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Zheng Li, and Tian Wang

Abstract—Sensing data collection in energy harvesting sensor
networks poses great challenges, since energy generating rates
of different sensors vary significantly. Most existing studies on
efficient data collection assumed that the sensing data from a
sensor is temporally independent. We however notice that such
sensing data usually is highly temporally correlated, rather than
independent. In this paper, we study the problem of allocating
energy and data rates to sensors, and performing sensing data
routing in an energy harvesting sensor network for a given mon-
itoring period, such that the utility sum of temporally correlated
data collected from sensors in the period is maximized, subject
to the temporally spatially varying harvesting energy constraint
on each sensor. We then propose a near-optimal algorithm for
the data utility maximization problem. We finally evaluate the
performance of the proposed algorithm with real solar energy
data. Experimental results show that the proposed algorithm is
very promising and the utility sum of collected sensing data is
up to 10% larger than that by the state-of-the-art.

Index Terms—Data utility maximization, energy harvesting
sensor networks, temporally correlated sensing data.

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have wide appli-
cations in Internet of Things, including environ-

mental monitoring, electric grid network monitoring, water
network monitoring, precision agriculture, target tracking,
etc. [1], [8], [10], [12], [16], [30], [31]. The limited battery
capacities of sensors however greatly restrict the large-scale
deployment of WSNs. In recent years, a promising technique
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to replenishing sensor energy is proposed, that is, sensors
are enabled to harvest renewable energy from their surround-
ing environment, such as solar energy, wind energy, thermal
energy, etc. [24], [28], [32], [35], [41], [42].

Sensing data collection in energy harvesting sensor
networks poses great challenges, since energy harvesting rates
of sensors are not only temporally varying but also spatially
varying. For example, assume there are two sensors v1 and v2
powered by solar energy, see Fig. 1(a), from which it can be
seen that sensor v1 can harvest solar energy in daytime, while
sensor v2 barely generates any energy in the afternoon, as it
will lose its exposure to sunlight after 2:00 P.M. due to the
shadowing of a nearby building. Fig. 1(b) demonstrates the
energy harvesting rates of sensor v1 at different time points
in a day, while Fig. 1(c) plots the energy rates of sensor
v2, where these two energy harvesting profiles are adopted
from [6].

Extensive studies on the efficient data collection in
energy harvesting sensor networks have been conducted in
past years [3], [5]–[7], [17], [19], [37]–[39]. For example,
Dong et al. [7] proposed a cluster-based routing protocol and
selected cluster head nodes by considering harvested sensor
energy as well as the distance between each sensor and the
base station. Zhang et al. [39] focused on maximizing data
utility by jointly optimizing energy allocation, data sensing,
and data routing, given the amount of harvested energy of
each sensor in a given monitoring period. Lu et al. [19] inves-
tigated the problem of maximizing the total utility of collected
data from sensors. They developed a distributed algorithm to
allocate an optimal data rate for each sensor. Chen et al. [3]
considered the utility maximization problem, where the energy
budget of each sensor at each time slot is equal to the minimum
value among its battery residual energy and its past average
harvested energy per time slot. Deng et al. [6] also studied
the data utility maximization problem in an energy harvesting
sensor network, where data routing paths are given and fixed.
They also extended their study to the case where the routing
paths are allowed to change over time [5].

We notice that most existing studies [3], [5]–[7], [19], [39]
assumed that the sensing data collected from each sensor in
consecutive time slots is independent, where a time slot is
a period of short time, e.g., an hour. Their objective usually
is to maximize the total utility of collected data in a period
of T , i.e., max

∑
vi∈V

∑T
t=1 U(Dit), where U(Dit) is a utility
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(a) (b) (c)

Fig. 1. Energy harvesting profiles in a renewable sensor network. (a) Sensor network. (b) Energy harvesting rates of sensor v1 at different time points.
(c) Energy harvesting rate of sensor v2 at different time points.

function to measure the quality of the collected data Dit from
a sensor vi at time slot t.

The sensing data from each sensor however usually is
temporally correlated in a real sensor network. For exam-
ple, consider a sensor network for environmental monitoring,
which consists of two sensors v1 and v2 [see Fig. 1(a)].
Assume that sensor v1 monitors the temperature of its sur-
rounding environment and sensor v2 measures the air moisture.
We also assume that the residual energy of sensor v1 can sup-
port its data transmission for three time slots with a data rate
of 1 kb/s, while the residual energy of v2 can support its data
transmission for only one time slot with the rate of 1 kb/s.
For simplicity, we further assume the energy consumptions
on data transmission and data reception are equal. Following
the existing studies, sensor v1 transmits its data to the base
station for three time slots, while sensor v2 does not upload
any data to the base station, as the sensing data from each
sensor at different time slots are assumed to be independent
in these studies, and the relaying for sensor v2 by sensor v1
will consume its energy on data reception and data transmis-
sion. We however note that the sensing temperature data from
sensor v1 will not change too much in a short time. Then, in
the existing studies, the collected data from sensor v1 in the
three consecutive time slots is highly correlated, while the air
moisture data from sensor v2 has not been collected at all.
However, it is important to collect sufficient data from both
the temperature sensor v1 and the air moisture sensor v2, such
that the environment are better monitored.

Unlike existing studies that assumed independent sensing
data from each sensor in consecutive time slots, in this paper,
we consider that the sensing data from each sensor is tempo-
rally correlated. We aim to allocate sensor energy, sensor data
rates, and data routing for a given period of T such that the
utility sum

∑
vi∈V U(

∑T
t=1 Dit) of temporally correlated sens-

ing data collected is maximized, where the energy harvesting
rates of sensors are not only temporally varying, but also spa-
tially varying. Then, both the temperature sensor v1 and the
air moisture sensor v2 can transmit their sensing data to the
base station for one time slot, and the collected sensing data
has more nonredundant information.

Notice that it is challenging to apply existing algorithms
in [3], [5]–[7], [19], and [39] for the problem in this paper,
as these algorithms highly depend on the assumption that
the sensing data from each sensor is temporally independent.

Therefore, new algorithms must be designed to tackle the
temporal correlation.

The novelties of this paper are twofold.
1) We consider the utility data collection of temporally

correlated sensing data in a given long period T , by
formulating a novel data utility maximization problem,
which takes into account not only the different residual
energy of different sensors but also the both temporally
varying and spatially varying energy generating rates in
the future.

2) We smartly transform the challenging data utility
maximization problem to another convex optimization
problem, and show how to convert a near-optimal solu-
tion to the latter problem to a suboptimal solution to the
former problem.

