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Efficient Multiple Multicast in WDM Networks

Hong SHEN†, David J. EVANS††, Weifa LIANG†††, and Yuke WANG††††, Nonmembers

SUMMARY This paper addresses the problem of multiple
multicast in WDM networks. It presents three efficient algo-
rithms to construct an optimal/sub-optimal multicast tree for
each multicast and minimise the network congestion on wave-
lengths. The first two algorithm achieve an optimal network con-
gestion for a specific class of networks whose all wavelengths are
globally accessible and convertible at a unit cost. The third al-
gorithm produces an approximation solution for the general case
of WDM networks.
key words: algorithm, communication, multicast, WDM net-
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1. Introduction

Wavelength-Division Multiplexing (WDM) network is
an optical network which supports the propagation of
multiple laser beams through a single fiber-optic link
provided that each laser beam uses a distinct optical
wavelength. The major applications of the network
are video conferencing, scientific visualisation, real-
time medical imaging, supercomputing, and distributed
computing [1], [9], [12]. A comprehensive overview of its
physical theory and applications of this technology can
be found in the books by Green [4] and McAulay [7].

In order to solve various application problems on
an WDM network, mechanisms must be developed to
handle not only point-to-point communication but also
group communication involving transporting informa-
tion from a group of sites (nodes) to another group of
sites in the network. A typical group communication is
multicast that transports information from one source
node to a set of destination nodes. A more general ver-
sion of group communication is multiple multicast that
contains multiple groups of multicast, each with its own
source node and destination set [11]. Multiple multicast
covers all existing types of communications.
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A WDM network can be represented by graph
G = (V,E,Γ) with |V | = n and |E| = m, where
Γ = {Γ0,Γ1, . . . ,Γm−1}, Γe is the set of wavelengths
available at edge e ∈ E with w(e, γ) associated with
wavelength γ as the cost required to access γ. At each
node v, there is a set of converters (switches) associ-
ated, each converting a particular wavelength (γi) from
all incoming edges to another wavelength (γj) on out-
going edges at a fixed cost c(γi, γj). Figure 1 illustrates
wavelength conversion at a node.

In general and most practical cases, each edge in G
is bidirectional so that messages can be transmitted in
either direction. When both directions of an edge share
the same set of wavelengths, this edge can be regarded
as unidirectional for simplicity in representation.

There are r groups of multicast Mi = {si,

〈d1
i , . . . , d

ki

i 〉}, where si is a source and d1
i , . . . , d

ki

i are
the destinations of si, 0 ≤ i ≤ r − 1, 1 ≤ ki < n. Let
Mi alone (without considering the existence of other
groups) can be realized by a multicast tree MTi, and
MF = ∪MTi. Clearly, in the general case many edges
of MF will fall into the same edge (e) of G and use the
same wavelength (γ), thus causing congestion on wave-
length γ at edge e when broadcasting these r sources
simultaneously. Figure 2 shows an example of conges-
tion caused by 3 multicast trees.

The degree of congestion corresponds to the length
of message buffering queue in an ordinary network and
indicates the waiting time required to deliver all the
messages on the queue. Thus an important objective
in designing multiple multicast algorithms is to min-
imize the congestion with respect to certain measure
(total vs. maximum for instance). In this paper we
take the measure of maximum congestion. We say that

Fig. 1 Wavelength conversion at a node.
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Fig. 2 Congestion caused by 3 muitlcast trees using the same
wavelength on the same edge.

the (maximum) congestion of a network is optimal if it
reaches the minimum.

Define the congestion on an edge e, denoted by
le, to the maximum congestion on all wavelengths at e,
and the congestion on G to be the maximum congestion
on all edges in G. Our task is to construct all MTi’s
to achieve a minimal network congestion while keeping
the cost of MF as small as possible.

While research on point-to-point communication
in WDM networks has been quite active [3], [5], [13], not
much has been done on group communication due to
the degree of its difficulty [8]. In [6] we have shown that
the optimal multicast problem in WDM networks is
NP-complete and proposed an approximate algorithm
for it. Some other work has been done recently by other
researchers on different network models [8], [10]. To our
knowledge, there is no work reported on the problem
of multiple multicast in WDM networks with our defi-
nition stated above.

