
23

QoS-Aware VNF Placement and Service Chaining for IoT
Applications in Multi-Tier Mobile Edge Networks

ZICHUAN XU and ZHIHENG ZHANG, Dalian University of Technology

WEIFA LIANG, Australian National University

QIUFEN XIA, Dalian University of Technology

OMER RANA, Cardiff University

GUOWEI WU, Dalian University of Technology

Mobile edge computing and network function virtualization (NFV) paradigms enable new flexibility and pos-

sibilities of the deployment of extreme low-latency services for Internet-of-Things (IoT) applications within

the proximity of their users. However, this poses great challenges to find optimal placements of virtualized

network functions (VNFs) for data processing requests of IoT applications in a multi-tier cloud network,

which consists of many small- or medium-scale servers, clusters, or cloudlets deployed within the proximity

of IoT nodes and a few large-scale remote data centers with abundant computing and storage resources. In

particular, it is challenging to jointly consider VNF instance placement and routing traffic path planning for

user requests, as they are not only delay sensitive but also resource hungry.

In this article, we consider admissions of NFV-enabled requests of IoT applications in a multi-tier cloud

network, where users request network services by issuing service requests with service chain requirements,

and the service chain enforces the data traffic of the request to pass through the VNFs in the chain one by one

until it reaches its destination. To this end, we first formulate the throughput maximization problem with the

aim to maximize the system throughput. We then propose an integer linear program solution if the problem

size is small; otherwise, we devise an efficient heuristic that jointly takes into account VNF placements to both

cloudlets and data centers and routing path finding for each request. For a special case of the problem with a

set of service chains, we propose an approximation algorithm with a provable approximation ratio. Next, we

also devise efficient learning-based heuristics for VNF provisioning for IoT applications by incorporating the

mobility and energy conservation features of IoT devices. We finally evaluate the performance of the proposed

algorithms by simulations. The simulation results show that the performance of the proposed algorithms is

promising.

The work of Z. Xu, Q. Xia, and G. Wu was partially supported by the National Natural Science Foundation of China

(grant nos. 61802048, 61802047, 61772113, and 61872053), the fundamental research funds for the central universities in

China (grant nos. DUT17RC(3)061, DUT17RC(3)070, DUT19RC(4)035, and DUT19GJ204), DUT-RU Co-Research Center of

Advanced ICT for Active Life, and the “Xinghai Scholar Program” in Dalian University of Technology, China. The work of

W. Liang was supported by the Australian Research Council Discovery Project (grant no. DP200101985).

Authors’ addresses: Z. Xu, Z. Zhang, and G. Wu, School of Software, Dalian University of Technology, Dalian, Liaon-

ing, 116621, China; emails: z.xu@dlut.edu.cn, zhangzhiheng@mail.dlut.edu.cn, wgwdut@dlut.edu.cn; W. Liang, Research

School of Computer Science, Australian National University, Canberra, ACT 2601, Australia; email: wliang@cs.anu.edu.au;

Q. Xia, International School of Information Science and Engineering, Dalian University of Technology, Dalian, Liaoning,

116621, China; email: qiufenxia@dlut.edu.cn; O. Rana, School of Computer Science and Informatics, Cardiff University,

Cardiff, CF24 3AA, United Kingdom; email: RanaOF@cardiff.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1550-4859/2020/05-ART23 $15.00

https://doi.org/10.1145/3387705

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.

mailto:permissions@acm.org
https://doi.org/10.1145/3387705


23:2 Z. Xu et al.

CCS Concepts: • Computer systems organization → Embedded systems; Redundancy; Robotics; • Net-

works → Network reliability;

Additional Key Words and Phrases: Internet of Things, mobile edge clouds, network function virtualization,

quality of services, approximation algorithms

ACM Reference format:

Zichuan Xu, Zhiheng Zhang, Weifa Liang, Qiufen Xia, Omer Rana, and Guowei Wu. 2020. QoS-Aware VNF

Placement and Service Chaining for IoT Applications in Multi-Tier Mobile Edge Networks. ACM Trans. Sen.

Netw. 16, 3, Article 23 (May 2020), 27 pages.

https://doi.org/10.1145/3387705

1 INTRODUCTION

With the advancement of wireless access technologies, such as Wi-Fi and 5G, various smart
Internet-of-Things (IoT) applications, such as smart home, smart city, smart grid, connected health,
and connected cars, have been receiving much attention. These applications usually are driven by
AI and need to process large volumes of data in real time to discover valuable patterns hidden
in the IoT data. Orthogonal to 5G technology, mobile edge clouds have emerged as an enabling
technique to support real-time IoT applications by bringing remote cloud services to nearby IoT
applications. However, considering that mobile edge clouds are usually deployed at fixed locations
within the proximity of users, such as industrial plants, base stations, shopping malls, and airports,
they have limited computing and storage resources due to space limitations of the locations. This
unfortunately limits the capability of mobile edge clouds to meet ever-growing resource demands
of various network services. Multi-tier cloud networks that consist of both mobile edge clouds and
remote clouds are ideal platforms to meet not only the extreme low-latency requirements but also
resource demands of IoT applications. Specifically, low-latency IoT applications can be moved to
the mobile edge cloud while placing resource-hungry services in remote clouds or data centers.

However, IoT applications in multi-tier cloud networks need various network services with
different sequences of network functions, such as firewalls and intrusion prevention/detection
systems, to ensure the secure, flexible, and low-cost processing and transmission of their traffic.
Network function virtualization (NFV) is a promising technology that offers new flexibility in host-
ing IoT services in any virtualized network node, such as access points (APs), routers, and remote
data centers. Specifically, through decoupling network functions from the underlying hardware
and implementing them as software running in virtual machines (VMs), NFV reduces the capital
expenses (CapEx) and operational expenses (OpEx) of network service providers. Along with the
multi-tier cloud network, NFV also creates a flexibility of instantiating IoT services according to
their nature (i.e., delay sensitive or resource hungry). For example, virtualized network functions
(VNFs) that require a huge amount of resources to process traffic and have a small amount of out-
put traffic can be placed to remote data centers, whereas the VNFs that need a large amount of
input data from end users can be placed into the edge cloud to shorten the transmission delay. In
this article, we will investigate a fundamental problem of VNF provisioning for IoT applications
in a multi-tier cloud network.

Although the NFV-enabled multi-tier cloud network brings the mentioned benefits and
promised flexibilities for many real-time IoT applications, it also poses the following challenges.
First, IoT applications need resources from both edge clouds and remote data centers to meet their
delay and resource requirements. It poses a great challenge to provision VNF service for an IoT
application by jointly considering the local edge cloud and remote clouds, such as how to jointly
decide which locations (cloudlets or data centers) for VNFs and chain the placed VNFs in a multi-
tier cloud network. The VNF locations and routing paths among the locations should be jointly

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.

https://doi.org/10.1145/3387705


QoS-Aware VNF Placement and Service Chaining for IoT Applications 23:3

determined to guarantee that as many as user requests with service chain requirements can be ad-
mitted while their accumulative implementation cost is minimized. Second, the implementation of
a service chain of a request makes use of not only existing VNFs in data centers but also the newly
created VNF instances in cloudlets in the edge cloud network, and thus allowing IoT applications to
share existing idle VNFs is challenging. Third, IoT applications usually require extra value-added
network functions such as parental controls in smart home applications, caching, and data pre-
processing in wireless sensor network applications. How to jointly place such network functions
and conventional network functions is challenging. Fourth, IoT applications have their distinct
features, such as mobility and energy awareness [29, 32]. This makes the provisioning of VNFs
in the multi-tier cloud network extremely challenging, because placed VNFs need to be adaptive
to the mobility and energy status of IoT devices so that the performance of the IoT applications
can be guaranteed. Fifth, how to guarantee the performance of network services is challenging,
by meeting end-to-end delay requirements of user requests of IoT applications, here the delay is
composed of the processing delay of VNFs in a service chain and the transmission delay in the
routing paths.

There are several studies on VNF placement and service chaining in software-defined or NFV-
enabled networks [5–7, 14–17, 19, 22–24, 26, 35, 36, 38]. Some of them have assumed that all VNFs
in a service chain are consolidated into a single location. Most of them did not consider the NFV
provisioning in multi-tier cloud networks and thus ignored the resource orchestration of both edge
and remote clouds for IoT applications. Although there are a few studies on provisioning VNFs
for IoT applications [3, 9, 13, 27], they either have not considered the chaining of VNFs or have
ignored the distinct features (i.e., mobility) of IoT applications. Unlike the aforementioned studies,
we jointly consider the service chaining and VNF placement, mobility, and energy awareness of IoT
applications by exploring a collaborative resource orchestration of both edge and remote clouds.

In this article, we take into account the benefits and flexibility afforded by the NFV technique
for IoT applications along with the mentioned challenges. We study the throughput maximization
problem in a multi-tier cloud network, with the aim to improve resource utilization of the multi-
tier cloud network, by admitting as many NFV-enabled requests as possible. To the best of our
knowledge, we are the first to study QoS-aware service chaining for IoT applications in a multi-
tier cloud network consisting of cloudlets and remote data centers, by leveraging a non-trivial
trade-off between request implementation costs and end-to-end delays. We jointly place VNFs
into cloudlets and data centers and chain the placed VNFs together through finding routing paths
among the locations via a smart auxiliary graph construction. We also consider dynamic VNF
placements to allow the obtained solution to be adaptive to both mobility and energy statuses of
IoT devices.

The main contributions of this work are as follows:

• We study the service chaining problem for IoT applications in a multi-tier cloud network
with the aim to maximize the system throughput while minimizing the implementation cost
of admitted requests, subject to capacity constraints on cloudlets.

• We formulate an integer linear program (ILP) for the throughput maximization problem.
• We devise an efficient heuristic for the problem through reducing it to an unsplittable min-

cost multi-commodity flow problem, due to the poor scalability of the ILP solution.
• We propose an approximation algorithm with a provable approximation ratio for a special

case of the problem without end-to-end delay requirements.
• We devise efficient learning-based heuristics to deal with the mobility and energy statuses

of IoT devices.
• We evaluate the performance of the proposed algorithms based on simulations, and the

performance of our simulations is promising.

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



23:4 Z. Xu et al.

The rest of the article is organized as follows. Section 2 surveys the state of the art on this
topic and details the difference between this work and previous studies of task offloading. Sec-
tion 3 introduces the system model, notations, and problem definitions. Section 4 provides an ILP
formulation and then devises a heuristic algorithm for the problem. For a special case of service
chains, Section 5 proposes an approximation algorithm with a provable approximation ratio for the
problem. Section 6 devises an efficient and learning-based heuristic to deal with the mobility and
energy statuses of IoT devices. Section 7 presents some experimental results on the performance
of the proposed algorithms, and Section 8 concludes the article.