The main contributions in this paper are as follows.
1) We first consider a novel optimization problem of allo-

cating sensor energy, data rates, and data routing for
a given period in an energy-harvesting sensor network,
such that the utility of temporally correlated sensing data
during the period is maximized, subject to the changing
energy constraint on each sensor.

2) We then propose a near-optimal algorithm for the data
utility maximization problem.

3) We finally evaluate the performance of the proposed
algorithm, using real solar energy data. Experimental
results show that the proposed algorithm is very promis-
ing. Especially, the sensing data from different sensors
is more fairly collected in the proposed algorithm, and
the utility sum by the algorithm is up to 10% larger than
that by the state-of-the-art.

The remainder of this paper is organized as follows.
Section II describes the network model and formulates
the problem. Section III devises a novel algorithm for
the data utility maximization problem. Section IV evaluates
the performance of the proposed algorithm. Section V further
reviews the related work. Finally, Section VI concludes this
paper.

II. PRELIMINARIES

In this section, we first introduce the network model, energy
consumption model, and energy harvesting model, we then
define the problem.
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Fig. 2. Energy harvesting sensor network.

A. Network Model

We consider an energy harvesting sensor network G =
(V∪{s}, E), where V is a set of n sensors v1, v2, . . . , vn that are
randomly deployed in a monitoring area, and s is a base station
for collecting data from sensors. Notice that the sensors may
be heterogeneous, such as temperature sensors, air moisture
sensors, pressure sensors, etc. There is an edge in E between
a sensor and the base station or two sensors if they are within
the transmission range of each other. Each sensor vi ∈ V is
powered by a rechargeable battery with an energy capacity Bi,
and the battery can be charged by harvesting energy from its
surrounding environment (e.g., solar energy). Fig. 2 illustrates
an energy harvesting sensor network. In this paper, we con-
sider the data collection in a period of T (e.g., 24 h). We divide
the period T into consecutive time slots, which are indexed as
1, 2, . . . , T , and the duration of each time slot lasts for τ time
units (e.g., 1 hr).

We assume that the maximum sensing rate of each sensor
vi ∈ V is Ri (e.g., 10 kb/s), where the value of Ri can be
obtained from the specification of the sensor. Since the energy
in each sensor vi is limited, it may not have enough energy to
sense data at the maximum rate Ri. We thus assume that each
sensor vi is allowed to generate data at a rate of rit at time
slot t, and sends the data back to the base station directly, or
via the relay of other sensors, where the value of rit will be
determined with 0 ≤ rit ≤ Ri.

Sensors transmit their sensing data to the base station in a
multihop manner. That is, a sensor close to the base station
can relay data from other sensors far from the base station.
Let N(vi) be the set of neighboring sensors of a sensor vi, i.e.,
N(vi) = {vj|(vi, vj) ∈ E}. For each neighboring sensor vj ∈
N(vi), denote by fijt and fjit the data transmission rates from
sensor vi to sensor vj, and from vj to vi at time t, respectively.
We assume that the amount

∑
vj∈N(vi)

fjit of received data by
sensor vi plus the amount rit of sensing data from sensor vi

itself at time slot t will be sent to the base station. That is,
∑

vj∈N(vi)

fjit + rit =
∑

vj∈N(vi)

fijt

∑

vi∈N(s)

fist −
∑

vi∈N(s)

fsit =
∑

vi∈V

rit (1)

where
∑

vj∈N(vi)
fijt is the amount of data sent to the base sta-

tion from sensor vi via the relay of its neighboring sensors,

and constraint (1) ensures that the base station s receives the
sensing data from all sensors.

B. Energy Consumption Model

Every sensor consumes its energy on data sensing, data
reception, and data transmission. Let Ps(vi, t), Prx(vi, t), and
Ptx(vi, t) be the energy consumptions of each sensor vi for
its data sensing, data reception and data transmission at time
slot t, respectively. We adopt the real energy consumption
model from [13], where

Ps(vi, t) = rit × μs × τ (2)

Prx(vi, t) =
∑

vj∈N(vi)

fjit × μrx × τ (3)

Ptx(vi, t) =
∑

vj∈N(vi)

fijt ×
(
β1 + β2dα

ij

)
× τ (4)

μs and μrx are the energy consumption rates for sensing and
receiving per unit data, respectively, τ is the duration of each
time slot.

∑
vj∈N(vi)

fjit and
∑

vj∈N(vi)
fijt are the data reception

and transmission rates of sensor vi at time t. Following [13],
the term α is the path-loss exponent whose typical value is
2 or 4, dij is the Euclidean distance between sensors vi and
vj. Specifically, the values of these parameters are: μs = 60×
10−9 J/b; μrx = 135× 10−9 J/b; β1 = 45× 10−9 J/b; β2 =
10× 10−12 J/b/m2 if α = 2; or β2 = 0.001× 10−12 J/b/m4

if α = 4.
The energy consumption P(vi, t) of sensor vi at time slot t

then is

P(vi, t) = Ps(vi, t)+ Prx(vi, t)+ Ptx(vi, t)

= a · rit + b ·
∑

vj∈N(vi)

fjit +
∑

vj∈N(vi)

cij · fijt (5)

where a = μsτ , b = μrxτ , and cij = (β1 + β2dα
ij )τ are

constants.

C. Energy Harvesting Model

As sensors are powered by renewable energy (e.g., solar
energy), the amount of harvested energy by a sensor in future
is uncontrollable, but is predictable based on historical records
and weather forecast. It is well-known that the weather con-
dition changes significantly during a day. For example, it
may be sunny at noon, but there is no sunlight at night.
We assume that the energy harvesting rate of each sensor
is predictable in a period T (e.g., 24 h). We further assume
that the rate does not change within one time slot, or such
changes are negligible. To estimate the amount of harvested
energy of each sensor at each time slot t, we extend the expo-
nentially weighted moving-average algorithm [11], by taking
the predicted weather condition at different time slots into
account. The weather condition at time slot t on the next day
d can be obtained by weather forecast. Specifically, denote by
H(vi, d − 1, t) and H(vi, d − 1, t) the predicted value and the
actual value of the harvested energy at time slot t on day d−1.

It is well-known that the amount of harvested energy
H(vi, d, t) of sensor vi highly depends on the weather con-
dition at time slot t, and the amount of harvested energy is
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high if it is sunny at time slot t, whereas the energy is very
low if it is rainy. We thus use a factor γ (d, t) to indicate the
goodness of the weather condition at time t on day d, and
the larger the value of γ (d, t) is, the better the weather is,
where 0 ≤ γ (d, t) ≤ 1. For example, γ (d, t) = 1 if it is
sunny; γ (d, t) = 0.8 if it is partly cloudy; γ (d, t) = 0.5 if it
is cloudy; γ (d, t) = 0.2 if it is rainy; and γ (d, t) = 0.1 if it
is stormy.

