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Abstract Wireless energy transfer as a promising tech-

nology provides an alternative solution to prolong the

lifetime of wireless rechargeable sensor networks

(WRSNs). In this paper, we study replenishing energy on

sensors in a WRSN to shorten energy expiration durations

of sensors, by employing a mobile wireless charger to

replenish sensors dynamically. We first formulate a novel

sensor recharging problem with an objective of maximiz-

ing the charging utility of sensors, subject to the total

traveling distance of the mobile charger per tour and the

charging time window of each to-be-charged sensor. Due

to the NP-hardness of the problem, we then propose an

approximation algorithm with quasi-polynomial time

complexity. In spite of the guaranteed performance ratio of

the approximate solution, its time complexity is pro-

hibitively high and may not be feasible in practice. Instead,

we devise a fast yet scalable heuristic for the problem in

response to dynamic energy consumption of sensors in the

network. Furthermore, we also consider the online version

of the problem where sensor replenishment is scheduled at

every fixed time interval. We finally conduct extensive

experiments by simulation to evaluate the performance of

the proposed algorithms. Experimental results demonstrate

that the proposed algorithms are very promising.

Keywords Rechargeable sensor networks � Wireless

energy transfer � Mobile charging vehicles � Sensor
charging scheduling � Approximation algorithms �
Charging utility

1 Introduction

The operational time of conventional wireless sensor net-

works (WSNs) usually is limited due to that sensors in such

networks are mainly powered by energy-limited batteries.

To prolong the network lifetime, extensive efforts have

been taken in the past decade, including batch deployments

of sensors, harvesting energy for sensors from their sur-

rounding environments, etc [1–3]. Despite that these

mentioned methods can improve the network lifetime in

some degree, the network lifetime remains the main per-

formance bottleneck in large scale deployment of WSNs.

For example, the method of replacing batteries of sensors

with the new ones can prolong the lifetime of sensor net-

works, however it is time-consuming, laborious for large-

scale WSNs [4–6]. Especially, for WSNs deployed for

dangerous surveillance and monitoring or inaccessible

regions, it is almost impossible to replace sensor batteries.

Alternatively, replacing expired sensors by a new batch of

sensors is not environmentally friendly either, as most

batteries are made by poisonous chemical materials that

will pollute the soils and the environments [7]. Contrary to

these mentioned works, a promising solution against the

limited energy supplies has been explored in recent years,

that is the renewable energy technology, which enables

sensors to harvest ambient energy from their surroundings

including solar energy, wind energy, etc [3, 8–10]. How-

ever, the temporally–spatially varying nature of renewable

energy resources makes the prediction of sensor energy
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harvesting rates become very difficult. For example, it is

shown that the differences of energy generating rates in

sunny, cloudy and shadowy days can be up to three orders

of magnitude in a solar harvesting system [11]. Thus, to

recharge the sensors with stable energy sources is very

crucial in maintaining the perpetual operations of WSNs.

The recent breakthrough in wireless power transfer tech-

nology based on strongly coupled magnetic resonances

makes this become possible, which has aroused widespread

interest. Kurs et al. [12, 13] demonstrated that the wireless

energy transfer technique is a promising technique to

enable wirelessly transfer power with steady and high

recharging rates. This technology provides an alternative

solution to power sensors, and is promising to fundamen-

tally solve the problem of limited lifetimes of WSNs via a

stable, economic yet environmentally friendly solution.

In this paper, we employ a mobile wireless charger to

replenish energy to sensors via wireless power transfer such

that as many sensors as possible will not run out of their

energy, while the total traveling distance of the charger per

tour is bounded, due to its energy capacity. Obviously, a

naive solution is that the mobile charger tends to preferen-

tially charge its nearby sensors so as to charge more sensors.

However, by doing sowill result in that sensorswith very low

residual energy may not be charged on time if they are far

away from the current location of the charger. To avoid this

happening, we will devise a novel algorithm to schedule the

mobile charger to charge sensors efficiently and effectively.

We will introduce a new metric, the charging utility, to

measure the charging quality of the charger that takes into

account both the fairness of sensor charging and the number

of sensors charged. We assume that each sensor has a

charging time window, consisting of the release time and the

charging deadline of the charging request from the sensor.

We further assume that the mobile charger starts from the

base station, travels along a close tour to charge sensors, and

returns to the base station. Themobile charger can only travel

a limited length per tour, due to the limited capacity of fuel

loaded or electricity charged. Thus, finding an optimal close

tour for the mobile charger to charge as many sensors as

possible before their energy expirations poses a great chal-

lenge. In this paper we will tackle this challenge, by for-

mulating this problem as a novel optimization problem with

an objective of maximizing the charging utility, subject to

both the traveling distance of the mobile charger and time

windows of to-be-charged sensors.

Our main contributions in this paper can be summarized

as follows. We first formulate a novel optimization problem

of scheduling a mobile charger to charge energy-critical

sensors,with an objective ofmaximizing the charging utility,

subject to the total traveling distance of the mobile charger

per tour and the time window of each to-be-charged sensor

prior to its energy expiration. Due to the NP-hardness of the

problem,we then propose an approximation algorithmwith a

guaranteed approximation ratio for the problem that takes

quasi-polynomial time complexity. We also devise a fast yet

scalable heuristic in response to dynamic energy consump-

tions of sensors. We thirdly devise an efficient algorithm for

the online version of the problem where the sensor

recharging requests dynamically arrive, and the system

responses to these requests must be performed at every fixed

time slot. We finally conduct experiments by simulations to

evaluate the performance of the proposed algorithms.

Experimental results demonstrate that the proposed algo-

rithms are promising in terms of algorithm performance.

