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Abstract
The very limited sensor battery energy greatly hinders the large-scale, long-term deployments of wireless sensor networks.

This paper studies the problem of scheduling the minimum charging vehicles to charge lifetime-critical sensors in a

wireless rechargeable sensor network, by utilizing the breakthrough wireless charging technology. Existing studies still

employ a number of charging vehicles to charge sensors. The purchase cost of a charging vehicle however is not

inexpensive. To further reduce the number of employed charging vehicles, we propose a novel approximation algorithm,

by exploring the combinatorial properties of the problem. The techniques exploited in this paper are essentially different

from that in existing studies. Not only do we show that the approximation ratio of the proposed algorithm is much better

than that of the state-of-the-art, but also extensive experimental results demonstrate that the number of scheduled charging

vehicles by the proposed algorithm is at least 10% less than that by the existing algorithms and the total travel energy

consumption of the charging vehicles is also smaller than that by the existing algorithms.

Keywords Wireless sensor networks � Wireless energy transfer � Minimum number of dispatched charging vehicles �
Approximation algorithm

1 Introduction

Wireless sensor networks (WSNs) are widely used in

environmental monitoring, target tracking, medical and

scientific exploration, etc [5, 26]. Since sensors usually are

powered by batteries, their limited battery energy has

become a severe restriction on the applications of large-

scale sensor networks [1, 5, 17]. In order to reduce the

number of energy-critical sensors and thus prolong the

operation lifetime of WSNs, researchers proposed to enable

sensors to harvest energy from their surrounding environ-

ments, such as solar power [21], wind power,

etc [11, 19, 22]. However, renewable energy is highly

affected by its surrounding environment and is usually

temporally-varied and spatially-varied. For example, the

energy generating rate in a sunny day can be up to three

orders of magnitude higher than that in a cloudy day in a

solar harvesting system [14] and the average energy har-

vesting rates of sensors vary significantly indoors and

outdoors [6].

The recent breakthrough in the wireless energy transfer

based on the magnetic resonance technology revolutionizes
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the way of replenishing sensor energy [12, 27]. By

scheduling a charging vehicle to move in the vicinity of an

energy-critical sensor, the sensor can be fast charged by the

charging vehicle [20, 25, 29, 30]. Since there may be a

large number of energy-critical sensors in a large-scale

WSN and a charging vehicle is usually energy constrained,

multiple charging vehicles are needed for replenishing the

sensors, so as to support the sustainable operation of the

network. However, the purchase cost of one charging

vehicle is not cheap, which is from several hundred dollars

to quite a few thousand dollars [3, 7, 13]. In order to reduce

the total cost of the WSNs, especially the purchase cost and

maintenance cost of charging vehicles, in this paper we

study the problem of dispatching the minimum number of

charging vehicles to replenish energy-critical sensors.

The charging vehicles minimization problem has

attracted the attention of several researchers. For example,

Dai et al. [5] proposed an approximation algorithm for the

problem. However, the energy consumption of a charging

vehicle in its charging tour may exceed the maximum

energy capacity of the vehicle, then the vehicle is unable to

return to the base station to replenish itself. In order to

solve this problem, Liang et al. [14, 15] recently devised a

novel approximation scheduling algorithm, while ensuring

that the energy consumption of each charging vehicle in its

tour is no more than the maximum battery capacity of the

vehicle.

However, notice that the existing algorithms still

schedule a lot of charging vehicles to charge sensors. Since

the purchase cost of charging vehicles is not cheap, the

scheduling of many charging vehicles will not only bring

higher purchase cost but also incur higher vehicle main-

tenance cost. Thus, it is quite necessary to further reduce

the number of charging vehicles.

1.1 Novelty of this work

The state-of-the-art [14, 15] delivered the minimum num-

ber of charging vehicles by the tree decomposition tech-

nique, which decomposes a large spanning tree into

multiple smaller subtrees and one charging vehicle

replenishes the sensors contained in one subtree. However,

this technique only ensures that each vehicle consumes a

fraction of its battery capacity in its charging tour, the

vehicle may still have a significant amount of residual

energy after it finishes its charging tour and returns to the

base station. Then, the existing algorithms still schedule a

number of charging vehicles to replenish sensors.

Unlike the existing studies, we exploit the combinatorial

structure of the charging vehicles minimization deploy-

ment problem, and propose two new techniques: graph

transformation technique (see Sect. 3.1) and circle

decomposition technique (see Sect. 3.3). Based on the two

novel techniques, we devise an improved approximation

algorithm for the problem. Specifically, the first technique

transforms a both node-weighted and edge-weighted graph

G into another only edge-weighted graph G0, such that the

optimal values for the problem in G and G0 are equal. Then,
it is easier to solve the problem in the auxiliary graph G0 as
it is only edge-weighted. On the other hand, the second

technique allows one charging vehicle to replenish as many

sensors as possible in its charging tour, without having a

large amount of residual energy after finishing the charging

tour. Therefore, the proposed algorithm in this paper dis-

patches less number of vehicles to charge sensors than that

by the state-of-the-art.