We predict the amount of harvested energy of sensor vi at
time slot t on day d as follows:

H(vi, d, t) = (
ω · H(vi, d − 1, t)+ (1− ω)

× H(vi, d − 1, t)
) · γ (d, t) (6)

where ω is a given weight with 0 ≤ ω ≤ 1. For the sake of
convenience, we abbreviate H(vi, d, t) by H(vi, t).

Denote by RE(vi, t) the amount of residual energy of sensor
vi at the end of time slot t. Then, the amount RE(vi, t+ 1) of
residual energy of sensor vi at the end of next time slot t+1 is

RE(vi, t + 1) = min
{
RE(vi, t)+ H(vi, t + 1)

− P(vi, t + 1), Bi
}

(7)

where Bi is the battery capacity of sensor vi, H(vi, t+1) is the
amount of harvested energy at time slot t+ 1, and P(vi, t+ 1)

is the energy consumption at time slot t + 1.

D. Problem Definition

It is ideal that each sensor can transmit all its sensing
data back to the base station. However, the amounts of har-
vested energy in sensors usually are limited. Furthermore, the
energy harvesting rate of each sensor may experience dramatic
changes during the whole period T . It is very critical to make
full use of the harvested energy to collect as much sensing
data as possible.

We note that the sensing data from each sensor in consec-
utive time slots may be highly correlated. For example, in a
sensor network for monitoring temperature, the temperature
in a short time (e.g., 1 h) does not change too much. We
thus introduce a utility function U(Di) to measure the qual-
ity of collected data Di from each sensor vi, where U(Di) is
an increasing, twice-differentiable and strictly concave func-
tion with respect to the total amount Di of data collected from
sensor vi during period T , and Di = ∑T

t=1 ritτ . For exam-
ple, we can adopt the widely used logarithmic function as the
utility function, i.e., U(Di) = log2(Di + 1).

Given an energy harvesting sensor network G = (V∪{s}, E),
and the harvested energy H(vi, t) of each sensor at each time
slot t in a period T , the data utility maximization problem in
G is to allocate data rate rit for each sensor vi ∈ V and the
data transmission rate fijt for each link (vi, vj) ∈ E, so that
the utility sum of data collected from sensors in period T is
maximized, i.e.,

P1: max
rit,fijt

∑

vi∈V

U

(
T∑

t=1

ritτ

)

(8)

subject to

rit +
∑

vj∈N(vi)

fjit =
∑

vj∈N(vi)

fijt ∀vi ∈ V, 1 ≤ t ≤ T (9)

∑

vi∈N(s)

fist −
∑

vi∈N(s)

fsit =
∑

vi∈V

rit, 1 ≤ t ≤ T (10)

P(vi, t) ≤ RE(vi, t − 1)+ H(vi, t) ∀vi ∈ V, 1 ≤ t ≤ T

(11)

RE(vi, t) = min
{
RE(vi, t − 1)+ H(vi, t)− P(vi, t), Bi

}

∀vi ∈ V, 1 ≤ t ≤ T (12)

0 ≤ rit ≤ Ri ∀vi ∈ V, 1 ≤ t ≤ T (13)

fijt ≥ 0 ∀(vi, vj
) ∈ E, 1 ≤ t ≤ T (14)

0 ≤ RE(vi, t) ≤ Bi ∀vi ∈ V, 1 ≤ t ≤ T (15)

where τ is the duration of each time slot t, and Bi is the
battery capacity of sensor vi. Constraint (9) indicates that each
sensor should forward the received data and the sensing data
from itself to the base station via the relay of its neighboring
sensors. Constraint (10) ensures that the base station s receives
the sensing data from all sensors. Constraint (11) implies that
the energy consumption P(vi, t) of each sensor vi at each time
slot t cannot exceed its energy budget RE(vi, t− 1)+H(vi, t).
Constraint (12) demonstrates the energy relationship between
the amounts of residual energy RE(vi, t) and RE(vi, t − 1) of
sensor vi at each time slot t and its previous time slot t − 1.

Notice that we do not consider the spatial correlation of
data collected from different sensors [15], as we assume that
the sensor network consists of different types of sensors, e.g.,
temperature sensor, air moisture sensor, pressure sensor, etc.
Moreover, the data utility maximization problem will become
intractable if we consider both the temporal correlation and
spatial correction of sensor data at the same time, and we will
put this as our future study.

E. Software Defined Sensor Network Framework

Existing studies on the data utility maximization problem
assumed that the allocation of sensor energy, sensor data
rates, and data routing are performed in a distributed way.
However, the distributed way is inflexible to deal with a
multiple tasks sensor network, since sensors in a WSN may be
heterogeneous. In contrast, in this paper, we incorporate the
software-defined network concept into WSNs, which decou-
ples the control plane from the data plane. Then, the base
station is the center controller, and every software-defined sen-
sor is able to perform different sensing tasks [36]. By doing
so, the base station computes the data rates and data routing
in a resource-rich server, since the computing needs inten-
sive computing resources, while sensors only perform sensing
tasks, and transmit data by following the routing. We briefly
describe the software defined sensor network framework as
follows.

Each sensor vi measures its energy harvesting rate H(vi, t)
and sends its energy information to the base station s at each
time slot, by piggybacking the information in its sensing data.
Having received the energy information from each sensor, the
base station then predicts the future energy harvesting rate of
each sensor.

The base station calculates the data rates rit, and data rout-
ing fijt in a period T , based on the predicted future energy
information, then sends the data rate rit and routing fijt to
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each sensor vi at the beginning of each time slot t, via a
given fixed routing path, e.g., a path from the base station
s to vi with the minimum energy consumption. We assume
that the energy consumption for sending energy information,
data rates, and routing information of each sensor is signif-
icantly smaller than the energy consumed for receiving and
transmitting sensing data in period T , thus is negligible. In
case the energy consumption cannot be ignored, we can take
the energy consumption into account, by simply reducing the
initial residual energy RE(vi, 0) of sensor vi by an amount of
the energy consumption.

III. ALGORITHM FOR THE DATA UTILITY

MAXIMIZATION PROBLEM

In this section, we propose a near-optimal algorithm for the
data utility maximization problem.

A. Algorithm

The basic idea of the proposed algorithm is to first trans-
form the data utility maximization problem P1 into another
convex optimization problem, and then solve the convex
optimization problem. Then, a near-optimal solution to the
convex optimization problem in turn returns a suboptimal
solution to the original problem.