The rest of the paper is organized as follows. Section 2

reviews the related work. Section 3 introduces the network

model and problem definition. Section 4 proposes an

approximation algorithm. Section 5 proposes a fast, scalable

heuristic. Section 6 develops an efficient algorithm for

online version of the problem to deal with dynamic sensor

recharging requests at each fixed time slot. Section 7 eval-

uates the performance of the proposed algorithms through

experimental simulations, and Sect. 8 concludes the paper.

2 Related work

Wireless power transfer technology has an immense impact

on wireless sensor networks, charging sensors without the

constraints of wires and plugs. It provides a promising

solution to prolong the lifetime of WSNs. Although a few

studies have been conducted to explore mobile chargers to

replenish energy to sensors, the deployment of this tech-

nology for sensor networks is still in its early infancy. Most

existing studies considered sensor energy recharging and

data collection routing jointly. For example, Shi et al. [14]

considered replenishing sensor energy in a WSN, by

employing a wireless charging vehicle to periodically

charge each sensor. They took energy charging and data

flow routing jointly, and formulated an optimization prob-

lem of maximizing the ratio of the vacation time of the

wireless charging vehicle to the renewable energy cycle

time. They assumed that the data rate of each sensor is

unchanged, the shortest traveling path of the mobile charger

is known or found in advance. They later extended their

work to a general case where a mobile charger can charge

multiple sensors simultaneously [15], for which they

employed the mobile vehicle to charge sensors and collect

sensing data simultaneously along its tours [16, 17]. Guo

et al. [18] developed a framework of joint wireless energy

replenishment and anchor-point based mobile data gather-

ing, and considered various sources of energy consumptions

and time-varying energy replenishments. They formulated

the energy charging problem as a utility maximization

problem under the constraints of flow conservation, energy
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balance and link capacity. Zhao et al. [19] considered a

joint optimization of mobile data collection and energy

charging to achieve a desirable balance between the energy

replenishing range and data gathering latency by exploiting

mobility. They formulated the charging and data collecting

problem as an optimization problem to adjust data rates,

link scheduling and flow routing to achieve maximum

network utility. The disadvantage of these schemes of

jointing data collection and wireless charging of mobile

charger mentioned above lies in that mobile sink should

move to the area where there is a heavy load of data col-

lecting, while the mobile charger has to charge preferen-

tially the sensors which are lacking of energy. It is very

likely that the sensors with the least residual energy are

located in the light load area.

Liang et al. [7], on the other hand, advocated to

decouple sensor energy charging from sensing data routing

and they should be dealt separately, and formulated a novel

optimization problem of minimizing the number of mobile

charging vehicles needed, subject to the energy capacity

constraint on each mobile vehicle. Xu et al. [20] consid-

ered a charging problem of scheduling multiple mobile

vehicles to collaboratively charge sensors periodically for a

given monitoring period. They formulated a novel service

cost minimization problem of finding a series of charging

scheduling for mobile chargers to maintain the operations

of large scale WSNs during the period of a tour. Ren

et al. [21] provided a novel charging paradigm and pro-

posed efficient sensor charging algorithms, considering the

requirements of dynamic sensing and transmission behav-

iors of sensors. They formulated a charging throughput

maximization problem with an objective of maximizing the

number of sensors charged (charging throughput) per

charging tour.

In this paper we distinguish our work from these state-

of-the-art works as follows. We study a novel mobile

charging problem where the charging quality (utility) of

sensors, not the charging quantity (the number of sensors

charged) is considered. To measure the charging quality,

we introduce the charging fairness concept among to-be-

charged sensors, and a new metric for measuring the

charging utility which is a sub-modular function. We adopt

a realistic assumption, that is, each to-be-charged sensor

has its charging time window, within which the sensor must

be charged if keeping its functionalities such as sensing

data and relaying for others. Otherwise, once a sensor is

dead, it is no longer functioning during its expiration per-

iod, and some important sensing data from the sensor and

other sensors will be lost. Thus, different sensors may have

different charging time windows due to different energy

consumption rates. We also take into account the maximum

traveling distance of the mobile charger per tour in the

problem formulation.

3 Modeling and problem formulation

3.1 Network model

We consider a sensor network consisting a set V of hetero-

geneous sensors and a stationary base station v0 deployed

over a rectangle region. The WSN can be represented by a

weighted undirected graphG ¼ ðV [ fv0g;E; ‘Þ. E is the set

of links between two sensors or a sensor and the base station

within the transmission range of each other, and denote by

‘ðu; vÞ the Euclidean distance between node u and v if there

is an edge between them. Each sensor vi 2 V is equipped

with a rechargeable battery with energy capacity

Bi; i ¼ 0; 1; . . .; jVj. The sensor consumes energy on sens-

ing, processing and data transmission. Each sensor vi will

send a recharging request RRi ¼ ðvi; ri;REi; pi;BiÞ to the

base station once its residual energy REi falls below a pre-

defined threshold h, where vi is its identity, ri is its request
release time, REi is its residual energy at that moment, pi is

its energy consumption rate, Bi is its battery energy capacity

with 0\h\1. We assume that each sensor will be fully-

charged if the mobile charger visits it in a tour, and denote

by ti the arrival time when the mobile charger visits sensor vi
for the first time in a tour. Let ci be the charging duration of

sensor vi. We further assume that the energy consumption of

sensor vi is negligible during its survival time interval

½ri; ri þ REi=pi�. Thus, the charging duration ci of sensor vi is
ci ¼ ðBi � REiÞ=l: ð1Þ

where l is the charging rate of the mobile charger. Theo-

retically, the residual energy REi can only support sensor vi
to operate up to REi=pi time after sensor vi issues its

charging request. To avoid its energy expiration, sensor vi
should be charged before this deadline. Denote by di the

charging deadline of sensor vi, then

di ¼ ri þ REi=pi: ð2Þ

Therefore, sensor vi should be charged within the time

window ½ri; di� prior to its energy expiration.

A mobile charger is a moving vehicle equipped with a

powerful wireless charger that can keep information syn-

chronized with the base station via a long range radio [22].

