic1 wlei, 2i) + Y21 Cheadten (s Aj.,)- The opti-
mal semilightpath & from s to ¢ is such a path that C ()
is minimized. To solve this problem, not only do we need to
find an optimal semilightpath, but also do we need to assign
every link e in the path a specific wavelength A(e) € A(e)
and to set the wavelength conversion switch at some
intermediate nodes if needed.

Given two semilightpaths PH; and PH, in G from s to ¢,
they are ‘edge-disjoint’ if they share the same node v, then
the links in PH, and PH, either entering into or leaving from
v are assigned with different wavelengths.

Let PHﬁK),PHéK), ...,PH}(K) be the K edge-disjoint
semilightpaths in G from s to ¢. The K semilightpaths are
edge-disjoint if any two semilightpaths PHfK) and PH;K) are
edge-disjoint for any i and j with i#j, 1 <i, j<K. We are
now ready to define the two versions of the problem as
follows.

Version 1. Given a WDM network G(V,E, /) and a pair of
nodes s and ¢, assume there is a wavelength conversion
table at each node v€ V. The problem is to find K edge-
disjoint semilightpaths in G from s to ¢ such that the cost
sum of the K paths is minimized, if they exist. In other
words, let PHiK),PHéK), ...,PH}(K) be the K edge-disjoint
semilightpaths from s to ¢ and I*) the cost of PX, 1 <i<K.
The objective is to find the K semilightpaths subject to
minimizing 35, 1.

Version 2. Given a WDM network G(V,E, /) and a pair of
nodes s and ¢, assume there is a wavelength conversion table
at each node v€ V. The problem is to find K edge-disjoint
semilightpaths in G from s to ¢ such that the cost of a
maximum cost one among the K semilightpaths is
minimized. Let Q(IK), (ZK), ey ;? be the K semilightpaths
from s to ¢t and t(lK),th), ...,t}f) the costs of the K
semilightpaths. The objective is to find the K semilightpaths
subject to minimizing max{r*’ : 1 <i < K}.
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3. Constructing auxiliary graph G$/%

In [12,13], we reduced the optimal semilightpath
problem to a single-source shortest paths problem. Thus,
a solution of this latter problem corresponds to a
solution of the original problem. Following the same
spirit, we here reduce the multiple routing path problem to
a well solved optimization problem in an auxiliary
weighted, directed graph G?‘:ge, and the solution of the
optimization problem in G:%¥ gives an exact and
approximate solutions for the two versions of the multiple
routing path problem. The auxiliary graph G is
constructed as follows.

Given a WDM network G(V,E,A), there is a set /(e)
(&) of wavelengths for each link e€E. For each node
veV,let 4;,(G,v) and A,,(G,v) be the sets of incoming and
outgoing wavelengths at it, then, 4;,(G,v) = U, cpghead(e)=v
Ale) and Ay, (G,v)= UeeE&tail(e/)=vA(e/). A directed
weighted graph G,= (X! UX?U Y! U Y2 E,, w,) for each
node vEV is constructed, where X! U X2 U Y! U ¥? is the
set of nodes and FE, is the set of links in G,.
E,SX!'XX)UX2XYHu ! XY?), and w:E,—R is
a weight function of links in G,. For each distinct
A€ A;(G,v), a corresponding node x(l) is in X! and another
corresponding node x'? is in X2. There is a directed link
(P xPye E, with weight 0. For each distinct A’ € Agy(-
(G,v), a corresponding node y" is in ¥! and another
corresponding node y® is in Y. There is a directed link
P yPyeE, with weight 0. In addition, there is a directed
link e=(@,yYeE, from x® €X? to y €Y/ and the
weight assigned to it is w;(e)=C,(1,A)=0 if A=21"; the
weight is w;(e)=C,(A,A"), otherwise.

The directed, weighted auxiliary graph GCdge V', E,
w,) is then constructed as follows. w,:E'—R is
the weight function of links in G5, using
the information supplied by G and G, for all veV.