1) Transform the Original Problem: Given an energy har-
vesting sensor network G = (V ∪ {s}, E), a time period T , the
initial residual energy RE(vi, 0) of each sensor vi and the har-
vested energy H(vi, t) of sensor vi at each time slot t in period
T , notice that the original data utility maximization problem
P1 is not a convex optimization problem, since both the objec-
tive function and constraint (12) are not convex. We transform
problem P1 into another convex optimization problem P2

P2: min
rit,fijt,RE′(vi,t)

−
∑

vi∈V

U(Di) (16)

subject to constraints (9), (10), (13)–(15), and

RE′(vi, t) ≤ RE′(vi, t − 1)+ H(vi, t)− P(vi, t)

∀vi ∈ V, 1 ≤ t ≤ T (17)

where the variables are the data rate rit of each sensor vi at
time slot t, the transmission rate fijt of each link (vi, vj), the
residual energy RE′(vi, t) of sensor vi at the end of each time
slot t, and RE′(vi, 0) = RE(vi, 0) for each sensor vi ∈ V .
Notice that in problem P2, we negative the objective function
of problem P1, remove constraint (11) of problem P1, and
transform constraint (12) of problem P1 into constraint (17).
Notice that we do not explicitly consider the battery capac-
ity Bi constraint in constraint (17), since this constraint has
already been included in constraint (15).

Denote by F1 and F2 the sets of feasible solutions to
problems P1 and P2, respectively. It can be seen that each
feasible solution to problem P1 is also a feasible solution to
problem P2, since constraint (12) of problem P1 is stronger
than constraint (17) of problem P2. Then, the set F1 of feasible
solutions to problem P1 is a subset of set F2, i.e., F1 ⊆ F2.
However, a feasible solution to problem P2 may not be feasible
to problem P1.

Although the sets F1 and F2 of feasible solutions to prob-
lems P1 and P2 are different, we have the following two
important observations.

1) One observation is that the optimal values of problem
P1 and P2 are equal (see Lemma 1 in Section III-B).

2) The other is that, for each feasible solution
(r′i,t, f ′ijt, RE′(vi, t)) to problem P2, a feasible solu-
tion (ri,t, fijt) to problem P1 can be constructed by
setting ri,t = r′i,t and fijt = f ′ijt, and the objective value of
solution (ri,t, fijt) to problem P1 is equal to the objective
value of (r′i,t, f ′ijt, RE′(vi, t)) to P2 (see Lemma 2 in
Section III-B).

Notice that problem P2 can be cast as a convex
optimization problem and there are efficient algorithms for
finding near-optimal solutions to a convex optimization
problem [2], where “near-optimal” means that the objec-
tive value of an identified solution is only ε smaller than
the optimal value, where ε is a given additive error with
0 < ε < 1.

A near-optimal solution to the original problem P1 can
be found by leveraging the two important observations
as follows.

A near-optimal solution (r′i,t, f ′ijt, RE′(vi, t)) to problem P2 is
first found by invoking an algorithm for convex optimization
problem [2]. Then, let ri,t = r′i,t and fijt = f ′ijt. Following
observation 2), (ri,t, fijt) is feasible to problem P1 and its
objective value is equal to the objective value of solution
(r′i,t, f ′ijt, RE′(vi, t)) to P2. Since the optimal values of problems
P1 and P2 are equal and (r′i,t, f ′ijt, RE′(vi, t)) is near-optimal
for problem P2, solution (ri,t, fijt) is also near-optimal to the
original problem P1.

The rest is to solve problem P2. We consider its canonical
form in terms of the convex optimization as follows:

P3: min
rit,fijt,RE′(vi,t)

−
∑

vi∈V

U(Di) (18)

subject to

rit +
∑

vj∈N(vi)

fjit −
∑

vj∈N(vi)

fijt = 0 ∀vi ∈ V, 1 ≤ t ≤ T (19)

∑

vi∈N(s)

fist −
∑

vi∈N(s)

fsit −
∑

vi∈V

rit = 0, 1 ≤ t ≤ T (20)

RE′(vi, t)− RE′(vi, t − 1)− H(vi, t)+ P(vi, t) ≤ 0

∀vi ∈ V, 1 ≤ t ≤ T (21)

−rit ≤ 0, rit − Ri ≤ 0 ∀vi ∈ V, 1 ≤ t ≤ T (22)

−fijt ≤ 0 ∀(vi, vj
) ∈ E, 1 ≤ t ≤ T (23)

−RE(vi, t) ≤ 0, RE(vi, t)− Bi ≤ 0 ∀vi ∈ V, 1 ≤ t ≤ T.

(24)

2) Solve the Convex Optimization Problem P3: We solve
the convex optimization problem P3 by applying the barrier
method [2] as follows.

Let Oit = RE′(vi, t − 1) + H(vi, t) − P(vi, t) − RE′(vi, t),
where vi ∈ V, 1 ≤ t ≤ T . The barrier method first introduces
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a logarithmic barrier function φ(r, f, RE′) as

φ
(
r, f, RE′

) = −
∑

vi∈V

T∑

t=1

log(Oit)−
∑

vi∈V

T∑

t=1

log(rit)

−
∑

vi∈V

T∑

t=1

log(Ri − rit)−
∑

(vi,vj)∈E

T∑

t=1

log
(
fijt

)

−
∑

vi∈V

T∑

t=1

log
(
RE′it

)−
∑

vi∈V

T∑

t=1

log
(
Bi − RE′it

)
.

(25)

Let g(r, f, RE’) = −p ·∑vi∈V U(Di)+φ(r, f, RE’), where
p > 0 is a parameter and can be considered as a constant
(please refer to [2] for the choice of the value of p). The
barrier method then approximates problem P3 with another
convex optimization problem P4 with only equality constraints
and the accuracy of the approximation is determined by the
value of p, where

P4: min g
(
r, f, RE′

)
(26)

subject to

rit +
∑

vj∈N(vi)

fjit −
∑

vj∈N(vi)

fijt = 0 ∀vi ∈ V, 1 ≤ t ≤ T (27)

∑

vi∈N(s)

fist −
∑

vi∈N(s)

fsit −
∑

vi∈V

rit = 0, 1 ≤ t ≤ T. (28)

Notice that problem P4 can be solved by applying Newton’s
method [2].

3) Construct a Strictly Feasible Solution: The barrier
method for the convex optimization problem P3 requires
that a strictly feasible solution for problem P3 is given as
an input, i.e., a solution (ri,t, fijt, RE′(vi, t), Oit) that satisfies
0 < rit < Ri, fijt > 0, 0 < RE′(vi, t) < Bi, Oit > 0, and the
two flow constraints (9) and (10). Then, the barrier method
finds the optimal solution to problem P3 in an iterative way,
starting from the initial solution (ri,t, fijt, RE′(vi, t), Oit). It is
however not easy to construct such a solution. In the follow-
ing, we propose a novel algorithm to quickly find a strictly
feasible solution.