During each tour, it starts from the base station to charge

sensors on its charging tour. Since the mechanical move-

ment of the mobile charger is driven by petrol or elec-

tricity, so is its sensor charging, we thus assume that the

total traveling distance of the mobile charger per tour is

bounded by a given value L. The mobile charger travels in

the network deployment region along a close tour and its

charging rate l for all sensors is identical. For each

charging tour, the mobile charger starts from and ends at its

depot where the vehicle will be recharged or refueled for its

next tour. For simplicity, we assume that the depot of the
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mobile charger is co-located with the base station v0 and

has enough energy to charge all sensors in its per tour [14].

In our charging model, the charger can only charge one

sensor each time. We assume that the mobile charger

travels at a constant speed mc. An example of this charging

paradigm is illustrated in Fig. 1.

Assume that all charging requests of sensors are given to

the base station in advance at the beginning of a new tour.

The base station makes the mobile charger schedule that

decides which sensors and in which order of the sensors to

be charged. The charger then charges the sensors one by

one, following the charging schedule. When the charger is

traveling, the base station may still receive new charging

requests from sensors. These new charging requests will be

dealt with in the next tour. Let Vc � V be the set of sensors

to be charged. Obviously, sensors in Vc are merely poten-

tial sensors to be charged. In each tour of the mobile

charger, it may not be able to charge all sensors in Vc due

to its maximum traveling length. Let VC be the set of

sensors that are charged by the charger at its current

charging tour C, clearly, VC � Vc � V .

3.2 Charging utility

We adopt a utility metric to measure the quality of sensor

charging, which is expressed by a sub-modular function.

Let f be a sub-modular function. Then, f : 2V 7!R� 0 sat-

isfies the following three properties [23]:

ð1Þ f ð;Þ ¼ 0;

ð2Þ f ðVC
1 Þ� f ðVC

2 Þ;whereVC
1 � VC

2 � VandVisa

finiteset;

ð3Þ f ðVC
1 [ fvigÞ � f ðVC

1 Þ� f ðVC
2 [ fvigÞ � f ðVC

2 Þ;
whereVC

1 � VC
2 � Vand9vi 2 V n ðVC

1 [ VC
2 Þ:

Obviously, the sub-modular function f is a monotonic

increasing function, whose marginal utility gain decreases

with the increase of the number of elements. Recall that

VC � V is a set of sensors charged for a charging tour C.

Then, the charging utility of tour C is

UðCÞ ¼ f ðVCÞ ¼
X

vi2VC

uðviÞ ð3Þ

where uðviÞ is the utility gain of charging sensor vi 2 VC

with i ¼ 1; . . .; jVCj, and is inversely proportional to its

residual energy. This means a less residual energy sensor

will have a higher utility gain. Function uðviÞ thus is

defined as

uðviÞ /

1

REi

; REi [ h;

1

h
; REi � h:

8
>><

>>:
ð4Þ

where h[ 0 is a given energy threshold of a battery and

REi is the residual energy of sensor vi for all i with

1� i� jVcj and 0\REi �Bi. When a sensor is nearly dead

(the residual energy is h), charging it will lead to the

maximum gain in terms of the utilization function.

3.3 Problem definition

Given a sensor network G ¼ ðV [ fv0g;E; ‘Þ and a max-

imum traveling distance L per tour by a mobile charger,

and a set of sensors Vc (Vc � V) to be charged with their

charging time windows, the charging utility maximization

problem is to find a close tour C (C � Vc) in G for the

mobile charger such that the charging utility U(C) of the

charging tour C is maximized, subject to the total trav-

eling distance L of the mobile charger and the charging

time windows of sensors in C. In other words, the problem

is to charge as many energy critical sensors as possible

per tour if the total traveling distance is upper bounded by

L.

In the following we formulate the charging utility

maximization problem as an integer linear programming.

maximizeUðCÞ

subject to

‘ðCÞ� L ð5Þ

ri � ti � di ð0� i� jVCjÞ ð6Þ

tiþ1 � ti þ ci þ sðvi; viþ1Þ ð0� i� jVCjÞ ð7Þ

VC � Vc ð8Þ

where UðCÞ ¼
P

vi2VC uðviÞ. Recall that we denote by

‘ðvi; vjÞ the traveling length of the mobile charger from

sensor vi to vj. Let sðvi; vjÞ be the traveling time from

sensor vi to vj, which isFig. 1 An example of a mobile charger
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sðvi; vjÞ ¼ ‘ðvi; vjÞ=mc: ð9Þ

We denote by ‘ðCÞ the total traveling distance of the close

charging tour C, bounded by the maximum traveling dis-

tance L, which is

‘ðCÞ ¼
XjVC j

i¼1

‘ðvi�1; viÞ þ ‘ðvjVC j; v0Þ ð10Þ

Recall that ti is the arrival time point of the mobile charger

at sensor vi, and ci is the charging duration at sensor vi.

Each sensor vi should be charged within its time window

½ri; di�, otherwise, its residual energy will run out. In other

words, it should be charged after its request releasing time

and no later than its charging deadline. For convenience,

we assume that node vqþ1 is a dummy node located at v0,

the depot of the mobile charger, we thus have

‘ðvq; vqþ1Þ ¼ ‘ðvq; v0Þ. The schedule of the charging tour C

consists of a sequence of triples, ðv0; t0; c0Þ, ðv1; t1; c1Þ,
. . .,ðvi; ti; ciÞ, . . .,ðvq; tq; cqÞ, ðvqþ1; tqþ1; cqþ1Þ, where

q ¼ jVCj, t0 ¼ 0; c0 ¼ 0; r0 ¼ 0; d0 ¼ 1; tqþ1 ¼ 1; cqþ1

¼ 0; rqþ1 ¼ tqþ1 � 1; dqþ1 ¼ tqþ1 þ 1.