This paper addresses the problem of multiple mul-
ticast in WDM networks. In Sect. 2 we describe two
simple and efficient algorithms that solve this problem
optimally — minimizes the total cost of all multicast
trees as well as the network congestion for the simplified
case when all wavelengths are globally accessible at any
edge in the network, and both access to a wavelength
and conversion between a pair of wavelengths require a
unit-cost. In Sect. 3 we present an approximation solu-
tion for the general case of multiple multicast in WDM
networks that uses a greedy approach and employs our
previous result on single multicast [6]. Section 4 con-
cludes the paper by proposing some topics for future
research.

2. Globally Accessible Unit-Cost Wavelength

We consider a simplified WDM network G based on the
following assumptions:

1. All wavelengths of G are globally accessible at any
edge in G, that is, Γ0 = Γ1 = · · · = Γm−1 =
{γ1, γ2, . . . , γk}.

2. Both access to a wavelength and conversion be-
tween a pair of wavelengths require a unit-cost,
that is, w(γi) = c(γi, γj) = c for 0 ≤ i �= j ≤ m−1,
where c is constant.

Under the above assumptions, it is clear that a
multicast M requires a minimum cost if it follows an
optimal multicast tree that is a shortest path tree con-
structed in G connecting the source to all destinations
in M. The problem is now concluded to how to al-
locate the wavelengths to the edges of r shortest-path
trees realizing the given r groups of multicast.

We know from fundamental optics that the mag-
nitude of a wavelength decays in proportional to the
distance it travels for message transmission. In order
to avoid information loss on any wavelength in the net-
work, we need to maintain the same magnitude of the
wavelength at any step of transmission. This requires to
set an amplifier at each node for each valid wavelength
arrival at the node that amplifies the magnitude of the
wavelength on it arrival so that it can be reused with the
same reliability in the next step of transmission. With-
out this on-line amplification, a wavelength would need
to undergo the process of off-line energy recharge to re-
store its original magnitude. We assume this process
takes the same length as its transmission of a message
over a single edge. Hence the full switching support at
each node in a WDM network is a set of amplifiers for
magnitude amplification and a set of converters (mod-
ulators, filters, etc) for wavelength conversion. We call
networks equipped with this support normal networks,
and networks with only converter support weak net-
works.

These different supports affect the algorithms for
multiple multicast in the corresponding networks in the
sense of whether the same wavelength is allowed to be
used by two successive edges in the network. In the
normal network with amplifier support this is allowed,
whereas in the weak network without amplifier support
it is not allowed. This difference requires to use differ-
ent approaches and apply different techniques for the
design of the algorithm, under the same criteria of mini-
mizing multicast cost and network congestion when the
number of wavelengths is given.

In the following we give a simple and efficient al-
gorithm for each type of networks respectively.

For weak networks, each wavelength after use on
any edge cannot be reused immediately — it needs to
wait for a period of one-edge transmission for off-line
energy recharge. To minimize the the network con-
gestion, we make all wavelengths to be used by each
group multicast as equally as possible by alternating
the wavelengths for different routing steps. We present
the following algorithm.

Algorithm WUC-MMulticast(M, G, Γ)
{*Compute a communication scheme for r
groups of multicast M = {M0,M1, . . . ,Mr−1}
in a weak WDM network G with k globally ac-
cessible unit-cost wavelengths Γ.*}

1. Construct the multicast tree MTi on Mi in G,
0 ≤ i ≤ r − 1, by finding the shortest-path tree
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connecting the source to all destinations in Mr−1}.
2. For i = 0 to r−1 starting from the root (source at

level 0) breadth-first search MTi and assign wave-
length γαj to all edges at level j, 1 ≤ j ≤ �i, where
the value of αi is decided as follows:

If k ≥ 2r then
• αj = 2i if j is even;
• αj = 2i + 1 if j is odd;

else
• αj = i mod k if j is even;
• αj = i mod k + 1 if j is odd.