Given a small positive number δ (e.g., δ = 0.1), let rit = δ,
where vi ∈ V, 1 ≤ t ≤ T . We construct positive, feasible
fijt, RE′(vi, t), and Oit as follows.

We first construct positive, feasible flows fijt. We find short-
est paths from the base station to the sensors, where the cost
of each edge (vi, vj) is one. Assume that each sensor sends
its data to the base station via its shortest path to the base
station. Then, we can derive flows f ′ijt that satisfy the flow
constraints (9) and (10) from the shortest paths. Note that the
value of flow f ′ijt is strictly greater than zero, if edge (vi, vj)

is contained in the shortest paths and node vj is the parent of
node vi. Otherwise, the value of flow f ′ijt is 0. We then con-
struct positive, feasible flows fijts that satisfy constraints (9)
and (10) from f ′ijts as fijt = f ′ijt if f ′ijt > 0; otherwise (f ′ijt = 0),
we increase both flows f ′ijt and f ′jit by δ, i.e., fijt = f ′ijt + δ = δ

(as f ′ijt = 0) and fjit = f ′jit+δ. It can be validated that every flow
fijt is strictly larger than zero and the flows meet constraints (9)
and (10), respectively.

We then derive RE′(vi, t) and Oit from the data rates rits and
flows fijts. We can calculate the energy consumption P(vi, t)
of each sensor vi at each time slot t with the data rates rits
and flows fijts, by applying (5) in Section II-B. Then, we let

RE′(vi, t) = min
{
RE′(vi, t − 1)+ H(vi, t)− P(vi, t), Bi

}− δ

T
∀vi ∈ V, 1 ≤ t ≤ T. (29)

Then, we have that

Oit = RE′(vi, t − 1)+ H(vi, t)− P(vi, t)− RE′(vi, t)

≥ RE′(vi, t)+ δ

T
− RE′(vi, t)

= δ

T
> 0. (30)

However, the residual energy RE′(vi, t) of some sensor vi

at some time slot t may not be positive, which violates the
requirement of the strict feasibility on each RE′(vi, t), though
the value of δ is small. In this case, we can iteratively reduce
the value of δ by a fraction, until the value of each residual
energy RE′(vi, t) is strictly greater than zero.

The algorithm for finding a strictly feasible solution is
presented in Algorithm 1. Also, the algorithm for the data
utility maximization problem is shown in Algorithm 2.

B. Algorithm Analysis

In the following, we analyze the performance of the
proposed algorithm. To this end, we first show that the optimal
values of problems P1 and P2 are equal. We then prove that
Algorithm 1 can quickly find a strictly feasible solution to
problem P2. We finally show that Algorithm 2 delivers a near-
optimal solution to the data utility maximization problem. We
start with the following lemma.

Lemma 1: The optimal values of problems P1 and P2 are
equal.

Proof: Assume that (rit, fijt) is an optimal solution to
problem P1 and OPT is its optimal value. We also assume
that (r′i(t), f ′ijt, RE′(vi, t)) is an optimal solution to problem P2,
and the optimal value is OPT ′. In the following, we show that:
1) OPT ≤ OPT ′ and 2) OPT ′ ≤ OPT . Then, OPT = OPT ′.

We first prove 1) OPT ≤ OPT ′. Given an optimal solu-
tion (rit, fijt) to problem P1, we can calculate the amount of
residual energy RE(vi, t) of each sensor at each time slot t
by (12). Notice that (rit, fijt, RE(vi, t)) forms a feasible solu-
tion to problem P2, as constraint (12) of problem P1 is stronger
than constraint (17) of problem P2. Therefore, OPT ≤ OPT ′.

We then show 2) OPT ′ ≤ OPT . Given an optimal solu-
tion

(
r′i(t), f ′ijt, RE′(vi, t)

)
to problem P2, we can calculate the

amount of residual energy RE(vi, t) in problem P1 by (12)
with rit = r′i(t) and fijt = f ′ijt. We show that 0 ≤ RE(vi, t) ≤ Bi,
which means that

(
r′i(t), f ′ijt

)
is a feasible solution to problem

P1. Therefore, OPT ′ ≤ OPT .
In the following, we show that 0 ≤ RE′(vi, t) ≤ RE(vi, t) ≤

Bi for every sensor vi ∈ V at each time slot 0 ≤ t ≤ T , by an
induction on t.

For t = 0, it is clear that 0 ≤ RE′(vi, 0) ≤ RE(vi, 0) ≤ Bi,
since RE′(vi, 0) = RE(vi, 0) and 0 ≤ RE′(vi, 0) ≤ Bi.
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Algorithm 1 Find a Strictly Feasible Solution to Problem P3
Input: an energy harvesting sensor network G = (V∪{s}, E),

T time slots, the initial residual energy RE(vi, 0) of each
sensor vi, the amount of harvested energy H(vi, t) of
sensor vi at each time slot t in the future T time slots.

Output: a strictly feasible solution (rit, fijt, RE′(vi, t), Oit) to
problem P3

1: Find shortest paths from the base station s to sensors in
G, where the cost of each edge is one;

2: δ← 0.1; /* an initial small value */
3: flag← false;
4: while flag is equal to false do
5: rit ← δ, ∀vi ∈ V, 1 ≤ t ≤ T;
6: Find flows f ′ijt from the shortest paths, assuming that

each sensor vi sends its data rit to the base station s via
its shortest path;

7: for each flow f ′ijt do
8: if f ′ijt = 0 then
9: f ′ijt ← δ;

10: f ′jit ← f ′jit + δ;
11: end if
12: end for
13: Let fijt ← f ′ijt with (vi, vj) ∈ E and 1 ≤ t ≤ T;
14: Calculate the residual energy RE′(vi, t) of each sensor

vi at each time slot t, by applying Eq. (29);
15: Calculate the value of Oit by applying Eq. (30), ∀vi ∈

V, 1 ≤ t ≤ T;
16: if the value of each residual energy RE′(vi, t) is strictly

larger than zero then
17: flag← true;
18: else
19: δ← δ

2 , /* reduce the value of δ by a half */
20: end if
21: end while
22: return (rit, fijt, RE′(vi, t), Oit).

Assume that 0 ≤ RE′(vi, t′) ≤ RE(vi, t′) ≤ Bi for t′ =
0, 1, . . . , t, where 0 ≤ t ≤ T . For the next time slot t + 1, we
distinguish into two cases for constraint (12) of problem P1.
Case 1: Bi ≤ RE(vi, t)+H(vi, t+1)−P(vi, t+1) and Case 2:
RE(vi, t)+ H(vi, t + 1)− P(vi, t + 1) < Bi.