Theorem 1 Given a wireless rechargeable sensor net-

work G ¼ ðV [ fv0g;E; ‘Þ and a mobile charger, the

charging utility maximization problem in G is NP-hard.

Proof We construct an instance of the problem, where the

utility gain of charging sensor vi is uðviÞ ¼ 1, the charging

duration of each sensor vi is a constant c, and the time

window ½ri; di� ¼ ½0; Tmax� for each sensor vi 2 Vc, where

Tmax ¼ maxfd1; . . .; djVcj;
L
mc

þ
P

vi2Vc
Bi

l g is a constant.

Obviously, this is a special case of the charging utility

maximization problem, which also is an orienteering

problem. It is well known that the orienteering problem is

NP-hard [24]. The charging utility maximization problem

thus is NP-hard too. h

4 An approximation algorithm

Since the charging utility maximization problem is NP-

hard, in this section, we first devise an approximation

algorithm through reducing it to the orienteering problem

with Time Windows (OP-TW) [24]. An approximate

solution to the latter [24] in turn returns an approximate

solution to the former.

The orienteering problem with time windows is defined

as follows. Given a directed weighted graph G0 ¼
ðV 0;E0; ‘0Þ, denote by ‘0ðu; vÞ the length of arc ðu; vÞ 2 E0

from node u to v and [R(v), D(v)] the time window of node

v 2 V 0 that can only be visited no earlier than R(v) and no

later than D(v) with RðvÞ�DðvÞ, two nodes s; t 2 V 0 and
an integer budget B[ 0, the problem is to find an s,t

traveling path of length at most B to maximize the utility of

visited nodes in the traveling path, assuming that each node

has a non-negative utility value.

In the following we reduce the charging utility maxi-

mization problem to the orienteering problem with time

windows.

Given a set Vc of sensors to be charged, we construct a

directed weighted graph Gc ¼ ðVc [ fv0g;Ec; ‘Þ, where

Vc � V and Ec � E. Assume that the base station v0 has a

time window ½0;1�, which means that the mobile charger

can stay at the base station all the time if no requests are

received, or the mobile charger can return back to the base

station at any time, but its traveling length is bounded by an

integer L. In case L is not an integer, it can be scaled and

rounded by the standard scaling and rounding techniques

into an integer. The base station v0 is not only the starting

point but also the destination of the mobile charger. For

each node vi 2 Vc, node vi’s time window is ½ri; di� with
charging duration ci.

The proposed approximation algorithm for the charging

utility maximization problem is as follows. It first generates

an auxiliary node v00 with the same location as v0. An

auxiliary graph G0
c ¼ ðV 0

c;E
0
c; ‘Þ is thus derived by adding

node v00 to set Vc and adding arcs from node v00 to each node

in Vc. Thus, V
0
c ¼ Vc [ fv0; v00g. Recall that the problem is

to find a close tour with maximum charging utility of the

mobile charger from node v0 to v0, it can be transformed to

finding a path from node v0 to v00 in auxiliary graph G0
c,

since node v00 has the same location as node v0. Then, it

calls a recursive procedure with Appro_R(Vc; v0; v
0
0;

t0; L; k) to obtain a closed tour C. Here, the input arguments

are set by vs ¼ v0; ve ¼ v00; ts ¼ t0. The recursive level

limitation k is set by a given value, i.e., d1þ log2 jVcje,
which determines the time complexity and approximation

ratio of the solution delivered by the algorithm. We will

analyze its time complexity and approximation ratio by

Theorem 2. The detailed main algorithm Appro_CUM is

described in Algorithm 1. It works as the algorithm

framework by calling a proposed recursive procedure

Appro_R, which is described in Algorithm 2.
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Algorithm 1: Appro CUM (Vc, t0, L)
Input: A directed weighted graph Gc = (Vc ∪ {v0}, Ec; ), the starting time t0 = 0 at the depot v0 and a given traveling length

constraint L;

Output: A close tour C from v0 to v0 to maximize charging utility of the mobile charger.

1: Generate an auxiliary node v0 with the same location as v0;

2: {An auxiliary graph Gc is derived by adding v0 into Vc ∪ {v0};}
3: Vc ← Vc ∪ {v0, v0}
4: {k is the recursive depth}
5: k 1 + log2 |Vc ;

6: {Call Algorithm 2: Appro R to obtain a close tour C from v0 to v0, since v0 and v0 have the same location coordinate}
7: C ← Appro R(Vc, v0, v0, t0, L, k);

8: return C.

Algorithm 2: Appro R (Vc, vs, ve, ts, L, k)
Input: A directed weighted graph Gc = (Vc ∪ {vs, ve}, Ec; ), the starting time ts at node vs and a given traveling length

constraint L;

Output: A path P from vs to ve to maximize charging utility of the mobile charger.

1: {Calculate the charging time cs and the traveling time τ(vs, ve) of the mobile charger from vs to ve with the distance (vs, ve)

and moving speed mc};
2: cs ← (Bs − REs)/μ; τ(vs, ve) ← (vs, ve)/mc;

3: te ← ts + cs + τ(vs, ve);

4: {[re, de] is the charging time window of sensor ve}
5: if not ( (vs , ve) ≤ L and re ≤ te ≤ de) then

6: {return empty path if not all constraints of sensor ve is met.}
7: P ← ;

8: return P ;

9: end if

10: P ←< vs, ve >;

11: max ← U(P ); {U(P ) is charging utility of P}
12: if k == 0 then

13: {recursive limit}
14: return P ;

15: end if

16: for each v ∈ Vc do

17: {Guessing the middle node visited}
18: vm ← v;

19: for 1 ≤ L ≤ L do

20: {Guessing the length budget used}
21: Lm ← L ; tm ← ts + cs + Lm/mc;

22: Pleft ← Appro R(Vc \ {vm}, vs, vm, ts, Lm, k − 1);

23: Pright ← Appro R(Vc \ V (Pleft), vm, ve, tm, L − Lm, k − 1);

24: {Pleft • Pright is the concatenation of Pleft and Pright}
25: if U(Pleft • Pright) > max then

26: P ← Pleft • Pright;

27: max ← U(P );

28: end if

29: end for

30: end for

31: return P .
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Procedure Appro_R first guesses the middle node vm in

a tour of the mobile charger and the distance of the mobile

charger Lm within the distance budget L traveled by the

mobile charger from vs to vm, assuming that L is an integer.