2 RELATED WORK

Recently, NFV-enabled request admissions and mobile edge computing have attracted much at-
tention in the literature [5–7, 14–17, 19, 22–24, 26, 35, 36] due to the promises of the NFV and
mobile edge cloud techniques and the new challenges they have brought. Most NFV studies have
focused on hybrid networks with both software-defined network (SDN)-enabled and conven-
tional switches, SDNs, data center networks, or distributed clouds with both hardware and soft-
ware network functions [26], online algorithm design for dynamic networks [22, 23], and delay-
awareness [21], by proposing exact solutions [22], approximation solutions [7], heuristics [26], or
online algorithms [16]. However, most studies on mobile edge clouds have focused on task offload-
ing [18] and load balancing among different cloudlets [19]. The service chaining of VNFs in mobile
edge networks is usually ignored. For example, Song et al. [30] investigated the task assignment
problem in a mobile edge network with node, link, and security constraints. Chen and Wu [5]
investigated a series of innovative algorithms for NFV middlebox placement by considering the
balance of the setup and bandwidth consumption costs.

There are several studies on the provisioning of NFV-enabled network services in mobile edge
clouds [18, 28, 40, 41]. For example, Yang et al. [40, 41] studied the problem of placing VNF in-
stances among NFV-enabled nodes in a mobile edge cloud to support mobile multimedia applica-
tions with low latency requirements and dynamically changing VNF placements to address work-
load changes. Jia et al. [18] and Xi et al. [39] proposed a solution of offloading mobile services with
NFV instances in a mobile edge cloud, assuming that all VNFs in a service chain are consolidated
into a single edge node. Nam et al. [28] studied the problem of service chaining in a clustered net-
work with mobile edge networks, IoT networks, and backbone networks, with the aim to minimize
the average service time of traffic flow. Cziva et al. [8] formulated the VNF placement problem in
mobile edges by considering both latency fluctuations of links and mobility of mobile users. Xu
et al. [37] investigated a problem of service placement in mobile edge cloud–enabled cellular net-
works and proposed algorithms based on Lyapunov optimization and Gibbs sampling to reduce
computation latency for end users. These studies did not consider the sharing of existing VNF
instances in multi-tier cloud networks. They thus may not be suitable for NFV-enabled service
chaining provisioning in multi-tier cloud networks.

There are also a few studies on provisioning NFV-enabled network services for IoT applications,
which focus on light-weight virtualization techniques, architecture design, or application provi-
sioning [3, 9, 13, 27]. For example, to enable VNFs running in IoT gateways, light-weight imple-
mentation of VNFs is required, and several studies have focused on developing efficient methods
and implementations of VNFs in IoT gateways [3, 9, 13]. Yu et al. [42] studied the problem of IoT
application provisioning with the objective of meeting computing, network bandwidth, and QoS
requirements of IoT applications. However, they do not consider the processing of IoT traffic by
VNFs. Mouradian et al. [27] proposed an architecture of NFV- and SDN-based distributed IoT gate-
ways for large-scale disaster management. However, joint VNF placement and chaining for ser-
vice chains required by IoT applications are not the focus of those studies, as they do not consider

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



QoS-Aware VNF Placement and Service Chaining for IoT Applications 23:5

multi-tier mobile cloud network either. However, Zhang et al. [43] investigated the problem of
placing VNFs in both edge and cloud servers by providing adaptive and efficient methods for 5G
network slices. Yet their methods do not consider the mobility of IoT nodes. Farhadi [11] studied
the problem of service placement/migration and request scheduling in a two-tier cloud network
by proposing a constant-factor approximation algorithm for the problem. However, they do not
consider the chaining of services for IoT applications. Novel methods and algorithms are needed
for IoT service provisioning in NFV-enabled two-tier cloud networks.

3 PRELIMINARIES

In this section, we first introduce the system model and notations, and then we define the problems
precisely.

3.1 System Model

We consider a two-tier cloud network consisting of a mobile edge cloud in a wireless metropoli-
tan area network (WMAN) with cloudlets being deployed in its APs and a distributed cloud that
consists of distributed data centers. IoT applications, such as smart home, smart city, and smart
grid, are being deployed in the two-tier cloud network to consistently process their user traffic. Let
G = (V ∪ CL ∪ DC,E) be the two-tier cloud network, where V is a set of switches, CL is a set of
resource-constrained cloudlets that are located in the WMAN and within the proximity of users,
and DC is a set of resource-rich data centers in the distributed cloud. The cloudlets and data cen-
ters can be interconnected by Internet paths, virtual private network (VPN) tunnels, or high-speed
fronthaul/backhaul fiber. Here we use an edge e ∈ E to represent such a path for simplicity. Data
transmissions along each edge e ∈ E will incur a transmission delay.

A mobile edge cloud network lies in Tier 1 of network G, which consists of IoT devices, APs,
switches in V , and cloudlets in CL. IoT devices access network G via APs. Switches are used to
interconnect the APs and cloudlets, and some of them are attached with cloudlets in CL. Each
cloudlet clm ∈ CL has a few servers with an accumulative amount of available computing resources
to host various network applications and implement network functions in VMs. Each cloudlet clm
has a computing capacity Bclm

.
A distributed cloud in Tier 2 is composed of several data centers in DC that are located in

the core network and provide network services to users. Each data center DCj ∈ DC usually has
abundant computing resources to implement VMs for network functions. We assume that a num-
ber of VNFs are already instantiated at each data center, which can be viewed as resource pools
that are provided by most data centers with abundant resources for reducing the time spent wait-
ing for available resources. Figure 1 illustrates an example of the multi-tier cloud network for IoT
applications with cloudlets and remote data centers.

3.2 NFV-Enabled User Requests, Service Chains, and Value-Added Network Functions

of IoT Applications

IoT applications usually are deployed to sense physical environments continuously and transfer
the sensed data to IoT services to clouds for processing. We consider such requests of data transfer
as a user request. To guarantee the security of data transfer, each user request demands a service

chain consisting of a sequence of network functions, such as firewalls and intrusion detection
systems (IDSes) to process its data, as shown in Figure 2. Denote by rk a user request and SCk the
service chain of rk . Let ρk be the volume of data that request rk needs to transfer from its nearby AP
(i.e., a switch inV ) to its destination (i.e., service locations like cloudlets or data centers). Denote by
sk and tk the source and destination of the data transfer of rk . Assume that there is a set F of VNFs
in the two-tier cloud network G. Let fl be a type of VNF in F with 1 ≤ l ≤ |F |. A type-l network

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



23:6 Z. Xu et al.

Fig. 1. An example of the multi-tier cloud network for IoT applications with cloudlets and remote data

centers.

Fig. 2. An example of a service chain for IoT services.

function fl may be implemented in a cloudlet clm ∈ CL or a data center DCj ∈ DC , and each of
such implementations is termed as an instance of VNF fl . Without loss of generality, we assume
that the amount of computing resource allocated to the VNF instance of fl is to guarantee its
maximal packet processing rate μl . Denote by RCunit the amount of resource assigned to process
a unit packet rate, and the amount of computing resource needed by an instance of fl is μl · RCunit .

Since each data center in the distributed cloud usually has abundant computing resource, we
assume that each data center has instantiated some VNF instances of each fl already. Denote by
nl j the number of existing VNF instances of network function fl in data center DCj . Instead, con-
sidering that the computing resources of cloudlets are very limited compared with those of data
centers, we assume that each cloudlet does not have pre-instantiated VNF instances to avoid re-
source wastage. However, with the finished requests leaving the system, the idle VNFs in a cloudlet
may not be destroyed immediately. Instead, they can be shared by later requests. However, for the
sake of security concerns, in this work we prevent VNF sharing among concurrent flows.

Besides conventional network functions, such firewalls and IDSes, we also consider a special
set of network functions particularly for IoT applications. Specifically, the order of VNFs in a
service chain usually is specified by specific use cases and network services, according to their

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



QoS-Aware VNF Placement and Service Chaining for IoT Applications 23:7

Fig. 3. An illustration of service chains with value-added services.

particular requirements. We observe that IoT applications in the multi-tier cloud network usually
have many value-added services, such as VoIP, parental control in smart home applications, and
data preprocessing in environment sensing applications. Such value-added network functions re-
ceive user traffic directly before being forwarded to services in remote data centers for processing.
For example, video streaming services usually receive user video traffic and optimize the service
before forwarding the processed video streaming for storage in remote data centers [4]. For con-
tent providing services, some caching services are used to cache the data that might be used by
users [10]. In addition, for virtual reality (VR) and video processing services, network functions
related to data preprocessing and rendering are usually deployed in locations close to users. It
must be mentioned that the locations of value-added network functions usually play a vital role in
guaranteeing the performance of IoT applications. For example, placing video preprocessing into
remote data centers may lead to prohibitively long delays, since original videos need to transferred
via long paths from devices to remote data centers. However, in the side of remote data centers,
there are usually conventional network functions for packet inspection, such as IPFiX, firewalls,
IPS, and DDoS. It is clear that value-added network functions are different in different network ser-
vices, although most network services share great similarities in terms of conventional network
functions for packet processing. Considering the mentioned observations, we consider a special
set of service chains that share the same sequence of the network functions in the side of remote
data centers, as shown in Figure 3. Specifically, let SCmax be the longest service chain. All other
sequences meet the following requirements:

• Each service chain SCk is a common subsequence of SCmax .
• The last VNF f |SCk | is the same as the last VNF f |SC |max

.

For example, assume that SCmax = { f1, f2, f3}, and other service chains include { f2, f3} and { f3}.

3.3 The End-to-End Delay Requirements of User Requests

The end-to-end delay experienced by each admitted request rk includes the upload delay of its
data volume to the nearby AP of the user, the packet processing delay in the VNF instance, the
instantiation delay by creating a VNF instance in a cloudlet if needed, and the network latency
from the source switch sk of rk to its destination via the assigned servers for the VNFs in its
service chain SCk . These delays are described as follows.

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



23:8 Z. Xu et al.

Packet processing delay. Each instance of VNF fl is assigned a certain amount of computing re-
source to guarantee its packet processing rate μl . Therefore, the packet processing delay of request
rk in a network function fl of its service chain SCk is proportional to the volume of its traffic. The
packet processing delay dp (rk ) of rk thus is the accumulative processing delay by all network
functions in its service chain SCk —that is,

dp (rk ) =
∑

fl ∈SCk

ρk

μl
. (1)

Instantiation delay of VNFs. VNFs run as software in VMs or containers, and instantiating a VM
or container usually needs time to instantiate the necessary OS or software before creating the
instance of a VNF. Without loss of generality, we assume that the instantiation delay of each type
of VNF fl is a constant, which is denoted by dins,l .