For case 1, we have

RE(vi, t + 1)

= min
{
RE(vi, t)+ H(vi, t + 1)− P(vi, t + 1), Bi

}

= Bi ≥ RE′(vi, t + 1) ≥ 0. (31)

That is, 0 ≤ RE′(vi, t + 1) ≤ RE(vi, t + 1) ≤ Bi.
On the other hand, for case 2, we have

RE(vi, t + 1)

= min
{
RE(vi, t)+ H(vi, t + 1)− P(vi, t + 1), Bi

}

= RE(vi, t)+ H(vi, t + 1)− P(vi, t + 1)

≥ RE′(vi, t)+ H(vi, t + 1)− P(vi, t + 1),

as RE(vi, t) ≥ RE′(vi, t)

≥ RE′(vi, t + 1) ≥ 0, by (17). (32)

Algorithm 2 maxUtility
Input: an energy harvesting sensor network G = (V∪{s}, E),

T time slots, the initial residual energy RE(vi, 0) of each
sensor vi, the amount of harvested energy H(vi, t) of
sensor vi at each time slot t in the future T time slots.

Output: an optimal data rate rit for each sensor vi ∈ V and
an optimal transmission rate fijt for each link (vi, vj) ∈ E
in period T , such that utility sum of collected data during
T is maximized

1: Transform the original data utility maximization problem
P1 into another convex optimization problem P2; and
obtain its canonical form P3;

2: Construct a strictly feasible solution
(ri,t, fijt, RE′(vi, t), Oit) to problem P3, by invoking
Algorithm 1;

3: Obtain an optimal data rate r′it, transmission rate f ′ijt and
residual energy RE′(vi, t) for problem P3 by applying the
barrier method in [2];

4: Let rit = r′it for vi ∈ V and 1 ≤ t ≤ T and fijt = f ′ijt for
(vi, vj) ∈ E and 1 ≤ t ≤ T;

5: return the data rate rit and the transmission rate fijt.

Then, we still have 0 ≤ RE′(vi, t + 1) ≤ RE(vi, t + 1) ≤ Bi.
Therefore, the inequality 0 ≤ RE′(vi, t) ≤ RE(vi, t) ≤ Bi

holds for each sensor vi ∈ V at each time slot 0 ≤ t ≤ T .
Thus, (r′i(t), f ′ijt) is a feasible solution to problem P1, then
OPT ′ ≤ OPT . Recall that OPT ≤ OPT ′, we know OPT =
OPT ′, which means that the optimal values for problems P1
and P2 are equal. The lemma then follows.

Lemma 2: Given a feasible solution (r′it, f ′ijt, RE′(vi, t)) to
problem P2, let rit = r′it and fijt = f ′ijt. Then, (rit, fijt) forms a
feasible solution to problem P1, and its objective value in P1
is equal to the objective value of solution (r′it, f ′ijt, RE′(vi, t))
to problem P2.

Proof: The proof is similar to that in Lemma 1,
omitted.

Lemma 3: Given an energy harvesting sensor network G =
(V ∪ {s}, E) and T time slots, Algorithm 1 delivers a strictly
feasible solution to problem P3 in time O((m+ nT) log(nT)),
where n = |V| and m = |E|.

Proof: We first shows that Algorithm 1 terminates after
O(log(nT)) iterations of the while loop. It can be seen that
both the sums of in-coming flows

∑
vj∈N(vi)

fjit and out-coming
flows

∑
vj∈N(vi)

fijt for each sensor vi at each time slot t are
only O(δn). Then, the total energy consumption of sensor
vi in period T is O(δnT). Assume that Algorithm 1 termi-
nates after k iterations, which means that ([O(δnT)]/2k) <

RE(vi, 0), i.e., k = O(log(nT)). On the other hand, in each
iteration, Algorithm 1 finds a solution to problem P3 in time
O(m + n) + O(nT) = O(m + nT). Then, the running time of
Algorithm 1 is O((m+ nT) log(nT)).

Theorem 1: Given an energy harvesting sensor network
G = (V ∪ {s}, E), T time slots, the initial residual energy
RE(vi, 0) of each sensor vi, the amount of harvested energy
H(vi, t) of sensor vi at each time slot t in the future T
time slots, Algorithm 2 delivers a solution to the data utility
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maximization problem in G, such that the total utility of the
solution is only ε smaller than the maximum utility, where ε

is a given additive error with 0 < ε < 1.
Proof: Following Lemma 1, the data utility maximization

problem P1 is equivalent to problem P2, where the latter
is equivalent to problem P3. Also, Lemma 3 shows that
Algorithm 1 delivers a strictly feasible solution to problem P3.
Following the work [2], the barrier method in Algorithm 2 can
find a solution with its total utility only ε smaller than the max-
imum utility, where ε is a given additive error with 0 < ε < 1.
The theorem then follows.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the
proposed algorithm with existing algorithms for the data utility
maximization problem.

A. Simulation Settings

We consider an energy harvesting sensor network consisting
of from 50 to 200 sensors, which are randomly deployed in
a 1000 m× 1000 m square area. The base station is located
at the center of the area. The transmission range between any
two nodes is 100 m. Assume that the battery capacity of each
sensor is B = 10.8 kJ and its maximum sensing rate is Ri =
1 kb/s.

Each sensor is equipped with a 37 × 33 mm2 solar panel.
We adopt the real solar energy data collected by the Baseline
Measurement System at the NREL Solar Radiation Research
Laboratory from June 1, 2017 to August 31, 2017 (92 energy
harvesting profiles in total) [22]. We allocate the harvested
energy of each sensor in a day from the 92 energy profiles
randomly. Specifically, the energy harvesting rate H(vi, t) of
each sensor vi at time slot t is H(vi, t) = λ ·Hsample(t), where
λ is given constant with 0 ≤ λ ≤ 1, and Hsample(t) is the real
energy harvesting rate of a randomly chosen energy profile at
time slot t. The default value of λ is 1. Recall that we adopted
the energy profiles in summer (from June 1 to August 31),
to consider the energy harvesting profiles in other seasons,
we can adopt a smaller value of λ. For example, we can set
λ = 0.1 to obtain the energy profiles in winter. λ is called as
the energy scaling coefficient.