The guessing step is implemented by enumerating all

candidate nodes as the middle node vm as well as all pos-

sible values of Lm, 1� Lm � L. Noticing that we can use the

standard scaling and rounding techniques to ensure that all

values within the total distance budget L are integers and

polynomially bounded. It then recursively finds a tour Pleft

from vs to vm with budget Lm, which means a tour Pleft

starts at vs at time ts and has to reach vm with no longer than

Lm. It also finds another tour Pright starting from vm and

ending at ve with the budget L� Lm to augment the nodes

that are not covered by Pleft, which means a tour Pright starts

at vm and has to reach ve with no longer than L� Lm. It

finally outputs the tour by concatenating Pleft and Pright. We

detail the approximation algorithm as follows.

Given the traveling distance constraint L and the time

windows of each to-be-charged sensors, the algorithm will

deliver a path from node vs to ve, and it will deliver a

closed tour if setting vs ¼ v0 and ve ¼ v00 with v00 located at

node v0. This closed charging tour can be the concatena-

tions of several paths with head and tail docking.

In order to meet the traveling distance constraint of the

mobile charger and time windows of sensors, procedure

Appro_R (Vc; vs; ve; ts; L; k) calculates the charging time

cs of sensor vs by cs ¼ ðBs � REsÞ=l and the traveling time

sðvs; veÞ from sensor vs to ve by sðvs; veÞ ¼ ‘ðvs; veÞ=mc.

Then the visiting time of node ve is obtained by

te ¼ ts þ cs þ sðvs; veÞ. It then verifies the distance con-

straint on the traveling path and time windows of sensor ve.

Let function Uð�Þ represent the total charging utility of

sensors covered in the traveling path of the mobile charger.

A solution delivered by the algorithm is feasible only if all

of the constraints are met. The detailed procedure Ap-

pro_R is described in Algorithm 2.

In the following we analyze the time complexity and

approximation ratio of the proposed approximation

algorithm.

Lemma 1 Let OPT be the optimal solution to the

charging utility maximization problem and nOPT the num-

ber of edges in OPT. Let P be the path returned by algo-

rithm Appro_CUM (vi; ti; vj; tj;Vc; L; k). Recall that U(P) is

the charging utility of path P. If k�d1þ logðnOPTÞe, then
UðPÞ�UðOPTÞ=d1þ logðnOPTÞe.

Proof Following the analysis by Chekuri and Pál [24],

the lemma follows. h

Theorem 2 Given a wireless sensor network

G ¼ ðV [ fv0g;E; ‘Þ, there is an approximation algorithm

Appro_CUM for the charging utility maximization

problem with the approximation ratio of OðlogOPTÞ,
which takes Oðð2 � jVcj � LÞlog jVcjÞ ¼ Oðð2 � jV j � LÞlog jV jÞ
time, where Vc (� V) is the set of sensors to be charged and

OPT is the optimal solution of the problem.

Proof Denote by T(k) the running time of Appro_CUM

(vi; ti; vj; tj;Vc; L; k). Obviously, Tð0Þ ¼ 1. Hence, TðkÞ ¼
jVcj � L � ðTðk � 1Þ þ Tðk � 1ÞÞ ¼ 2 � jVcj � L � Tðk � 1Þ ¼
ð2 � jVcj � LÞ2 � Tðk � 2Þ ¼ � � � ¼ ð2 � jVcj � LÞk � Tð0Þ ¼ ð2�
jVcj � LÞk.

Following Lemma 1, denote by OPT the optimal

solution to the problem and nOPT ¼ jOPT j the number of

edges in OPT. Let P be the path delivered by algorithm

Appro_CUM (vi; ti; vj; tj;Vc; L; k). If k�d1þ logðnOPTÞe,
then UðPÞ�UðOPTÞ=d1þ logðnOPTÞe�UðOPTÞ. Hence,
there is an approximation algorithm Appro_CUM for the

charging utility maximization problem with an approxi-

mation ratio of OðlogOPTÞ, which takes Oðð2 � jV j �
LÞlog jV jÞ time. h

5 A heuristic algorithm

Although the approximation algorithm delivers a solution

with a guaranteed approximation ratio, its running time is

not polynomial, and it suffers poor scalability in practice.

In this section, we devise a fast yet scalable heuristic for

the problem.

The basic idea of the proposed heuristic, Heuris-

tic_Offline, is described as follows. We initially con-

struct a close tour C consisting of all of the sensors in Vc,

by applying the 1.5-approximation algorithm for the

Traveling Salesman Problem (TSP) [25]. If the length ‘ðCÞ
of tour C is not greater than the maximum traveling dis-

tance of the mobile charger L and each sensor in C can be

charged within its charging time window, the solution is a

feasible solution; otherwise, the tour C is infeasible, a

feasible solution can be obtained through the modification

on this infeasible solution, by removing the sensors from

the infeasible solution one by one iteratively until the final

solution is feasible.

Let C be the found tour containing all sensors in Vc

which can be obtained by finding a minimum spanning tree

(MST) and traversal on the MST. If the length of C and the

charging time window of each node in C are met, the

solution is the final solution. Otherwise, a node needs to be

removed from the current tour C. We aim to choose such a

sensor that has the minimum gain in terms of the objective

function while a longer travel distance, i.e., a sensor with

the minimum ratio of the utility gain to the length sum of

its distances to the two neighboring nodes in the tour.
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Specifically, let DUðC; vÞ be the amount of utility gain

decrease due to the removal of sensor v from tour C.