Network latency. The VNFs of the service chain SCk of rk can be placed into multiple locations
within the network (either cloudlets in the WMAN or some data centers in the distributed cloud).
The path that is used to transmit the traffic of rk thus can be divided into multiple segments. Let
ze,k be a binary variable that indicates whether edge e ∈ E is used to route the traffic of rk . The
network latency dt (rk ) of rk is

dt (rk ) =
∑
e ∈E

ze,k · de · ρk , (2)

where de is the delay of transmitting a unit amount of data along edge e .
To guarantee the quality of service (QoS) of each user request rk , its experienced delay is

bounded by an end-to-end delay requirement Dk . Denote bywl,m,k the indicator variable that indi-
cates whether cloudlet clm is used to implement VNF fl ∈ SCk . The end-to-end delay requirement
can be formulated by

dp (rk ) +
∑

fl ∈SCk

∑
clm ∈CL

wl,m,k · dins,l + dt (rk ) ≤ Dk . (3)

3.4 The Admission (Implementation) Cost

For each request rk , its admission cost usually consists of the instantiation cost of creating new
instances for VNFs, the traffic transmission cost, and the processing cost in VNFs.

For the instantiation cost, recall that the implementation of the VNFs in its service chain SCk

can either make use of existing VNF instances in a data center or create new instances in a cloudlet.
Therefore, if an existing VNF instance is adopted, its instantiation cost is saved; otherwise, there
is a constant instantiation cost cins,l for each instance of VNF fl .

For the processing cost, we assume that it is proportional to the volume of data that will be
processed. Let cl,m and cl, j be the costs of processing unit volume of data traffic by VNF fl in
cloudlet clm and data center DCj , respectively. The cost of processing rk by network function fl
in cloudlet clm and DCj thus are ρk · cl,m and ρk · cl, j , respectively.

Denote by yl, j,k the indicator variable indicating whether data center DCj implements network
function fl ∈ SCk . The processing cost of rk thus is

cp (rk ) =
∑

fl ∈SCk

��
�

∑
clm ∈CL

wl,m,k · cl,m · ρk +
∑

DCj ∈DC

yl, j,k · cl, j · ρk
��
�
. (4)

The transmission cost of rk is proportional to the volume that is transmitted along the path
from the source node sk of rk to its destination node tk . Let ce be the cost of transmitting the unit
volume of data traffic along edge e ∈ E. Denote by ct (rk ) the traffic transmission cost of rk , which

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



QoS-Aware VNF Placement and Service Chaining for IoT Applications 23:9

can be calculated by

ct (rk ) =
∑
e ∈E

ze,k · ce · ρk . (5)

3.5 Problem Definitions

Given a two-tier cloud network G = (V ∪ CL ∪ DC,E) consisting of a mobile edge cloud in a
WMAN and a distributed cloud, a set of user requests S with each request rk requesting to transmit
its data from a source sk to a destination tk with a given volume of traffic ρk , and having an end-to-
end delay requirement Dk , assume that the VNFs in the service chain SCk of each request rk ∈ S
can be placed into multiple locations within G (either cloudlets or data centers), and that some
instances of each VNF in F have already been instantiated in each data center DCj ∈ DC . We
consider the following optimization problems.

Problem 1. The throughput maximization problem inG is to find a schedule of request admissions
such that the weighted system throughput—the accumulative data volume of admitted requests—is
maximized, whereas the accumulative operational cost of admitted requests is minimized, subject
to the computing resource capacity on each cloudlet in CL.

Problem 2. The throughput maximization problem with value-added network functions in G is to
find a schedule of request admissions such that the weighted system throughput is maximized,
whereas the accumulative operational cost of admitted requests is minimized, subject to the com-
puting resource capacity on each cloudlet in CL.

For the sake of convenience, symbols used in this article are summarized in Table 1.

4 ALGORITHMS FOR THE THROUGHPUT MAXIMIZATION PROBLEM

In the section, we propose an exact solution for the throughput maximization problem by formu-
lating an ILP solution as follows.

4.1 Exact Solution

Recall that the objective of the throughput maximization problem is to maximize the accumulative
traffic volume of admitted requests.

Given a set of S of requests, we use a binary decision variable xk to decide whether request rk

is admitted. For each VNF fl ∈ SCk of request rk , recall that we use wl,m,k and yl, j,k to indicate
whether cloudlet clm and data center DCj are used to implement fl , respectively. Denote by qv,k a
binary indicator variable that shows whether switch v ∈ V is used to forward the traffic of rk . Let
δ (v ) denote the incident edges of switch node v ∈ V , respectively.

The objective of the throughput maximization problem thus is to

ILP : max
∑
rk ∈S

xk · ρk (6)

subject to the following constraints.∑
fl ∈SCk

∑
clm ∈CL

∑
DCj ∈DC

(wl,m,k + yl, j,k ) = xk · |SCk |, for each rk ∈ S, (7)

wl,m,k + yl, j,k ≤ 1, for each rk and each of its fl ∈ SCk , (8)

qv,k ≤ xk , for each rk and each switch v ∈ V , (9)∑
e ∈δ (v )

ze,k ≤ 2 · qv,k , for each v ∈ V and each rk , (10)

∑
e ∈δ (sk )

ze,k = 1, for sk of each rk , (11)

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



23:10 Z. Xu et al.

Table 1. Symbols

Symbols Meaning

G = (V ∪ CL ∪ DC,E) Two-tier cloud network, where V is a set of switches, CL is a set
of resource-constraint cloudlets that are located in the WMAN, and DC is a set
of resource-rich data centers in the distributed cloud

e a link in E
de Delay of transmitting a unit amount of data along edge e
clm Cloudlet in CL
Bclm

Capacity of computing resource of cloudlet clm
DCj Data center in DC
rk User request
SCk Service chain request of rk

sk and tk Source and destination of the data transfer of rk

ρk Volume of data that request rk needs to transfer from its nearby AP (i.e., a switch
in V ) to its destination (i.e., service locations like cloudlets or data centers)

F Set of VNFs in the two-tier cloud network G
fl Type-l network function
μl Maximal packet processing rate of fl
RCunit Amount of resource assigned to process a unit packet rate
nl j Number of existing VNF instances of network function fl in data center DCj

dp (rk ) Packet processing delay of rk

dins,l Instantiation delay of each type of VNF fl
ze,k Binary variable that indicates whether edge e ∈ E is used to route the traffic of rk

dt (rk ) Network latency of rk

Dk End-to-end delay requirement of request rk

wl,m,k Indicator variable that indicates whether cloudlet clm is used to implement VNF
fl ∈ SCk

cins,l Instantiation cost for each instance of VNF fl
cl,m and cl, j Costs of processing unit volume of data traffic by VNF fl in cloudlet clm and data

center DCj , respectively
yl, j,k Indicator variable indicating whether data center DCj implements network

function fl ∈ SCk

cp (rk ) Processing cost of rk

ce Cost of transmitting unit volume of data traffic along edge e ∈ E
ct (rk ) Traffic transmission cost of rk

S Set of user requests
SCmax Longest service chain
xk Binary indicator variable that indicates whether request rk is admitted
δ (v ) Incident edges of switch node v ∈ V
qv,k Binary indicator variable that shows whether switch v ∈ V is used to forward the

traffic of rk

SSC Set of requests that all have a service chain requirement of SC
G ′SC

= (V ′SC
,E ′SC

) Auxiliary graph constructed for each set SSC of requests

cl ′
m,l

and cl ′′
m,l

Two virtual cloudlet nodes for clm in auxiliary graph G ′SC

DC ′
j,l

and DC ′′
j,l

Two virtual data center nodes for DCj in auxiliary graph G ′SC

psk ,clm
Shortest path from sk to clm in network G

d (〈x ,y〉) Delay of edge 〈x ,y〉 in auxiliary graph G ′SC
w (〈x ,y〉) Weight of edge 〈x ,y〉 in auxiliary graph G ′SC
u (〈x ,y〉) Capacity of edge 〈x ,y〉 in auxiliary graph G ′SC
f Found single-source min-cost unsplittable flow in auxiliary graph G ′SC
G ′′ = (V ′′,E ′′) Constructing of the auxiliary graph in algorithm Appro

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



QoS-Aware VNF Placement and Service Chaining for IoT Applications 23:11

∑
e ∈δ (tk )

ze,k = 1, for tk of each rk , (12)

∑
fl ∈SCk

ρk

μl
+

∑
fl ∈SCk

∑
clm ∈CL

wl,m,k · dins,l +
∑
e ∈E

ze,k · de ≤ Dk , for each rk , (13)

∑
rk ∈S

∑
fl ∈SCk

∑
clm ∈CL

wl,m,k · μl · RCunit ≤ Bclm
, for each cloudlet clm ∈ CL, (14)

∑
rk ∈S

∑
fl ∈SCk

∑
DCj ∈DC

yl, j,k ≤ nl j , for each data center DCj ∈ DC, (15)

∑
rk ∈S

( ∑
fl ∈SCk

( ∑
clm ∈CL

wl,m,kcl,mρk +
∑

DCj ∈DC

yl, j,kcl, j · ρk

)

+
∑
e ∈E

ze,k · ce · ρk

)
≤ BT , for each rk ∈ S, (16)

xk ,wl,m,k ,yl, j,k ,qv,k , ze,k ∈ {0, 1}, (17)

where Constraint (7) indicates that if a request rk is admitted, all of its VNFs in SCk will be assigned
to some cloudlets or data centers, and Constraint (8) shows that each fl ∈ SCk is assigned to either
a cloudlet or a data center. Constraint (9) ensures that if a request rk is rejected, no switch will be
selected to route its traffic. Constraint (10) captures that if a switch v ∈ V is used to forward the
traffic of rk , at most two of its incident edges will be used to forward its traffic (one for incoming
traffic one for outgoing traffic). Otherwise, one incident edge is used to forward both its incom-
ing and outgoing traffic. Constraints (11) and (12) ensure that no traffic goes into source node sk

and no traffic leaves the destination node tk , respectively. Constraint (13) enforces the end-to-end
delay requirement of rk . Constraint (14) guarantees that the computing capacity of each cloudlet
clm is not violated. Constraint (15) says that the number of requests that need fl and are assigned
to DCj should not exceed the number of available instances of fl in each data center DCj . Con-
straint (16) guarantees that the total cost of implementing the requests is no greater than a given
budget. Constraint (17) ensures that each of the variables xk ,wl,m,k ,yl, j,k , qv,k , and ze,k is a binary
variable.

