
Efficient Data Placement and Replication for
QoS-Aware Approximate Query Evaluation of

Big Data Analytics
Qiufen Xia ,Member, IEEE, Zichuan Xu ,Member, IEEE, Weifa Liang , Senior Member, IEEE,

Shui Yu , Senior Member, IEEE, Song Guo , Senior Member, IEEE,

and Albert Y. Zomaya , Fellow, IEEE

Abstract—Enterprise users at different geographic locations generate large-volume data that is stored at different geographic

datacenters. These users may also perform big data analytics on the stored data to identify valuable information in order to make

strategic decisions. However, it is well known that performing big data analytics on data in geographical-located datacenters usually is

time-consuming and costly. In some delay-sensitive applications, the query result may become useless if answering a query takes too

long time. Instead, sometimes users may only be interested in timely approximate rather than exact query results. When such

approximate query evaluation is the case, applications must sacrifice timeliness to get more accurate evaluation results or tolerate

evaluation result with a guaranteed error bound obtained from analyzing the samples of the data to meet their stringent timeline. In this

paper, we study quality-of-service (QoS)-aware data replication and placement for approximate query evaluation of big data analytics

in a distributed cloud, where the original (source) data of a query is distributed at different geo-distributed datacenters. We focus on the

problems of placing data samples of the source data at some strategic datacenters to meet stringent query delay requirements of

users, by exploring a non-trivial trade-off between the cost of query evaluation and the error bound of the evaluation result. We first

propose an approximation algorithm with a provable approximation ratio for a single approximate query. We then develop an efficient

heuristic algorithm for evaluating a set of approximate queries with the aim to minimize the evaluation cost while meeting the delay

requirements of these queries. We finally demonstrate the effectiveness and efficiency of the proposed algorithms through both

experimental simulations and implementations in a real test-bed, real datasets are employed. Experimental results show that the

proposed algorithms are promising.

Index Terms—Data replication and placement, big data analytics, approximate query evaluation, approximation algorithms, algorithm

analysis

Ç

1 INTRODUCTION

WITH more and more people adopting cloud services,
the volume of generated data about user activities and

session logs grows at an exponential rate [10], we refer to
such large volume of data as big data. It is estimated that at

least 2.5 quintillion bytes of data are created per day [20].
Such big data plays a significant role in people’s daily lives,
especially within enterprises, as analytic results of big data
can enable the enterprises to better understand their custom-
ers’ behaviors, and help them seize best growth opportuni-
ties in the competitive global markets. Examples of big data
analytics include querying user logs to make advertisement
decisions, querying network logs to detect potential network
attacks such as denial-of-services (DoS) attacks, etc. Query-
ing big data is time-consuming and costly, e.g., a linear scan
of a dataset of PB size (1015 bytes) takes days even using a
solid state drive with a read speed of 6 GB/s, and takes years
if the dataset is of EB size (1018 bytes) [13]. However, big data
of enterprise users needs to be analyzed in a timely manner,
such that the obtained analysis results can produce timely
business decisions for quick market response. In addition, as
cloud service providers such as Amazon, Microsoft, Google,
and Facebook are deploying datacenters globally to provide
users ubiquitous access to their cloud services [5], [32], [33],
[35], big data generated in such cloud services thus is distrib-
uted in different geographically located datacenters. Query
evaluation of big data analytics in geo-distributed datacen-
ters therefore faces many challenges, as the evaluation

� Q. Xia is with the International School of Information Science and Engi-
neering, Key Laboratory for Ubiquitous Network and Service Software of
Liaoning Province, Dalian University of Technology, Dalian, Liaoning
116024, China. E-mail: qiufenxia@dlut.edu.cn.

� Z. Xu is with the School of Software, Dalian University of Technology,
Dalian, Liaoning 116024, China. E-mail: z.xu@dlut.edu.cn.

� W. Liang is with the Research School of Computer Science, Australian
National University, Canberra, ACT 2601, Australia.
E-mail: wliang@cs.anu.edu.au.

� S. Yu is with the School of Software, University of Technology Sydney,
Ultimo, NSW 2007, Australia. E-mail: Shui.Yu@uts.edu.au.

� S. Guo is with the Department of Computing, Hong Kong Polytechnic
University, Hung Hom, Hong Kong. E-mail: song.guo@polyu.edu.hk.

� A.Y. Zomaya is with the School of Computer Science, University of Sydney,
Camperdown, NSW 2006, Australia. E-mail: albert.zomaya@sydney.edu.au.

Manuscript received 1 Jan. 2018; revised 8 May 2019; accepted 30 May 2019.
Date of publication 6 June 2019; date of current version 8 Nov. 2019.
(Corresponding author: Zichuan Xu.)
Recommended for acceptance by O. Rana.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2019.2921337

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 12, DECEMBER 2019 2677

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7978-4933
https://orcid.org/0000-0001-7978-4933
https://orcid.org/0000-0001-7978-4933
https://orcid.org/0000-0001-7978-4933
https://orcid.org/0000-0001-7978-4933
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0003-4485-6743
https://orcid.org/0000-0003-4485-6743
https://orcid.org/0000-0003-4485-6743
https://orcid.org/0000-0003-4485-6743
https://orcid.org/0000-0003-4485-6743
https://orcid.org/0000-0001-9831-2202
https://orcid.org/0000-0001-9831-2202
https://orcid.org/0000-0001-9831-2202
https://orcid.org/0000-0001-9831-2202
https://orcid.org/0000-0001-9831-2202
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
https://orcid.org/0000-0002-3090-1059
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

usually needs large volume of source data from multiple
datacenters. The first challenge is how to ensure QoS require-
ments of users in terms of access delays (query delays), given
that the query results will be used in timely decision-making
applications. The second challenge is how to minimize the
cost of query evaluations for big data analytics due to pre-
cious datacenter and bandwidth resources. The third chal-
lenge is how to maximize the accuracy of query evaluation
results, i.e., minimize the error bound of evaluation results
within a specified value.

Onepromising solution to tackle thementioned challenges
is Approximate Query Processing, which evaluates queries
based on the sample data of the original source data, and
returns an approximate resultwith its error bound beingmin-
imized. By leveraging sampling technologies, the query delay
can be significantly reduced [4], as an approximate result
with a large error bound usually is obtained from samples
with large error bound and smaller volume compared with
original dataset. To further reduce the query delay, the sam-
ples can be replicated and placed to multiple datacenters by
evaluating the query based on the samples close to the query.
Although data sampling and replication can improve system
performance, it does not imply that more sample replicas will
lead to better system performance, since the maintenance of
data consistency between the ‘master’ samples of data and
their ‘slave’ sample copies in the network does incur cost [6].
To maximize the benefit by approximate query processing
and sample replications, strategically replicating and placing
the samples of each dataset in a distributed cloud is essen-
tially critical to minimize the evaluating cost of approximate
queries while meeting the delay requirements of the queries
of different users. One fundamental problem thus is how to
replicate and where to place the samples with different error
bounds to different datacenters in a distributed cloud so that
the delay requirements of user queries can bemet, the evalua-
tion cost of the queries and the error bound of evaluation
results can be minimized. Several studies on data placement
have been conducted in the past [1], [7], [15], [31]. However,
most of these studies neither considered data replications of
the generated big data [31] nor took into account the QoS
requirements on user access delays [7], [15], [31], not to men-
tion to explore a non-trivial tradeoff between the query evalu-
ation cost and the result accuracy [1], [7], [15], [31]. In contrast,
we study data replication and placement for approximate
query evaluations of big data analytics in a distributed cloud,
with an aim to minimize the query evaluation cost and the
error of evaluation results while meeting user QoS (query
delay) requirements. To the best of our knowledge, this is the
first time that the QoS-aware data replication and placement
problems for approximate query evaluation of big data ana-
lytics in distributed clouds are considered. We are also the
first to strive for a non-trivial tradeoff between the error
bound of query evaluation result and the query evaluation
cost, by developing efficient algorithms for this purpose.

The main contributions of this paper are as follows. We
first formulate two novel QoS-aware data replication and
placement problems for approximate query evaluation of
big data analytics in a distributed cloud, with the aim tomin-
imize the evaluation cost of queries and the error bounds of
their evaluation results while meeting QoSs of users, where
the evaluation cost of a query is the sum of resource

consumption costs for the query including the data process-
ing, storage, transmission, and update costs. We then pro-
pose efficient algorithms for the two problems with a single
approximate query and multiple approximate queries,
respectively. Specifically, for the problem with a single
approximate query, we devise an approximation algorithm
with a guaranteed approximation ratio, through exploring a
non-trivial trade-off between the evaluation cost of the query
and the error bound of its evaluation result. For the problem
with multiple approximate queries, we develop an efficient
algorithm for it. We finally evaluate the performance of the
proposed algorithms through both experimental simulations
and real implementations in a test-bed. The experimental
results show that the evaluation cost of queries is signifi-
cantly reduced, compared to another baseline algorithm.

The remainder of this paper is organized as follows.
Section 2 introduces the system model and problem defini-
tions, followed by an approximation algorithm for the prob-
lemwith a single approximate query in Section 3. A heuristic
algorithm for the multiple approximate query evaluation
problem is devised in Section 4. The performance evaluation
of the proposed algorithms is conducted in Section 5. The
related work is presented in Section 6, and conclusions are
given in Section 7.

2 PRELIMINARIES

In this section, we first introduce the systemmodel. We then
give notations on big data, approximate queries, QoS
requirements of users, stratified samples, and the query eval-
uation cost model.We finally define the problem precisely.

2.1 System Model

We consider a distributed cloud G ¼ ðDC; EÞ, which con-
sists of a set DC of datacenters located at different geograph-
ical locations that are inter-connected by a set E of
communication links (or Internet paths). Let DCi 2 DC be a
datacenter and eij 2 E a link between two datacenters
DCi 2 DC and DCj 2 DC. The computing resource of each
datacenter DCi is used to evaluate queries, while its storage
resource is used to store data and query results. Denote by
zðDCiÞ and �ðDCiÞ the amount of available computing
resource and the capacity of computing resource in datacen-
ter DCi 2 DC, and let rc be the amount of computing
resource allocated to process one unit data. We do not
restrict the capacity of storage resource of datacenters, as
the storage resource usually is abundant and inexpensive,
compared with the expensive computing resource [31]. The
processing, storage of data at datacenters and the transmis-
sion of data along network links consume various cloud
resources and thus incur costs of the cloud service provider.
Denote by cpðDCiÞ and csðDCiÞ the costs for processing and
storing a unit of data at DCi. Denote by ctði; jÞ and dtði; jÞ
the transmission cost and delay on link eij 2 E for transfer-
ring a unit of data.

2.2 Big Data, Approximate Queries, and Users’ QoS
Requirements

We refer to the data generated by a user as the dataset of the
user, and term the specified datacenter for the data storage
by the user as the home datacenter of the data. Let S be the

2678 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 12, DECEMBER 2019

collection of datasets generated by all users, denote by Sj a
dataset in S, where 1 � j � J with J representing the num-
ber of datasets in S, i.e., J ¼ jSj. Denote byDCðSjÞ the data-
center at which dataset Sj is located.

