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Abstract—Recent studies show that individuals in a social network can be divided into different groups of densely connected
communities, and these individuals who bridge different communities, referred to as structural hole spanners, have great potentials to
acquire resources/information from communities and thus benefit from the access. Structural hole spanners are crucial in many real
applications such as community detections, diffusion controls, viral marketing, etc. In spite of their importance, little attention has been
paid to them. Particularly, how to accurately characterize the structural hole spanners and how to devise efficient yet scalable
algorithms to find them in a large social network are fundamental issues. In this paper, we study the top-k structural hole spanner
problem. We first provide a novel model to measure the quality of structural hole spanners through exploiting the structural hole
spanner properties. Due to its NP-hardness, we then devise two efficient yet scalable algorithms, by developing innovative filtering
techniques that can filter out unlikely solutions as quickly as possible, while the proposed techniques are built up on fast estimations of
the upper and lower bounds on the cost of an optimal solution and make use of articulation points in real social networks. We finally
conduct extensive experiments to validate the effectiveness of the proposed model, and to evaluate the performance of the proposed
algorithms using real world datasets. The experimental results demonstrate that the proposed model can capture the characteristics of
structural hole spanners accurately, and the structural hole spanners found by the proposed algorithms are much better than those by
existing algorithms in all considered social networks, while the running times of the proposed algorithms are very fast.

Index Terms—Social networks, top-k structural hole spanners, all-pairs shortest paths, filtering techniques, lower and upper bound
estimations, articulation points

F

1 INTRODUCTION

THE last decade witnessed the exponential growth of
a variety of large-scale networks such as social net-

works, citation networks, collaboration networks, biological
networks, wireless networks, etc. With the unprecedented
scale growth of network size, there are high demands for
developing efficient yet scalable algorithms to explore some
unique properties of such massive networks. Most social
networks exhibit the so-called community structure prop-
erty. That is, the vertices in a network can be grouped into
different sets of cohesive groups (communities) [13], where
vertices in the same community share similar attributes,
interests and resources. The communities in a network
play a significant role in information diffusion within the
network, information within a community circulates very
quickly and diffuses to other communities through commu-
nity boundaries or bridges. On the other hand, there is a con-
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sensus among social scientists [10] that a person who plays
a bridge role between different communities can acquire
more potential resources from these communities and has
more control over the information that is being transmitted.
For example, Burt [10] studied social structures of many
organizations and introduced the notion of structural holes as
positions that can bridge diverse groups and bring benefits
to the beholder. It is shown that the information obtained
from people in the same community tends to be homo-
geneous, while the information through the contacts with
people from different communities are much more non-
redundant [27]. Therefore, a person who develops relations
with people from multiple different communities will gain
more benefits. Structural hole spanners were studied initially
by Lou et al. [21] and later by Rezvani et al. [26]. For example,
a community in an academic collaboration network repre-
sents a group of people with the similar research interests,
and people (structural hole spanners) who can bridge differ-
ent research communities are more potent to combine ideas
from different research groups and create interdisciplinary
works. Structural hole spanners have a wide range of prac-
tical applications. For example, in community detection,
identifying central hubs that connect different groups can
help isolate and identify communities [3], [34]. In Epidemic
diseases and rumors spreading, quarantining structural hole
spanners can stop the spread of infection and rumors into
other communities [7], [15], [22]. In viral marketing, the
most influential structural hole spanners can speed-up the
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new product marketings to different groups [19], [35], [6],
[31], [29], [23], [30]. In graph compression, structural holes
are good candidates for k-shattering [18] as they connect
diverse parts of a network together, and their removal will
result in the network disconnected.