We also show that the approximation ratio of the pro-

posed algorithm is at least 1.5 smaller than the ratio of the

state-of-the-art [15] (see Theorem 1 in Sect. 4.2), which

are 1:5
1� A

IE

þ 1 and 4
1�A

IE

, respectively, where IE is the energy

capacity of a charging vehicle and A is the maximum

amount of consumed energy for charging a sensor by the

vehicle.

1.2 Contributions

The main contributions of this paper are highlighted as

follows.

• In order to further minimize the purchase cost of

charging vehicles, we propose a novel approximation

algorithm to minimize the number of deployed charg-

ing vehicles, and the approximation ratio of the

proposed algorithm is at least 1.5 smaller than the ratio

of the state-of-the-art [15].

• Extensive experimental results demonstrate that the

number of scheduled charging vehicles by the proposed

approximation algorithm is at least 10% less than the

state-of-the-art, which is closer to the optimal value.

Also, the total travel energy consumption by the

proposed algorithm is smaller than that by the existing

algorithms.

The rest of this paper is organized as follows. Section 2

introduces the network model, charging model and defines

the problem. Section 3 proposes a novel approximation

algorithm for the charging vehicles minimization deploy-

ment problem. Section 4 analyzes the approximation ratio

of the proposed algorithm. Section 5 evaluates the perfor-

mance of the proposed algorithm by simulation experi-

ments. Section 6 reviews the related work, and Sect. 7

concludes this paper.
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2 Preliminaries

In this section, we first introduce the network model, then

present the charging model, and finally define the problem.

2.1 Network model

Consider a large-scale WSN for environmental monitoring

or event monitoring, where ns sensors and a base station r

are randomly deployed in the network. The sensor network

can be represented as an undirected graph Gs ¼ ðVs[
frg;EsÞ, where Vs [ frg is the set of the ns sensors and the

base station r, and there is an edge (u, v) in Es for any two

nodes u and v in Vs. Denote by du;v and du;r the Euclidean

distances between two sensors u and v, and a sensor u and

the base station r, respectively.

Denote by Bv the battery capacity of each sensor v in Gs.

Sensor v consumes its battery energy when it monitors and

uploads data. Let the energy consumption rate of sensor v

be qv [15].

2.2 Charging model

Denote by REvðtÞ the amount of residual battery of each

sensor v at time t. Then, the residual lifetime LvðtÞ of sensor
v at time t is LvðtÞ ¼ REvðtÞ

qv
. Every sensor v sends a charging

request to the base station r when its residual lifetime LvðtÞ
at some time t falls below a given time threshold Lc, e.g., 2

hours. Such a sensor v is referred to as a lifetime-critical

sensor. Considering that there may be multiple sensors

whose residual lifetimes are short, we define a lifetime-

critical set V of sensors as V ¼ fv j v 2 Vs; Lv � aLcg,
where a is a constant with a� 1.

To prevent sensors from running out of their energy, we

dispatch charging vehicles to replenish lifetime-critical

sensors. Assume that one charging vehicle can replenish

energy to a sensor at a rate of l when it moves in the

vicinity of the sensor. The vehicle travels at a speed of s

and consumes g amount of its energy per unit length when

it travels.

Denote by G ¼ ðV [ frg;E; h : V ! Rþ;w : E ! RþÞ
the network induced by set V [ frg, where V is the set of

lifetime-critical sensors, E be the set of edges between any

two nodes in V [ frg. For any two sensors u and v in V,

w(u, v) represents the travel energy consumption of one

vehicle for traveling from sensor u to sensor v, that is,

wðu; vÞ ¼ g � du;v, where du;v is the Euclidean distance

between sensors u and v and g is the traveling energy

consumption of the vehicle per unit length. Similarly,

w(u, r) represents the travel energy consumption of one

vehicle when it travels from sensor u to the base station r,

i.e., wðu; rÞ ¼ g � du;r.

Notice that there may be a number of lifetime-critical

sensors in the WSN. Since the battery capacity of every

charging vehicle usually is limited, one charging vehicle

may not have sufficient energy to charge all lifetime-crit-

ical sensors to their full energy capacities. Multiple

charging vehicles thus may be needed to replenish them

collaboratively.

Denote by IE the battery capacity of one charging

vehicle. To ensure that one fully charged vehicle is able to

replenish at least one sensor, assume that the battery

capacity IE is not very small, that is,

IE� max
v2V

f2wðv; rÞ þ hðvÞg; ð1Þ

where 2w(v, r) is the travel energy consumption of one

vehicle when it moves from the base station r to the

location of sensor v and returns from v to r, hðvÞð¼
Bv � REvÞ is the amount of energy for the vehicle charging

sensor v.