In addition to generating big data, enterprise users also
consume data that is generated by themselves and other
partners. These users explore potential business values by
issuing queries on the data. For example, a user may issue a
query like ‘count the number of customers satisfying the fol-
lowing condition... with the lowest possible error bound
within one hour’. As timeliness for many queries is more
important than the accuracy of their evaluation results, in
this paper we study approximate queries that help users get
a ‘rough picture’ of multiple datasets, by delivering approx-
imate results with a certain error bound while meeting the
stringent query delay requirements of the users. Denote by
Q ¼ fqm j 1 � m �Mg the set of approximate queries in the
system, where M is the number of distinct queries, and qm
is an approximate query by a user. Each qm may demand
several datasets distributed at different datacenters, and let
SðqmÞ be the collection of datasets demanded by qm.

As we consider approximate query evaluations within
stringent delay requirements, we refer to the delay require-
ment of a query as its QoS requirement, where the delay expe-
rienced by the query is defined as the duration between the
time query is issued and the time query result is obtained at
its home datacenter. Denote by dm the maximum tolerable
delay of query qm. dm represents the maximum delay
incurred in replicating samples and transmitting intermedi-
ate results of all the datasets in S.

2.3 Stratified Samples and Sample Replication

To accurately and quickly answer each approximate query
qm, a set of samples of each dataset Sj 2 S has been created,
following the stratified sampling strategy [9]. A stratified
sample refers to a sample that is not drawn from the whole
dataset in a random way, but separately from a number of
disjoint strata of the dataset in order to ensure a more repre-
sentative sample. Each created stratified sample with sam-
ple size jnj;kj is referred to as the origin sample of the dataset,
the sample can return the query result with an error bound
�j;k, where k 2 Zþ. Following the theory of stratified sam-
pling [9], the error bound �j;k of a sample with size jnj;kj is
inversely proportional to the square root

ffiffiffiffiffiffiffiffiffiffijnj;kj
p

of its size
jnj;kj. Therefore, a stratified sample with a larger error
bound usually has a smaller size, requiring less computing
resource to process and a shorter delay to deliver the query
result. We further assume that the origin stratified samples
of each dataset Sj are materialized in advance at the data-
center where Sj is generated.

To meet the delay requirement of each approximate
query, some slave samples of each origin sample of dataset Sj

may be created and placed at the other datacenters in addi-
tion to its home datacenter. Data updates will be performed
for each slave sample if there is any update on its origin
sample to ensure the slave sample consistent with its origin
sample. We assume that the average data size of an update
operation is c � jnj;kj, where c is a constant with 0 �
c < 1 [24] and jnj;kj is the sample size. It is obvious that
more slave samples are in the system, the QoS requirements
of more user queries tend to be satisfied. However, the

update and storage costs on these slave samples will subse-
quently grow, too. Therefore, it is crucial to create and place
a proper number of slave samples with certain error bounds
for each origin sample in different datacenters.

Evaluating an approximate query qm is to abstract the
intermediate results from the samples of its requested data-
sets (possibly in different datacenters), and aggregate the
intermediate results at the home datacenter of the query. Let
hðqmÞ be the home datacenter of qm. Without loss of general-
ity, we assume that the intermediate result on the component
sample of each dataset Sj is proportional to the sample vol-
ume, i.e., b � jnj;kj for sample Sj;k, where b is a constant with
0 < b � 1 [24]. Since the result of query qm is aggregated
from the intermediate results of the placed samples of differ-
ent datasets, the average error bound of the result of qm is
related to the sizes and error bounds of the placed samples.
Specifically, assuming that its component sample sizes of the
query are jnj1;k1 j, jnj2;k2 j and jnj3;k3 j with error bounds �j1;k1 ,
�j2;k2 , and �j3;k3 , respectively, the average error bound of the

approximate query result is
jnj1 ;k1 j��j1 ;k1þjnj2 ;k2 j��j2 ;k2þjnj3 ;k3 j��j3 ;k3

jnj1 ;k1 jþjnj2 ;k2 jþjnj3 ;k3 j
,

following existing studies [36].

2.4 Cost Model

The cost of evaluating approximate queries in a distributed
cloud consists of the following four component costs. The
storage cost is for storing both origin samples and slave sam-
ples of each dataset in S; the process cost is the cost for evalu-
ating the samples requested by approximate queries; the
update cost refers to the cost of keeping slave samples consis-
tent with their origin samples, the update cost model guar-
antees that our proposed algorithms can make eventual
data consistency [6]; and the transmission cost is the cost of
data transfer within the network by transferring the inter-
mediate results of each query qm from the datacenters where
the requested samples are evaluated to the home datacenter
hðqmÞ of qm, and transferring the updated data from each
origin sample to its slave samples. Following many existing
studies [30], [33], [35], we assume that the storage, process,
update and transmission costs are proportional with the
volume of data that the distributed cloud stored, processed,
updated and transmitted, respectively.

2.5 Problem Definitions

Problem 1. Given an approximate query qm for big data analyt-
ics that demands a set SðqmÞ of datasets, each dataset
Sj 2 SðqmÞ is generated at datacenter DCðSjÞ, a variety of ori-
gin samples with different sample sizes and error bounds for
each dataset Sj are stored at datacenter DCðSjÞ, the intermedi-
ate results of evaluating qm on these requested datasets will be
aggregated at the home datacenter of qm, and the delay require-
ment of qm is dm. Assume that the available computing resource
in one datacenter may not be enough to evaluate query qm, the
QoS-aware data replication and placement problem for a
single approximate query of big data analytics is to create
a set of slave samples for each origin sample and place the slave
samples at strategic datacenters in G such that both the evalua-
tion cost of query qm and the average error bound of its evalua-
tion result are minimized, subject to the capacity constraint of
computing resource in each datacenter while meeting the speci-
fied delay requirement dm of qm.

XIA ET AL.: EFFICIENT DATA PLACEMENT AND REPLICATION FOR QOS-AWARE APPROXIMATE QUERY EVALUATION OF BIG DATA... 2679

Problem 2. Given a set S of datasets and a set of approximate
queries Q ¼ fqm j 1 � i �Mg for big data analytics, assume
that the computing resource in one datacenter may not be suffi-
cient to evaluate a single approximate query while the total
computing capacity of all datacenters in DC is no less than the
total demand of all queries. The QoS-aware data replication
and placement problem for multiple query evaluation of
big data analytics is to create a set of slave samples for each
origin sample and place the slave samples at strategic datacen-
ters such that the total evaluation cost of all approximate
queries in Q and the average error bound of their evaluation
results are minimized, subject to the capacity constraint of each
datacenter in DC while meeting the specified delay requirement
dm of each approximate query qm 2 Q.

3 APPROXIMATION ALGORITHM FOR EVALUATING

A SINGLE APPROXIMATE QUERY

We here devise an approximation algorithm with an
approximation ratio for the QoS-aware data replication and
placement problem of a single approximate query qm, by
exploring a non-trivial trade-off between the evaluation cost
of the query and the error bound of its evaluation result.

3.1 Algorithm Overview

Without loss of generality, we assume that there is a base
sample to represent the sample with the smallest size jnbj of
qm and the largest error bound, and the samples of each
dataset in SðqmÞ of query qm can be divided by jnbj [22]. Spe-
cifically, to create a set of samples for a dataset, we first cre-
ate the smallest sample of the dataset by setting its targeted
size jnbj with the largest error bound. To minimize the error
bounds of different data samples with different sizes, we
then create a sample with size 2 � jnbj, and so on. This proce-
dure continues until a sufficient number of samples for each
dataset is created.

Having stratified samples with different sizes and error
bounds for each query, the sample sizes are divisible by
jnbj, the basic idea of the proposed approximation algorithm
is to first ‘split’ each sample into a number of base samples,
for example the kth sample of dataset Sj can be split into
jnj;kj
jnbj base samples; and then reduce the QoS-aware data rep-
lication and placement problem for a single query qm to the
minimum-cost maximum flow in an auxiliary graph
G0 ¼ ðV 0; E0Þ, by considering nb as a commodity that needs
to be assigned. However, the solution to the latter may not
return a feasible solution to the former, since a sample con-
sisting of several base samples may be assigned to different
datacenters, while each sample can only be processed in
one datacenter. We then refine the obtained solution to
make sure that the constituent base samples of each sample
are assigned to a single datacenter only.

3.2 Approximation Algorithm

The key to the mentioned reduction is how to make a trade-
off between the evaluation cost of the query and the error
bound of its evaluation result. Specifically, which sample
for each dataset in SðqmÞ should be used to minimize both
the evaluation cost and the average evaluation error bound,
considering that available computing resource in datacen-
ters of G may not be sufficient for the query evaluation of

qm using samples with smallest error bounds. Another
important concern on the reduction is how to construct the
auxiliary graph G0, such that the selected samples for qm are
processed in datacenters with sufficient computing
resource. To this end, the proposed approximation algo-
rithm first selects the samples with appropriate error
bounds and then assigns the selected samples to different
datacenters with sufficient computing resource.

To select the samples for query qm such that the accumu-
lative available computing resource in all datacenters is
enough to evaluate it, we first calculate the total volume of
data that can be processed by the available computing

resource, that is,

P
DCi2DC zðDCiÞ

rc
, where zðDCiÞ is the amount

of available computing resource in datacenter DCi, and rc is
the amount of computing resource allocated to process one
unit of data. We then calculate the total volume of samples
with the smallest errors for datasets in SðqmÞ, i.e.,
P

Sj2SðqmÞ jnj;1j. If

P
DCi2DC zðDCiÞ

rc
is smaller thanP

Sj2SðqmÞ jnj;1j, we scale down the size of each sample by a

factor of g ¼
P

DCi2DC zðDCiÞ=rcP
Sj2SðqmÞ jnj;1j

. For each dataset Sj, we select

the sample with a size that is no greater and most closest to
size jnj;1j � g.

Given the selected samples of datasets that are
demanded by the approximate query qm, the construction
of the auxiliary graph G0ðV 0; E0Þ is described as follows.

We start by constructing the node set V 0 of G0. Let nj;k be
a selected sample of dataset Sj 2 SðqmÞ. For each sample

nj;k, we create
jnj;kj
jnbj virtual samples, with each virtual sample

representing a base sample nb. Denote by n0j;k;u the uth vir-
tual sample of nj;k. We then add the virtual samples for
datasets in SðqmÞ to V 0, i.e., V 0 V 0 [fn0j;k;u j 8Sj 2 SðqmÞ;
8k;mg. Similarly, we treat each datacenter DCi 2 DC as

dzðDCiÞ
rc�jnbj e virtual datacenters with each having the amount of

computing resource to process a virtual sample, i.e., rc � jnbj.
Let DC0i;i be the ith virtual datacenter of DCi. We add all of
such datacenters into V 0 by setting V 0 V 0 [fDC0i;i j
8DCi 2 DC; 81 � i � dzðDCiÞ

rc�jnbj eg. For the sake of clear demon-

stration, we add one virtual source node s0 and a virtual
sink node t0 to V 0, i.e., V 0 V 0 [fs0; t0g.