There are several pioneering studies on the identification
of structural hole spanners in social networks [14], [20], [21],
[28]. For example, Lou et al. [21] introduced a model for
structural hole spanners, and proposed two algorithms for
identifying structural hole spanners, under an assumption
that communities are given in advance. However, their work
relies heavily on communities while finding communities in
a large social network is painstaking, and the quality of the
solution delivered by their algorithm is fully determined
by the found communities. If the quality of the found
communities are poor, the quality of the solution consisting
of structural hole spanners will be low as well. Rezvani et
al. [26] recently studied this problem and proposed several
fast heuristics for it. There are other related studies that
aim to discover the structural hole spanners from a social
network, using the topological structure of the network.
Goyal et al. [14] considered each structural hole spanner as
a vertex that lies on a large number of shortest paths, which
is similar to the betweenness centrality. Since calculating the
number of shortest paths on which each vertex lies is time-
consuming, Tang et al. [28] formulated structural hole span-
ners in a network as the vertices which lie on a large num-
ber of shortest paths of length two only. These mentioned
models however failed to capture the essential properties of
structural hole spanners, which can be illustrated by Fig. 1.
It can be seen that vertex v1, rather than vertex v2, lies on a
large number of shortest paths of length two, while vertex
v2, instead of vertex v1 is a better structural hole spanner
as it bridges more communities. Fig. 1 demonstrates that
vertex v2 is vital for shortest paths between the vertices in
different communities. In other words, upon the removal
of vertex v2, the shortest path between vertices in different
communities will be obliterated.

v1v1

v2v2

Fig. 1. An illustration of structural hole spanners, where each closed
area represents a community, and vertices v1, v2 represent structural
hole spanners that span multiple communities.

Since structural hole spanners usually bridge different
communities, we have an important observation that struc-
tural hole spanners are in the shortest paths between the
vertices in different communities. Their removals will result
in the increase on lengths of shortest paths between these
vertices. For example, vertices v1 and v2 in Fig. 1 play
a key role in the shortest paths between the nodes in
different communities and their removal can significantly
increase the lengths between the other vertices, while the
impact of the removal of other vertices on the shortest
paths is insignificant. Based on this observation, in this

paper, we propose a model based on the mean distance of
the network [5] for modeling the structural hole spanners,
which is the average of the lengths of all-pairs shortest paths
in the network. We consider the structural hole spanner
problem as a set of vertices whose removal will result in
the maximum increase on the mean distance of vertices
in the residual network, and we term the top-k structural
hole spanner problem as the problem of finding a set of k
vertices whose removal will result in the maximum increase
on the mean distance. Following this definition of structural
hole spanners, it can be seen that vertex v2 is identified as
a better structural hole spanner than vertex v1 in Fig. 1,
since its removal will disconnect two communities and
dramatically increase the mean distance of vertices in the
residual network, whereas the removal of vertex v1 does not
disconnect any communities. To the best of our knowledge,
this is the first time that a novel, top-k structural hole span-
ner problem is formulated, its NP-hardness is proven, and
efficient yet scalable algorithms are proposed. Unlike most
existing studies that assumed that either all communities
are given in advance or the structural hole spanner finding
relies on the community detections in a network, our model
relies only on the network topological structure itself.

The main contributions of this paper are summarized
as follows. We first study the top-k structural hole spanner
problem in social networks by formulating it as a novel
optimization problem and showing its NP-hardness. We
then devise two efficient yet scalable algorithms for it
through the development of innovative filtering techniques
that can filter out unlikely solutions as early as possible. The
invented techniques are built up on fast estimations on the
upper and lower bounds on the cost of an optimal solution
and an observation of that the articulation points in a real
social network usually are the structural hole spanners of
the network. We finally validate the accuracy and effective-
ness of the proposed model, and evaluate the performance
of the proposed algorithms through extensive experiments,
using real datasets. Experimental results demonstrate that
the proposed algorithms are very promising, and the found
hole spanners can connect more and larger communities in
comparison with those by existing algorithms. The empir-
ical evaluation clearly shows that the proposed algorithms
outperform the other heuristics in terms of accuracy and
their running times are orders of magnitude faster.