=UX!UX2urlur)uf{s,r"}, where s and 1’
are the two special nodes, which represent
the source s and destination ¢  respectively.
E'=Uc  E,U{v) i vertu{u, ) ueXx'YUE,,
and E, is defined as follows. Let A€ A(e) and e={u,v)EE.
Then, there are two nodes ' € Y2 and v/ €X! in G, and G,
that correspond to A. Following the construction of G, and
G,, there is a link {4’ /)€ E 4 and its weight is w,({u' V') =
w({u,v),A). The weights associated with links {s’,v) and (u,t")
are 0s, for every vEY! and every u €X,. The weight
associated with every link {u,v) €U,y E, is wo(u,v)=
w1 (u,v). G?gge contains no more than 4kn+2 nodes and
kK*n+km+ 4k links, because |V/|=3,cy(IX!+ |X2|+
V] HYID +2=25 eyl in(G, I+ [ au(Gv)D +2 <
4kn +2, and |E'| =y |E|+ YD |+ X+ |ELl < (K20
+2k) + 2k + X ocg | ()| < KPn+ km + 4k.

Let P be a directed path in G from s’ to " and ¢}, ¢}
, €3, €4, €5, €6, €7, €3, €0, €10, ---s €4i1 35 Clitas Ehitss it - €1
the sequence of links in P, 0 <i < (//4(. For any given link e’
in P, link e  1s called the immediate predecessor of

e} and e}, is called the immediate successor of e] if they
exist. In the following it shows that every directed path P in
G2 from s' to " corresponds to a semilightpath PH in G
from s to t.

Following the construction of G, [ge, e} and ¢} are derived
from the source node of PH, and e] is derived from the
destination node of PH. ¢} is a link induced from the two
nodes in G and e}, e%, and e} are the links derived from a
node in G, and ¢§ corresponds to a wavelength conversion at
the node. Similarly, ¢} is a link induced from the two nodes
in G, e, €5, and €/ are the links derived from a node in G,
and g corresponds to a wavelength conversion at the node.
In general, €}, is a link induced from the two nodes in G
and €}, 4, €};1.5, and €}, ¢ are the links generated from a node
in G, and ¢};, 5 corresponds to a wavelength conversion at
the node, 0<i<(//4(. Therefore, for every i, 0<i<(l/4(,
€43 corresponds to a directed link e¢; in G with
weight wy(el;13) =w(e;, A), and e; is a link in PH with
wavelength A. €j;4, €5 and e} correspond to a
wavelength conversion at node v from wavelength A
to wavelength A/, if the weight of e}, 5 is
wy(€liys) = c, (A, A). Therefore, a semilightpath in G from
s to t consists of (I/4( physical optical links. Fig. 1 isa WDM
network, where A= {A;,A,,43,44} is the wavelength set in G.
The wavelength set on each link in G is as follows.
ACL2) = {143}, ACLA) = {41, 22,44}, AC2.3) = {4124},
ABIN= {2243}, AC45)={43}, A(S5,3)={42.44}. The
wavelength conversion table at each node is as follows. At
node 1, we have ¢;(A,,41), c1(A2,42), c1(A2,44), ¢1(A3,43), and
01(13,14). At node 2, we have CQ(A],A]), 02(11,14), and
6‘2(13,/‘\1). At node 3, we have C3(A],A2), C3(A],A3), C3(/-{2,/-{2),
and c3(44,43). At node 4, we have c4(A,43) and c4(A4,45). At
node 5, we have cs5(43,4,) and c5(43,44). Fig. 2 illustrated the
construction of G = (X3 U X3 U Y4 U Y3, E3, w,) for node 3
in G, where a node labeled by ‘(v,4;)’ means that the node is
derived from node v in G and wavelength 4;. From Fig. 2 we
can see that there is not any link from a node in X? labeled
by (3,4,) to a node in Y31 labeled by (3,43), which means that
the wavelength conversion from A, to A3 at node 3 is not
allowed. Fig. 3 provides a subgraph G’ of G:%*° induced by
the nodes in G; and G5 and a link in G between nodes 1 and

Fig. 1. The WDM network G(V,E).
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Fig. 2. The auxiliary graph G; = (X3 U X3 U ¥} U Y2, E;, w;) at node 3.

3. Note that each of the two links {(u,v) and {p,qg) in Fig. 3 is a
link from a node in G5 to a node in G, which is derived from
link (3,1) in G with A((3,1)) = {1,453}

Given a source s(=v,) and a destination t(=v,) in G, the
auxiliary graph G$%¥° of G is shown in Fig. 4, where a node
labelled by A; within a dotted rectangle v; should be
interpreted as that node is derived from wavelength 4; and
node v;€Vin G.