4.2 Heuristic

The basic idea of the proposed heuristic is based on an observation that requests may share the
same service chain in terms of VNF type in many network services. For example, most network
functions need a firewall and an IDS network function to prevent external security attacks and
proactively respond to possible intrusions.

The proposed heuristic classifies requests into different categories. All requests within one cat-
egory have the same service chain requirement—that is, their service chains have an identical
sequence of VNFs. To admit the requests within each category, we transfer the problem in the
multi-tier cloud network G into an unsplittable minimum cost multi-commodity flow problem in
another auxiliary graph G ′. A feasible solution to the latter corresponds to a feasible solution to
the former.

We now describe the proposed heuristic algorithm by first constructing the auxiliary graph with
edge weights, capacities, and delays. For each service chain SC , let SSC be the set of requests that
all have a service chain requirement ofSC . We deal with each of such sets with requests having the
same service chain requirement one by one. Specifically, for each set SSC of requests, we construct

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



23:12 Z. Xu et al.

an auxiliary graphG ′SC
= (V ′SC

,E ′SC
). To this end, we build a mapping between the networkG and

the auxiliary graph G ′SC
, describing node set V ′SC

and edge set E ′SC
of G ′SC

.
Node set V ′SC

. The node set of G ′SC
consists of the following types of nodes:

• Source and destination nodes: For each request rk in SSC , we add its source node sk to V ′SC
.

We also add the destination node tk of each request in S (SCk ) and a common virtual source
s for all requests in S (SCk )

• Virtual cloudlet nodes: A new instance for fl may be instantiated in cloudlet clm ∈ CL as long
as clm has enough resource for the newly created instance. We thus add two virtual cloudlet
nodes (i.e., cl ′

m,l
and cl ′′

m,l
) for each cloudlet clm that has enough computing resources to

instantiate an instance for fi
• Virtual data center nodes: For each fl ∈ SC , there may exist its instances in data centers in
DC . Therefore, for each data center DCj ∈ DC that has VNF instances of fi , we add two
virtual data center nodes (i.e., DC ′

j,l
and DC ′′

j,l
) into V ′SC

.

The rationale of splitting each cloudlet or data center node into two virtual cloudlets or data centers
is to allow moving processing costs and capacities in nodes of the networkG into the edges of the
auxiliary graph. The edge costs and node costs can be considered in a unified way.
Edge set E ′SC

. The edges in E ′SC
can be classified into the following categories:

• From common source node to source nodes: There is an edge from the common virtual source
s to each source node sk of rk ∈ SSC in the auxiliary graph G ′. The weights of such edges
are set to zero, and their capacities are set to infinity.

• From source nodes to candidate cloudlets/data centers: There is an edge from each source node
sk to each of the virtual data centers or virtual cloudlets for the first VNF f1 ∈ SC , to repre-
sent the shortest path in the original networkG from source sk to the candidate data center
or cloudlet. Let 〈sk , cl

′
m,1〉 and 〈sk ,DC

′
j,1〉 be the added edges inV ′SC

for virtual cloudlet cl ′m,1

and virtual data center DC ′j,1, respectively. Clearly, the weight of edge 〈sk , cl
′
m,1〉 is set to

the the sum of cost of the shortest path from sk to cloudlet clm in G:

w (〈sk , clm,1〉) =
∑

e ∈psk ,clm

ce , (18)

where psk ,clm
is the shortest path from sk to clm in network G. The capacity of the edge is

set to infinity. The delay of this edge is

d (〈sk , clm,1〉) =
∑

e ∈psk ,clm

de . (19)

Similarly, the weight of edge 〈sk ,DC
′
j,1〉 is set by w (〈sk ,DC

′
j,1〉) =

∑
e ∈psk ,DCj

ce . The ca-

pacity of edge (〈sk ,DC
′
j,1〉) is set to infinity. The delay of this edge is d (〈sk ,DC

′
j,1〉) =∑

e ∈psk ,DCj
de .

• Between virtual cloudlets/data centers of each pair: For each cloudlet clm , we then add an
edge from cl ′

m,l
to cl ′′

m,l
. The weight of this edge is set to the total of (1) the cost of in-

stantiating a new instance in clm that is amortized to each its resource demand of process-
ing a unit traffic (

cins,l

RCunit ), and (2) the cost of processing unit data traffic of request rk (i.e.,

w (〈cl ′
m,l
, cl ′′m,1〉) =

cins,l

RCunit + cl,m). The capacity of this edge is set to the capacity of packets

that can be processed by the available computing resource of clm (i.e., u (〈cl ′
m,l
, cl ′′m,1〉) =

� Aclm

RCunit 	). Its delay is the processing delay (i.e., d (〈cl ′
m,l
, cl ′′m,1〉) = dins,l +

1
μl

). Similarly, for

each data center DCj ∈ DC , we add an edge from DC ′
j,l

to DC ′′
j,l

. Its weight and capacity

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



QoS-Aware VNF Placement and Service Chaining for IoT Applications 23:13

Fig. 4. An example of the auxiliary graph G ′SC
= (V ′SC

,E ′SC
).

are set as w (〈DC ′
j,l
,DC ′′j,1〉) = cl, j and u (〈DC ′

j,l
,DC ′′j,1〉) = nl j · μl , respectively. Its delay is

the processing delay (i.e., d (〈DC ′
j,l
,DC ′′j,1〉) =

1
μl

).

• Between pairs of virtual cloudlets/data centers: Since the traffic of each request rk needs to be
processed by VNF instances according to the specified sequence in SC , we then add edges
from virtual cloudlets and virtual data centers for f1 to the virtual cloudlets and data centers
for f2. Specifically, there is an edge from each virtual data center DC ′′j,1 for f1 to virtual data

center DC ′j′,2 or virtual cloudlet cl ′m,2 for f2. In other words, E ′ ← E ′ ∪ {〈DC ′′j,1, cl ′m,2} and

E ′SC
← E ′SC

∪ {〈DC ′′j,1,DC ′j′,2} for all cloudlets in CL that have enough resources to create a

new instance for f2, and all data centers inDC that have existing instances of f2. Its weight
is set to the transmission cost from DCj to clm or DC ′j inG, its capacity is set to infinity, and

its delay is the transmission delay from from DCj to clm or DC ′j inG. In addition, there is an

edge from each virtual cloudlet cl ′′m,1 for f1 to virtual data center DC ′j,2 or virtual cloudlet

cl ′m′,2 for f2. In other words, E ′SC
← E ′SC

∪ {〈cl ′′m,1, cl
′
m′,2} and E ′SC

← E ′SC
∪ {〈cl ′′m,1,DC

′
j,2}.

Its weight is set to the transmission cost from clm to clm′ or DCj in G, whereas its capacity
is set to infinity, and its delay is the transmission delay from clm to clm′ or DCj in G.

• From the virtual cloudlet/data centers to destination nodes: There are edges from candidate
cloudlets and data centers for the last VNF f |SC | to the destination nodes of all requests in
SSC . The weights/delays of such edges are set to the transmission costs/delays of a packet
from the location for the last VNF to the destinations inG. Their capacities are set to infinity.

Having constructed the auxiliary graph G ′SC
(an example of G ′SC

is shown in Figure 4), we now
admit the requests one by one. Specifically, for each request rk , we find an unsplittable minimum
cost flow from s to its destination node in the auxiliary graphG ′SC

. Let p ′s,tk
be the path that is tra-

versed by the found flow. We then check whether p ′s,tk
can meet its end-to-end delay requirement.

If so, the request is admitted, and the corresponding cloudlets and data centers of virtual cloudlets
and data centers in p ′s,tk

will be the locations to implement the VNFs in SCk . If not, we remove
the edge in p ′s,tk

with the maximum delay fromG ′SC
and continue to find an unsplittable min-cost

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



23:14 Z. Xu et al.

ALGORITHM 1: Heu

Input: G = (V ∪ CL ∪ DC,E), computing capacity Bclm
for each clm ∈ CL, and a set of requests S .

Output: An admission of requests in S , and the locations for the VNFs in service chain SCk of each admitted

request rk .

1: for each service chain SC do

2: Let SSC be the set of requests that require service chain SC;

3: Construct auxiliary graph G ′SC
= (V ′SC

,E ′SC
), as shown in Figure 4;

4: for each request rk ∈ SSC do

5: Let p be the found path for rk in network G;

6: p ← ∅;
7: Denote by E ′r em the set of removed edges due to the violation of request delay requirement;

8: E ′r em ← ∅;
9: while p � ∅ do

10: Add all edges in E ′r em into E ′SC
;

11: Find an unsplittable min-cost flow in auxiliary graph G ′SC
by invoking the algorithm of Kol-

liopoulos and Stein [20];

12: Let f be the found flow;

13: if flow f meets the delay requirement of request rk then

14: Replace each of all other edges in f with its corresponding shortest path in network G for

each of the admitted request;

15: Assign the resulting path to p;

16: Add all removed edges in E ′r em into G ′SC
;

17: else

18: Remove the edge e ′
mDelay

in f that has the highest delay;

19: E ′r em ← E ′r em ∪ {e ′mDelay
};

20: end if

21: end while

22: end for

23: end for

24:

25: Let f be the found single-source min-cost unsplittable flow from s to the destinations. If the flow along

edge 〈s, sk 〉 is non-negative, request rk is admitted; otherwise, it is rejected.

26: Replace each of all other edges inG ′SC
with its corresponding shortest path in networkG for each of the

admitted request.

multi-commodity flow. The procedure continues until its delay requirement is met. Otherwise, the
request is rejected.

The preceding procedure continues until all requests that require each type of service chain are
all considered, as shown in Algorithm 1.

4.3 Discussion on Affinity, Security, and Policy Requirements of VNFs

In the proposed heuristic, we assumed that a VNF of a service chain can be placed into any cloudlet
or data center with sufficient computing resources. In real VNF deployments, there usually are
some affinity, security, and policy requirements. For example, some VNFs rely on GPU or FPGAs
to accelerate the their packet processing. GPU-based packet processing accelerations are normally
used to implement IDSes. Such VNFs thus prefer to stay in cloudlets or data centers with such
acceleration supports. Their placements therefore need to consider the affinity requirement. How-
ever, for the sake of security reasons, user requests may specify a given set of locations that can
place their VNFs.

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



QoS-Aware VNF Placement and Service Chaining for IoT Applications 23:15

The proposed heuristic algorithm Heu can be easily extended to consider this scenario. Specif-
ically, assume that each request rk has a set of specified cloudlets/data centers that can meet its
affinity, security, and policy requirements. We still need to construct the auxiliary graph for each
service chain. Each request may have different sets of specified cloudlets or data centers. For each
request rk , we then adjust the constructed auxiliary graph by removing the edges in G ′SC

with
endpoints that are not in its specified set.