It must be mentioned that this paper is an extended
version of our recent conference paper [26] with substantial
new material additions. The significant differences between
the conference version and this journal version are as fol-
lows. (i) A detailed proof of the NP-hardness of the top-
k structural hole spanner problem is given (see Section
3 and the supplementary materials), while only a sketch
proof of the NP-hardness in the conference version was
provided due to the limited space. (ii) Two novel algo-
rithms Greedy and AP_Greedy for the top-k structural
hole spanner problem are proposed in Sections 4 and 5,
respectively, by developing innovative filtering techniques
to filter out unlikely solutions as early as possible. The
filtering techniques are based on fast estimations of the
upper and lower bounds on the cost of an optimal solution
and the exploration of articulation points in a social network
jointly. (iii) To evaluate the performance of the proposed
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algorithms, extensive experiments have been conducted in
Section 6, and experimental results show that the structural
hole spanners found by the proposed algorithms are much
better than those found by existing algorithms including
the ones in our conference paper for all considered so-
cial networks. In addition, the newly proposed algorithm
AP_Greedy is highly scalable, which takes only about 145
seconds for finding top-50 structural hole spanners in a
social network with over five million vertices and more than
27 million edges in a typical desktop machine.

The rest of the paper is organized as follows. Section 2
introduces basic notations and the problem definition. Sec-
tion 3 proves the NP-hardness of the problem. Sections 4
and 5 proposes efficient algorithms for the problem. Sec-
tion 6 evaluates the performance of the proposed algo-
rithms, using real social network datasets. Section 7 reviews
related works on structural hole spanners, and Section 8
concludes the paper.

2 PRELIMINARIES AND DEFINITIONS

2.1 Network Model

A social network can be modeled as an undirected graph
G = (V,E), where V is the set of vertices representing
individuals and E is the set of edges representing the re-
lationships between individuals. Let n = |V | and m = |E|.
A vertex in G is an articulation point (or cut vertex) of G if its
removal will disconnect a connected component in G.

AsG is an unweighted graph, assume that each edge has
a weight of 1, and we term each edge e ∈ E as a real edge.
The distance dGuv between two vertices u and v in G is the
length of the shortest path between them. We assume that
dGvv = 0 for any vertex v ∈ V . Given a subset VS of V , let
G[V \ VS ] be the induced subgraph of G by the vertices in
V \VS . We abbreviate G[V \VS ] by G \VS if no ambiguities
arise. The average distance c(v) [5] from a vertex v in G to the
other vertices then is

c(v) =

∑
u∈V

dGuv

n− 1
. (1)

The mean distance of a graph G is defined as follows.

c(G) =

∑
v∈V

c(v)

|V |
=

∑
v∈V

∑
u∈V

dGuv

(n− 1)|V |
=

∑
v∈V

∑
u∈V

dGuv

n(n− 1)
. (2)

The sum of lengths of all pairs shortest paths in G [26] is

C(G) =
∑
u∈V

∑
v∈V

dGuv = n(n− 1)c(G). (3)

Note that ifG is disconnected, to make the mean distance
of G still be valid, the distance between two vertices not in
the same connected component is defined by a sufficiently
large value ζ to avoid the infinite distance. This value should
be larger than the sum of lengths of all-pairs shortest paths
in any connected component of G, e.g., ζ = n3/3, as the
upper bound on the sum of lengths of all pairs shortest
paths in a n-vertex graph is no more than n3/3 [25].

Lemma 1. [25] Let G = (V,E) be an unweighted connected
graph with n = |V | vertices, then the sum of lengths of
all-pairs shortest paths in G is no more than n3/3.

2.2 Problem Definition
Given a social network G = (V,E) and a positive integer k,
the top-k structural hole (SH) spanner problem in G is to find
a subset of vertices VS (VS ⊂ V ) with |VS | = k, such that
the removal of the vertices in VS from G will result in the
maximum increase on the sum of all-pairs shortest distances
in the induced subgraph G \ VS (also see [26]), i.e., the
objective is to maximize the value of C(G \ VS)− C(G),

max
VS⊂V, |VS |=k

{C(G \ VS)− C(G)}, (4)

which is equivalent to

max
VS⊂V, |VS |=k

{C(G \ VS)}. (5)

Communities in a network G are defined as the groups of
vertices with dense connections internally and sparse con-
nections externally [13]. Due to node density, the distance
between two vertices in the same community is small and
the removal of any member from the same community does
not change the distance between the other members consid-
erably. In contrast, structural hole spanners bridge different
communities, and their removal can dramatically increase
the distance between the vertices in these communities [10].
The removal of top-k structural hole spanners from a net-
work will result in the maximum number of communities
disconnected in comparison with other k-vertex removals,
thereby significantly increasing the mean distance of the
nodes in the remaining network. Fig. 1 illustrates the impact
of the removal of structural hole spanners on the mean
distance. Specifically, the proposed model and the defined
problem capture three important characteristics of structural
hole spanners as follows [26].