4. Finding K edge-disjoint semilightpaths

4.1. K edge-disjoint semilightpaths with minimizing
the total cost

Given a directed graph H and a pair of nodes s and ¢,
if there are two directed paths in H from s to 7 such that they do
not share edge (link), then they are ‘edge-disjoint’. In order to

Fig. 3. A subgraph of G2 induced by the nodes in G, and Gj.
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Fig. 4. The graph G™° with s=v, and t=v,.

find K edge-disjoint semilightpaths in G from s to ¢ with the
minimization of the total cost of the K paths, the problem can
be reduced to find K edge-disjoint paths in G=% from s’ to ¢
such that the total cost of the K paths is minimized. Therefore,
if there are such K edge-disjoint paths in G5 from s’ to ",
then there are K corresponding edge-disjoint semilightpaths
in G from s to ¢t and the total cost of the K semilightpaths is
minimum. We, therefore, focus on finding K edge-disjoint
paths in G3%¥¢ from s’ to 7 with an objective to minimizing
the total cost of the K paths as follows.

For a given pair of nodes s' and ¢, finding K edge-
disjoint paths P},P,,...,Px in Gedge from s’ to ¢ such that
Z,K:l l; is minimized can be done by an efficient algorithm
due to Suurballe [16,17], which is described below, where
;=73 cep, wy(e) is the weighted sum of the links in P;
1<i<K.

Find_K_Paths (G??ge, s 1" w,, K)
begin
Ex= @;/* the link set of the K paths from s’ to ¢/
for i=1to K do
Eres={(u):(v,u)EEg); s/*redirecting all edges in Eg*/
find a shortest path P; in G‘ from s’ to ¢, where
Giz =(V',E'UE,— Ex);
Eingee = Wu, v), (v, u) : (u v € Ex& v, u) € E(P)};
EK - EK U E(Pz) msec
endfor
G(V(Eg),Ek) is a subgraph of Gedge containing the K
edge-disjoint paths from s’ to ¢’
end.

Having constructed G(V(Eg),Ek), the K edge-disjoint
paths from s to ¢ can be easily found because the incoming
and outgoing degrees of each node except s’ and t” are 1 s. It
has been shown that the weighted sum of the links in the K
paths by algorithm Find_X_Paths is minimum [16] and
each such a path can be transformed to a semilightpath in G
from s to ¢. Thus, we have Lemma 1.

Lemma 1. Let P,,P,,...,
edge
Gy

Py be the K edge-disjoint paths in
from s' to t" delivered by the proposed algorithm.
Then, the corresponding K semilightpaths PH;,PH,,...,PHy
in G are edge-disjoint.

Proof. If PH; and PH; do not share any physical optical link,
they are edge-disjoint. Now, assume that PH; and PH,
share a physical optical link e=(u,v). Let e, be the
corresponding link of e in P; and assigned wavelength A,
let e, be the corresponding link of e in P; and assigned
wavelength A,. Then, A,# 4,. We show this by contradic-
tion. Assume that A,=A4,. Let ¢, be the immediate
predecessor of e, in P; and e, the immediate predecessor
of e; in P;. Then, the two nodes tail(e,) and tail(e.) are the
same node in Gedge and the incoming degree of tail(e,) is
one. Thus, e, =e,. In other words, P; and P; share a link ey,
which contradicts the assumption that they are edge-
disjoint. Therefore, A, A,.

If PH; and PH; do not share any node in G, it is obvious
that they are edge disjoint. Otherwise, assume that they
share a node v&€V, which is illustrated in Fig. 5. where e,
and e, are the links entering v and ¢; and e, are the links



816 W. Liang, X. Shen / Computer Communications 28 (2005) 811-818

Fig. 5. PH; and PH; share a node veV.

leaving from v. Assume that e, and e, are the links in PH;
and e, and e, are the links in PH;.

If e, and e, are the same physical optical link, then it is
obvious that the wavelengths assigned to them are different;
otherwise, e, and e. are the two different physical optical
links. and the wavelengths assigned to them are different
too, which is shown below.