Obviously, we have

DUðC; vÞ ¼ UðCÞ � UðC n fvgÞ ¼ uðvÞ ð11Þ

which can be calculated by the residual energy of sensor v.

We denote by

D‘ðC; vÞ ¼ ‘ðCÞ � ‘ðC n fvgÞ ð12Þ

the length decrement of tour C due to the removal of sensor

v from C. In order to obtain a tour with larger accumulative

charging utility, we remove a sensor v with the smallest

ratio of
DUðC;vÞ
D‘ðC;vÞ from C at each time until a feasible solution

is obtained. The detailed algorithm Heuristic_Of-

fline is described in Algorithm 3.

Theorem 3 Given a wireless sensor network

G ¼ ðV [ fv0g;E; ‘Þ, a set of to-be-charged sensor Vc and

the distance constraint L of the traveling tour of the mobile

charger, there is a fast, scalable heuristic algorithm

Heuristic_Offline for the charging utility maxi-

mization problem, which takes OðjV j2Þ time, where |V| is

the number of sensors in the network.

Proof Algorithm Heuristic_Offline clearly yields a

feasible solution to the charging utility maximization

problem, because the solution delivered by algorithm

Heuristic_Offline meets all of the constraints

imposed on the problem. We now analyze the time com-

plexity of algorithm Heuristic_Offline in the

following.

It takes OðjVcj2Þ time to get an updated TSP tour via the

construction of anMST from themetric graph induced by the

nodes in the updated sensor set Vc. Within each iteration, it

takes OðjVcjÞ time to find a node v 2 Vc with the minimum

ratio
DUðC;vÞ
D‘ðC;vÞ from tourC, while the number of iterations of the

algorithm is bounded by jVcj. The algorithm thus takes

OðjVcj2Þ þ OðjVcjÞ � jVcj ¼ OðjVj2Þ time since jVcj � jVj.h

6 Online algorithm

Although the running time of the heuristic in the previous

section is polynomial, it is based on the assumption that all

sensor charging requests are given (to the base station) in

advance. However, in practice, sensor charging requests are

dynamically sent to the mobile charger only when the sensors

residual energy fall below a predefined threshold h with

0\h\1. In this section,we consider this online version of the

problem, and devise an online heuristic for the problem of

maximizing the charging utility for a givenmonitoring period

T through charging scheduling at every fixed time slot of this

monitoring period, with the assumption that sensor charging

requests arrive at the base station dynamically. Assume that

T is the maximum number of time slots per charging tour.

Thus, the maximum period per tour is [0, T]. We denote by

Vt
c the set of to-be-charged sensors at the time slot t, where

sensor charging requests release times are issued no latter than

time slot t, with 0� t� T . Recall that Vc is the set of to-be-

charged sensors. Clearly, Vt
c � Vc, and

ST
t¼0 V

t
c ¼ Vc.

Algorithm 3: Heuristic Offline (Vc, t0, L)
Input: Gc = (Vc ∪ {v0}, Ec; ), the starting time t0 = 0 at the depot v0 and a given traveling length constraint L.

Output: A traveling tour C starts from base station v0 and ends at v0 to maximize charging utility.

1: Find an MST T in Gc; {set v0 as a root}
2: Find an Euler tour C by doubling the edges of T , a closed tour C is then derived from C by shortcutting repeated

appearance of each node in C by applying the 1.5-approximation algorithm for the TSP;

3: finished ← false;

4: while not finished do

5: if (C) > L or (not all node deadlines are satisfied) then

6: Find a node v with the minimum ratio ΔU(C,v)
(C,v) in tour C, and remove it from C and Gc;

7: else

8: finished ← true;

9: end if

10: end while

11: Starting from v0, traveling along C and ending at node v0, a closed tour C is obtained;

12: return C.
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The basic idea of the online algorithm is adopting a greedy

strategy to dynamically decide which sensors to be charged.

In order to maximize the charging utility, the mobile charger

first charges the sensors with the maximum ratio of charging

utility gain to traveling length increment. Meanwhile, it

makes sure that both the time windows of to-be-charged

sensors in tour C and the total traveling distance of the

mobile charger must be met. When the mobile charger fin-

ishes charging a sensor, it sends an acknowledgment message

to the base station and enquires about which sensor is to be

the next one to be charged. The online algorithm will be

executed in the base station to deliver a solution to the

problem. After receiving the charging schedule from the base

station, the mobile charger moves from its current location to

the next to-be-charged sensor. When the mobile charger is

traveling, the base station may continue receiving new

charging requests from sensors as well. It is noteworthy that

the base station decides which sensor is the next one based on

requests received so far. In other words, the online algorithm

delivers the solution by dynamically taking sensor charging

requests and it is suitable for the more practical cases.

In the following, we identify which sensor should be

added to the tour C dynamically. We aim to choose a

sensor with the maximum utility gain while keeping a

shorter travel distance to it. Specifically, let

DUðC; vÞ ¼ UðC [ fvgÞ � UðCÞ ð13Þ

be the utility increment by inserting sensor v into tour C.