We then set the edge set for G0. First, the virtual source
node s0 is connected to all virtual samples. That is, there is
an edge from s0 to each virtual sample n0j;k;u. The cost and
capacity of edge hs0; n0j;k;ui are set to 0 and infinity, respec-
tively. Second, there is an edge from n0j;k;u to a virtual data-
center DC0i;i, if datacenter DCi can process the amount jnbj
of data of sample nj;k within the specified delay requirement
of approximate query qm (i.e., the total delay of replicating
virtual sample nb to DCi and transmitting its intermediate
results to home datacenter hðqmÞ is within its specified delay
requirement dm). The cost of such an edge hn0j;k;u; DC0i;ii is set
to the total cost incurred by (1) transferring the volume jnbj
of virtual sample n0j;k;u of dataset Sj from its home datacen-
ter hðqmÞ to datacenter DCi; (2) processing the volume jnbj
of sample in datacenter DCi; (3) updating the placed virtual
sample in DCi; and (4) storing the volume jnbj of data in
DCi. The capacity of edge hn0j;k;u; DC0i;ii is set to 1, which
means that one virtual sample can be only processed by one
virtual datacenter DC0i;i. Finally, an edge from each virtual

2680 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 12, DECEMBER 2019

datacenter DC0i;i to virtual sink t0 is added, and its cost and
capacity are 0 and infinity, respectively.

Fig. 1 illustrates the constructed auxiliary graph G0. In G0,
two samples and three datacenters DC1, DC2, and DC3 are
considered. The sizes of the samples are jn1;1j and jn2;2j,
respectively. For the first sample with size jn1;1j, three vir-
tual samples n01;1;1, n

0
1;1;2, and n01;1;3 are created, while two

virtual samples n02;2;1 and n02;2;2 with size jnbj are created for
the second sample. Similarly, the three datacenters are
divided into several virtual datacenters based on their avail-
able resource. The delays of replicating the first sample and
second sample in datacenters DC1 and DC2 and transmit-
ting their intermediate results from DC1 and DC2 to its
home datacenter are within the delay requirement of the
query, so there are edges from each of the samples to the
virtual datacenters of DC1 and DC2. Notice that there exist
key distinctions with the construction of the auxiliary graph
in [31]: (1) the construction procedure in [31] did not con-
sider the delay requirement of queries; (2) the constructed
auxiliary graph in this paper introduces the concept of
‘splitting’ each sample to virtual samples and ‘dividing’
each datacenter to several virtual datacenters, while in the
construction procedure in [31] the concept of virtual data-
center is introduced for the sake of moving the capacity con-
straints to edges.

Having the auxiliary graph G0, we now reduce the QoS-
aware data replication and placement problem for an
approximate query qm of big data analytics in G to the mini-
mum-cost maximum flow problem in G0. Specifically, we
consider each virtual sample as a commodity with demand
jnbj that needs to be routed from s0 to t0 in G0. The edge
capacity of G0 is integral. Following the integrality property
for the minimum-cost maximum flow problem [14], there is
an integral minimum-cost maximum flow f that routes the
commodities (virtual samples) to t0. That is, the flow from
each virtual sample n0j;k;u and each virtual datacenterDC0i;i in
G0 is either 1 or 0, as the capacity of edge hn0j;k;u; DC0i;ii is 1.
This means that each virtual sample will be assigned to a sin-
gle datacenter. However, such an assignment of virtual sam-
ples may not deliver a feasible solution to the original
problem, because each sample can only be processed in one
datacenter. To deliver a feasible solution, we modify the

solution C0 obtained from theminimum-cost maximum flow
f 0 in G0 to make it become feasible. Let fDC1; . . . ;
DCl; . . . ; DCLg be the set of datacenters to which the virtual
samples of a sample for dataset Sj are assigned in solution
C0, and denote byDCl0 the datacenter that will incur themin-
imum cost of processing a virtual sample of Sj in set
fDC1; . . . ; DCl; . . . ; DCLg. We finally assign all virtual sam-
ples of nj;k to DCl0 . As a result, the sample of each dataset
Sj 2 SðqmÞ is assigned to a single datacenter.

The detailed description of the approximation algorithm
is given in Algorithm 1.

Algorithm 1. Appro_DPR

Input: A distributed cloud G ¼ ðDC; EÞ, an approximate query
qm, a set of datasets SðqmÞ with each dataset Sj being gener-
ated at datacenter DCSj , and the delay requirement dqm of
query qm in accessing some datasets in S.

Output: The placement and replication locations of the samples
of datasets in SðqmÞ.

1: Calculate the total volume of data that can be processed by

the available computing resource, i.e.,

P
DCi2DC zðDCiÞ

rc
;

2: Calculate the total volume of samples with the smallest error
bounds for datasets in SðqmÞ;

3: if

P
DCi2DC zðDCiÞ

rc
is smaller than the total volume of samples

with the smallest error bounds for datasets in Sqm then
4: Scale down the size of each sample by a factor of

g ¼
P

DCi2DC zðDCiÞ=rcP
Sj2SðqmÞ jnj;1j

;

5: Construct the auxiliary graph G0ðV 0; E0Þ, as shown in Fig. 1,
to make sure all the selected samples are assigned to data-
centers for processing;

6: Obtain an integral minimum-cost maximum flow f that
route the commodities to destination node t0;

7: Adjust the solution obtained from the minimum-cost maxi-
mum flow f 0 in G0, by assigning all virtual samples of each
sample to the datacenter DCl0 that is assigned with the vir-
tual sample with the minimum cost;

8: return The placement and replications of stratified samples
with error bounds of datasets.

3.3 Algorithm Analysis

In the following, we analyze the approximation ratio of the
proposed approximation algorithm.

Lemma 1. Given an approximate query qm, the samples with
specified error bounds of qm’s datasets in SðqmÞ, the average
error bound of the query result is monotonously increasing
with the increase of the error bound of a sample for each dataset
Sj 2 SðqmÞ.

Proof. Recall that SðqmÞ is the source dataset of query qm.
Consider one dataset S1 2 SðqmÞ that has two samples
with error bounds �1;1 and �1;2 and �1;1 < �1;2. The claim
holds if we can show that

jn1;1j � �1;1 þ
PjSðqmÞj

j¼2 jnj;kj � �j;k
jn1;1j þ

PjSðqmÞj
j¼2 jnj;kj

<
jn1;2j � �1;2 þ

PjSðqmÞj
j¼2 jnj;kj � �j;k

jn1;2j þ
PjSðqmÞj

j¼2 jnj;kj
;

(1)

Fig. 1. An example of the constructed auxiliary flow graph G0 ¼ ðV 0; E0Þ
for the approximation algorithm, where two samples and three datacen-
ters are considered.

XIA ET AL.: EFFICIENT DATA PLACEMENT AND REPLICATION FOR QOS-AWARE APPROXIMATE QUERY EVALUATION OF BIG DATA... 2681

where jn1;1j and jn1;2j are the sizes of two samples of
dataset S1, jnj;kj and �j;k ¼¼ 1ffiffiffiffiffiffiffiffi

jnj;kj
p are the size and error

bound of the kth sample of dataset Sj. Specifically, we
have

jn1;1j � �1;1 þ
PjSðqmÞj

j¼2 jnj;kj � �j;k
jn1;1j þ

PjSðqmÞj
j¼2 jnj;kj

¼
jn1;1j � 1ffiffiffiffiffiffiffiffi

jn1;1j
p þPjSðqmÞj

j¼2 jnj;kj � 1ffiffiffiffiffiffiffiffi
jnj;kj
p

jn1;1j þ
PjSðqmÞj

j¼2 jnj;kj
;

¼
ffiffiffiffiffiffiffiffiffiffijn1;1j

p þPjSðqmÞj
j¼2

ffiffiffiffiffiffiffiffiffiffijnj;kj
p

n1;1 þ
PjSðqmÞj

j¼2 jnj;kj
:

(2)

Let’s take n1;1 as a variable x of the function in (2), i.e.,

fðxÞ ¼
ffiffi
x
p þ

PjSðqmÞj
j¼2

ffiffiffiffiffiffiffiffi
jnj;kj
p

xþ
PjSðqmÞj

j¼2 jnj;kj
. Here, x is the size of a sample,

and fðxÞ represents the average error bound of a
query evaluated on samples including the sample
with size x. Clearly, fðxÞ is monotonously increasing
with the decrease of x (jn1;1j), because x decreases
faster than

ffiffiffi
x
p

. As the error bound of a sample is
inversely proportional to the square root of its size, a
sample with a smaller size thus has a larger error
bound, when x decreases, the error bound of a query
evaluated on x’s corresponding sample increases, the
average error bound of the query evaluated on sam-
ples including the sample increases too. Therefore, the
average error bound of the query result is monoto-
nously increasing with the increase of the error bound
of a sample for each dataset Sj 2 SðqmÞ. tu

Lemma 2. Given the selected samples of each dataset Sj 2 SðqmÞ,
all their virtual samples can be routed to the virtual sink t0 in
auxiliary graph G0, with the computing capacity of each data-
center being violated by at most a factor of jnbjCmin

, where Cmin is
the amount of computing resource of datacenter that has the
minimum computing capacity.

Proof. We first show that the total available computing
resource of all datacenters in DC is enough to evaluate an
approximate query qm based on the selected samples of
its datasets in SðqmÞ. Recall that we create samples with
the smaller sizes (the larger error bounds), if the total
computing resource of all datacenters is not enough to
process the samples with the largest size (the smallest
error bound), then we scale down the sample with the

largest size by a factor of g ¼
P

DCi2DC zðDCiÞ=rcP
Sj2SðqmÞ jnj;1j

, where nj;1

is the sample with the smallest size of dataset Sj. For each
dataset Sj, we select the sample with a size that is smaller
(or equal) and the most closest to jnj;1j � g. This means
that the error bounds for processing samples by the avail-
able computing resource can be as small as possible.