Assume that P charging vehicles are needed to charge

the n lifetime-critical sensors v1; v2; . . .vn collaboratively,

where P is to be determined by a charging scheduling

algorithm with P� 1. Let the charging tours of these P

charging vehicles be C1;C2; . . .CP, respectively, and the

charging tour Ci of the ith charging vehicle is

C ¼ r ! vi;1 ! vi;2 ! vi;3 � � � ! vi;ni ! r, where there are

ni sensors in tour Ci, vi;j 2 V; 1� i�P, and 1� j� ni.

Figure 1 illustrates that P ¼ 2 charging vehicles are

dispatched to replenish lifetime-critical sensors.

The total energy consumption wðCiÞ of one charging

vehicle in tour Ci is

Fig. 1 An example of dispatching P ¼ 2 vehicles to replenish

lifetime-critical sensors
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wðCiÞ ¼
X

e2EðCiÞ
wðeÞ þ

X

v2VðCiÞ
hðvÞ; ð2Þ

where
P

e2EðCiÞ wðeÞ is the total travel energy consumption

of the vehicle in tour Ci, and
P

v2VðCiÞ hðvÞ is the total

charging energy consumption that the vehicle consumes for

charging sensors in Ci.

Since the battery capacity IE of the vehicle is limited,

the total amount of consumed energy of the vehicle for

traveling and charging sensors should be no greater than

the vehicle energy capacity IE, that is,

wðCiÞ� IE: ð3Þ

2.3 Problem definition

Given a set V of lifetime-critical sensors in a large-scale

WSN at some time and the battery capacity IE of one

charging vehicle, the minimum vehicle deployment problem

is to find the minimum number P of charging tours for

vehicles to fully charge sensors in V, subject to that the

energy consumption of each vehicle in its charging tour is

no greater than the battery capacity IE, that is,

minðPÞ; ð4Þ

subject to

wðCiÞ� IE; 1� i�P; ð5Þ

V � [P
i¼1VðCiÞ: ð6Þ

3 Approximation algorithm for minimizing
the number of deployed charging vehicles

In this section, we present a novel approximation algorithm

to minimize the number of deployed charging vehicles.

Given a sensor network G ¼ ðV [ frg;E; h : V !
Rþ;w : E ! RþÞ, and the battery capacity IE of each

charging vehicle, the basic idea of the proposed approxi-

mation algorithm is described as follows.

We first transform the original edge-weighted, node-

weighted graph G ¼ ðV [ frg;E; h : V ! Rþ;w : E !
RþÞ into another only edge-weighted auxiliary graph

G0 ¼ ðV [ frg;E;w0 : E ! RþÞ.
We then obtain an approximate shortest charging tour C

visiting all nodes in graph G0 by applying an existing TSP

approximation algorithm, without considering the battery

capacity IE of each vehicle.

We finally decompose the long charging tour C into

several, say P, shorter charging tours C1;C2; . . .CP, such

that the energy consumption in each tour Ci is no more than

IE. Then, P charging vehicles are scheduled to replenish

the lifetime-critical sensors in G along the P delivered

charging tours.

We elaborate the approximation algorithm as follows.

3.1 Step 1: transform the original network G

Recall that in the original graph G ¼ ðV [ frg;
E; h : V ! Rþ;w : E ! RþÞ, h(v) is the amount of energy

needed for one charging vehicle fully charging sensor v.

Specially, hðrÞ ¼ 0 for the base station r. w(u, v) is the

travel energy consumption of one vehicle for traveling

from sensor u to sensor v.

We transform the edge-weighted and node-weighted

graph G into another equivalent only edge-weighted aux-

iliary graph G0 ¼ ðV [ frg;E;w0 : E ! RþÞ, where

w0ðu; vÞ ¼ wðu; vÞ þ hðuÞ þ hðvÞ
2

; ð7Þ

for any two nodes u and v in V [ frg. Especially, the

weight w0ðu; rÞ of each edge (u, r) between a sensor u in V

to the base station r is

w0ðu; rÞ ¼ wðu; rÞ þ hðuÞ þ hðrÞ
2

¼ wðu; rÞ

þ hðuÞ
2

; as hðrÞ ¼ 0:

ð8Þ

The rationale behind the graph transformation is that we

will later show that an optimal solution to the minimum

vehicle deployment problem in graph G0 is also an optimal

solution to the problem in the original graph G (see

Lemma 1 in Sect. 4.1). It can be seen that it is easier to

solve the problem in the auxiliary graph G0, since the graph
G is both edge-weighted and node-weighted, while graph

G0 is only edge-weighted.

3.2 Step 2: obtain an approximate shortest
charging tour C in G0

It can be seen that the auxiliary graph G0 ¼ ðV [
frg;E;w0 : E ! RþÞ is a complete metric graph, where the

edge weights in the graph satisfy the triangle inequality.