Obviously, DUðC; vÞ ¼ uðvÞ, which can be calculated by

residual energy of sensor v. Let

D‘ðC; vÞ ¼ ‘ðC [ fvgÞ � ‘ðCÞ ð14Þ

be the length increment of tour C by inserting sensor v into

it. For convenience, we denote by vcur the sensor currently

being charged. Hence,

D‘ðC; vÞ ¼ ‘ðvcur; vÞ þ ‘ðv; v0Þ � ‘ðvcur; v0Þ: ð15Þ

Once sensor v is chosen to be appended to tour C, the length

‘ðCÞ is updated. Meanwhile, it should be guaranteed that the

mobile charger can return to v0 after charging a sensor v 2 Vc

under the current traveling length margin of the mobile

charger. Since the mobile charger charges the current sensor

vcur for charging duration ccur, the current time slot t should

be updated by t þ sðvpre; vcurÞ þ ccur, where sðvpre; vcurÞ is

the traveling time from the previous charged sensor vpre to

the current charged sensor vcur. If none of the sensors in Vt
c

can be found to be charged under the constraints, the mobile

charger will wait for a time slot, updating t with

t ¼ t þ time slot. Then, set Vt
c will be updated by inserting

the sensors whose charging requests are received before time

t. This procedure is iterated until no more sensors can be

appended into the charging tour C. Finally, we get a close

tour C as a solution to our problem. The detailed algorithm

Heuristic_Online is described in Algorithm 4.

Algorithm 4: Heuristic Online (Vc, t0, L)
Input: Gt

c = (V t
c ∪ {v0}, Et

c; ), t0 = 0, and a traveling length constraint L. vcur is the sensor which is just finished charging.

Output: A traveling tour C starts from base station v0 and ends at v0 to maximize charging utility.

1: C = {v0}; (C) = 0; vcur ← v0; t ← t0;

2: Base station receives a message of acknowledgment from the mobile charger that means the charger has just finished charging

the current sensor vcur , and enquires about which sensor is the next one to be charged.

3: while V t
c = ∅ and (C) < L do

4: Find a sensor v ∈ V t
c which has the maximum ratio ΔU(C,v)

(C,v) and satisfies (C) + (C, v) ≤ L and the time window, where

(C, v) = (vcur , v) + (v, v0) − (vcur , v0).

5: if found then

6: Append node v to tour C, update the length of tour (C) by (C) ← (C) + (C, v), remove v from set V t
c ;

7: {Charging v, and update t}
8: vpre ← vcur ; vcur ← v; charge vcur for time ccur; t ← t + τ(vpre, vcur) + ccur;

9: else

10: {Wait for a time slot, update t and set V t
c }

11: t ← t + time slot;

12: Update set V t
c by appending sensors whose release times are not later than t;

13: end if

14: end while

15: The mobile charger returns to v0;

16: return C.
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Theorem 4 Given a wireless sensor network G ¼ ðV [
fv0g;E; ‘Þ and the length constraint L of each traveling tour

of the mobile charger, there is an online algorithm

Heuristic_Online for the charging utility maxi-

mization problem, which takes OðjV j3Þ time, where |V| is

the number of sensors in G.

Proof Algorithm Heuristic_Online yields a feasi-

ble solution to the charging utility maximization problem,

because the algorithm outputs a tour that meets all of the

specified constraints of the problem. We now analyze the

time complexity of algorithm Heuristic_Online in

the following.

Within each iteration, it finds a sensor v 2 Vc with the

maximum ratio
DUðC;vÞ
D‘ðC;vÞ of the charging utility to D‘ðC; vÞ,

satisfying ‘ðCÞ þ D‘ðC; vÞ� L and its time window of

charging, and adds node v to C, this takes OðjVcj2Þ time.

Processing each sensor v 2 Vc takes OðjVcjÞ iterations. The
algorithm thus takes OðjVcj3Þ ¼ OðjVj3Þ time since

jVcj � jVj. h

7 Performance evaluation

In this section we first evaluate the performance of the

proposed algorithms through experimental simulations. We

then study the impact of the total traveling distance of the

mobile charger L on algorithms performance.

7.1 Simulation environment setting

We consider WSNs with various sizes in our experiments

as listed in Table 1, including small-size networks con-

sisting of 5–25 sensors randomly deployed in a

50 m 9 50 m square and large-scale networks consisting

of 100–1000 sensors randomly deployed in a

500 m 9 500 m square. The base station (the depot of the

mobile charger) is located at one of the four corners of the

monitoring area. Due to the dynamic nature of sensing

activities, each sensor randomly sends its recharging

requests within a given time period T. We here set

T = 5100 s L = 400 m for small-size networks, and

T = 51,000 s and L = 8000 and 16,000 m for large scale

networks. We assume that the mobile charger travels at a

constant speed 8 m/s and the wireless charging rate is

5 W [12], and the maximum energy capacity of sensor

battery is 500 J. The charging duration depends on the

residual energy of a battery and the charging rate of the

mobile charger. Each value in figures is the mean of the

results by applying each mentioned algorithm to 20 dif-

ferent network topologies of the same network size.

Denote by Optimum the algorithm delivering an opti-

mal solution to the problem and EDF the well-known

earliest deadline first scheduling algorithm as the bench-

marks for the performance evaluation of our proposed

algorithms, the approximation algorithm Appro_CUM, the

heuristic algorithm Heuristic_Offline, and the online

algorithm Heuristic_Online, where algorithm Op-

timum performs exhaustive searches to obtain an optimal

solution to the problem.

7.2 Performance evaluation of approximation

and heuristic algorithms

We first evaluate the performance of the approximation

algorithm Appro_CUM, the offline heuristic algorithm

Heuristic_Offline, the online heuristic algorithm

Heuristic_Online against algorithm EDF and Op-

timum in small-size networks by varying the network size

from 5 to 25. Although algorithm Optimum can deliver an

optimal solution, it is computationally expensive, which

makes it impractical for large-scale networks. When the

network size is 5 and 10, its running times are 6 and

415,985 ms respectively, on the PC with Intel i7 CPU

3.4 GHz, and 16 GB memory. When network size reaches

15 or above, algorithm Optimum fails to deliver any result

due to its prohibitive running time. Furthermore, algorithm

EDF is the worst among the mentioned algorithms.

When the network size is set to be 5 and 10 and the

traveling distance of the mobile charger L is set at 400 m,

the performance of algorithm Appro_CUM is about 91.9

and 90.6 % of the optimal one while their running times

are 57, 15,049 ms, respectively, and the actual approxi-

mation ratios are 1.088 and 1.104, respectively, which is

much better than its theoretical estimation. Figure 2 shows

the performance of the proposed algorithms.