We then show that the computing capacity of each
datacenter can be violated by no more than a factor of
jnbj
Cmin

. Given the samples with error bounds specified by
users, the samples are divided into virtual samples and
the datacenters are treated as virtual datacenters. Each
virtual datacenter will be able to process one virtual

sample. Recall that each datacenter is virtually treated

as dzðDCiÞ
rc�jnbj e virtual datacenters. If zðDCiÞ cannot be

divided by rc � jnbj exactly, there will be a virtual data-

center with less than the amount rc � jnbj of computing

resource. The base sample that is assigned to such a vir-

tual datacenter cannot be processed due to resource vio-

lation. Therefore, there must be at most one virtual
datacenter that does not have enough computing

resource to process the volume jnbj of data. Thus, the

computing capacity of a datacenter can be violated by

at most jnbjCmin
. tu

Theorem 1. Given a distributed cloudG ¼ ðDC; EÞ, an approxi-
mate query qm, and a set SðqmÞ of datasets with each dataset
Sj 2 SðqmÞ storing at datacenter DCSj , the tolerable delay
requirement dm, there is an approximation algorithm Appro-

DPR, for the QoS-aware data replication and placement prob-
lem for a single approximate query, which delivers a feasible
solution with the approximation ratio of d in terms of the evalu-
ation cost and the approximation ratio of 1ffi

jnminj=jnmaxj
p for the

average error bound of the evaluation result, while the delay
requirement of each query qm is met, where d represents the
largest number of virtual samples that can be created from one
sample, jnmaxj and jnminj are the maximum and minimum vol-
ume of samples of the datasets in SðqmÞ.

Proof. We first show the approximation ratio in terms of the
evaluation cost. Recall that we reduce the original prob-
lem to the minimum-cost maximum flow problem, by
dividing each sample with the selected error bound into
several virtual samples and each datacenter into several
virtual datacenters. Let C0 be the cost of evaluating a
query qm based on the virtual samples in virtual datacen-
ters. C0 is the optimal solution to the problem that allows
splitting a sample to multiple datacenters, which can be
obtained in polynomial time following the integrality
property of flow, since the capacity of edge hn0j;k;u; DC 0i;ii
is set to either 1 or 0. The delivered solution however is

not a feasible solution to the original problem, as the vir-
tual samples that belong to a same sample may be

assigned to virtual datacenters of different datacenters.
Let C be the evaluation cost of the proposed approxi-

mation algorithm Appro_DPR, and C� be the optimal
evaluation cost of the problem. Clearly, C is the cost
after adjusting solution C0. Specifically, let fDC1; . . . ;
DCl; . . . ; DCLg be the set of datacenters to which the vir-
tual samples of a sample for dataset Sj are assigned in
solution C0, and denote by DCl0 the datacenter that will
incur the minimum cost of processing a virtual sample of
Sj in set fDC1; . . . ; DCl; . . . ; DCLg. For simplicity, let c0l;m
and c0l0;m be the costs of assigning a virtual sample to a
datacenter in fDC1; . . . ; DCl; . . . ; DCLg and DCl0 in solu-
tion C0, respectively. It is obvious c0l0;m � c0l;m. To get the

feasible solution C, all virtual samples of Sj that are not

in DCl0 are re-assigned to DCl0 following the algorithm
Appro_DPR. Denote by cl;m the implementation cost of a

virtual sample after its re-assignment. Clearly, cl;m is the

same as that of the virtual sample assigned toDCl0 . Since

c0l0;m � c0l;m in solution C0, we have cl;m � c0l;m for the re-

assigned virtual sample. We then have

2682 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 12, DECEMBER 2019

C ¼
X

Sj2SðqmÞ
cSj ¼

X
Sj2SðqmÞ

Xjnj;kj=jnbj

m¼1
cl0;m

� jnj;kj
jnbj

X
Sj2SðqmÞ

Xjnj;kj=jnbj

m¼1
cl0;m; since

jnj;kj
jnbj � 1

(3)

� jnj;kj
jnbj

X
Sj2SðqmÞ

Xjnj;kj=jnbj

m¼1
c0l;m; since cl0;m � c0l;m (4)

¼ jnj;kj
jnbj C

0; (5)

where cSj is the cost for dealing with samples of dataset

Sj.
Since the problem that allows splitting a sample and

places split samples to multiple datacenters is a special
case of the QoS-aware data placement and replication
problem, we have C0 � C�. By inequality (5), we thus
have

C � jnj;kj
jnbj C

� � d � C�: (6)

The approximation ratio C
C� thus is

jnj;kj
jnbj , where d repre-

sents the maximum number of virtual samples that can
be created for any single sample.

We then analyze the approximation ratio for the aver-
age error bound of the approximation solution. Let �� be
the optimal average error bound of the evaluation result
of qm. It can be seen that if the total available resource of
datacenters can process the samples with the smallest
error bound with largest volumes, the optimal average
error bound will be the smallest error bound of the sam-
ples, i.e., �1. Thus, we have �� � �1. Otherwise, when the
total available computing resource is not enough to pro-
cess the samples with the smallest error bounds, the sam-
ple sizes will be scaled down by a factor of g with
0 < g < 1. Denote by �0j;k the error bound of the scaled
down sample for dataset Sj. Considering that the error
bounds of samples have been determined before hand,
there may not be samples n0j;k with an error bound �0j;k;
we however can assume that there are samples nj;k with

a larger error bound �j;k, it is obvious �0j;k � �j;k and

jn0j;kj > jnj;kj . Then, the error bound � achieved by the

approximation algorithm Appro_DPR is

� ¼
P

Sj2SðqmÞ jnj;kj � �j;kP
Sj2SðqmÞ jnj;kj

�
P

Sj2SðqmÞ jn0j;kj � �0j;kP
Sj2SðqmÞ jn0j;kj

; due to Lemma 1

¼
P

Sj2SðqmÞ
ffiffiffiffiffiffiffiffiffiffi
jn0j;kj

q
P

Sj2SðqmÞ jn0j;kj
¼

P
Sj2SðqmÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijnj;1j � g
p

P
Sj2SðqmÞ jnj;1j � g

¼
P

Sj2SðqmÞ
ffiffiffiffiffiffiffiffiffiffijnj;1j

p
ffiffiffi
g
p �PSj2SðqmÞ jnj;1j ¼

1ffiffiffi
g
p � �1 � 1ffiffiffi

g
p � ��:

(7)

Therefore, the approximation ratio in terms of the aver-
age error bound �

�� is no more than 1ffiffi
g
p . Considering that

we assume that although the available computing

resource of all datacenters may not be able to process
samples with smallest errors with largest volumes, they

are enough to process the samples with the largest error

bounds. The scale down factor g thus is no more than
jnmaxj
jnminj. The approximation ratio thus is no more than

affi
jnminj=jnmaxj
p . tu

4 A HEURISTIC ALGORITHM FOR MULTIPLE

APPROXIMATE QUERY EVALUATION

In this section, we devise a fast and scalable heuristic algo-
rithm for the QoS-aware data replication and placement
problem for multiple approximate query evaluation. We
start with a brief overview of the proposed algorithm. We
then detail the algorithm. We finally analyze the time com-
plexity of the proposed algorithm.

4.1 Algorithm Overview

A simple solution to the QoS-aware data replication and
placement problem with multiple approximate queries for
big data analytics is to invoke the proposed approximation
algorithm for each of the queries one by one. This solution
however does not consider the fact that a dataset can be
shared by different queries. Consequently this will create
many redundant samples for a dataset than necessary,
thereby increasing the storage, transmission and update costs
of samples. For example, if all queries request a same dataset,
the solution will create a sample for every query, which how-
ever can be significantly improved if it only creates one sam-
ple for all queries, since all the queries share the same dataset.
As different queries not only have different datasets but also
have different delay requirements, it is necessary to create dif-
ferent numbers of slave samples for each origin sample at dif-
ferent datacenters to meet their delay requirements.
Therefore, an important question is how many slave samples
of each origin sample requested by a query should be created,
and at which datacenters these slave samples will be placed,
To answer this question, we consider not only the locations of
existing slave samples of the dataset that are placed by the
evaluation of previously considered queries, but also poten-
tial locations for newly created slave samples of the dataset
with the objective to minimize the evaluation cost of queries
that share this dataset. Specifically, we reduce the problem to
an unsplittable minimum-cost multi-commodity flow prob-
lem in an auxiliary directed graph Gf ¼ ðVf;Ef ;u; cÞ which
will be constructed later, where the pair of a query qm and
each of its required datasets in SðqmÞ is referred to as a com-
modity. Each commodity needs to be routed to a datacenter,
which corresponds to creating a slave sample for the required
dataset at the datacenter, or using an existing slave sample at
the datacenter already.

Another important issue is how to determine based on
which sample of each dataset in Sj 2 SðqmÞ that each query
qm should be evaluated to decrease the error bound of evalu-
ation result and reduce its evaluation cost, considering that a
dataset has several different original samples with different
sizes and error bounds. To minimize the error bound of the
evaluation result for qm, we consider the sample of dataset Sj

with the smallest error bound initially. If the computing
resource of all datacenters is not enough to evaluate all

XIA ET AL.: EFFICIENT DATA PLACEMENT AND REPLICATION FOR QOS-AWARE APPROXIMATE QUERY EVALUATION OF BIG DATA... 2683

queries at their smallest error bounds, the algorithm will
greedily select some queries by increasing their samples’
error bounds, as larger error bounds indicate smaller sample
sizes, leading to less computing resource to process.

The mentioned procedure of routing commodities con-
tinues until all commodities are successfully routed to their
destinations.

4.2 Algorithm

The detailed algorithmproceeds iteratively.Within each iter-
ation, it consists of two phases: (1) the construction of the
flow graph Gf ¼ ðVf; Ef ;u; cÞ; and (2) routing samples to
datacenters for query evaluation. If not all demands can be
met by the system, the sample size is reduced and the error
bounds are increased. This iteration continues until there is
sufficient computing resource for the query evaluation.