We find an approximate shortest charging tour C for the

TSP problem in graph G0 by applying the Christofides

approximation algorithm. Following [4], the length of tour

C is at most 1.5 times the length of a shortest closed tour

visiting nodes in G0.
Assume that the approximate shortest tour C of visiting

lifetime-critical sensors in set V obtained by the Christo-

fides algorithm is C ¼ r ! v1 ! v2 ! v3 � � � ! vn ! r;

where vi 2 V . Figure 2 shows an example of a charging

tour C obtained by the Christofides approximation algo-

rithm, where there are n ¼ 8 lifetime-critical sensors.
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3.3 Step 3: decompose tour C into shorter tours

Having the approximate shortest tour C ¼ r ! v1 !
v2 ! v3 � � � ! vn ! r, notice that the total amount of

consumed energy w(C) by one charging vehicle in tour

C may exceed the battery capacity IE of the vehicle.

To ensure that the amount of consumed energy by one

vehicle in its tour does not exceed IE, we decompose the

long charging tour C into several, say P, shorter charging

tours C1;C2; . . .;CP, with each tour Ci starting and ending

at the base station r.

The charging tour C1 of the first vehicle is

C1 : r ! v1 ! v2 � � � ! vi ! r; ð9Þ

where the total energy consumption w0ðC1Þ of one vehicle

for replenishing the sensors v1; v2; . . .; vi is no more than

IE, that is

w0ðC1Þ� IE; ð10Þ

while the total energy consumption of the vehicle for

replenishing sensors v1; v2; . . .; vi; viþ1 is strictly larger than

IE, i.e.,

w0ðr ! v1 ! v2 � � � ! vi ! viþ1 ! rÞ[ IE: ð11Þ

Generally, assume that we have found the charging tours

C1;C2; . . .;Ck for the first k charging vehicles, and the first

i sensors v1; v2; . . .; vi have been assigned to be replenished

by these k charging vehicles, then the charging tour Ckþ1

for the ðk þ 1Þth charging vehicle is

Ckþ1 : r ! viþ1 ! viþ2 � � � ! vj ! r; ð12Þ

where w0ðCkþ1Þ� IE;w0ðC0
kþ1Þ[ IE, and

C0
kþ1 : r ! viþ1 ! viþ2 � � � ! vj ! vjþ1 ! r: ð13Þ

The tour decomposition procedure continues until all life-

time-critical sensors in V are assigned to charging vehicles.

The detail algorithm for the minimum vehicle deployment

problem is presented in Algorithm 1

Figure 3 shows that P ¼ 3 charging tours are obtained

by decomposing the tour C in Fig. 2.

4 Algorithm analysis

In this section, we will analyze the approximation ratio and

the time complexity of the proposed approximation

algorithm.

4.1 The equivalence of graphs G and G0

Lemma 1 Given a graph G ¼ ðV [ frg;E; h : V !
Rþ;w : E ! RþÞ and a battery capacity IE of each

charging vehicle, transform the graph G into another

graph G0 ¼ ðV [ frg;E;w0 : E ! RþÞ with w0ðu; vÞ ¼
wðu; vÞ þ hðuÞþhðvÞ

2
for any two nodes u and v in V [ frg.

Then, the optimal number of the minimum vehicle deploy-

ment problem in graph G0 is equal to the optimal one of the

problem in the origin graph G.

Proof Assume that the optimal solution to the minimum

vehicle deployment problem in G consists of P1 charging

vehicles, and their charging tours are C1;C2; . . .;CP1
,

respectively, where P1 is a positive integer. Similarly,

assume that the optimal solution to the problem in G0

Fig. 2 An approximate shortest charging tour C of the TSP problem

Fig. 3 P ¼ 3 charging tours are obtained by decomposing the tour

C in Fig. 2
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consists of P2 charging vehicles and their charging tours

are C0
1;C

0
2; . . .;C

0
P2
, respectively.

In order to show that the optimal values of the minimum

vehicle deployment problem in G and G0 are equal, in the

following, we prove that P1 �P2 and P2 �P1.

We first prove P1 �P2. To this end, we only need to

show that the P1 charging tours in G form a feasible

solution to the minimum vehicle deployment problem in

G0. For each charging tour Ci of the P1 charging tours, let

Ci ¼ r ! vi;1 ! vi;2 ! vi;3 � � � ! vi;ni ! r, where vi;j 2 V ,

and 1� i�P1. The total energy consumption wðCiÞ of Ci is

wðCiÞ ¼
X

e2EðCiÞ
wðeÞ þ

X

v2VðCiÞ
hðvÞ: ð14Þ

Since the P1 charging tours form a feasible solution to the

problem in G, we have wðCiÞ� IE. Consider the total

energy consumption w0ðCiÞ of tour Ci in graph G0

w0ðCiÞ ¼ w0ðr; vi;1Þ þ
Xni�1

j¼1

w0ðvi;j; vi;jþ1Þ þ w0ðvi;ni ; rÞ

¼ wðr; vi;1Þ þ
hðvi;1Þ

2
þ
Xni�1

j¼1

wðvi;j; vi;jþ1Þ
�

þ hðvi;jÞ þ hðvi;jþ1Þ
2

�

þ wðvi;ni ; rÞ þ
hðvi;niÞ

2

¼
X

e2EðCiÞ
wðeÞ þ

X

vi;j2VðCiÞ
hðvi;jÞ;

by Eq. (7) and Eq. (8)