The monitoring period T is one day, which consists of 24
time slots and the duration of each time slot thus is one hour,
i.e., τ = 1 h. The initial residual energy RE(vi, 0) of each
sensor vi at the beginning of the period T is randomly selected
from 0 to 0.01 B, where B is the energy capacity of each
sensor. The utility function is U(Di) = log2(Di+1), where Di

is the total amount of collected data from sensor vi in period T .
To evaluate the performance of the proposed algorithm

maxUtility, we consider existing five algorithms for the
benchmark purpose.

1) Algorithm maxThroughput [21] aimed to maximize
the total amount of collected data in a period by
allocating harvested sensor energy.

2) Algorithm utilityTimeSlot [18] allocated sensor
data rates and routing per time slot to maximize data

utility of collected data in the time slot, based on the
harvested energy of sensors.

3) Similar to algorithm utilityTimeSlot, algorithm
utilityTimeSlot+ [3] maximized data utility in
each time slot. But the energy budget of each sen-
sor in algorithm utilityTimeSlot+ is equal to the
minimum value among its residual energy and its past
average harvested energy per time slot, rather than just
its harvested energy in algorithm utilityTimeSlot.

4) Algorithm utilityCorrelation [6] focused on
maximizing the total utility of collected data in a period
T , assuming that the sensing data from each sensor in
consecutive time slots is temporally independent, i.e.,
max

∑
vi∈V

∑T
t=1 U(Dit). It assumed that data routing is

given.
5) Algorithm utilityCorrelation+ [5] extended

algorithm utilityCorrelation, by allowing data
routing to change over time.

All experiments were performed on a server with an Intel
Core i5-3330S CPU (2.70 GHz) and 8 GB RAM.

B. Algorithm Performance

We first study the performance of algorithms
maxUtility, maxThroughput, utilityTimeSlot,
utilityTimeSlot+, utilityCorrelation, and
utilityCorrelation+ within one week in a network
with 100 sensors. Fig. 3(a) illustrates the distribution of
average throughput per sensor in the seventh day with the
distance between a sensor and the base station, from which it
can be seen that, in algorithm maxThroughput, the sensors
close to the base station upload much more data than the
sensors far from the base station. For example, the average
throughput for sensors with 300 m away from the base
station is only 0.6 Mb. In contrast, the average throughput
per sensor by the proposed algorithm maxUtility is
larger than that by the other five algorithms when the sensor
distance to the base station is longer than 200 m. For
instance, the average throughput per sensor by algorithms
maxUtility, maxThroughput, utilityTimeSlot,
utilityTimeSlot+, utilityCorrelation, and
utilityCorrelation+ are 4.7 Mb, 0.08 Mb, 2.5 Mb,
0.6 Mb, 0.7 Mb, and 2.9 Mb, respectively, when the sensor
distance to the base station is 500 m. Therefore, Fig. 3(a)
shows that the sensing data from different sensors is more
fairly collected in algorithm maxUtility than that in the
other five algorithms.

Fig. 3(b) plots the utility sums of collected data by different
algorithms during the week. It can be seen that the utility sum
by algorithm maxUtility is the largest one among the six
algorithms, while the one by algorithm maxThroughput is
the smallest, as it does not consider data correlation. Also,
the utility sum by algorithm maxUtility is about from
2.5% to 10% higher than that by the second best algorithm
utilityCorrelation+.

Fig. 3(c) compares the running times of different algo-
rithms. It can be seen that the running times by the
three algorithms maxThroughput, utilityTimeSlot,
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(a) (b) (c)

Fig. 3. Performance of different algorithms during a week with 100 sensors. (a) Average throughput per sensor in the seventh day with 100 sensors. (b) Utility
sum of collected data in each day during one week. (c) Average running times of different algorithms.

(a) (b) (c)

Fig. 4. Performance of different algorithms by varying the network size. (a) Average throughput per sensor with 200 sensors. (b) Utility sums of collected
data with different network sizes. (c) Running times of different algorithms.

and utilityTimeSlot+ are much shorter than the other
three algorithms maxUtility, utilityCorrelation,
and utilityCorrelation+, since the former three algo-
rithms consider the allocation of data rates and routing one
time slot by one time slot, but the latter three take the alloca-
tion for a period with multiple time slots into account. In spite
of it, the running time of algorithm maxUtility is about
25% shorter than that of algorithms utilityCorrelation
and utilityCorrelation+, which is about only 2.1 s.

We then investigate the performance of the different algo-
rithms by varying the network size from 50 sensors to 200
sensors. Fig. 4(a) shows that the average throughput per sen-
sor by algorithm maxUtility is the largest one among the
six algorithms when the distance to the base station is longer
than 200 m, and its throughput is even larger than 3.5 Mb,
while the throughput by the other five algorithms are no more
than 1.6 Mb, when the distance is 700 m. Fig. 4(b) demon-
strates the utility sums by different algorithms. We can see that
the utility sum by each of the six algorithms increases with the
increase of the network size, and the utility sum by algorithm
maxUtility is about from 0.8% to 10% larger than that by
the other five algorithms. Fig. 4(c) illustrates that the running
time of each algorithm increases for a larger network.

We also evaluate the impact of amounts of harvested energy
on the data utility, by increasing the energy scaling efficient λ

from 0.1 to 1 in a network with 100 sensors. Recall that we
adopted real solar energy profiles in summer and the energy
harvesting rate H(vi, t) of each sensor vi at time slot t in our
simulation is H(vi, t) = λ · Hsample(t), where Hsample(t) is the

real energy harvesting rate of a randomly chosen energy profile
at time slot t. We thus can consider energy harvesting profiles
in other seasons by varying the value of λ. Fig. 5(a) shows
the average throughput per sensor by algorithm maxUtility
is the largest one among the six algorithms when the dis-
tance is longer than 200 m. On the other hand, in algorithm
maxThroughput, only sensors close to the base station
upload sensing data, while the sensors with 300 m away
barely send their data to the base station. Fig. 5(b) plots that
the utility sum by algorithm maxUtility is about from
4.5% to 11.5% higher than that by the second best algorithm
utilityCorrelation+. Fig. 5(c) demonstrates the run-
ning times of different algorithms almost do not change with
the increase of λ.

We finally study the impact of the maximum data rate R
on the data utility, by increasing R from 50 b/s to 1000 b/s
in a sensor network with 200 sensors. It can be seen from
Fig. 6(a) that the average throughput by the proposed algo-
rithm maxUtility is the highest for the sensors at least
200 m away from the base station, while the throughput by
algorithm maxThroughput approaches to zero, when the
distance is longer than 300 m, since it does not take the data
correlation into consideration. Fig. 6(b) shows that the sum
of data utility by each of the algorithms increases with the
growth of the maximum data rate R. However, the data util-
ity by each algorithm only slightly grows when the maximum
data rate R is larger than 600 b/s. The rationale behind is
that, although each sensor is allowed to sense at a faster
rate, the energy harvested by sensors cannot support the data
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(a) (b) (c)

Fig. 5. Performance of different algorithms by varying the energy scaling coefficient λ from 0.1 to 1 in a network with 100 sensors. (a) Average throughput
per sensor with λ = 0.1. (b) Utility sum by varying the energy scaling coefficient λ. (c) Running times of different algorithms.