(i) Given an individual u who bridges multiple commu-
nities and another individual v who contacts with people
only in his/her community, individual u is considered by
the model to be a better structural hole spanner than indi-
vidual v, since the connections among individuals within
the communities to which individual v belongs are strong,
and the absence of v only slightly increases the distance
among the other individuals in the network. In contrast,
individual u connects people who are in different commu-
nities, its absence can dramatically increase the distance
between them, as they are loosely connected.

(ii) Given an individual u who bridges large communi-
ties and another individual v who bridges small communi-
ties, individual u is considered to be a better structural hole
spanner than individual v, since its removal will disconnect
more people in the network.

(iii) Given an individual u who bridges many commu-
nities and another individual v who bridges only a few,
individual u is considered to be a better structural hole
spanner, since its removal will increase the distance between
more communities (even if they are smaller).

Note that the proposed model relies only on the net-
work topological structure itself, which is more generic and
intuitively captures the properties of the structural hole
spanners in real social networks in a unified way.

3 NP-HARDNESS

In this section we show that the top-k structural hole span-
ner problem is NP-hard, by a non-trivial reduction from
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a known NP-hard problem - the Most Vital Node Problem
(MVNP) [4], which is defined as follows.

Given an undirected graph G = (V ∪ {s, t}, E), a pair
of nodes s and t, and a positive integer k, assume that there
is no edge between vertices s and t in G and their vertex
connectivity κG(s, t) is no less than k + 1, the MVNP is to
find a subset VS of V with |VS | = k such that the length of
the shortest path between s and t in subgraph G[(V \ VS)∪
{s, t}] of G is maximized.

Theorem 1. The top-k structural hole spanner problem in a
social network G = (V,E) is NP-hard.

Proof: Given an instance of the MVNP in an undi-
rected graph G = (V ∪ {s, t}, E) with n = |V ∪ {s, t}|,
a pair of vertices s and t in G, and a positive integer k,
an instance of the top-k structural hole spanner problem
in another undirected graph G′ = (V ∪ S ∪ T,E′) can be
constructed as follows.

Let l = 4n6. Sets of vertices S and T are obtained
by duplicating vertices s and t with each l times, i.e.,
S = {s1, s2, . . . , sl} and T = {t1, t2, . . . , tl}. For any two
different vertices u, v ∈ V , an edge (u, v) is added to E′

if there is an edge (u, v) ∈ E. For each vertex v ∈ V , l
edges (v, s1), (v, s2), . . . , and (v, sl) (or (v, t1), (v, t2), . . . ,
and (v, tl)) are added to E′ if edge (v, s) (or (v, t)) is
contained inE. The construction ofG′ is illustrated in Fig. 2.
Clearly, it can be verified that κG

′
(si, tj) = κG(s, t) for any

vertex si ∈ S and any vertex tj ∈ T with 1 ≤ i, j ≤ l, and
dG
′

uv = dGuv for every pair of vertices u and v.

s t

(a) G

s2 t2

s1

sl

t1

tl

...

...

(b) G′

Fig. 2. G′ is constructed from G by replicating vertices s and t and their
incident edges l times.

The MVNP in G = (V ∪ {s, t}, E) can be solved by a
reduction to the SH problem in G′ as follows.

We first show that an optimal solution to the problem in
G′ does not contain any vertex si or ti, thus, it is a feasible
solution for the MVNP. We then prove that an optimal
solution to the structural hole spanner problem is indeed
an optimal solution to the MVNP.