The construction of Gf ¼ ðVf ; Ef ;u; cÞ is as follows. Since
a dataset may be requested by multiple datasets at the same
time and their samples can be placed to different datacen-
ters as long as the evaluation cost is reduced, we use a com-
modity node in Gf to represent a query qm and each of its
demanded datasets, i.e., ðqm; SjÞ, where Sj 2 SðqmÞ is a data-
set that query qm demands. Routing this commodity thus
means both the assignment of query qm and the placement
of the sample of its required dataset Sj. In other words, to
evaluate query qm, we need to route all commodities of the
query to some datacenters in G for processing. Therefore,
each datacenter DCi 2 DC is treated as a datacenter nodeDCf

i

in Gf . Denote by DCf the set of datacenter nodes. Each data-

center node DCf
i 2 DCf has a virtual datacenter node DC

0f
i ,

and a directed edge hDCf
i ;DC

0f
i i fromDCf

i toDC
0f
i is added

into Ef with the capacity representing the volume of data
that can be processed by DCi, denote by DC0f the set of vir-
tual datacenter nodes. In addition, a virtual source node s0
and a virtual sink node t0 are added to Gf , i.e., Vf ¼
fs0g [

� S fðqm; SjÞg
� [DCf [DC0f [ft0g, where Sj 2 SðqmÞ

and 1 � m �M.
There is a directed edge from the virtual source node s0

to each commodity node ðqm; SjÞ, its capacity and cost
are the volume of Sj and 0, respectively. A directed edge
hðqm; SjÞ;DCf

i i from a commodity node ðqm; SjÞ to a datacen-
ter nodeDCf

i is added toEf , if the delay requirement of query
qm for evaluating on a sample at datacenter DCi is satisfied.
The capacity of edge hðqm; SjÞ;DCf

i i is the volume of Sj. If a
slave sample of Sj has not been placed atDCi, the cost of edge
hðqm; SjÞ;DCf

i i is the sum of the storage cost for storing a unit
of data at datacenterDCi, the update cost for updating a unit
of data along the shortest path with minimum cost between
the datacenter where its origin sample is and DCi, and the
transmission cost for transmitting a unit of intermediate data
along the path with minimum transmission cost fromDCi to
the home datacenter hðqmÞ of qm. Otherwise, the cost of
hðqm; SjÞ;DCf

i i is set to the transmission cost for transmitting
a unit of intermediate data along the path with minimum
transmission cost fromDCi to hðqmÞ, because the update and
storage costs of Sj have been considered when routing other
commodities. A directed edge hDCf

i ;DC
0f
i i from a datacenter

node DCf
i to a virtual datacenter node DC

0f
i is added to Ef ,

and its capacity is the amount of data that can be processed
by the available computing resource of datacenter DCi, and
its cost is the cost of processing a unit of data atDCi. Similarly,
there is a directed edge hDC

0f
i ; t0i from each virtual datacenter

node DC
0f
i to the virtual sink node t0, its capacity is set to

infinity, and its cost is 0.
An example of a constructed graph Gf ¼ ðVf; Ef ;u; cÞ

from the distributed cloud G ¼ ðDC; EÞ is illustrated in
Fig. 2, where two approximate queries q1 and q2 are issued.
The evaluation of query q1 requires samples of datasets S1

and S2, while the evaluation of query q2 requires samples of
datasets S1, S2 and S3. The origin samples of datasets S1, S2

and S3 are located at datacenters DC6, DC7 and DC4,
respectively. The delay requirement of q1 for evaluating on
the samples of datasets S1 and S2 at datacenter DC2 cannot
be met, so there are no edges between the commodity nodes
of q1 (i.e., ðq1; S1Þ and ðq1; S2Þ) and the datacenter node

DCf
2 . Similarly, there are no edges between the commodity

nodes of q2 (i.e., ðq2; S1Þ, ðq2; S2Þ and ðq2; S3Þ) and datacenter

nodes DCf
1 , DCf

5 , and DCf
6 , as the delay requirement of q2

for evaluating on the samples of the datasets located at data-
centersDC1,DC5, andDC6 cannot be satisfied.

Having the auxiliary flow graph Gf ¼ ðVf ; Ef ;u; cÞ, we
then route all commodities in Gf one by one. As each data-
set requested by a query has multiple samples with differ-
ent error bounds, we start routing each commodity node by
routing its slave sample with the smallest error bound (larg-
est sample size), and iteratively find the sample with next
smallest error bound, while each further iteration increases
the error bound of the previous iteration until the QoS
requirement is met.

Assume that at the beginning of the kth iteration, some
queries have been admitted at error bounds from �1 to �k�1.

Fig. 2. An example of the distributed cloud G and its auxiliary flow graph
Gf , where query q1 requires the samples of datasets S1 and S2 for its
evaluation, while query q2 requires the samples of datasets S1, S2, and
S3 for its evaluation.

2684 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 12, DECEMBER 2019

Wenow show how to admit the rest of queries by routing the
residual commodities inGf in the kth iteration.We first route
each unrouted commodity ðqm; SjÞ by assuming that qm will
be evaluated on the sample of Sj with an error bound �k. We
then rank each unrouted commodity ðqm; SjÞ according to
the size jnj;kj of the sample of Sj with the error bound �k, i.e.,
the rank of query qm is

P
Sj2SðqmÞ jnj;kj. We further route the

commodity ðqm; SjÞ with the lowest rank to the destination
node t0 through a pathwithminimum cost inGf . If a selected
routing path passes a datacenter nodeDCf

i , we then create a
slave sample for the sample at datacenter DCi and update
the capacities of edges in Gf . Since there is at most one salve
sample of a dataset at the same datacenter DCi, the cost of
each edge in set fhðq0m; SjÞ; DCf

i i j q0m 2 Q n fqmgg is updated
to the transmission cost by q0m.

Notice that some queries may not be admitted after K
iterations. To admit all queries, we will increase the error
bound of samples requested by admitted queries. The pro-
cedure of increasing the error bounds of admitted queries
continues until all queries are admitted. The detailed proce-
dure of the heuristic algorithm is given in Algorithm 2.

Algorithm 2. Heu_DPR

Input: A distributed cloud G ¼ ðDC; EÞ, the set of approximate
queries Q with each approximate query qm, a set of datasets
S with each dataset being generated at datacenter DCðSjÞ,
and the delay requirement dm of each query qm by evaluat-
ing on some datasets in S.

Output: The placement and replication locations of the slave
samples of datasets in S.

1: Construct an auxiliary flow graph Gf ¼ ðVf ; EfÞ;
2: Rank the queries in Q according to the volume of their

accessed samples in a ascending order;
3: for Each query qm with the minimum rank do
4: Get the available computing resource of each datacenter;
5: for Each origin sample node Sj accessed by query qm do
6: Treat the origin sample as an unsplittable commodity;
7: Find a path pm;j;t0 from the origin sample node to t0

with minimum accumulated cost of all edges along the
path;

8: Check whether the computing capacity of the datacen-
ter is violated if routing the commodity to the datacen-
ter along path pm;j;t0 ;

9: if The capacity is not violated then
10: Route the commodity along the path pm;j;t0 ;
11: Update the capacities of edges in Gf ; Update the cost

of each edge in set fhðq0m; SjÞ; DCf
i i j q0m 2 Q n fqmgg

as the transmission cost by q0m;
12: else
13: Select the sample with a higher error bound as the

commodity to be routed;
14: Repeat step 8 to step 11;
15: return The number and locations of samples with different

error bounds of all datasets.

4.3 Algorithm Analysis

In the following, we show the correctness and analyze the
time complexity of the proposed algorithm Algorithm 2.

Theorem 2. Given a distributed cloud G ¼ ðDC; EÞ, a set Q of
approximate queries with the delay requirement dm for each

query qm 2 Q, there is an algorithm, Heu_DPR, for the QoS-
aware data replication and placement problem for multiple
query evaluation, which delivers a feasible solution in
OððjQj � jSj þ jDCjÞ3Þ time.

Proof. Let p be a flow routing path inGf starting from s0 and
ending at t0, i.e., hs0; ðqm; SjÞ; DCf

i ;DC
0f
i ; t0i. Clearly, the

delay requirement of qm can be met as there will not be an
edge from ðqm; SjÞ toDCf

i if the delay requirement can not
be satisfied.We then prove that flow f along p corresponds
to placing a slave sample of Sj at datacenter DCi and
assigning query qm to DCi for evaluating on the placed
slave sample. We consider two cases: (1) a slave sample of
Sj has already been placed at DCi; and (2) there is no any
slave sample of Sj at DCi. For case (1), since there is at
most one slave sample with an error bound of a dataset at
a datacenter, there is no need to create another slave sam-
ple for Sj at DCi. In this way, no extra storage and update
costs are incurred, and only processing and transmission
costs are incurred. As shown in Step 11 of Algorithm 2,
the cost of edge hðqm; SjÞ; DCf

i i is updated to the transmis-
sion cost by query qm for transmitting a unit of data from
its home datacenter hðqmÞ to DCi, and the cost of edge
hDCf

i ;DC
0f
i i is the process cost of query qm by processing

the placed sample of Sj. Similarly, for case (2) we can show
that the flow f via path p corresponds to the placement of
a sample of Sj and the assignment of query qm to DCi for
evaluating on the placed sample.

Gf contains OðjQj � jSj þ jDCjÞ nodes and OðjQj � jSj�
jDCjÞ edges, its construction thus takes OðjQj � jSj � jDCjÞ
time. It takes OðjVf j2Þ time to find the shortest path in Gf

for each pair of qm and one of its required dataset from
its commodity node hqm; Sji to t0, where jVf j ¼ OðjQj�
jSj þ jDCjÞ. Thus, the algorithm takes OðjQj � jSj � ðjQj�
jSj þ jDCjÞ2Þ time. tu

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms, and investigate the impact of important param-
eters on the algorithmic performance, by both simulations
and a proof-of-concept in a real test-bed.

5.1 Experimental Environment

For the simulation, we consider a distributed cloud consist-
ing of 20 datacenters, there is an edge between each pair of
datacenters with a probability of 0.2, generated by the GT-
ITM tool [11]. The computing capacity of each datacenter is
randomly drawn from a value interval [100, 2,000] units
(GHz) [31]. Each user produces several Gigabytes of data, we
thus emulate the volume of the dataset generated by each
user is in the range of [5, 10] GB [31], and the amount of com-
puting resource assigned to the processing of 1 GB data is a
value in the range of [20, 50] GHz. The costs of transmitting,
storing and processing 1 GB of data are set within a value
[$0.02, $0.09], [$0.0275, $0.03], and [$0.05, $0.1], respectively,
following typical charges in Amazon EC2 and S3 [2], [3].
The numbers of datasets and queries in the system are ran-
domly drawn in the range of [50, 100] and [50, 150], respec-
tively. The number of datasets required by the query is
randomly drawn from interval [1, 3], respectively. The QoS

XIA ET AL.: EFFICIENT DATA PLACEMENT AND REPLICATION FOR QOS-AWARE APPROXIMATE QUERY EVALUATION OF BIG DATA... 2685

requirement of each query is a value between 500 and 1,000ms.
Unless otherwise specified,wewill adopt these default settings
in our simulations. Each value in the figures is the mean of the
results by applying each mentioned algorithm on 15 different
topologies of the distributed cloud.

We evaluate the performance of algorithm Appro_DPR

for a single approximate query against a greedy algorithm
Greedy. Algorithm Greedy first tries to place the samples
with the smallest error bounds and then adjusts the error
bounds of samples until all datasets have placed samples in
datacenters. To evaluate the performance of the proposed
algorithm Heu_DPR for multiple approximate queries,
another greedy algorithm Greedy_multiQ is employed as
an evaluation baseline. Specifically, Greedy_multiQ algo-
rithm first selects a set of candidate datacenters for each
pair of a query and one of its requested datasets. If the delay
requirement of the query can be met by putting a sample
with the smallest error bound of the dataset at the selected
datacenters, it then places the sample at a datacenter with
the maximum available computing resource. If the datacen-
ter cannot accommodate more samples, it then picks the
next datacenter with the second largest amount of available
computing resource in the set of candidate datacenters. If
the available computing resource of the set of candidate
datacenters cannot accommodate more samples, the algo-
rithm then increases the error bounds of samples until all
samples can be placed.