Assume that they are assigned with the same wavelength
A. Let ¢}, and e/ be their corresponding links in P; and P;,
respectively. Following the construction of Gy, ,ge, head(e),) =
head(ec) and the outgoing degree of node head(ea) isone. Let
el be the immediate successor of e, in P; and e} the immediate
successor of e[, in P;. Then, el and ey are the the same link in

G*%¢ due to that head(ea) = head(e) and the outgomg degree
of head(ea) isone, i.e., P;and P; share one link ¢! atleast. This
contradicts that P; and P; are edge-disjoint. So, e, and e, must
be assigned with different wavelengths.

If e, and e, are the same physical optical link, then the
wavelengths assigned to them are different; otherwise, e,
and e; are two different physical optical links, and the
wavelengths assigned to them are different too, which is
shown as follows. Assume that both e, and e, are assigned
with the same wavelength A. Let ¢, and e/, be their
corresponding links in P; and P; respectively. Then, tall(eb
)= tall(ed) and the incoming degree of tall(e,,) in Gj. ,ge 1s
one. Let ¢} be the immediate predecessor of e,, in P and e
the immediate predecessor of ¢/, in P;. Then, e} = e}, due to
that tail(e},) = tail(e};) and the incoming degree of tall(e,,) is
one, which means that P; and P; share one link ¢}, at least.
This contradicts that P; and P; are edge-disjoint. Therefore,
any two PH; and PH; are edge-disjoint with i+ j.[]

Lemma 2. The total cost of the K corresponding
semilightpaths found by algorithm Find K_Paths is
minimum.

Proof. Let PH,,PH,,....,PHx be the K edge-disjoint
semilightpaths in G from s to ¢ with the minimization of
the total cost of the K paths and M the total cost of these K
semilightpaths. Then, following the construction of GI$°,
there is a corresponding directed path P; in G3$° from s’ to
" and the weighted sum of the links in P; equals the cost of
PH; for each PH;, 1 <i<K. In the following we show that P;

and P; in G are edge-disjoint by contradiction, for any i

and j withi#j, 1 <i,j<K. Assume that P; and P; share a link
e=(x,y) derived by a wavelength A.

If (x,y) is a link between a node in G, and a node in G,,
then there is a corresponding physical optical link {u,v) in G.
As a result, PH; and PH; share the same physical link and
use the same Wavelength /1 This contradicts the definition of
edge-disjoint semlhghtpaths Therefore, P; and P; do not
share link {x,y) in G €. Otherwise, assume that e= (x,y) isa
link in G,, and 1s in one of the three edge sets (i)
ec{xW x@): xV ex! x@eXx?}; (i) ee{(x®,yD):
@ ex?yVevrl}; and (i) ee{(y?P,y?):yVevy],
y? €Y} If e is a type (i) link, then, both PH; and PH;
use the same link to enter v and the same wavelength is used
on the link. This contradicts edge-disjoint requirement
between the two paths. Thus, P; and P; do not share link (x,y)
in Gf‘ig If e is a type (11) link, then tall(e) =x and the
incoming degree of x in Ge £ is one. Let ¢’ be a hnk with
head(e’)=x. Then, P; and P; share links e and e'. From
tail(¢’), it can be derived that both PH; and PH; use the same
link to enter v and the same wavelength is used on the link.
This contradicts that they are edge-disjoint semilightpaths.
Therefore, P; and P; do not share link (x,y) in Gic,lge. Ifeisa
type (iii) link, then, both PH; and PH; use the same link to
leave v and the same wavelength is used on the link. This
contradicts that PH; and PH; are edge-disjoint semilight-
paths. P; and P; thus do not share link (x,y) in GEdge.
Therefore, for given K edge-disjoint semilightpaths PH 1o
PH,,...,PHg, the corresponding K directed paths Py,P,,...,
Px in G5 from s’ to ¢ are edge-disjoint and the weighted
sum of the links in them is equal to the cost sum of the links
in the K semilightpaths.

Let P}, P), ..., Pk be K edge-disjoint paths from s’ to ¢’
delivered by algorithm Find_K_Paths and PH{, PH}, ...
,PH} the corresponding semilightpaths. Let M’ be the
weighted sum of the links in the K semilightpaths, then,
M <M. Whlle it is known that any directed path in G$5¥°
from s’ to ¢” corresponds to a semilightpath in G from s to ¢
and M is the minimum total cost of such K edge-disjoint
semilightpaths, then, M <M’. Thus, M=M'.