4.4 Algorithm Analysis

We now analyze the solution feasibility and the performance of the proposed algorithm.

Lemma 4.1. Algorithm 1 delivers a feasible solution to the throughput maximization problem in

G, by meeting the end-to-end delay requirement of each admitted request while the resource capacity

violation of each cloudlet is at most |SCmax − 1| · arg maxfl
μl · RCunit , where SCmax is the longest

sequence of service chain.

Proof. We first show that the end-to-end delay requirement of each admitted request is met.
In the proposed algorithm, we first find an unsplittable min-cost multi-commodity flow from s to
its destination node tk in the auxiliary graph G ′SC

. Let p ′s,tk
be the path that is traversed by the

found flow. We then check whether p ′s,tk
can meet its end-to-end delay requirement. If not, the

algorithm will exclude the edge that has the highest delay in p ′s,tk
and find the shortest path again.

The procedure continues until the end-to-end delay requirement is met or the request is rejected.
Therefore, as long as the request is admitted, its end-to-end delay requirement is met.

We then show that the capacity of each cloudlet is violated by at most |SCmax − 1| ·
arg maxfl

μl · RCunit . For each request, there are |SCk | VNFs in its service chain, and all of its
VNFs can be implemented in cloudlet clm . This means that in the auxiliary graph G ′SC

, edges
〈cl ′m,1, cl

′′
m,1〉, 〈cl ′m,2, cl

′′
m,2〉, . . ., and 〈cl ′

m, |SCk |
, cl ′′

m, |SCk |
〉 will all be traversed by the unsplittable

minimum cost flow. As shown in Figure 4, the capacity of each edge 〈cl ′
m,l
, cl ′′

m,l
〉 is set to the num-

ber of packets that can be processed by the available computing resource of clm (i.e., � Aclm

RCunit 	). If
the first VNF in SCk saturates cloudlet clm , all of the remaining VNFs will not have enough com-
puting resources. In the worse case, the computing resources of clm can be violated by at most
|SCmax − 1| · arg maxfl

μl · RCunit . �

Theorem 4.2. Given a two-tier cloud networkG = (V ∪ CL ∪ DC,E), a set S of user requests with

each having a service chain requirement SCk , and an end-to-end delay requirement, Algorithm 1 de-

livers a feasible solution for the throughput maximization problem inG withinO ( |S | · ( |V | + |DC | +
|CL|)5) time.

Proof. Since the feasibility of the solution is shown in Lemma 4.1, here we analyze the running
time of the proposed heuristic as follows.

As shown in Algorithm 1, it consists of two stages: (1) constructing the auxiliary graph and (2)
finding an unsplittable minimum flow that meets the delay requirement for each request. For stage
(1), it is clear that the time of constructing of the auxiliary graph G ′SC

depends on the number of

edges in G ′, which is O ( |V ′ |2). We can see that data center and cloudlet nodes are duplicated into
pairs of virtual data center and cloudlet nodes. Thus, |V ′SC

| = O ( |V | + |DC | + |CL|). The running

time of the first stage thus is O (( |V | + |DC | + |CL|)2). For stage (2), according to the algorithm
of Kolliopoulos and Stein [20], the running time of finding an unsplittable minimum cost flow is
O ( |V ′SC

| · |E ′SC
|). Since the found the path may not meet the delay requirement, the finding of an

unsplittable flow may be repeated at most O ( |E ′SC
|) times. Part (2) thus takes O ( |V ′SC

| · |E ′SC
|2)

time.

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



23:16 Z. Xu et al.

Consider that the auxiliary graph is constructed for each type of service chain, and there are at
most |S | types of service chains (i.e., each request having a different service chain). The running
time of the algorithm thus is O ( |S | · |V ′SC

|2 + |S | · |V ′SC
| · |E ′SC

|2) = O ( |S | · |V ′SC
|5) = O ( |S | · ( |V | +

|DC | + |CL|)5).
It must be mentioned that the time complexity is based on the worst-case analysis by assum-

ing that |E ′SC
| = |V ′SC

|2 and each request has a different service chain. However, we can see that
the constructed auxiliary graph G ′SC

is never fully connected. In addition, there usually is a con-
stant number of types of service chain. The running time of the proposed algorithm thus can be
represented as O ( |V ′SC

|2 + |V ′SC
| · |E ′SC

|2) as well. �

5 AN APPROXIMATION ALGORITHM FOR THE THROUGHPUT MAXIMIZATION

PROBLEM WITH VALUE-ADDED NETWORK FUNCTIONS

In the section, we propose an approximation algorithm for the throughput maximization problem
with value-added network functions.

5.1 Overview of the Algorithm

We aim to propose an approximation algorithm for the throughput maximization problem with
value-added network functions. One fundamental challenge of devising an approximation algo-
rithm for the problem is how to admit the requests in S concurrently, considering that different
requests may have different service chain requirements. To this end, we introduce a novel graph
transformation technique that constructs an auxiliary graph G ′′ = (V ′′,E ′′), based on the con-
structed auxiliary graphG ′SC

in the previous section. We then reduce the problem into the problem
in two-tier cloud networkG of a single-source min-cost multi-commodity problem inG ′′ that con-
currently admits all requests in S . An approximate solution to the latter will return an approximate
solution to the former.

5.2 Approximation Algorithm

We start by constructing the auxiliary graph G ′′ = (V ′′,E ′′). For service chain SCmax , we follow
the construction of auxiliary graph G ′′ in the previous section. We then add the source nodes for
each service chain SCk into V ′′. Each of such source nodes is connected to the corresponding
virtual cloudlet/data centers for its first VNF, which may not be necessary the first VNF in SCmax .
Their destination nodes are also included into V ′′, and the virtual cloudlet/data center nodes are
connected to them. Edge weights and capacities are set according to similar edges inG ′SC

. Figure 5
illustrates an example of the constructed auxiliary graph.

We then reduce the original problem in the two-tier cloud network G to a problem of finding
a single-source unsplittable min-cost flow problem in the constructed auxiliary graph G ′′. Specif-
ically, we assume that each request corresponds a commodity that needs to transfer a demand of
ρk from the common source node s to its destination tk in G ′′. Each of such transfers needs to be
done via a single path in G ′′, and the edge capacities should be reserved. Clearly, the solution to
the single-source unsplittable min-cost multi-commodity flow problem inG ′′ will return a feasible
solution to the original problem. The approximation algorithm is shown in Algorithm 2.

5.3 Algorithm Analysis

Lemma 5.1. Algorithm 2 obtains a feasible solution for a special case of the throughput maximiza-

tion problem with value-added network functions, which meets the service chain requirement SCk of

each admitted request rk while the computing capacity violation of each cloudlet is upper bounded by

( |SCmax | − 1) · arg maxfl
μl · RCunit .

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



QoS-Aware VNF Placement and Service Chaining for IoT Applications 23:17

Fig. 5. An example of the auxiliary graph G ′′ = (V ′′,E ′′).

ALGORITHM 2: Appro

Input: G = (V ∪ CL ∪ DC,E), computing capacity Bclm
for each clm ∈ CL, and a set of requests S .

Output: An admission of requests in S , and the locations for the VNFs in service chain SCk of each admitted

request rk .

1: Construct an auxiliary graph G ′′ = (V ′′,E ′′), as shown in Figure 5;

2: Find a single-source min-cost unsplittable flow in auxiliary graph G ′′ by invoking the algorithm of Kol-

liopoulos and Stein [20];

3: Let f be the found single-source min-cost unsplittable flow from s to the destinations. If the flow along

edge 〈s, sk 〉 is non-negative, request rk is admitted; otherwise, it is rejected;

4: Replace each of all other edges in G ′′ with its corresponding shortest path in network G for each of the

admitted request.

Proof. We first show that the resource capacity of each cloudlet is violated by at most
|SCmax | − 1. The difference between Algorithm 1 and Algorithm 2 is that the latter schedules
the requests with the same service chain requirement concurrently, by considering each request
as a commodity in the single-source min-cost unsplittable flow problem. In the construction of the
auxiliary graph G ′′, it can be seen that the capacities of cloudlets are moved to edge capacities in
G ′′ that are reserved by a feasible single-source min-cost multi-commodity unsplittable flow [20].
Therefore, the capacity of each edge inG ′′ is not violated for the concurrent admissions of admit-
ting multiple requests. Instead, as shown in Lemma 4.1, using the same cloudlet for multiple VNFs
of a service chain can violate the capacity of a cloudlet.

We then show that the service chain requirement is met. This is guaranteed by connecting each
source node in G ′′ to the corresponding virtual cloudlet/data centers for its first VNF, which may
not necessary be the first VNF in SCmax . �

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



23:18 Z. Xu et al.

Theorem 5.2. Given a two-tier cloud network G = (V ∪ CL ∪ DC,E), and a set of user requests,

Algorithm 1 delivers a feasible solution inO ( |S | · ( |V | + |DC | + |CL|)5) time for the throughput max-

imization problem with value-added network functions. The approximation ratio of the proposed al-

gorithm is 0.075 − ϵ , where ϵ is an accuracy parameter in the single-source min-cost unsplittable flow

problem with 0 < ϵ < 0.075.

Proof. Since the feasibility of the solution is shown in Lemma 5.1, here we only analyze the
approximation ratio and the running time of the algorithm.

To show the approximation ratio, we need to show that the solution to the single-source min-
cost unsplittable flow problem in the auxiliary graph corresponds to a feasible solution to the
throughput maximization problem with value-added network functions in original network G.
Let f ′′ be such a flow in auxiliary graph G ′′. In the construction of auxiliary graph G ′′, it can be
seen that there is an edge from s to each of the source nodes of the requests, and there is edge
from the locations for the last VNF in SCmax to each of the destinations of the requests. For each
request rk , it thus corresponds to the transmission of its traffic from its source sk to its destination
tk . If there is a non-negative flow in edges 〈cl ′

m,l
, cl ′′

m,l
〉 or 〈DC ′

j,l
,DC ′′

j,l
〉, it corresponds to the as-

signment of VNF fl to clm or DCj . Clearly, the solution derived from f ′′ is a feasible solution to the
throughput maximization problem with value-added network functions. Since the approximation
ratio of the single-source min-cost unsplittable flow problem is 0.075 − ϵ , the approximation ratio
of algorithm 2 is 0.075 − ϵ as well.