In addition, we evaluate the proposed algorithms on a real
testbed.Motivated by thework [38] of Yan et al. thatmade bet-
ter use ofAmazon T2 instances, we lease a number of comput-
ing resources located at geo-distributed locations, and deploy
a distributed computing environment, based on which we
evaluate the proposed algorithms Appro_DPR and Heu_DPR

against two baselines Greedy and Greedy_multiQ,
respectively.

5.2 Performance Evaluation of Different Algorithms
for a Single Query

We first evaluate the performance of algorithm Appro_DPR

against that of algorithm Greedy in terms of the evaluation
cost (the unit is US dollars), the average delay experienced
by a query, and the average error bound of the evaluation
result, by varying the number of datacenters from 20 to 200.
From Fig. 3a it can be seen that the evaluation cost by algo-
rithm Appro_DPR is much lower than that by algorithm
Greedy. The reason is that algorithm Appro_DPR finds
samples with the lowest error bound that can be dealt with
by the resources of datacenters in the distributed cloud and
then assigns queries to the datacenters. However, algorithm
Greedy assigns queries to datacenters one by one and
greedily increases the error bounds of samples until they

are placed. In addition, the evaluation cost of each query by
the two algorithms is increasing with the growth of the
number of datacenters from 20 to 150. The rationale is that
each query has a higher probability of requesting a dataset
that is far from its home datacenter in the distributed cloud
with more datacenters, thereby increasing the costs incurred
by data transmission and sample updates. However, the
evaluation cost decreases slightly when the number of data-
centers grows from 150 to 200. The reason is that queries
have more choices to select datacenters that are close to their
home datacenters, which traded-off the mentioned cost
increase due to the growth of datacenter numbers. Also, we
can see from Fig. 3b, the average delay of queries by algo-
rithm Greedy is much higher than that by algorithm
Appro_DPR, because algorithm Greedy assigns queries
one by one greedily and this may lead to the later-assigned
queries being assigned to the datacenters far from their
home datacenters (with higher access and update delays).
Furthermore, as shown in Fig. 3c, the average error bound
of all placed samples by algorithm Appro_DPR is almost
the same as that of algorithm Greedy.

We then investigate the performance of algorithms
Appro_DPR and Greedy by varying the maximum number
of datasets of a query from 5 to 50 while fixing the number of
datacenters at 20. From Figs. 4a and 4b, we can see that the
curves of evaluation costs and the average delays of both
algorithms are increasing with the growth of the maximum
number of datasets, because more datasets usually incur
higher process, storage, transmission, and update costs for a
query, and increase the maximum delay of replicating their
samples to assigned datacenters. As shown in Fig. 4c, the
average error bound of all placed samples by algorithm
Appro_DPR is almost the same as that of algorithm Greedy.

We third study the performance of algorithms
Appro_DPR and Greedy by varying the maximum delay
requirement of a query and fixing the number of datacenters
at 20, as illustrated in Fig. 5. From Fig. 5a, we can see that
algorithm Appro_DPR delivers a solution with a much lower
evaluation cost than that of algorithm Greedy. However,
both of their evaluation costs are increasing as the maximum
delay requirement increases. This is because a higher maxi-
mum delay requirement of a query (1) means the query can
wait longer time to gain an evaluation result with a lower
error bound, increasing the process and storage costs; (2)
allows the algorithms to put its samples to far away datacen-
ters from their home datacenters, thereby increasing the
update and transmission costs. Fig. 5b demonstrates that the
average delay of a query is increasing with the growth of its
maximum delay requirement. The reason is similar as that of
Fig. 5a. In addition, we can see from Fig. 5c that the curves for

Fig. 3. The performance of different algorithms for a single query.
Fig. 4. The impact of the maximum number of datasets of a single query
on the algorithmic performance.

2686 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 12, DECEMBER 2019

the average error of a query evaluation result are slightly
decreasing as the maximum delay requirement increases.
The rationale behind is that a query usually has a stringent
requirement on its average error bound of its results while it
has a loose requirement on delay.

We finally evaluate algorithm Appro_DPR against algo-
rithm Greedy, by increasing the lowest error bound of a
sample from 0.05 to 0.15, while fixing the maximum error
bound of a sample at 0.25. From Figs. 6a and 6b, we can see
that the evaluation costs and the average delay of a query
by both algorithms are decreasing when the lowest error
bound of a sample increases from 0.05 to 0.15. The reason is
that a higher error bound of a sample usually means a
smaller size of the sample, thereby leading to a lower cost
and shorter time of evaluating the query. Furthermore, since
evaluating a query based on smaller volume of samples
usually incurs a larger error, the average error of a query
evaluation result is increasing with the growth of the lowest
error bound of its data samples, as depicted in Fig. 6c.

5.3 Performance Evaluation of Different Algorithms
for Multiple Queries

We now evaluate the proposed algorithm Heu_DPR against
algorithm Greedy_multiQ, in terms of the evaluation cost
(US dollars), the average delay, and the average error bound
of the evaluation result, by varying the number of datacen-
ters from 20 to 200. It can be seen from Fig. 7a that the evalu-
ation cost by algorithm Heu_DPR is substantially less than
that by algorithm Greedy_multiQ. For example, the evalu-
ation cost by Heu_DPR is only about 77 percent of that by
algorithm Greedy_multiQ when there are 20 datacenters.
The rationale behind is that algorithm Greedy_multiQ

selects the datacenter with the highest available computing
resource to place samples which may be too far to satisfy
the delay requirement of queries, thus more slave samples
are placed to satisfy the delay requirement of queries,
increasing storage, update and transmission costs. It can
also be seen that the evaluation costs of both algorithms
increase with the growth of the number of datacenters. One

of the main reasons is that with the growth of the number of
datacenters, more computing resource will be available to
accommodate large-volume slave samples with lower error
bounds, thereby increasing the costs of processing, storing,
transmitting and updating larger slave samples. From
Fig. 7b we can see that the average delay by algorithm
Heu_DPR is much lower than that by algorithm Greedy_-

multiQ, and the average delay of a query by both algo-
rithms increases with the growth of number of datacenters.
This is because the samples of a query have a higher proba-
bility of being assigned to datacenters that are far from its
home datacenter. In addition, we can see from Fig. 7c that
the average error bound of all samples placed in the system
by algorithm Heu_DPR is only 0.07, while the one by algo-
rithm Greedy_multiQ is 0.19 when the number of data-
centers is 20, which is much higher than that by algorithm
Heu_DPR. The reason is that algorithm Heu_DPR adopts a
fine-grained adjustment of error bounds when there exist
queries that cannot be evaluated. On the other hand, algo-
rithm Greedy_multiQ places more slave samples for each
origin sample, thus, occupies more computing resource.
This prevents the algorithm from placing slave samples
with lower error bounds that typically have higher comput-
ing resource demands. Also, the average error bound of all
evaluated queries by algorithm Greedy_multiQ decreases
with the growth of the number of datacenters, since more
resources in the datacenters can be used to process samples
with larger sizes and lower error bounds.

We then investigate the impact of the maximum number
of datasets of queries on the performance of algorithms
Heu_DPR and Greedy_multiQ, by varying the maximum
number of datasets from 5 to 50 and fixing the number of
datacenters to 20. It can be seen from Fig. 8a that the evalua-
tion cost of all queries by algorithm Greedy_multiQ is
lower than that by algorithm Heu_DPR. For example, the
evaluation cost by algorithm Greedy_multiQ is 58 percent
of that by algorithm Heu_DPR. While we can see from
Figs. 8b and 8c that the average delay experienced by a
query and the average error bound of evaluation result of
the query by algorithm Greedy_multiQ are much higher

Fig. 5. The impact of the maximum delay requirement of a single query
on the algorithmic performance.

Fig. 6. The impact of the lowest error bound of a single query on the
algorithmic performance.

Fig. 7. The performance of different algorithms for multiple queries.

Fig. 8. The impact of the maximum number of datasets of queries on the
algorithmic performance.

XIA ET AL.: EFFICIENT DATA PLACEMENT AND REPLICATION FOR QOS-AWARE APPROXIMATE QUERY EVALUATION OF BIG DATA... 2687

than those by algorithm Heu_DPR. For example, the average
delay and the average error bound by algorithm Greedy_-

multiQ are 2.3 and 5 times higher than those by algorithm
Heu_DPR. We can also see that the evaluation costs of both
algorithms do not vary too much when the maximum num-
ber of datasets grows. The reason is that both algorithms
consider the assignment of multiple queries, and later
assigned queries can use the samples that are already
placed by earlier assigned queries. Although the maximum
number of datasets of each query is increasing, most of their
samples may already have been placed to evaluate early
assigned queries, thereby saving the storage, transmission,
and update costs. Similarly, the average delay and the aver-
age error bound of a query do not change too much with
the growth of the maximum number of datasets, as shown
in Figs. 8b and 8c, respectively.

We third study the impact of the maximum delay
requirement of queries on the performance of algorithms
Heu_DPR and Greedy_multiQ, by varying it from 550 to
950 ms and fixing the number of datacenters to 20. From
Figs. 9a and 9c, it can be seen that although algorithm
Heu_DPR obtained a higher evaluation cost than algorithm
Greedy_multiQ, it delivers an evaluation result with
much lower average error bound compared with Greed-

y_multiQ. For example, the evaluation cost by Heu_DPR is
1.28 times higher that that by Greedy_multiQ, but the
average error bound of query evaluation result by Heu_DPR

is 20 percent of that by Greedy_multiQ. The reason is that
a lower average error usually means larger volumes of sam-
ples, which incurs higher costs in processing, storing, trans-
mitting, and updating data. Also, the evaluation cost is
increasing with the growth of the maximum delay require-
ment of a query as shown in Fig. 9a, the argue is similar as
that for Fig. 5a. Furthermore, due to the fact that smaller
volumes of samples are processed by algorithm Greedy_-

multiQ, it has a lower average delay as shown in Fig. 9b.
We finally evaluate the impact of the lowest error bound

of samples on the performance of algorithms Heu_DPR and
Greedy_multiQ through varying it from 0.05 to 0.15.

From Figs. 10a and 10c, a clear trade-off between the evalua-
tion cost and the lowest error bound can be seen. Also, in
general the evaluation costs by algorithms Heu_DPR and
Greedy_multiQ decrease with the increase of the maxi-
mum error bound from 0.05 to 0.125. The rationale is that
with the growth of the lowest error bound of samples, sam-
ples with smaller sizes need to be processed and transmit-
ted. However, the evaluation cost increases suddenly when
the lowest error bound increases from 0.125 to 0.15. This is
because with the growth of the lowest error bound of a sam-
ple, queries will be less likely to use it, as the average error
bound needs to be minimized as well. Therefore, the sam-
ples with higher error bounds have a high probability of not
being used by later queries, thereby increasing the storage
cost of storing the needed samples with lower error bounds.