Assume that set VS ⊂ V ∪ S ∪ T is an optimal solution
to the top-k structural hole spanner problem in G′, i.e.,
C(G′ \VS) = maxV ′S⊂V ∪S∪T,|V ′S |=k{C(G′ \V ′S)}. Following
Lemma 3 in the supplementary materials, set VS does not
contain any vertices in S or T . Therefore, VS is a feasible
solution to the MVNP. We show that VS is an optimal
solution for the MVNP in G in the following. Let

x = (C(G′ \ VS)− 4l(nV − k)−
4l(l − 1)− (nV − k)(nV − k − 1))/2l2, (6)

We distinguish the proof into two cases: (i) dG\VS

st = bxc;
and (ii) bxc = maxV ′S⊂V,|V ′S |=k{d

G\V ′S
st } = d

G\VS

st . Set VS
then is an optimal solution to the MVNP in G.

We first consider Case (i). dG\VS

st = bxc. We can see that
d
G\VS

st = d
G′\VS

sitj for any pair of vertices si ∈ S and tj ∈ T .

To this end, we show that dG
′\VS

sitj ≤ bxc and dG
′\VS

sitj ≥ bxc.
Following Lemma 4 in the sup-

plementary materials, we have that
C(G′ \ VS) ≥ 4l(nV − k) + 4l(l − 1) + (nV − k)(nV − k −
1) + 2l2d

G′\VS

sitj , thus dG
′\VS

sitj ≤ x. Since the value of dG
′\VS

sitj

is a positive integer, dG
′\VS

sitj ≤ bxc.
We then show that dG

′\VS

sitj ≥ bxc by contradiction.

Assume dG
′\VS

sitj < bxc, then dG
′\VS

sitj ≤ bxc−1. Following
Lemma 4 in the supplementary materials, we have

C(G′ \ VS)

≤ 4l(nV − k)ζ + 4l(l − 1) + (nV − k)(nV − k − 1)ζ + 2l2d
G′\VS
sjtj

,

since we assumed that dG
′\VS

sitj ≤ bxc − 1,

C(G′ \ VS)

≤ 4l(nV − k)ζ + 4l(l − 1) + (nV − k)(nV − k − 1)ζ + 2l2(bxc − 1)

≤ 4l(nV − k)ζ + 4l(l − 1) + (nV − k)(nV − k − 1)ζ + 2l2(x− 1),

we then simply substitute x by its value from Eq.(6),

C(G′ \ VS)

≤ 4l(nV − k)ζ + 4l(l − 1)− 2l2 + (nV − k)(nV − k − 1)ζ

+C(G′ \ VS)− 4l(nV − k)− 4l(l − 1)− (nV − k)(nV − k − 1)

< C(G′ \ VS) + 4l(nV − k)ζ + (nV − k)(nV − k − 1)ζ − 2l2,

since nV − k − 1 < nV − k < n and ζ = n3. Therefore,

C(G′ \ VS) < C(G′ \ VS) + 4ln4 + n5 − 2l2.

Since l = 4n6, we have

C(G′ \ VS) < C(G′ \ VS) + 16n10 + n5 − 32n12 < C(G′ \ VS), (7)

where inequality (7) results in a contradiction. Therefore,
d
G′\VS

sjtj ≥ bxc. We thus have dG
′\VS

sjtj = bxc.
The rest is to show Case (ii). bxc =

maxV ′S⊂V,|V ′S |=k{d
G\V ′S
st } = d

G\VS

st . Denote by V ∗S
the optimal solution to the MVNP in G, i.e.,
d
G\V ∗S
st = maxV ′S⊂V,|V ′S |=k{d

G\V ′S
st }. It can be seen that

d
G\VS

st = d
G′\VS

sitj and d
G\V ∗S
st = d

G′\V ∗S
sitj for any pair of

vertices si ∈ S and tj ∈ T . Assume that dG
′\V ∗S

sitj > d
G′\VS

sitj ,

then dG
′\V ∗S

sitj ≥ dG
′\VS

sitj +1 = bxc+1 > x. Following Lemma
4, we have

C(G′ \ V ∗S )

≥ 4l(nV − k) + 4l(l − 1) + 2l2d
G′\V ∗S
sjtj

+ (nV − k)(nV − k − 1)

> 4l(nV − k) + 4l(l − 1) + 2l2 · x+ (nV − k)(nV − k − 1)

= C(G′ \ VS), (8)

i.e., C(G′ \ V ∗S ) > C(G′ \ VS), which contradicts the
assumption that VS is an optimal solution. Thus, set VS is
an optimal solution to the MVNP in G. The top-k structural
hole spanner problem is NP-hard, too.