¼ wðCiÞ � IE:

ð15Þ

Therefore, an optimal solution with P1 charging tours

C1;C2; . . .;CP1
for the minimum vehicle deployment

1376 Wireless Networks (2019) 25:1371–1384
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problem in graph G is a feasible solution to the problem in

auxiliary graph G0. Then P1 �P2.

The proof of P2 �P1 can be shown similarly, omitted.

Therefore, P1 ¼ P2, that is, the optimal value of the

minimum vehicle deployment problem in graph G0 is equal
to the optimal value of the problem in the origin G. h

4.2 The analysis of the approximation ratio
of algorithm Appro

Theorem 1 Given a graph G ¼ ðV [ frg;E; h : V !
Rþ;w : E ! RþÞ and a battery capacity IE of each

charging vehicle, assume A ¼ maxv2Vf2wðv; rÞ þ hðvÞg
with A� IE. Then, the approximation ratio P

P�
of algorithm

Appro, i.e., the number P of deployed vehicles by algo-

rithm Appro to that of the optimal value P�, is

P

P�
� 1:5

1� A
IE

þ 1; ð16Þ

which is at least 1.5 smaller than that by the state-of-the-

art [15], where the approximation ratio in [15] is 4
1�A

IE

.

Also, the time complexity of algorithm Appro is Oðn3Þ,
where n ¼ jV j.

Proof Assume that an optimal solution to the minimum

vehicle deployment problem consists of P� charging tours

C�
1 ;C

�
2 ; . . .;C

�
P�
. Let C� be an shortest charging tour of the

TSP problem for the lifetime-critical sensor set V.

We first obtain a lower bound on P�. It can be seen that a
closed tour C visiting nodes in V [ frg can be derived from
the P� tours C�

1;C
�
2; . . .;C

�
P�
, as the base station r is

contained in each of the P� tours, then,

wðC�Þ�wðCÞ�
XP�

i¼1

wðC�
i Þ�P� � IE: ð17Þ

Therefore, P� � wðC�Þ
IE

. Since P� is a positive integer, we

know

P� � dwðC
�Þ

IE
e: ð18Þ

In the following, we analyze the number of obtained

charging tours by algorithm Appro. It first finds an

approximate shortest tour C for visiting nodes in V [ frg,
following [4],

wðCÞ� 1:5wðC�Þ: ð19Þ

For each obtained tour Ck by the proposed algorithm

Appro, let Ck : r ! vi ! viþ1 � � � ! vj ! r. Following

the construction of tour Ck, we have

w0ðr ! vi ! viþ1 � � � ! vj ! rÞ� IE; ð20Þ

and

w0ðr ! vi ! viþ1 � � � ! vj ! vjþ1 ! rÞ[ IE; ð21Þ

see Fig. 4.

On the other hand, recall that A ¼ maxv2Vf2w0ðv; rÞg,
then,

w0ðr; viÞ�
A

2
; w0ðvjþ1; rÞ�

A

2
ð22Þ

Therefore, the length of path vi ! viþ1 � � � ! vj ! vjþ1 is

w0ðvi ! viþ1 � � � ! vj ! vjþ1Þ
¼ w0ðr ! vi ! viþ1 � � � ! vj ! vjþ1 ! rÞ

� w0ðr ! viÞ � w0ðvjþ1 ! rÞ

� IE � A

2
� A

2
¼ IE � A

ð23Þ

We thus obtain an upper bound on the number P of

obtained tours,

P�d wðCÞ
IE � A

e� d1:5wðC
�Þ

IE � A
e� 1:5wðC�Þ

IE � A
þ 1: ð24Þ

The approximation ratio of algorithm Appro is

P

P�
�

1:5wðC�Þ
IE�A

þ 1

P�
�

1:5wðC�Þ
IE�A

P�
þ 1; asP� � 1

�
1:5wðC�Þ
IE�A

dwðC�Þ
IE

e
þ 1; following Eq: ð18Þ; as P� � dwðC

�Þ
IE

e

�
1:5wðC�Þ
IE�A
wðC�Þ
IE

þ 1 ¼ 1:5

1� A
IE

þ 1:

ð25Þ

Fig. 4 The procedure of decomposing a long charging tour

Wireless Networks (2019) 25:1371–1384 1377

123



On the other hand, the approximation ratio in [15] is 4
1�A

IE

,

where 0� A
IE
\1. It can be seen from Fig. 5 that the value

of the approximation ratio for each of the two algorithms

increases with the increase of A
IE
, and the approximation

ratio of algorithm Appro is smaller than that in [15].