Table 1 Default parameters setting

Parameter Value

Network size (small scale) 5–25

Sensing field (small scale) 50 m 9 50 m

Given time period T (small scale) 5100 s

Traveling length limitation L 400 m

Network size (large scale) 100–500

Sensing field (large scale) 500 m 9 500 m

Given time period T (large scale) 51,000 s

Traveling length limitation L 8000, 16,000 m

Battery capacity 500 J

Charging rating 5 W

Charger moving speed 8 m/s
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The charging utility delivered by algorithm Heuris-

tic_Offline is about 81.9 and 88.3 % of the optimal one

when the network size is set to be 5 and 10. The charging

utility delivered by algorithm Heuristic_Offline is

16.7, 38.5, 54.5 and 66.5 % higher than that delivered by

algorithm EDF when the network size is 10, 15, 20 and 25,

respectively. With the increase on network size, the per-

formance gap between algorithm Heuristic_Offline

and algorithm EDF becomes larger and larger. The charg-

ing utility delivered by algorithm Heuristic_Online

is about 89.8 and 82.2 % of the optimal one by varying the

network size from 5 and 10 and setting the dynamic

scheduling time slot at 100 s. The performance of algo-

rithm Heuristic_Online is 8.92, 24.6, 27.4 and

33.6 % higher than that of algorithm EDF when the net-

work size is 10, 15, 20 and 25, respectively. Figure 2 also

shows that the offline algorithm Heuristic_Offline

outperforms the online algorithm Heuristic_Online

significantly. The reason behind is that algorithm

Heuristic_Offline is assumed to know all charging

requests of a charging tour in advance. On the other hand,

algorithm Heuristic_Online can schedule charging

tasks dynamically.

We now evaluate the performance of algorithms

Heuristic_Offline, EDF and Heuristic_Online

in large-scale networks by varying network size from 100

to 1000. The traveling distance L of the mobile charger is

set at 8000 and 16,000 m respectively. Figure 3 illustrates

the performance curves of the algorithms, from which it

can be seen that the charging utility delivered by algorithm

Heuristic_Offline always outperforms algorithm

EDF. In Fig. 3(a), for example, when the network size is set

at 200, 400, 600, 800, and 1000 respectively, while the

traveling distance of the mobile charger L is set at 8000 m,

the charging utility delivered by algorithm Heuris-

tic_Offline is 395.9, 352.0, 299.6, 286.4, and 264.9 %

higher than that of algorithm EDF. In contrast, the per-

formance of algorithm Heuristic_Online is 176.0,

154.3, 141.0, 142.6, and 118.8 % higher than that of

algorithm EDF when the dynamic scheduling time slot is

set at 100 s. With the increase on network size, there are

more opportunities for a sensor to be charged. Fig-

ure 3(b) indicates that the charging utility of algorithm

Heuristic_Offline is around 262.1, 261.6, 219.6,

209.1, and 191.9 % higher than that of algorithm EDF by

setting network size at 200, 400, 600, 800 and 1000,

respectively, while the value of L is kept at 16,000 m. In

contrast, the performance of algorithm Heuris-

tic_Offline is 108.8, 92.3, 82.4, 79.1, and 65.5 %

higher than that of algorithm Heuristic_Online. It is

noteworthy that algorithm Heuristic_Online is
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Fig. 3 The charging utility performance of algorithm Heuristic_Offline, EDF and Heuristic_Online by varying the network size and

setting a given traveling length constraint. a L = 8000 m. b L = 16,000 m
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practical in reality to deal with charging requests

dynamically.

Figure 3 also demonstrates that the charging utility of

the algorithms grows with the increase of the traveling

distance of the mobile charger L. For example, when

L = 16,000 m and network size is set at 1000, the charging

utility of algorithm Heuristic_Offline is 28.2 %

higher than that when L = 8000 m. The performance of

algorithm Heuristic_Online at L = 16,000 m is

21.2 % higher than that at L = 8000 m. It also shows that

the charging utility performance of the proposed algo-

rithms Heuristic_Offline and Heuristic_On-

line grows with the increase of network size. Moreover,

the longer L is, the more charging utility algorithm

Heuristic_Offline will achieve. The proposed algo-

rithms are scalable and practical for large-scale networks.

We finally study the impact of the dynamic scheduling

interval, time slot, of algorithm Heuristic_Online on

its charging utility performance. Figure 4 demonstrates the

charging utility performance of algorithm Heuris-

tic_Online. When the traveling length of the mobile

charger L is set at 8000 m, the charging utility delivered by

algorithm Heuristic_Online keeps at the almost

identical level when the time slot intervals are set at 100,

200, 300, 400 and 500 s and the network size varies from

100 to 1000. When L is set at 16,000 m and the time slot

intervals varies from 100 to 500 s, the charging utility

performance of algorithm Heuristic_Online also

keeps at the almost identical level too.

8 Conclusion

In this paper we studied the problem of finding a charging

tour for a mobile charger in wireless rechargeable sensor

networks with the objective to maximize the sensor

charging utility, subject to the total traveling distance of the

mobile charger and the charging time window of each

sensor. Due to the NP-hardness of the problem, we then

proposed an approximation algorithm with guaranteed

approximation ratio if the problem size is small; otherwise,

we devised a fast yet scalable heuristic. We also developed

an online heuristic if energy charging requests from sensors

need to be dynamically responded. Finally, we evaluated

the performance of the proposed algorithms against the

famous earliest deadline first scheduling (EDF) algorithm

through experimental simulations. The simulation results

demonstrate that the solution delivered by the approxima-

tion algorithm is comparable to the optimal one when the

problem size is small. Otherwise, the proposed heuristic

significantly outperforms the well-known EDF heuristic.
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