The degree of congestion can be analyzed as fol-
lows. If k ≥ 2r, since each multicast tree MTi uses one
distinct wavelength (2i) if the maximum level number
�i = 1 and two wavelengths exclusively (2i and 2i+1) if
�i > 1, obviously no congestion exists (degree of conges-
tion is 1) in both of these cases. If k < 2r, wavelength
i mod k + 1 is shared by MTi at odd numbered levels
(for all �i) and by MTi+1 at even numbered levels (if
�i > 1). When �i = 1, there are r/k multicast trees
sharing each wavelength (at level 1), so the degree of
maximum congestion is �r/k�. In the general case when
�i > 1, for any wavelength γi, 1 ≤ i ≤ k, since there are
r/k multicast trees using it at odd numbered levels and
another r/k multicast trees using it at even numbered
levels, the degree of maximum congestion is therefore
�2r/k�. This is the degree of possible maximum con-
gestion for all cases.

Lemma 1: For r groups of multicast in a weak WDM
network with k wavelengths, if all wavelengths are ac-
cessible and convertible on each edge (node) at a unit
cost, the minimum congestion on wavelength in the
worst case is �2r/k�.

Proof Since the underlying WDM network is weak,
each group must be assigned with at least 2 different
wavelengths in the general case when the multicast tree
contains more than 2 levels. Therefore, given a total of
k wavelengths and r groups, there are at least �2r/k�
groups sharing the same wavelength.

The worst case is that all the r groups have to
travel through the same edge in the network at the
same time. In this case, all the groups sharing the same
wavelength compete for this wavelength. That is, the
congestion on the wavelength is at least �2r/k�. ✷

The above lemma shows that algorithm WUC-
MMulticast computes multicast trees with the mini-
mum network congestion. This combined with the fact
that each multicast tree is a shortest path tree and
therefore has a minimum cost under our unit-cost as-
sumption concludes that all multicast trees constructed
by the algorithm are optimal.

Let ti be the time required for constructing MTi.
The time complexity of the algorithm is

∑r
i (ti +

O(|MTi|)) = O(rn2 +r2n), since ti = O(n2) for finding

a shortest-path tree in G and |MTi| ≤ n− 1. We have
thus the following theorem.

Theorem 1: If all k wavelengths in a weak WDM
network of n nodes are accessible and convertible on
each edge (node) at a unit cost, optimal multicast trees
for r groups of multicast can be computed in O(rn2 +
r2n) time with an optimal network congestion of 1 if
k ≤ 2r and �2r/k� otherwise.

We now consider the case of normal WDM net-
works. In this case since each wavelength can be reused
immediately owning to on-line amplification, we should
let each tree MTi use the same wavelength and mini-
mize the total number of wavelengths used by all trees
by letting the disjoint part of MF use the same wave-
length. Assume that r > k, since otherwise the solution
is trivial.

Algorithm NUC-MMulticast(M, G, Γ)
{*Compute a communication scheme for r
groups of multicast M = {M0,M1, . . . ,Mr−1}
in a normal WDM network G with k globally
accessible unit-cost wavelengths Γ.*}

1. Construct the multicast tree MTi on Mi in G,
0 ≤ i ≤ r − 1.

2. For i = 0 to r − 1, assign wavelength i mod k to
all edges in MTi;

3. Compute MF = ∪iMTi and record overlap edges
in D and their wavelengths assigned in W ;
{*W [i] holds all wavelengths assigned to edge i
with overlap number D[i], 0 ≤ i ≤ m− 1.*}

4. for i = 0 to m− 1 do
if D[i] > 1 then

if W [i] < D[i] then
assign min{D[i], k} wavelengths to edge i
and each wavelength to �D[i]/k� trees trav-
elling through edge i.

Since D[i] ≤ r for any r, the following theorem de-
picting the performance of algorithm NUC-MMulticast
can be easily established.

Theorem 2: If all k wavelengths in a normal WDM
network of n nodes are accessible and convertible on
each edge (node) at a unit cost, an optimal forest
consisting of r multicast trees can be computed in
O(rn2 + r2n) time with an optimal network congestion
of at most �r/k�.

3. Partially-Accessible Non-unit Cost Wave-
lengths

We now consider the general case that all wavelengths
are not globally accessible at each edge e ∈ E — Γe can
be any subset of ∪e∈EΓe, and different wavelengths and
their conversions may carry different costs. Obviously
our previous approach given in Sect. 2 is not applicable
to this case.
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For each individual group of multicast Mi it is
shown NP-hard to find an optimal multicast tree [6].
However, there is a polynomial algorithm for approxi-
mation solution as given in [6] by reducing this problem
to that of finding a Steiner tree on an auxiliary graph
of enlarged size that accommodates all different routing
costs, due to the existence of approximation solution for
the directed Steiner tree problem [2]. An edge in this
auxiliary graph (G′ = (V ′, E′)) can be denoted by (e, γ)
that corresponds to the cost of using wavelength γ on
edge e.