Specially, when A
IE
¼ 0, the approximation ratio of algo-

rithm Appro is 1:5
1� A

IE

þ 1 ¼ 2:5, which is at least 1.5 smaller

than the ratio 4
1�A

IE

¼ 4.

The rest is to analyzed the time complexity of algorithm

Appro. It takes Oðn2Þ time to transform graph G into G0,

where n ¼ jVj. Then, it takes Oðn3Þ to obtain an approx-

imate shortest tour C for visiting sensors in G0, by invoking

Christofides algorithm [4]. Finally, it takes O(n) time to

decompose tour C into shorter tours. Therefore, the time

complexity of algorithm Appro is Oðn2Þ þ Oðn3Þþ
OðnÞ ¼ Oðn3Þ. h

5 Performance evaluation

In this section, we evaluate the performance of the pro-

posed algorithm through simulation experiments.

5.1 Simulation environment

Consider a sensor network deployed in a 500m� 500m

square area. A base station is located at the center of the

area. The network consists of from 100 to 400 sensors,

which are randomly deployed in the area. The battery

capacity of each sensor is 10.8 kJ [23] and the battery

capacity of each charging vehicle is from 1000 to 5000 kJ.

The charging energy rate of charging vehicle for replen-

ishing a sensor is l ¼ 5 Watts [12, 15], the energy con-

sumption rate of the charging vehicle is g ¼ 0:6 kJ/m when

it travels and its traveling speed is s ¼ 5m=s. The experi-

mental period T is one year, that is, T ¼
365� 24� 3600 s.

The sensors consume their energy during data sensing,

data transmission, and data receiving. We consider two

different distributions of sensor energy consumption rates:

linear distribution and random distribution [15]. In the

linear distribution, the energy consumption rate qi of a

sensor vi is inversely proportional to the distance between

the sensor vi and the base station r. Since the sensors close

to the base station need to relay data for other sensors far

away from the base station, the sensors nearby the base

station consume their energy quicker than the sensors far

from the base station. Then, the energy consumption rates

of the sensors decrease linearly. Assume that the sensor

nearest to the base station has the maximum energy con-

sumption rate qmax ¼ 10mJ=s and the sensor furthest from

the base station has the minimum energy consumption rate

qmin ¼ 1mJ=s. On the other hand, in the random distribu-

tion, the energy consumption rate qi of sensor vi is a ran-

dom value between the minimum energy consumption rate

qmin ¼ 1mJ=s and the maximum energy consumption rate

qmax ¼ 10mJ=s [14, 15].

To evaluate the performance of the proposed algorithm

Appro, we compare it with existing algorithms LB_op-

timal [15], NMV [15], minMCP [5], AA [28], APS [8],

and rewardMax [16], which are briefly described as

follows. Algorithm LB_optimal [15] delivers a lower

bound on the optimal value, where LB_optimal ¼
dWHðTÞ

IE
e andWH(T) represents the total energy consumption

of the minimum spanning tree T in the graph induced by

the lifetime-critical sensors in V. Both the algorithms

NMV [15] and minMCP [5] find approximate solutions to

the minimum vehicle deployment problem. Algorithm

AA [28] schedules vehicles to charge sensors, such that the

total amount of charged energy to sensors minus the total

vehicle traveling energy is maximized, while ensuring that

every vehicle does not deplete its energy in its charging

tour. Algorithm APS [8] finds each tour to charge the

maximum number of sensors in increasing order of their

residual energy, such that the total energy consumption of

the tour is no more than the vehicle energy capacity.

Algorithm rewardMax [16] delivers a charging tour for

each vehicle, so that the sum of the amounts of energy

charged to sensors by the vehicle in the tour is maximized,

subject to the vehicle energy capacity.

5.2 Algorithm evaluation and performance

We first study the performance of the seven algorithms

Appro, LB_optimal, NMV, minMCP, AA, APS, and

rewardMax, by increasing the network size from 100 to

400. Figure 6(a) shows that the number of charging vehicles

Fig. 5 The approximation ratios of algorithm Appro and the

algorithm in [15]
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dispatched by algorithm Appro is the smallest one among

the algorithms except LB_optimal, and is at least 11%

smaller than that by algorithm rewardMax. For example,

the numbers of scheduled vehicles by algorithms Appro,

NMV, minMCP, AA, APS, and rewardMax are 7.5, 16.5,

10.5, 26.5, 12.8, and 8.5, respectively, when the network size

n ¼ 400. On the other hand, compared to the lower bound

LB_optimal on the optimal value, the algorithm Appro

delivers only 0.8 more charging vehicles than algorithm

LB_optimal when the network size n ¼ 100, and dis-

patches 2.29 more vehicles when the network size n ¼ 400.