5.4 Performance Evaluation in a Real Test-Bed

We now evaluate the performance of the proposed algo-
rithms in a real test bed, the test bed is composed of virtual
machines, a local server cluster, and a controller. The virtual
machines are located at different locations and provided by
a cloud service provider, while the controller is responsible
for executing the proposed algorithms

Test-Bed Settings. As shown in Fig. 11, we lease a number
of virtual machines (VMs) at locations San Francisco, New
York, Toronto, and Singapore from cloud service provider
DigitalOcean [12]. It must be mentioned that since we focus
on the inter-datacenter scheduling of approximate queries,
we use 10 VMs to represent a datacenter in the distributed
cloud network G. Although the scale of each node in this
test-bed can not be comparable to a large-scale datacenter,
the implementation can be easily extended to a test-bed
with large-scale computing nodes. In addition, we imple-
mented a Container-based local cluster that consists of 8
servers, each server has an i7 quad-core, 8 Gigabyte mem-
ory. There is also an software defined network (SDN) con-
troller implemented in a server with 24-core Intel Xeon
Glod processor and 128 GB memory. The proposed algo-
rithms are implemented as Java programs in the controller.

Datasets, Samples, and Approximate Queries. The data used
in the experiment is mobile application usage information
from 3,000 anonymous mobile users for a period of three
months. We divide the data into a number of datasets
according to the data creation time, and randomly distribute
the datasets into the datacenters of the test-bed. Each data-
set is sampled using stratified sampling, specifically, each
dataset is divided into several groups, called strata, then a

Fig. 9. The impact of the maximum delay requirement of multiple queries
on the algorithmic performance.

Fig. 10. The impact of the lowest error bound of multiple queries on the
algorithmic performance.

Fig. 11. The topology of the test-bed with leased VMs, a local server
cluster, and a local SDN controller.

2688 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 12, DECEMBER 2019

probability sample is drawn from each group. Approximate
queries are issued to find some evaluation results: such as
the most popular applications, at what time the found appli-
cations would be used in future, and the usage pattern of
some mobile applications, etc.

Results. We evaluate the performance of the proposed
algorithms Appro_DPR and Heu_DPR against benchmarks
Greedy and Greedy_multiQ, respectively. Due to page
limits, we here put only two sets of figures as illustrated in
Fig. 12. From Figs. 12a and 12b we can see that, algorithm
Appro_DPR outperforms algorithm Greedy by delivering
much lower evaluation cost and average delay for an
approximate query. The average error bound of evaluation
results by algorithm Appro_DRP is slightly lower than that
of algorithm Greedy as depicted in Fig. 12c; however, the
gap increases as the number of datasets required by a query
grows. From Figs. 12d and 12e, we can see that although the
evaluation cost and average delay by Heu_DPR are higher
than those by Greedy_multiQ, the average error bound of
evaluation results is much lower than that by Greedy_-

multiQ as shown in Fig. 12f.

6 RELATED WORK

Several studies of data placement and query evaluation have
been conducted in the past [1], [7], [8], [15], [16], [17], [19],
[23], [25], [27], [28], [30], [31], [32], [33], [34], [35], [37]. Most of
these studies either did not take into consideration data repli-
cations of generated big data [15], [16], [23], [31] or did not
incorporate the QoS requirements of users into account [7],
[15], [17], [18], [19], [30], [31]. Few of them only considered
the transmission cost while neglecting other costs [17], [18].
For example, Baev et al. [7] considered a problem of placing
replicated data in arbitrary networks to minimize the total
storage and access cost. Golab et al. [15] studied a data place-
ment problem to determine where to store the data and
where to evaluate data-intensive tasks with a goal to mini-
mize the data transmission cost. Kayyoor et al. [17]

addressed a problem of minimizing average query span,
which is the number of servers involved in answering a
query. They ignored other costs and QoS requirements of
users [7], [15], [17], and did not consider data replica-
tions [15]. Agarwal et al. [1] proposed a data placement
mechanism Volley for geo-distributed cloud services to min-
imize the user-perceived latency. Xia et al. [31] considered a
big data management problem in distributed cloud environ-
ments to maximize the system throughput while minimizing
the operational cost of service providers. No data replica-
tions and QoS requirements of users have been addressed
in [1], [31]. Pu et al. [23] presented a system for low latency
geo-distributed analytics, which used an heuristic to redis-
tribute datasets among the datacenters prior to queries’
arrivals, and placed the queries to reduce network bottle-
necks during the query’s execution. Heintz et al. [16] studied
the tradeoff between a query response delay and the errors
of the query results in streaming analytics in an architecture
consisting of a single center and multiple edge servers. Xia
et al. [28] considered an online query evaluation problem for
big data analytics in distributed clouds, with an objective to
maximize the query acceptance ratio while minimizing the
transmission cost. They did not consider approximate query
evaluation that strives for a nontrivial trade-off between the
query and the error bounds of query results.

Some studies considered query evaluation or data sam-
ple problems [8], [16], [18], [19], [23], [25], [27]. For example,
Li et al. [19] proposed a similarity aware data analytics sys-
tem to minimize query completion time. No data samples
and approximate queries are studied. Shkapsky et al. [25]
implemented a system which is a recursive query language
implementation on Apache Spark for big data analytics.
Convolbo et al. [8] studied a problem where all jobs are sub-
mitted in a centralized global scheduler to be dispatched
among some geo-distributed datacenters for processing.
They assumed that the initial data locations and data repli-
cation strategy are given, and data analytic jobs can be
divided into multiple independent sub-jobs. They aimed to
minimize the average completion time needs to make
scheduling decisions. Xiao et al. [27] proposed a framework
that considered a problem of data movement, resource pro-
visioning, and Reduce selection, their objective is to mini-
mize the cost incurred by optimizing the amount of data
allocated to each datacenter, the number of resources
needed, and the datacenter for Reduce operation.

There are also some studies considered big data analysis
and query evaluation in systematic perspectives [21], [26].
For example, Mehta et al. [21] presented evaluations of
large-scale image analysis for which two real-world scien-
tific image data processing use cases were adopted. Five
representative systems, SciDB, Myria, Spark, Dask, and
TensorFlow are evaluated, the shortcomings that complicate
implementation or hurt performance are found, which lead
to new research opportunities in making efficient and easy
large-scale image analysis. This work contributed the first
comprehensive and quantitative evaluation of large-scale
image analysis systems. Upadhyaya et al. [26] developed an
optimizer that can automatically selects strategy for each
operator to minimize the total time to complete the query
given an expected number of failures. They also modeled
the processing and recovery times for some representative

Fig. 12. The performance of algorithms Appro_DPR and Greedy for a
single query, the performance of algorithms Heu_DPR and Greedy_-

multiQ for multiple queries in a real test bed.

XIA ET AL.: EFFICIENT DATA PLACEMENT AND REPLICATION FOR QOS-AWARE APPROXIMATE QUERY EVALUATION OF BIG DATA... 2689

operators (e.g., relational operators, maps or reduces).
Authors in [29] considered a problem of data replication
and placement for query evaluation of big data analytics, a
heuristic algorithm for multiple queries is designed. How-
ever, the work did not consider that sometimes queries
arrive at the system one-by one and there is only one query
to be evaluated each time, and the work only evaluated the
proposed algorithms by simulations.

Unlike the aforementioned studies, in this paper we stud-
ied the QoS-aware data replication and placement problem
for query evaluation of big data analytics in distributed
cloud environments, where big data are located at different
locations and users have their QoS requirements in terms of
query delays, with the objective to minimize the evaluation
cost of all queries while meeting the QoSs of the users of
these queries. We aim to evaluate the queries as fast as possi-
ble while keeping the query result as accurate as possible, we
focus on the sample choice and placement on different data-
centers in a distributed cloud. Cases of both a single query
and multiple queries are considered, and the algorithms are
evaluated on a real testbed based on real datasets.

7 CONCLUSIONS

In this paper, we studied approximate query evaluation of
big data analytics in a distributed cloud, we formulated two
novel query optimization problems: QoS-aware data repli-
cation and placement problems for a single approximate
query and multiple approximate queries of big data analyt-
ics, respectively. Our aim is to minimize the query evalua-
tion cost, while meeting the query delay requirements and
computing resource capacity constraints of datacenters,
through efficient and effective data replication and place-
ment. To this end, we first devised an approximation algo-
rithm for evaluating a single approximate query. We then
proposed a fast yet scalable heuristic for multiple approxi-
mate query evaluation by reducing the problem to an
unsplittable multicommodity flow problem. We finally
evaluated the performance of the proposed algorithms
through both experimental simulations and implementa-
tions in a test-bed. Experimental results demonstrate that
the proposed algorithms are promising.

ACKNOWLEDGMENTS

Wewould like to thank the three anonymous referees and the
associate editor for their expertise comments and constructive
suggestions, which have helped us improve the quality and
presentation of the paper greatly. The work of Qiufen Xia and
Zichuan Xu is partially supported by the National Natural
Science Foundation of China (Grant No. 61802047, 61802048,
61772113, 61872053), the fundamental research funds for the
central universities in China (Grant No. DUT19RC(4)035,
DUT19RC(5)001, DUT19GJ204), and the “Xinghai Scholar”
Program at DalianUniversity of Technology, China.

REFERENCES

[1] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and
H. Bhogan, “Volley: Automated data placement for geo-distributed
cloud services,” in Proc. USENIX Conf. Netw. Syst. Des. Implementa-
tion, 2010, pp. 2–2.

[2] [Online]. Available: https://aws.amazon.com/ec2/. Accessed on:
Jun. 2019.

[3] [Online]. Available: https://aws.amazon.com/s3/, Accessed on:
Jun. 2019.

[4] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and
I. Stoica, “BlinkDB: Queries with bounded errors and bounded
response times on very large data,” in Proc. ACM Eur. Conf. Com-
put. Syst., 2013, pp. 29–42.

[5] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of datacenters for
cloud computing,” J. Future Generation Comput. Syst., vol. 28, no. 5,
pp. 755–768, 2012.

[6] P. A. Bernstein and S. Das, “Rethinking eventual consistency,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data, 2013, pp. 923–928.

[7] I. Baev, R. Rajaraman, and C. Swamy, “Approximation algorithms
for data placement problems,” SIAM J. Comput., vol. 38, no. 4,
pp. 1411–1429, 2008.

[8] M. W. Convolbo, J. Chou, and S. Lu, “DRASH: A data replication-
aware scheduler in geo-distributed data centers,” in Proc. Int.
Conf. Cloud Comput. Technol. Sci., 2016, pp. 302–309.

[9] S. Chaudhuri, G. Das, and V. Narasayya, “Optimized stratified
sampling for approximate query processing,” Trans. Database
Syst., vol. 32, no. 2, pp. 1–50, 2007.

[10] Cisco Global Cloud Index: Forecast and Methodology, White
paper, pp. 1–46.

[11] GT-ITM: Georgia tech internetwork topology models. [Online].
Available: www.cc.gatech.edu/projects/gtitm

[12] Digital Ocean. [Online]. Available: https://www.digitalocean.
com. Accessed on: Nov. 2018.