For multiple multicast in the general case of WDM
networks, we take a greedy approach to find an approx-
imate optimal multicast tree for a multicast and employ
our previous algorithm to find an approximate optimal
multicast tree for multicast one by one, with the heuris-
tic of increasing the edge weight (routing cost by tak-
ing the wavelength corresponding to the edge) by an
appropriate amount when an edge is taken by a multi-
cast tree so as to deprioritize that edge (wavelength) to
be chosen by the remaining multicast trees and hence
minimize the length of the congestion queue on that
wavelength.

Let ce(γu, γv) be the conversion cost from wave-
length γu to γv at edge e, we(γ) the cost of accessing
wavelength γ at edge e. Denote by cost(e, γ) be the
total cost of edge (e, γ). Associate ∆e,γ as the weight
increment to edge (e, γ) in G′. ∆e,γ is initialized to
zero for all edges of G′. Our algorithm is described as
follows:

Algorithm MMulticast (M, G, Γ)
{*Compute a communication scheme for r
groups of multicast M = {M0,M1 . . . ,Mr−1}
in a WDM network G with k wavelengths Γ.*}

1. For each (e, γ) in E′, compute cost(e, γ) =∑
γ′∈Γe,ce(γ,γ′) �=∞ ce(γ, γ′) + we(γ);

2. Compute
∑

cost(e, γ) =
∑

(e,γ)∈E′ cost(e, γ);
For i = 1 to r do

(a) find an approximate optimal multicast tree
MTi in the enlarged auxiliary graph G′ using
algorithm of [6];

(b) for each edge (e∗, γ∗) ∈ OMTi (uses wave-
length γ∗) assign

∑
cost(e, γ) to ∆e∗,γ∗ and

add it into cost(e∗, γ∗).

We shall show that once an edge (e∗, γ∗) is chosen
by an MTi, this edge will be deprioritize to the end of
the edge queues to be chosen by MTj for i + 1 ≤ j ≤
r. This can be seen from the simple fact that adding
increment ∆(e

∗, γ∗), which is
∑

(e,γ)∈E′ cost(e, γ), into
cost(e∗, γ∗) will make cost(e∗, γ∗) greater than the total
cost of G′, and hence (e∗, γ∗) will be taken by any MTj

only if there is no other choices (alternative routes in G′

not through edge (e∗, γ∗) that connect the set of nodes
of MTj. Yet (e∗, γ∗) is still an alive edge because its
cost is not infinity so can be chosen if needed.

Let ti be the time required for computing MTi. Al-
gorithm MMulticast takes a total time O(k|E′|+∑r

i ti).
From [6], we know that |E′| ≤ k(kn + m) and ti =
O((kn)1/εn) for a solution of O(nε)-OPT on cost based
on the current result on directed Steiner tree approx-
imation [2], 0 < ε ≤ 1, so the time complexity of the
above algorithm is O(k2n + km + (kn)1/εrn).

Hence we have

Theorem 3: Given a general WDM network of n
nodes and m edges and k wavelengths, an approximate
solution of O(nε)-OPT on cost for r groups of multi-
cast in the network can be obtained in O(k2n + km +
(kn)1/εrn) time with a small network congestion.

4. Concluding Remarks

We have presented three efficient algorithms for mul-
tiple multicast in WDM networks. Our first two algo-
rithms achieve an optimal network congestion when all
wavelengths of the network are globally accessible and
convertible at any edge. Our third algorithm gives an
approximation solution with the heuristic of depriori-
tizing each wavelength on an edge when it is used by
a multicast (tree) so as to avoid using the same wave-
length on the same edge by multiple groups of commu-
nication.

An interesting open problem for future research is
to find an efficient algorithm that achieves optimal net-
work congestion for multiple multicast in the general
WDM networks. Another problem of interest is to find
efficient algorithms that achieve an approximation solu-
tion with a guaranteed good (constant or logarithmic)
performance ratio.
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