Then, Fig. 6(a) validates the claim that the approximation

ratio of algorithm Appro is smaller than that by the state-of-

the-art algorithm NMV, see Theorem 1.

Figure 6(b) plots the total travel energy consumptions of

charging vehicles by the seven different algorithms. It can

be seen that the total energy consumption by algorithm

Appro is smaller than those by the five algorithms NMV,

minMCP, AA, APS, and rewardMax. Specially, on

average, the total travel energy consumption by algorithm

Appro is at least 5% less than that by each of the five

algorithms.

Figure 6(c) demonstrates the running times of different

algorithms, from which it can be seen that the running

times by the five algorithms Appro, LB_optimal, NMV,

AA, and APS are no longer than 0.1 second, and are much

shorter than that by both algorithms minMCP and

rewardMax.

On the other hand, Fig. 6(d–f) demonstrate the perfor-

mance of the seven algorithms when the energy con-

sumption rates follow the random distribution. It can be

seen that the number of dispatched vehicles by algorithm

Appro is 17, 45, 60, 25, and 13% less than those by

algorithms NMV, minMCP, AA, APS, and rewardMax,

respectively, when the network size n increases from n ¼
100 to n ¼ 400. Also, the total energy consumption by

algorithm Appro is about at least 8% less than those by

the other six algorithms except LB_optimal,

respectively.

We then investigate the algorithm performance by

increasing the battery capacity IE from 1000 to 4000 kJ.

Figure 7(a) shows that the number of deployed charging

vehicles by each of the seven algorithms decreases with the

increase of the vehicle battery capacity IE. Figure 7(a) also

shows that the number of vehicles by algorithm Appro is

about 21% smaller than that by algorithm NMV when IE

increases from 1000 to 3000 kJ and it is about 12% less

than that by algorithm NMV when IE ¼ 4000 kJ. Moreover,

Fig. 6 Performance of algorithms LB_optimal, Appro, minMCP,
minMCP, AA, APS, and rewardMax by increasing the network size

n from 100 to 400, when IE ¼ 1; 000 kJ;qmin ¼ 1mJ; and

qmax ¼ 10mJ. a Number of dispatched charging vehicles with the

linear distribution. b Total travel energy consumption with the linear

distribution. c Running time with the linear distribution. d Number of

dispatched charging vehicles with the random distribution. e Total

travel energy consumption with the random distribution. f Running
time with the random distribution
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the number of vehicles by algorithm Appro is about 47%

smaller than that by algorithm minMCP when

IE ¼ 1000 kJ. Figure 7(b) shows that the total travel

energy consumption by algorithm Appro is less than those

by algorithms minMCP and NMV, which is about 8% less

than that by algorithm NMV. Figure 7(c, d) plot similar

curves when the energy consumption rate follows the

random distribution.

We finally evaluate the algorithm performance by

increasing the maximum energy consumption rate qmax of

the sensors from qmax ¼ 1mJ to qmax ¼ 10mJ while fixing

qmin at 1 mJ. It can be seen from Fig. 8(a, c) that the

number of dispatched vehicles by algorithm Appro is

about 20% less than that by algorithm NMV and about 38%

more than that by algorithm LB_optimal. Figure 8(b, d)

show that the total travel energy consumption by algorithm

Appro is about 24% and 7% less than the consumptions

by the two algorithms minMCP and NMV.

6 Related work

The scheduling of charging vehicles for sensor networks

has drawn a lot of attentions and existing studies can be

divided into two categories. In the first category, one

charging vehicle is assumed to have sufficient energy to

charge all lifetime-critical sensors [8, 16, 24, 33–35]. For

example, given a set of energy-critical sensors,

Guo et al. [8] found a tour to charge the maximum number

of sensors in increasing order of their residual energy, such

that the length of the tour is no longer than a threshold Ltsp.

Liang et al. [16] studied the problem of finding a charging

tour for a vehicle, so that the sum of the amounts of energy

charged to the sensors in the tour by the vehicle is maxi-

mized, subject to the energy capacity of the vehicle. The

also proposed a constant approximation algorithm for the

problem. However, this assumption is only valid for small-

scale WSNs. In large-scale WSNs, some researchers

argued that it is necessary to consider the battery capacity

of one charging vehicle [5, 10, 15, 28], and schedule

multiple charging vehicles to replenish sensor energy.