(a) (b) (c)

Fig. 6. Performance of different algorithms by varying the maximum data rate R from 50 b/s to 1000 b/s with 200 sensors. (a) Average throughput per
sensor with R = 1000 b/s. (b) Utility sum by varying the maximum data rate R. (c) Running times of different algorithms.

transmission for such a high data rate. Also, Fig. 6(b) demon-
strates that the sum of data utility by algorithm maxUtility
is about 4.7% higher than that by the second best algorithm
utilityCorrelation+. Fig. 6(c) plots that the running
time of algorithm maxUtility is only about 2.2 s.

V. RELATED WORK

With development of energy harvesting technology, more
and more research is concentrated on energy harvesting sensor
networks.

A lot of attentions have been paid to the data collection in
energy harvesting sensor networks. Most of the works focus
on the data throughput maximization problem. For example,
Mao et al. [21] studied the problem of allocating energy for
data sensing and data transmitting, such that the amount of col-
lected data is maximized. They first formulated the problem
as an infinite horizon Markov decision process with finite data
buffer, and solved the problem by the value iteration algorithm.
They also considered the case with infinite data buffer, and
proposed a near-optimal algorithm. Manfredi and Tucci [20]
studied the problem of controlling sensor transmission radii,
so as to prolong the network lifetime, by increasing the trans-
mission radii of sensors with high energy availability, while
decreasing the radii of sensors with low energy availabil-
ity. Li et al. [14] aimed at maximizing the amount of data
collected from sensors by scheduling the transmission per
time slot according to the harvested sensor energy and link
quality. They proposed a heuristic algorithm for the problem
with linear running time. Shafieirad et al. [26] also aimed

at maximizing the total data throughput in large-scale energy
harvesting sensor network. They proposed a routing algo-
rithm which prioritizes the relay sensors with sufficient energy
and short distances to the base station. The algorithm how-
ever ignored the energy consumption on data receiving and
did not considered the limited battery capacity constraint on
each sensor node. Furthermore, some studies investigated the
energy-away routing problem, by finding routing paths with
the smallest energy consumption [4], [9], [27].

There are several studies on the data utility maximization
problem in energy harvesting sensor networks. For instance,
Dong et al. [7] proposed a cluster-based routing protocol
and selected cluster head nodes by considering harvested
sensor energy as well as the distance between each sen-
sor and the base station. Liu et al. [18] studied the data
utility maximization problem and jointly optimized data sens-
ing and routing, provided the harvested energy in sensors.
Chen et al. [3] also investigated the utility maximization
problem, but the energy budget of each sensor at each time
slot is equal to the minimum value among its battery residual
energy and its past average harvested energy per time slot.
Lu et al. [19] proposed a distributed algorithm to allocate
data rates for all sensors according to the amount of harvested
energy. Deng et al. [6] investigated the problem of allocat-
ing a sensing rate for each sensor, such that the data utility is
maximized and the amount of the energy consumed by each
sensor is no more than its residual energy, assuming that rout-
ing paths are fixed. They later extended their work in [6] to the
case where routing paths are allowed to change over time [5].
Zhang et al. [39] considered that the sensors having larger
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amounts of residual energy and higher energy harvesting rates
are able to relay more data for other sensors, as the amount
of harvested energy in such a sensor cannot exceed its battery
capacity. Yang et al. [34] studied the problem of selecting a
subset of sensors to be active and perform sensing tasks so that
the average data utility per time slot is maximized, while sat-
isfies the energy consumption constraints on each sensor and
each time slot. They first relaxed the constraints by assum-
ing that the battery capacity of each sensor is infinite and the
energy harvested by each time slot is given. They also assumed
that the energy harvesting processes at each sensor is inde-
pendent. They then proposed an algorithm to maximize the
average data utility per time slot and proved that the proposed
algorithm is optimal. Yang et al. [33] incorporated the data
aggregation and data compression with sensing and routing
in energy harvesting sensor network, so that the network data
utility is maximized while ensuring that no sensors run out of
their energy. They then formulated the optimization problem
as a network utility maximization problem, and designed an
algorithm by applying the Lyapunov optimization framework,
which is shown to achieve the asymptotical optimality with
limited data buffer and sustainable networking operations.

We also note that some other studies employed a mobile
sink to travel along a predefined path to collect sensor data
in an energy harvesting sensor network. For example, stud-
ies [23] and [25] considered the problem of collecting as much
data as possible during the period that the sink travels along the
path. Zhang et al. [40] considered the data utility maximization
problem where sensors can only consume the energy harvested
during last period. They proposed a distributed near-optimal
solution to the data gathering. Wang et al. [29] also employed
a mobile sink but they developed an anchor selection algo-
rithm for the mobile sink to stop for data collection. In order
to maximize the data utility, they proposed a distributed algo-
rithm to optimize the data rates, data routing for each sensor
and sojourn time at each anchor location.

It can be seen that some of the aforementioned studies con-
sidered only making use of the energy that has already been
harvested but ignored the future harvested energy. On the other
hand, although the other studies jointly considered the cur-
rent residual sensor energy and future to-be-harvested energy,
they usually assumed that the data from each sensor is tem-
porally independent. Unlike the existing studies, in this paper,
we consider the temporal correlation of data from each sensor,
and allocate data rates, data routing, and sensor energy for a
given period, such that the utility of collected temporally cor-
related data in the period is maximized. Therefore, this paper
is promising to improve the data collection performance.

VI. CONCLUSION

Unlike the existing studies assumed that the data from each
sensor is temporally independent, in this paper, we studied
the problem of allocating sensor energy, sensor data rates, and
data routing in an energy harvesting sensor network for a given
monitoring period T , such that the utility sum of temporally
correlated sensing data collected during the period T is max-
imized. We then proposed a near-optimal algorithm for the
data utility maximization problem, by reducing the problem to

another equivalent optimization problem, and devising an effi-
cient algorithm for the latter. A feasible solution to the latter in
turn returns a feasible solution to the formal with guaranteed
approximation ratio. We finally evaluated the performance of
the proposed algorithm with extensive simulation experiments,
using real solar energy data. Experimental results showed that
the sensing data from different sensors by the proposed algo-
rithm is more fairly collected and the utility sum by the
algorithm is up to 10% larger than that by the state-of-the-art.
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