[13] W. Fan, F. Geerts, and F. Neven, “Making queries tractable on big
data with preprocessing: Through the eyes of complexity theory,”
Proc. VLDB Endowment, vol. 6, no. 9, pp. 685–696, 2013.

[14] B. Gendron, T. G. Crainic, and A. Frangioni, “Multicommodity
capacitated network design,” Telecommunications Network Plan-
ning. Berlin, Germany: Springer, 1999, pp. 1–19.

[15] L. Golab, M. Hadjieleftheriou, H. Karloff, and B. Saha, “Distributed
data placement to minimize communication costs via graph parti-
tioning,” in Proc. Int. Conf. Sci. Statist. Database Manage., 2014,
Art. no. 20.

[16] B. Heintz, A. Chandra, and R. K. Sitaraman, “Trading timeliness
and accuracy in geo-distributed streaming analytics,” in Proc.
ACM Symp. Cloud Comput., 2016, pp. 361–373.

[17] A. K. Kayyoor, A. Deshpande, and S. Khuller, “Data place-
ment and replica selection for improving co-location in distrib-
uted environments,” Comput. Res. Repository, arXiv: 1302.4168,
pp. 1–12, 2012.

[18] P. Li, S. Guo, T. Miyazaki, X. Liao, H. Jin, A. Y. Zomaya, and
K. Wang, “Traffic-aware geo-distributed big data analytics with
predictable job completion time,” IEEE Trans. Parallel Distrib.
Syst., vol. 28, no. 6, pp. 1785–1796, Jun. 2017.

[19] H. Li, H. Xu, and S. Nutanong, “Bohr: Similarity aware geo-
distributed data analytics,” in Proc. 9th USENIX Conf. Hot Topics
Cloud Comput., 2017, pp. 2–2.

[20] R. Lu, H. Zhu, X. Liu, J. K. Liu, and J. Shao, “Toward efficient
and privacy-preserving computing in big data era,” IEEE Netw.,
vol. 28, no. 4, pp. 46–50, Jul./Aug. 2014.

[21] P. Mehta, S. Dorkenwald, D. Zhao, T. Kaftan, A. Cheung,
M. Balazinska, A. Rokem, A. Connolly, J. Vanderplas, and
Y. AlSayyad, “Comparative evaluation of big-data systems on
scientific image analytics workloads,” Proc. VLDB Endowment,
vol. 10, no. 11, pp. 1226–1237, 2017.

[22] M. Noordzij, G. Tripepi, F. W. Dekker, C. Zoccali, M. W. Tanck,
and K. J. Jager, “Sample size calculations: Basic principles and
common pitfalls,” Nephrology Dialysis Transplantation, vol. 25,
no. 5, pp. 1388–1393, 2010.

[23] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
P. Bahl, and I. Stoica, “Low latency geo-distributed data analy-
tics,” in Proc. ACM Conf. SIGCOMM, 2015, pp. 1–14.

[24] S. Rao, R. Ramakrishnan, A. Silberstein, M. Ovsiannikov, and
D. Reeves, “Sailfish: A framework for large scale data processing,”
in Proc. ACM Symp. Cloud Comput., 2012, Art. no. 4.

[25] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and C.
Zaniolo, “Big data analytics with datalog queries on Spark,” in Proc.
ACMSIGMOD Int. Conf.Manage. Data, 2016, pp. 1135–1149.

[26] P. Upadhyaya, Y. Kwon, and M. Balazinska, “A latency and fault-
tolerance optimizer for online parallel query plans,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2011, pp. 241–252.

2690 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 12, DECEMBER 2019

https://aws.amazon.com/ec2/
https://aws.amazon.com/s3/
www.cc.gatech.edu/projects/gtitm
https://www.digitalocean.com
https://www.digitalocean.com

[27] W. Xiao, W. Bao, X. Zhu, and L. Liu, “Cost-aware big data proc-
essing across geo-distributed datacenters,” IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 11, pp. 3114–3127, Nov. 2017.

[28] Q. Xia, W. Liang, and Z. Xu, “Data locality-aware big data query
evaluation in distributed clouds,” Comput. J., vol. 60, no. 6,
pp. 791–809, 2017.

[29] Q. Xia, W. Liang, and Z. Xu, “QoS-Aware data replications and
placements for query evaluation of big data analytics,” in Proc.
IEEE Int. Conf. Commun., 2017, pp. 1–7.

[30] Q. Xia, W. Liang, and Z. Xu, “The operational cost minimization
in distributed clouds via community-aware user data placements
of social networks,” Comput. Netw., vol. 112, pp. 263–278, 2017.

[31] Q. Xia, Z. Xu, W. Liang, and A. Zomaya, “Collaboration- and fair-
ness-aware big data management in distributed clouds,” IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 7, pp. 1941–1953, Jul. 2016.

[32] Z. Xu and W. Liang, “Minimizing the operational cost of data cen-
ters via geographical electricity price diversity,” in Proc. 6th IEEE
Int. Conf. Cloud Comput., 2013, pp. 99–106.

[33] Z. Xu and W. Liang, “Operational cost minimization for distrib-
uted data centers through exploring electricity price diversity,”
Comput. Netw., vol. 83, pp. 59–75, 2015.

[34] Z. Xu, W. Liang, M. Jia, M. Huang, and G. Mao, “Task offloading
with network function services in a mobile edge-cloud network,”
IEEE Trans. Mobile Comput., doi: 10.1109/TMC.2018.2877623, vol.
PP, no. 99, pp. 1–1, 2019.

[35] Z. Xu, W. Liang, and Q. Xia, “Electricity cost minimization in dis-
tributed clouds by exploring heterogeneities of cloud resources
and user demands,” in Proc. IEEE Int. Conf. Parallel Distrib. Syst.,
2015, pp. 388–395.

[36] Y. Yan, L. J. Chen, and Z. Zhang, “Error-bounded sampling for
analytics on big sparse data,” Proc. VLDB Endowment, vol. 7,
no. 13, pp. 1508–1519, 2014.

[37] S. Yu, M. Liu, W. Dou, X. Liu, and S. Zhou, “Networking for big
data: A survey,” IEEE Commun. Surveys Tuts., vol. 19, no. 1,
pp. 531–549, Jan.–Mar. 2017.

[38] F. Yan, L. Ren, D. J. Dubois, G. Casale, J. Wen, and E. Smirni, “How
to supercharge the Amazon T2: Observations and suggestions,” in
Proc. IEEE 10th Int. Conf. Cloud Comput., 2017, pp. 278–285.

Qiufen Xia received the BSc and ME degrees in
computer science from the Dalian University of
Technology (DUT) in China, in 2009 and 2012,
respectively, and the PhD degree in computer sci-
ence from the Australian National University, in
2017. She is currently a lecturer with the Interna-
tional School of Information Science and Engineer-
ing, DUT. Her research interests include mobile
cloud computing, query evaluation, big data analyt-
ics, big data management in distributed clouds,
and cloud computing. She is amember of the IEEE.

Zichuan Xu (M’17) received the BSc and ME
degrees in computer science from the Dalian Uni-
versity of Technology (DUT) in China, in 2008
and 2011, respectively, and the PhD degree in
computer science from the Australian National
University, in 2016. He is currently an associate
professor with the School of Software, DUT.
Before joining in DUT, he was a research associ-
ate with the Department of Electronic and Electri-
cal Engineering, University College London,
United Kingdom. His research interests include

cloud computing, software-defined networking, wireless sensor net-
works, routing protocol design for wireless networks, algorithmic game
theory, and optimization problems. He is a member of the IEEE.

Weifa Liang (M’99–SM’01) received the BSc
degree in computer science from Wuhan Univer-
sity, China, in 1984, the ME degree in computer
science from the University of Science and Tech-
nology of China, in 1989, and the PhD degree in
computer science from the Australian National
University, in 1998. He is currently a full professor
with the Research School of Computer Science,
Australian National University. His research inter-
ests include design and analysis of energy efficient
routing protocols for wireless ad hoc and sensor

networks, cloud computing, software-defined networking, design and anal-
ysis of parallel and distributed algorithms, approximation algorithms, combi-
natorial optimization, and graph theory. He is a senior member of the IEEE.

Shui Yu received the BEng (electronic engineer-
ing) and MEng (computer science) degrees from
the University of Electronic Science and Technol-
ogy of China, P. R. China, in 1993 and 1999,
respectively, and the PhD (computer science)
degree from Deakin University, in 2004. He is
currently a full professor with the School of Soft-
ware, University of Technology Sydney (UTS),
Australia. Before joining UTS, he was a senior
lecturer with the School of Information Technol-
ogy, Deakin University, Melbourne. His research

interests include security and privacy, networking, big data, and mathe-
matical modeling. He is a member of the AAAS, ACM, and a senior
member of the IEEE.

Song Guo received the PhD degree in computer
science from the University of Ottawa. He is cur-
rently a full professor with the Hong Kong Poly-
technic University. Prior to joining PolyU, he was
a professor of the University of Aizu, Japan. His
research interests are mainly in the areas of
cloud computing, big data, wireless network, and
cyber-physical system. He has authored/edited
seven books and more than 300 papers in refer-
eed journals and conferences in these areas. He
serves/ served in editorial boards of the IEEE

Transactions on Parallel and Distributed Systems, the IEEE Transac-
tions on Emerging Topics in Computing, the IEEE Communications
Magazine, the Wireless Networks, and many other major journals. He
has been the general/program chair or in organizing committees of
numerous international conferences. He is a senior member of the IEEE
and ACM, and an IEEE Communications Society distinguished lecturer.

Albert Y. Zomaya (M’90–SM’97–F’04) is cur-
rently the chair professor of High Performance
Computing and Networking with the School of
Computer Science, University of Sydney, Sydney,
NSW, Australia, where he is also the director of
the Centre for Distributed and High Performance
Computing, which was established in 2009. He
has authored more than 500 scientific papers and
articles, and has authored, co-authored, or edited
more than 20 books. He serves as an associate
editor of 22 leading journals, such as, the ACM

Computing Surveys and the Journal of Parallel and Distributed Comput-
ing. He was a recipient of the IEEETechnical Committee on Parallel Proc-
essing Outstanding Service Award (2011), the IEEE Technical
Committee on Scalable Computing Medal for Excellence in Scalable
Computing (2011), and the IEEE Computer Society Technical Achieve-
ment Award (2014). He is a chartered engineer, and a fellow of the Ameri-
can Association for the Advancement of Science and the Institution of
Engineering and Technology (United Kingdom). His research interests
include the areas of algorithms, parallel and distributed computing, and
complex systems. He is a fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

XIA ET AL.: EFFICIENT DATA PLACEMENT AND REPLICATION FOR QOS-AWARE APPROXIMATE QUERY EVALUATION OF BIG DATA... 2691

http://dx.doi.org/10.1109/TMC.2018.2877623

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