Here we analyze the running time of the approximation algorithm. Algorithm 2 consists of
two parts: (1) constructing the auxiliary graph and (2) finding a single-source min-cost unsplit-
table minimum flow. For part (1), it is clear that the time of constructing of the auxiliary graph
G ′′ depends on the number of edges in G ′′, which is O ( |V ′′ |2). We can see that data center
and cloudlet nodes are duplicated into pairs of virtual data center and cloudlet nodes. Thus,
|V ′′ | = O ( |V | + |DC | + |CL|). The running time of the first part thus is O (( |V | + |DC | + |CL|)2).
For part (2), according to the algorithm of Kolliopoulos and Stein [20], the running time of finding
an unsplittable minimum cost flow is O ( |V ′ | · |E ′ |). Since the found path may not meet the delay
requirement, the finding of an unsplittable flow may be repeated at most O ( |E ′ |) times. Part (2)
thus takes O ( |V ′ | · |E ′ |2) time. �

6 ONLINE AND LEARNING-BASED ALGORITHM FOR THE THROUGHPUT

MAXIMIZATION PROBLEM WITH MOBILE AND ADAPTIVE-RATE IOT DEVICES

Thus far, we have assumed that mobile users are stationary and do not switch their connected APs
prior to finishing the implementations of their requests. We have also assumed that the packet
rate ρk of each request rk is given and fixed. However, IoT devices may have adaptive packet
rates considering that their energy is constrained. In this section, we consider the throughput
maximization problem by removing these assumptions.

Recall that each request rk transfers its traffic from a nearby AP (a.k.a. its source sk ) to its
destination tk for processing. Therefore, when the IoT device of rk moves, the source node of rk can
change as well. Its packet rate ρk can also change, considering that it may reduce its packet rate
when the residual energy is low. In the following, we first propose an algorithm that proactively
places VNFs of requests by considering the mobility and adaptive rates of IoT devices. Then, we
devise an online algorithm that smartly migrates the placed VNFs while the IoT devices moves
such that the QoS experienced by the admitted requests are met.

6.1 Online and Learning-Based Algorithm

Let Sk be the set of historical APs that request rk has registered. For each sk ∈ Sk , request rk may
transfer a portion of its data to the two-tier cloud network. Since the traffic flow is not splittable,

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



QoS-Aware VNF Placement and Service Chaining for IoT Applications 23:19

Fig. 6. An example of VNF relocation for mobile IoT devices.

we assume that all different portions of the data are still processed by the same service chain.
However, we allow the data traffic to be forwarded to another instances of its service chain for
processing when the IoT device of the request moves to a new place. Such an example is shown in
Figure 6.

The basic idea of the proposed dynamic VNF placement algorithm is to find a set of candidate
placement of VNFs of rk by considering its mobility, and to find a placement with the minimum cost
as its initial placement. To this end, we consider each request rk as |Sk | virtual requests, with each
virtual request rk,l with a source node sk ∈ Sk , where 1 ≤ l ≤ |Sk |. To find the initial placement
for the service chain of rk , we invoke Algorithm 1 for |Sk | times to determine the source node of
rk that can achieve the minimum cost. Specifically, we consider S = {rk,l | 1 ≤ l ≤ Sk } as the input
of Algorithm 1. We then select the paths (for the virtual requests) with the minimum cost and find
the source of the path after invoking Algorithm 1. Let sk be the found source of the path. We then
use the selected source for request rk and its corresponding placement as the initial placement of
VNFs of rk .

Notice that the location of an IoT device of each request may change over time. In addition, the
packet rate of each request changes with the energy statuses of IoT devices. The initial placement
of the service chain of request rk may need to be adjusted if the IoT device moves to another
location and registers to a different AP or its request changes packet rate. The reason is that the
initial placement of its VNFs may no longer meet its delay requirement. We observe that this may
create a high overhead if a new service chain will be created for every movement of the IoT device
of the request. Here we adopt a proactive approach that predicts both the next AP (i.e., source
node) to which the IoT device of request rk will move and its packet rate. In the following, we
describe the prediction methods for mobility and adaptive rates, respectively.

We first describe the prediction method for the next moves of IoT devices. In 5G networks,
since APs are densely deployed in an area, the IoT device of each request may within multiple AP
coverage ranges. If this is the case, the IoT device chooses an AP to connect, which is determined
by its energy status and its communication channel quality with the AP. We consider this as a
blackbox and predict its behavior via a reinforcement learning (RL) process, which is formulated
in the following.

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



23:20 Z. Xu et al.

• Reward: In the throughput maximization problem, we aim to maximize the system through-
put while meeting the delay requirements of requests. We assume that there is an agent for
each admitted request. Since the request of an agent is already admitted, its objective is to
minimize the cost of implementing its request while meeting its delay requirement, consid-
ering the mobility of its IoT device. The reward of each agent for choosing an action thus
is defined as the the cost reduction due to the selected action.

• State space: The state of the system consists of current VNF placements of each request and
its current AP (i.e., source node). Specifically, the state information includes (1) the locations
of placed VNFs of each request, (2) the new AP of the request, (3) the resource availabilities
of the two-tier cloud network, and (4) the experienced delays of current admitted requests.

• Action space: The agent intelligently observes the mobility of each request and adaptively
adjusts its sensibility to the moves of each request. Specifically, for each request, its IoT de-
vice may follow a fixed pattern of mobility, such as speed and path. If the agent is sensible
to every subtle move of the request, the VNFs of the request may be migrated frequently,
thereby increasing the cost of implementing the request. However, if the agent is insensible,
the delay requirement of the request could be violated. Therefore, the RL procedure adap-
tively adjusts the sensibility of the agent. Let γ be the sensibility of an agent, which is con-
sidered as the probability of adjusting VNF placements of rk when its IoT device switches to
another AP. Therefore, we have 0 ≤ γ ≤ 1. Thus, the agent of each admitted request needs
to decide whether to react to a move of the IoT device of each request by adjusting its sen-
sibility γ . Specifically, the action taken for the agent can be modeled as {−1, 0, 1}, where −1
means that the agent wishes to increase its sensibility by a step ϵ , 0 indicates that the agent
wants to maintain its current sensibility, and 1 implies that it wants to decrease its sensi-
bility. For each move of the IoT device of rk , the agent needs to select an action such that
its sensibility is determined. It then adjusts the placements of VNFs of rk with probability γ
by invoking Algorithm 1. If the cost of implementing a request increases by a pre-defined
threshold ϑ or its delay increases by another threshold θ , this means that the environment
may suffer from great changes. We allow the agent to choose its actions randomly.

We then proceed with the prediction method for the packet rates of IoT devices. A popular ap-
proach of promoting the energy efficiency of IoT devices is to adaptively adjust the data collection
rate of each IoT device, which implies that less data can be collected if the IoT device is at its low-
battery level. Therefore, when an IoT device of request rk moves around, the volume of data ρk

of the request may change as well. Since the focus of the work is not about data collection of IoT
devices, we assume that ρk is not given and needs to be predicted. To determine the amount of data
of each request, we make use of historic request traces to predict the data volume changes while
the request is moving. Specifically, we adopt an auto-regression mechanism to predict the data
volume ρ̂k (m) of request rk at its next move, using the information of the its previous p moves,
assuming that the value of p is given:

ρ̂k (m) = a1 · ρk (m − 1) + a2 · ρk (m − 2) + · · · + ap · ρk (m − p), (20)

where ap′ is a constant with 0 ≤ ap′ ≤ 1,
∑p

l=1
al = 1, and ap1 ≥ ap2 if p1 < p2. The detailed algo-

rithm is shown in Algorithm 3.

7 PERFORMANCE EVALUATION THROUGH SIMULATIONS

In this section, we evaluate the performance of the proposed algorithms through experimental
simulation. We also investigate the impact of important parameters on the performance of the
proposed algorithms.

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



QoS-Aware VNF Placement and Service Chaining for IoT Applications 23:21

ALGORITHM 3: Dynamic_Heu

Input: G = (V ∪ CL ∪ DC,E), computing capacity Bclm
for each clm ∈ CL, and a set of requests S .

Output: An admission of requests in S , and the locations for the VNFs in service chain SCk of each admitted

request rk .

1: /*Initial placement of VNFs of each request*/;

2: Consider each request rk as Sk virtual requests;

3: for each rk do

4: Invoke Algorithm 1 by assuming that S = {rk,l | 1 ≤ l ≤ Sk };
5: Let P be the returned results, and pmin be the placement with the minimum cost;

6: Consider the source node in placement pmin as the source of rk ;

7: Reset the resource availabilities of G to its initial states;

8: end for

9: Find the placement with the minimum cost among the |Sk | placements of virtual requests of rk ;

10: /*RL-assisted dynamic adjustment of placed VNFs*/;

11: while IoT device of a request rk moves do

12: Predict the data volume of rk by Equation (20);

13: With probability γ the agent replaces the VNFs of rk ;

14: Calculate the cost of replacement and delay according to the predicted data volume ρ̂k ;

15: if the cost of replacement is greater than ϑ or the delay is higher than θ then

16: Randomly select an action from {−1, 0, 1} as its next action.

17: end if

18: end while

7.1 Environment Settings

We consider multi-tier cloud networks with sizes varying from 50 to 250 switch nodes and around
five data centers, where each network topology is generated using GT-ITM [33]. The number of
cloudlets in the mobile edge network is set to 10% of the network size, and they are randomly
co-located with switches in the network edge. We also use real network topologies, such as an
ISP network from Spring et al. [31]. The computing capacity of cloudlet varies from 40,000 to
120,000 MHz with around tens of servers [1]. Following existing studies [12, 25], we consider five
popular types of conventional network functions, such as DPI, load balancer firewall, and NAT. For
value-added network functions, we consider parental control and caching. For the sake of diversity,
the VNF sequence of each service chain is randomly generated. Notice that value-added network
functions are always placed before conventional network functions in a service chain. The data of
each request is randomly drawn from [50, 200] MB, and its delay requirement is randomly drawn
from [0.5, 5] seconds. The running time of each algorithm is obtained based on a machine with a
3.70-GHz Intel i7 hexa-core CPU and 16 GiB of RAM. Unless otherwise specified, these parameters
will be adopted in the default setting.

We compare the performance of the proposed algorithms with the following benchmark
algorithms:

• Since we assume that the VNFs of each request may be placed to multiple cloudlets, we
compare our solutions with existing solutions in Vizarreta et al. [34] that consolidate VNFs
into a single location, which is referred to as Q-SCP. For each request rk , Q-SCP first finds
a routing path and selects candidate cloudlets or data centers on the routing path that can
meet the delay requirement of rk . Then, for each SCk , it calculates the minimum cost for
implementing SCk for each candidate node and selects the node with the lowest cost to
implement the instance of fl .

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



23:22 Z. Xu et al.

Fig. 7. The performance of the ILP, MOA, Heu, Q-SCP, CLFirst, and DCFirst algorithms.