Following the above lemmas, we have the theorem
below. ]

Theorem 1. Given a WDM network G(V,E, /1) and a pair of
nodes s and t, assume that each link e in G is assigned a set
A(e) S A of wavelengths, and every node has a wavelength
conversion table. There is an algorithm for finding K edge-
disjoint semilightpaths in G from s to t such that the cost sum
of the links in the K paths is minimized. The algorithm takes
O(kK (kn + m + n log(kn))) time, where K> 2.

Proof. The construction of the directed, weighted auxiliary
graph GEdge = (V/,E',w,) takes O(k’n+km) time, because
the graph contains no more than O(k’n+km) links and
O(kn) nodes. It is well known that finding a shortest path in a
directed, weighted graph H takes O(m’ + n' log n') time if
the Fibonacci heap technique [7] is employed (see the book
by Cormen et al. [6] on page 530), where H contains n’
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nodes and m' edges. Note that the algorithm repeatedly
constructs a shortest path tree rooted at s’ in a directed
weighted graph containing no more than 4kn+ 2 nodes and
k*n+ km+ 4k links. So, the algorithm can be implemented
in O(kK(kn+ m+ nlog(kn))) time. The theorem then
follows. [

4.2. K edge-disjoint semilightpaths with minimizing
the cost of a maximum cost path

We now consider finding K edge-disjoint semilightpaths
in G from s to ¢ such that the cost of the maximum cost path
is minimized. Despite that the first version of the problem is
polynomially solvable, the second version of the problem is
NP-hard, which is shown below.

Lemma 3. Given a WDM network G(V,E,A) and a source s
and a destination t, finding K edge-disjoint semilightpaths in
G with the minimization of the cost of the maximum cost
path is NP-hard, where K> 2.

Proof. We consider a special case with K=2. Assume that
for a given WDM network G(V,E, ), each physical optical
link e is assigned one wavelength A€ /, associated with a
weight w(e,A) for each e€E. The switch at each node is
allowed to switch any incoming wavelength to any outgoing
wavelength (fully switching) and the conversion cost is 0.
Then, finding two edge-disjoint semilightpaths in G from s
to ¢ with minimizing the cost of the maximum cost path is
exactly equivalent to finding two edge-disjoint paths in

G2 from s' to ¢ with minimizing the maximum weighted
sum of the links in one of the two paths, while this latter
problem has been shown to be NP-complete [11]. Therefore,
the problem with minimizing the cost of the maximum cost
path is NP-hard.[]

Since the second version of the problem is NP-hard, we
instead focus on finding an approximate solution. We use
algorithm Find K_Paths to find K edge-disjoint paths in
G2 from s’ to #” with minimizing the weighted sum of the
links in the K paths. As results, the K edge-disjoint
semilightpaths are found. Clearly, these K semilightpaths
is an approximate solution of the second version of the
problem. We now analyze the performance ratio of this
approximation algorithm by Lemma 4.

Lemma. 4 Given a WDM network G(V,E,/A) and a pair of
nodes s and t, assume that there are r edge-disjoint
semilightpaths from s to t, 1<r<Kk, then the solution
delivered by Find_K_Pa ths(G‘:’fge, s, 1", w,, 1) is within r
times of the optimum if r> 2.

Proof. Let P be a directed path in G from vy to v,

consisting of links (vo,v){vi,vah...{vVp—2.Vp— ) Vp—1,Vp).
The Welghted sum of the links in P is
Z " wy(v;,vis1), Which is the cost of P. Assume
i, 1+I)EP © ot " o) ) edge
that there are r edge-disjoint paths P|”, P5’, ..., P;” in Gy,
from s’ to ¢ with minimizing the total weighted sum of

the links in the r paths. Let 1,1, ..., 1) be the weighted
sums of the links in r paths, respectively. Without loss of
generality, assume that 1" <1 <[’ <---<I". By this
assumption that 0 < [\ < l(’) if 1 <i<j<r, then l(r)/l(’) <L

It is obvious that PV <irh < l(” and
l(r_l) + -t l(r_l) < l(r) 4+t l(r)