Given a weighted graph and a tour length constraint D,

assume that the edge weights in the graph satisfy the tri-

angle inequality. In order to find the minimum number of

closed tours to cover all the nodes in the graph and ensure

that the total length of each tour is no longer than D,

Nagarajan et al. [18] proposed a double standard approxi-

mation algorithm with ðOðlog 1
eÞ; 1þ eÞ, which means that

the length of each tour found by the algorithm does not

exceed ð1þ eÞD while the number of found tour is no more

than Oðlog 1
eÞ times of the optimal value, where e is a

constant with 0\e\1. Dai et al. [5] designed an algorithm

for the minimum vehicle deployment problem, by utilizing

Fig. 7 Performance of

algorithms LB_optimal,
Appro, minMCP, minMCP,
AA, APS, and rewardMax by

increasing the battery capacity

IE from 1000 kJ to 4000 kJ,

when n ¼ 200;qmin ¼ 1mJ; and
qmax ¼ 10mJ. a Number of

dispatched charging vehicles

with the linear distribution.

b Total travel energy

consumption with the linear

distribution. c Number of

dispatched charging vehicles

with the random distribution.

d Total travel energy

consumption with the random

distribution
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the algorithm in [18]. However, one disadvantage

of [5, 18] is that the energy consumption of a found

charging vehicle in its charging tour may exceed the

maximum battery capacity of the vehicle with a ratio of e.
Then, the charging vehicle cannot return to the base station

to replenish itself. Hu et al. [10] assumed that all sensors in

the network have the same energy consumption rate and

the charging vehicles replenish the sensors periodically.

However, the energy consumption rates of different sensors

usually are different, since the sensors near to the base

station need to forward data for other sensors far away

from the base station. Liang et al. [15] adopted the tree

decomposition method and proposed an approximation

algorithm to minimize the number of scheduled charging

vehicles, by ensuring that the energy consumption of each

vehicle in its charging tour does not exceed the battery

capacity of the vehicle. In order to minimize the longest

charging tour of K charging tours for K charging vehicles,

Xu et al. [31, 32] studied the dispatching of K charging

vehicles to recharge lifetime-critical sensors and proposed

a constant approximation algorithm. He et al. [9] assumed

that charging requests of the sensors follows the poisson

distribution. They used a Nearest-Job-Next with Preemp-

tion (NJNP) discipline for the charging vehicle. However,

it does not guarantee that every sensor will be replenished

before its energy expiration. Wang et al. [28] first obtained

the minimum number K of charging vehicles to maintain

the long-term operation of a sensor network, assuming that

the data generation rates of different sensors are indepen-

dent with each other and follow a Poisson distribution.

Given a set of lifetime-critical sensors at some time, they

then investigated the problem of scheduling the K vehicles

to charge sensors, such that the total amount of charged

energy to sensors minus the total vehicle traveling energy

is maximized, while ensuring that every vehicle does not

deplete its energy in its charging tour.

Moreover, note that there are recent pioneering studies

for scheduling vehicles in urban transportation networks.

For example, Cao et al. [2] considered the routing problem

in urban vehicle networks and proposed efficient routing

algorithms. Zhu et al. [36] studied the problem of allocat-

ing energy-critical electric vehicles to nearby charging

stations, such that the total time spent by each electric

vehicle (EV) for queuing and charging itself is minimized.

They also advocated a new public vehicle system to solve

traffic congestion and pollution for smart cities [37–39].

Specifically, they investigated the problem of minimizing

the total vehicle travel distance, while ensuring that pas-

senger requests are served [37], and considered the com-

putational efficiency in online ride-sharing for reducing the

travel distance with QoS guarantee [38]. Furthermore, they

extended the work by jointly considering transportation

Fig. 8 Performance of

algorithms LB_optimal,
Appro, minMCP, minMCP,
AA, APS, and rewardMax by

increasing the maximum energy

consumption rate qmax from 1 to

10 mJ, when n ¼ 200; IE ¼
1000 kJ; and qmin ¼ 1mJ.

a Number of dispatched

charging vehicles with the linear

distribution. b Total travel

energy consumption with the

linear distribution. c Number of

dispatched charging vehicles

with the random distribution.

d Total travel energy

consumption with the random

distribution
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demands with service guarantee and the cost-effective

vehicle charging [39]. However, it is worthy to mention

that the proposed algorithms in the aforementioned studies

cannot be applied to the problem in this paper.

7 Conclusion and future work

In order to minimize the cost of maintaining the perpetual

operations of WSNs, in this paper we studied the problem

of scheduling the minimum number of charging vehicles to

charge lifetime-critical sensors. By exploring the combi-

natorial property of the problem, we proposed a novel

approximation algorithm. We not only proved that the

approximation ratio of the algorithm is better than that by

the state-of-the-art, but also showed that the number of

dispatched charging vehicles is at least 10% less than those

by the existing algorithms by extensive simulation exper-

iments. In addition, we showed that the total energy con-

sumption of the charging vehicles by the proposed

algorithm is smaller than those by the existing algorithms.

In the future, we will further optimize the approximation

algorithm to reduce the number of deployed charging

vehicles, so as to reduce the cost for charging sensors as

much as possible.
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