• The second benchmark we adopt is a multi-objective-based optimization algorithm in Ad-
dis et al. [2], which is referred to as MOA. It first formulates the problem into multi-objective
MILP and then transforms the problem into a single-objective optimization problem to
solve.

• We also use a greedy solution that prefers to select existing VNF instances in data centers
for each request rk as our benchmark. Specifically, it finds the data center that is closest
to source node sk and has a VNF instance for its first VNF in SCk , if such a data center
does not exist, a new VNF instance in its closest cloudlet of the mobile edge cloud is cre-
ated. The procedure continues until all VNFs in SCk are considered, which is referred to as
algorithm DCFirst.

• Another greedy benchmark prefers to place VNFs in the cloudlets of the mobile edge by
first instantiating new instances for VNFs of each request until all cloudlets are saturated
and then choosing existing VNF instances in data centers. This algorithm is referred to
as CLFirst.

7.2 Performance Evaluation of the ILP and Heu Algorithms

We first evaluate the performance of algorithms ILP, MOA, Heu, Q-SCP, CLFirst, and DCFirst, in
terms of the system throughput, operational cost, average operational cost of each request, average
delay experienced of each request, and the running time, by varying the number of switches in the
two-tier cloud network from 50 to 250. The results are shown in Figure 7, from which we can see
that the ILP algorithm delivers the highest throughput for network sizes 10 and 20. However, it
may not deliver an exact solution when the network size is larger than 20 in a reasonable amount
of time, due to its poor scalability. Similarly, we can see from Figure 7(a) and (c) that the MOA al-
gorithm delivers a higher throughput than other algorithms except ILP, because it aims to find an
optimal solution via solving the MILP. Yet as can be seen from Figure 7(e), algorithm MOA cannot
deliver an optimal solution when the network size is no less than 20. From Figure 7(a), we can also
see that the Heu algorithm achieves a higher throughput than those of the Q-SCP, CLFirst, and

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



QoS-Aware VNF Placement and Service Chaining for IoT Applications 23:23

Fig. 8. The performance of the Appro, Q-SCP, CLFirst, and DCFirst algorithms in network AS1755.

DCFirst algorithms. The reason is that the Heu algorithm places the VNFs in each service chain
to multiple locations (cloudlets or data centers), and this allows the workload of each cloudlet to
be balanced, thereby reducing small resource slices created by the Q-SCP algorithm and allowing
more requests to be admitted. In addition, the CLFirst algorithm achieves less system throughput
than the DCFirst algorithm. The reason behind this is that the CLFirst algorithm first saturates
the cloudlets before using instances in data centers. In other words, the CLFirst algorithm will
keep assigning requests to cloudlets in the mobile edge cloud if there are still idle VNF instances
and available computing resources. Recall that the objective is to maximize the accumulative data
volume of admitted requests. The CLFirst algorithm first admits requests with high data volume.
However, since the cloudlets have computing resource capacities, they may not be able to admit
too many requests. The remaining requests that cannot be admitted by the cloudlets may also be
rejected by the data centers due to the long transmission delay from APs to remote data centers.
Yet the DCFirst algorithm has abundant resources to admit many requests with high delay re-
quirements. Furthermore, we can see that the Heu algorithm has the highest operational cost since
it admits the highest number of requests. However, the average cost for each request by the Heu
algorithm is the lowest, as it prefers cloudlets or data centers that could save transmission cost,
processing cost, or instantiation cost. As shown in Figure 7(d), the Heu algorithm incurs lower
delay for each request than the DCFirstbut it has a higher delay than the CLFirst algorithm.
The reason is that the CLFirst algorithm prefers cloudlets with a lower delay for each request,
whereas the Heu algorithm sometimes chooses data centers to achieve a higher system throughput
by sacrificing the delay.

7.3 Performance Evaluation of the Appro Algorithm

We then evaluate the performance of the Appro algorithm against that of the Q-SCP, CLFirst, and
DCFirst algorithms, respectively, by varying the ratio of the number of cloudlets to the number
of switches from 0.1 to 0.3. From Figure 8(a), it can be seen that the Appro algorithm delivers a
higher system throughput than the other algorithms because the Appro algorithm considers the
placement of value-added functions of each service chain, whereas the Heu algorithm treats each
service function individually. In addition, the Appro algorithm concurrently deals with multiple
requests, whereas the other mentioned algorithms can only deal with the requests one by one.
Meanwhile, the system throughput delivered by the Q-SCP algorithm is slightly higher than that
of the DCFirst algorithm because the Q-SCP algorithm consolidates VNFs into a single location
and reduces the transmission delay of data packets, so more requests can meet their delay require-
ments. From Figure 8(b), we can see that the CLFirst algorithm has the lowest operational cost
because its system throughput is also the lowest one. As can be seen from Figure 8(c), the average

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



23:24 Z. Xu et al.

Fig. 9. The performance of algorithms Dynamic_Heu, Heu, Q-SCP, CLFirst and DCFirst in network AS1755.

operational cost of the CLFirst and Q-SCP algorithms are higher than that of the DCFirst algo-
rithm because they both make use of more cloudlet resources and the average operational cost
of the DCFirst algorithm is higher than that of the Appro algorithm because it uses more link
resources.

7.4 Performance Evaluation of the Dynamic_Heu Algorithm

We now evaluate the performance of the Dynamic_Heu algorithm against that of the Heu, Q-SCP,
CLFirst, and DCFirst algorithms, respectively, by varying the ratio of the number of cloudlets
to the number of switches from 0.1 to 0.3. From Figure 9(a), we can see that the system throughput
of the Dynamic_Heu algorithm is slightly higher than that of the Heu algorithm because when the
IoT device moves, the packets of requests in the Heu algorithm are still transmitted through the
original routing path, which causes a small number of requests to be rejected because of the viola-
tion on delay requirements. In addition, the packet rates of requests may increase and cause delay
violations. The Dynamic_Heu algorithm reduces the likelihood of violating the delay requirements
of requests by relocating the VNFs. We can see from Figure 9(b) and (c) that the total and average
operational costs of the DCFirst algorithm increase significantly when the IoT device moves, and
the DCFirst algorithm needs to use more link resources for the communication between the IoT
device and the IoT applications in the remote cloud data centers. As can be seen from Figure 9(d),
the average delays delivered by the Dynamic_Heu and Heu algorithms are similar because the Heu
algorithm has a great possibility in selecting a low-latency routing path. The Heu algorithm imple-
ments a request via low-latency paths, whereas the Dynamic_Heu algorithm dynamically relocates
VNFs to avoid delay violations. However, the average delay of the DCFirst algorithm is extremely
higher than the others because it uses more link resources to transmit the data packets of the
request when the IoT device of the request moves.

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



QoS-Aware VNF Placement and Service Chaining for IoT Applications 23:25

Fig. 10. The impact of the number of requests on the acceptance ratios of different algorithms.

7.5 Impact of Request Numbers on the Acceptance Ratios of Different Algorithms

We finally investigate the impact of network size on the acceptance ratio of the proposed algo-
rithms by setting the network size to 100, the ratio of the number of cloudlets to the number of
switches to 0.2, and varying the number of requests from 100 to 200. We can see from Figure 10(a)
that the acceptance ratio of the Heu algorithm is the highest one, whereas the acceptance ratio of
the CLFirst algorithm is the lowest one, and the Q-SCP algorithm is slightly better than algorithm
DCFirst. We can see similar results in Figure 10(b) as well. However, as seen in Figure 10(a) and
(c), when the IoT device moves, the acceptance ratios of the Heu and Q-SCP algorithms decrease
slightly because of the violation of delay requirements. The CLFirst algorithm is hardly affected
because of the low average delay, which satisfies the delay requirement of the request even if the
IoT device moves. However, through comparison between Figure 10(c) and (d), we can see that
when the volume of data packets changes, the acceptance ratio of the CLFirst algorithm drops
significantly. This is because the combined effect of the IoT device movement and the changes
on the volume of packets for requests leads to a significant increase on delays, which incurs the
decline of the acceptance ratio. As can be seen in Figure 10(b) and (c), the acceptance ratio of
the DCFirst algorithm has a significant drop because the movement of IoT devices increases the
transmission delay, which violates delay requirements of requests.

8 CONCLUSION

In this article, we considered the VNF service chaining provisioning problem for IoT applications
in a two-tier cloud network with both local edge clouds and remote distributed data centers. We
first formulated a novel throughput maximization problem, with the objective of maximizing the
system throughput while meeting the capacity constraints on cloudlets and remote data centers.
We then proposed an efficient heuristic for the problem that makes a joint decision of placing
VNFs into cloudlets and data centers, chaining the VNFs together, and finding a routing path
for each request. We also devised an approximation algorithm with an approximation ratio for
a special case of the problem without end-to-end delay requirements and special service chain
requirements. Next, we considered the mobility and energy awareness of IoT applications by de-
veloping RL-based heuristics for dynamic VNF placements. We finally evaluated the performance
of the proposed algorithms by simulations, and simulation results show that the performance of
the proposed algorithms are promising.

ACKNOWLEDGMENTS

We would like to thank the three anonymous referees and the associate editor for their expertise
comments and constructive suggestions, which have helped us improve the quality and presenta-
tion of the article greatly.

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.



23:26 Z. Xu et al.

REFERENCES

[1] HPE Bladesystem Blade Servers. Retrieved April 30, 2020 from https://www.hpe.com/emea_europe/en/integrated-

systems/bladesystem.html.

[2] Bernardetta Addis, Dallal Belabed, Mathieu Bouet, and Stefano Secci. 2015. Virtual network functions placement and

routing optimization. In Proceedings of the 2015 IEEE 4th International Conference on Cloud Networking (CloudNet’15).

IEEE, Los Alamitos, CA, 171–177.

[3] Bilal R. Al-Kaseem and Hamed S. Al-Raweshidyhamed. 2017. SD-NFV as an energy efficient approach for M2M net-

works using cloud-based 6LoWPAN testbed. IEEE Internet of Things Journal 4, 5 (2017), 1787–1797.

[4] Gabriel Brown and H. Reading. 2015. Service Chaining in Carrier Networks. White Paper. Heavy Reading.

[5] Yang Chen and Jie Wu. 2018. NFV middlebox placement with balanced set-up cost and bandwidth consumption. In

Proceedings of the 47th International Conference on Parallel Processing. ACM, New York, NY, 14.

[6] Rami Cohen, Liane Lewin-Eytan, Joseph Seffi Naor, and Danny Raz. 2014. On the effect of forwarding table size on

SDN network utilization. In Proceedings of the 2014 IEEE Conference on Computer Communications (IEEE INFOCOM’14).

IEEE, Los Alamitos, CA, 1734–1742.