Let 01, Q(r) Q(’) be the r edge disjoint paths in G;,
from s’ to ¢ with minimizing the maximum cost of a path
among the r paths and let #\”,7)”,...,#" be the weighted
sums of the links in the r paths, respectively. Without loss of
generality, assume that 7" <" <#” <---<1". In other
words, Q) is the path with the maximum cost and
1= max{t(’) 1 <i<r}. Following the assumption that 0
<t(’) <" if 1<i<j<r, then t(’)/t(’) < 1. It is obvious that
er—l t(r{> S 17 and £ < l(') Thus we have,

a0+, 4+ 1) —
ti’) tEr)

edge

A7 4+ 1)

(r) (r) (r) (r) (r)
<t,’ +62 A4+ L2 4

- tﬁr) tgr)

O+ o 1+ .+
e = [0
r r

0+ +1

<r, since l(’) L >0 and r>2.
Y

O

Thus, we have Theorem 2

Theorem 2. Given a WDM network G(V,E, /1) and a pair of
nodes s and t, assume that each link e in G is assigned with a
set A(e)S A of wavelengths and every node is given a
wavelength conversion table. There is an approximation
algorithm for finding K edge-disjoint semilightpaths in G
from s to t such that the cost of the maximum cost path is
minimized. The algorithm takes O(kK(kn+ m + n log(kn)))
time, and the solution delivered is within K times of the
optimum, where K> 2.

Proof. By setting r=K in Lemma 4, the theorem then
follows. [

5. Distributed implementation

In this section we address the distributed implementation
issues of the proposed algorlthms The basic idea behind is
to embed the ideal network G2%*¢ into the physical network
G and to simulate G¢%*° using G. The detailed implemen-
tation is as follows.

For each node v€V in G, a directed weighted graph

=X!'UX2UY!UY2E, w) is constructed. Each
physical link e €E in G serves as the corresponding |/(e)|
links in G9¥. As a result, Gi¥ is constructed
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and represented distributively, i.e. every node v in G holds
the adjacency lists of the nodes in subgraph G, of G2%°. The
problem then becomes to find a shortest path in G, (which
is defined in algorithm Find_K_Paths and GL, = Gigge)
from s’ to t’, 1<i<K. The network G is then used to
simulate Gf;,,, i.e. each node in G actually represents a
subgraph in Giy,, 1 <i<K. While the single-source shortest
paths problem is a well studied problem in the distributed
environment, there are many efficient algorithms for it
including the algorithm by Chandy and Misra [3]. There-
fore, we have the following theorem.

Theorem 3. Given a WDM network G(V,E, /1) and a pair of
nodes s and t, assume that every link e in G is assigned a set
A(e) of wavelengths, and every node is given a wavelength
conversion table. There is a distributed algorithm for the
multiple routing path problem. The communication and time
complexities of the distributed implementation of the
proposed algorithm are O(kKm) and O(kKn), respectively,
on a distributed computational model.

Proof. Since the local computation is negligible in the
distributed computing environment, the construction of
G2 can be done in constant time. G is then used to
simulate G;, for each i, 1 <i<K. That is, each node in G
simulates a subgraph in G.i,r containing at most 4k + 1 nodes.
It is known that the communication and time complexities
for finding a shortest path between two nodes in a directed
graph H with n’ nodes and m' links are O(m’) and O(n’),
respectively [3]. Therefore, the communication and time
complexities of the distributed implementation of the
proposed algorithm are O(kKm) and O(kKn), because
the links in U E, in G$5¥° are the virtual links that are within
the physical nodes in G. By the definition of this model, the
communication costs on these links are negligible. ]

6. Conclusions

In this paper a multiple routing path problem with
different optimization objectives has been defined. Two
versions of the problem have been considered. One is to find
K edge-disjoint semilightpaths between a pair of nodes such
that the total cost of the K paths is minimized. Another is to
find K edge-disjoint semilightpaths between a pair of nodes
such that the cost of the maximum cost path is minimized.
An efficient algorithm for the first version has been presented
and an exact solution is delivered. While the second version
of the problem has been shown to be NP-hard, and an
approximation algorithm has been proposed, which deli-
verers a solution within K times of the optimum.
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