[7] Rami Cohen, Liane Lewin-Eytan, Joseph Seffi Naor, and Danny Raz. 2015. Near optimal placement of virtual network

functions. In Proceedings of the 2015 IEEE Conference on Computer Communications (IEEE INFOCOM’15). IEEE, Los

Alamitos, CA, 1346–1354.

[8] Richard Cziva, Christos Anagnostopoulos, and Dimitrios P. Pezaros. 2018. Dynamic, latency-optimal VNF placement

at the network edge. In Proceedings of the 2018 IEEE Conference on Computer Communications (IEEE INFOCOM’18).

IEEE, Los Alamitos, CA, 693–701.

[9] Richard Cziva and Dimitrios P. Pezaros. 2017. Container network functions: Bringing NFV to the network edge. IEEE

Communications Magazine 55, 6 (2017), 24–31.

[10] Wanfu Ding, Wen Qi, Jianping Wang, and Biao Chen. 2015. OpenSCaaS: An open service chain as a service platform

toward the integration of SDN and NFV. IEEE Network 29, 3 (2015), 30–35.

[11] Vajiheh Farhadi, Fidan Mehmeti, Ting He, Tom La Porta, Hana Khamfroush, Shiqiang Wang, and Kevin S. Chan. 2019.

Service placement and request scheduling for data-intensive applications in edge clouds. In Proceedings of the 2019

IEEE Conference on Computer Communications (IEEE INFOCOM’19). IEEE, Los Alamitos, CA, 1279–1287.

[12] Andrey Gushchin, Anwar Walid, and Ao Tang. 2015. Scalable routing in SDN-enabled networks with consolidated

middleboxes. In Proceedings of the 2015 ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network Function

Virtualization. ACM, New York, NY, 55–60.

[13] Nicolas Herbaut, Daniel Negru, George Xilouris, and Yiping Chen. 2015. Migrating to a NFV-based home gateway:

Introducing a surrogate vnf approach. In Proceedings of the 2015 6th International Conference on the Network of the

Future (NOF’15). IEEE, Los Alamitos, CA, 1–7.

[14] Huawei Huang, Song Guo, Jinsong Wu, and Jie Li. 2017. Service chaining for hybrid network function. IEEE Trans-

actions on Cloud Computing 7, 4 (2017), 1082–1094.

[15] Huawei Huang, Peng Li, and Song Guo. 2017. Traffic scheduling for deep packet inspection in software-defined

networks. Concurrency and Computation: Practice and Experience 29, 16 (2017), e3967.

[16] Meitian Huang, Weifa Liang, Zichuan Xu, Wenzheng Xu, Song Guo, and Yinlong Xu. 2016. Dynamic routing for

network throughput maximization in software-defined networks. In Proceedings of the 35th Annual IEEE International

Conference on Computer Communications(IEEE INFOCOM’16). IEEE, Los Alamitos, CA, 1–9.

[17] Mike Jia, Jiannong Cao, and Weifa Liang. 2015. Optimal cloudlet placement and user to cloudlet allocation in wireless

metropolitan area networks. IEEE Transactions on Cloud Computing 5, 4 (2015), 725–737.

[18] Mike Jia, Weifa Liang, and Zichuan Xu. 2017. QoS-aware task offloading in distributed cloudlets with virtual network

function services. In Proceedings of the 20th ACM International Conference on Modelling, Analysis, and Simulation of

Wireless and Mobile Systems. ACM, New York, NY, 109–116.

[19] Mike Jia, Weifa Liang, Zichuan Xu, and Meitian Huang. 2016. Cloudlet load balancing in wireless metropolitan area

networks. In Proceedings of the 35th Annual IEEE International Conference on Computer Communications (IEEE INFO-

COM’16). IEEE, Los Alamitos, CA, 1–9.

[20] Stavros G. Kolliopoulos and Clifford Stein. 2001. Approximation algorithms for single-source unsplittable flow. SIAM

Journal on Computing 31, 3 (2001), 919–946.

[21] Tung-Wei Kuo, Bang-Heng Liou, Kate Ching-Ju Lin, and Ming-Jer Tsai. 2018. Deploying chains of virtual network

functions: On the relation between link and server usage. IEEE/ACM Transactions on Networking 26, 4 (2018), 1562–

1576.

[22] Yang Li, Linh Thi Xuan Phan, and Boon Thau Loo. 2016. Network functions virtualization with soft real-time guar-

antees. In Proceedings of the 35th Annual IEEE International Conference on Computer Communications (IEEE INFO-

COM’16). IEEE, Los Alamitos, CA, 1–9.

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.

https://www.hpe.com/emea_europe/en/integrated-systems/bladesystem.html
https://www.hpe.com/emea_europe/en/integrated-systems/bladesystem.html


QoS-Aware VNF Placement and Service Chaining for IoT Applications 23:27

[23] Tamás Lukovszki and Stefan Schmid. 2015. Online admission control and embedding of service chains. In Proceedings

of the International Colloquium on Structural Information and Communication Complexity. 104–118.

[24] Yu Ma, Weifa Liang, Zichuan Xu, and Song Guo. 2018. Profit maximization for admitting requests with network

function services in distributed clouds. IEEE Transactions on Parallel and Distributed Systems 30, 5 (2018), 1143–1157.

[25] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda, Roberto Bifulco, and Felipe Huici.

2014. ClickOS and the art of network function virtualization. In Proceedings of the 11th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI’14). 459–473.

[26] Hendrik Moens and Filip De Turck. 2014. VNF-P: A model for efficient placement of virtualized network functions. In

Proceedings of the 10th International Conference on Network and Service Management (CNSM’14) and Workshop. IEEE,

Los Alamitos, CA, 418–423.

[27] Carla Mouradian, Narjes Tahghigh Jahromi, and Roch H. Glitho. 2018. NFV and SDN-based distributed IoT gateway

for large-scale disaster management. IEEE Internet of Things Journal 5, 5 (2018), 4119–4131.

[28] Yeonghun Nam, Sooeun Song, and Jong-Moon Chung. 2016. Clustered NFV service chaining optimization in mobile

edge clouds. IEEE Communications Letters 21, 2 (2016), 350–353.

[29] Jan Plachy, Zdenek Becvar, and Emilio Calvanese Strinati. 2016. Dynamic resource allocation exploiting mobility

prediction in mobile edge computing. In Proceedings of the 2016 IEEE 27th Annual International Symposium on Personal,

Indoor, and Mobile Radio Communications (PIMRC’16). IEEE, Los Alamitos, CA, 1–6.

[30] Yaozhong Song, Stephen S. Yau, Ruozhou Yu, Xiang Zhang, and Guoliang Xue. 2017. An approach to QoS-based task

distribution in edge computing networks for IoT applications. In Proceedings of the 2017 IEEE International Conference

on Edge Computing (EDGE’17). IEEE, Los Alamitos, CA, 32–39.

[31] Neil Spring, Ratul Mahajan, and David Wetherall. 2002. Measuring ISP topologies with rocketfuel. ACM SIGCOMM

Computer Communication Review 32 (2002), 133–145.

[32] Yuxuan Sun, Sheng Zhou, and Jie Xu. 2017. EMM: Energy-aware mobility management for mobile edge computing

in ultra dense networks. IEEE Journal on Selected Areas in Communications 35, 11 (2017), 2637–2646.

[33] Megan Thomas and Ellen W. Zegura. 1994. Generation and Analysis of Random Graphs to Model Internetworks. Tech-

nical Report. College of Computing, Georgia Institute of Technology, Atlanta, GA.

[34] Petra Vizarreta, Massimo Condoluci, Carmen Mas Machuca, Toktam Mahmoodi, and Wolfgang Kellerer. 2017. QoS-

driven function placement reducing expenditures in NFV deployments. In Proceedings of the 2017 IEEE International

Conference on Communications (ICC’17). IEEE, Los Alamitos, CA, 1–7.

[35] Qiufen Xia, Weifa Liang, and Wenzheng Xu. 2013. Throughput maximization for online request admissions in mobile

cloudlets. In Proceedings of the 38th Annual IEEE Conference on Local Computer Networks. IEEE, Los Alamitos, CA,

589–596.

[36] Qiufen Xia, Weifa Liang, Zichuan Xu, and Bingbing Zhou. 2014. Online algorithms for location-aware task offloading

in two-tiered mobile cloud environments. In Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility

and Cloud Computing. IEEE, Los Alamitos, CA, 109–116.

[37] Jie Xu, Lixing Chen, and Pan Zhou. 2018. Joint service caching and task offloading for mobile edge computing in

dense networks. In Proceedings of the 2018 IEEE Conference on Computer Communications (IEEE INFOCOM’18). IEEE,

Los Alamitos, CA, 207–215.

[38] Zichuan Xu, Weifa Liang, Meitian Huang, Mike Jia, Song Guo, and Alex Galis. 2019. Efficient NFV-enabled multicas-

ting in SDNs. IEEE Transactions on Communications 67, 3 (2019), 2052–2070.

[39] Zichuan Xu, Weifa Liang, Mike Jia, Meitian Huang, and Guoqiang Mao. 2018. Task offloading with network function

requirements in a mobile edge-cloud network. IEEE Transactions on Mobile Computing 18, 11 (2018), 2672–2685.

[40] Binxu Yang, Wei Koong Chai, George Pavlou, and Konstantinos V. Katsaros. 2016. Seamless support of low latency

mobile applications with NFV-enabled mobile edge-cloud. In Proceedings of the 2016 5th IEEE International Conference

on Cloud Networking (CloudNet’16). IEEE, Los Alamitos, CA, 136–141.

[41] Binxu Yang, Wei Koong Chai, Zichuan Xu, Konstantinos V. Katsaros, and George Pavlou. 2018. Cost-efficient NFV-

enabled mobile edge-cloud for low latency mobile applications. IEEE Transactions on Network and Service Management

15, 1 (2018), 475–488.

[42] Ruozhou Yu, Guoliang Xue, and Xiang Zhang. 2018. Application provisioning in fog computing-enabled Internet-

of-Things: A network perspective. In Proceedings of the 2018 IEEE Conference on Computer Communications (IEEE

INFOCOM’18). IEEE, Los Alamitos, CA, 783–791.

[43] Qixia Zhang, Fangming Liu, and Chaobing Zeng. 2019. Adaptive interference-aware VNF placement for service-

customized 5G network slices. In Proceedings of the 2019 IEEE Conference on Computer Communications (IEEE INFO-

COM’19). IEEE, Los Alamitos, CA, 2449–2457.

Received April 2019; revised November 2019; accepted March 2020

ACM Transactions on Sensor Networks, Vol. 16, No. 3, Article 23. Publication date: May 2020.