4 AN EFFICIENT ALGORITHM

In this section, we propose a novel greedy algorithm for the
top-k structural hole spanner problem. We first introduce
the basic idea behind the algorithm, and then elaborate the
algorithm in detail.



1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2651825, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, 2016 5

4.1 Basic idea
The proposed algorithm proceeds iteratively. Within each
iteration, one structural hole spanner is found. To identify
a vertex vi (i.e., a structural hole spanner) within iteration
i so that the average shortest distance of the vertices in
the residual network after the removal of the first i found
vertices v1, v2, . . . , vi is maximized. The key technique to
this algorithm is the development of an innovative filtering
technique to filter out unlikely solutions as early as possible.
The k found vertices then form the top-k structural hole
spanners in the social network. In the following we detail
this greedy algorithm.

4.2 A greedy algorithm
Given a social network G = (V,E) and a positive integer k,
the greedy algorithm finds a set VS of k spanners within k
iterations and removes one vertex from network G within
each iteration. Let v1, v2, . . . , vk be the k spanners found by
the greedy algorithm in the 1st, 2nd, . . ., and kth iteration,
respectively. Denote by Gi the residual network after the
removal of the first i spanners from G, i.e., Gi(Vi, Ei) =
G[V \ {v1, v2, . . . , vi}], 1 ≤ i ≤ k. We can see Gi−1 is the
network just before the ith iteration, assuming that G0 = G.

The greedy algorithm proceeds as follows. Assume
that the algorithm has found the first (i − 1) spanners
v1, v2, . . . , vi−1 prior to iteration iwith 1 ≤ i ≤ k. Recall that
Gi−1(Vi−1, Ei−1) = G[V \{v1, v2, . . . , vi−1}], whereG[X] is
an induced subgraph of G by the vertices in set X with X ⊆
V . Within iteration i, the greedy algorithm identifies a vertex
vi from graph Gi−1 (i.e., vi ∈ Vi−1 = V \ {v1, v2, . . . , vi−1})
so that the average distance of graph Gi−1[Vi−1 \ {vi}]
is maximized, i.e., vi = argmaxvj∈Vi−1{

C(Gi−1\{vj})
ni(ni−1) } =

argmaxvj∈Vi−1
{C(Gi−1 \ {vj})} by Eq. (3), where ni =

|Vi−1| − 1 = |V | − (i− 1)− 1 = n− i.
It can be seen that a simple way to find vertex vi is to cal-

culate the sum of all-pairs shortest distances C(Gi−1 \{vj})
in graph Gi−1\{vj} for every vertex vj ∈ Vi−1. It thus takes
O(ni−1nimij) = O(n2m) time to find vertex vi, where the
sum of all-pairs shortest distances C(Gi−1 \ {vj}) in graph
Gi−1 \ {vj} can be calculated, by running a single-source
shortest paths algorithm ni times, once for each vertex
as the source in the graph, and the most efficient single-
source shortest paths algorithm in an unweighted graph is
to perform a breadth-first search from the source vertex [12],
ni−1 = n − (i − 1), ni = n − i, and mij is the number of
edges in graph Gi−1 \ {vj}. In the following we propose
an efficient algorithm for finding vertex vi by reducing its
finding time significantly. This is implemented through the
development of an innovative filtering technique to filter
out unlikely solutions as early as possible. To this end, we
propose two strategies to significantly reduce the running
time of finding vertex vi.

The first one is a pruning technique, which efficiently
estimates the upper bound UB(Gi−1 \ {vj}) on the cost
C(Gi−1 \ {vj}), and prunes the costly calculation of
C(Gi−1 \ {vj}) if the upper bound UB(Gi−1 \ {vj}) is
no greater than the maximum cost among the first (j − 1)
graphs Gi−1 \ {v1}, Gi−1 \ {v2}, . . . , Gi−1 \ {vj−1}.

The second one is to fast calculate the value of C(Gi−1 \
{vj}) with tight statistical guarantees, by applying a ran-
domized algorithm for this purpose.

The detailed algorithm for the top-k structural hole
spanner problem is depicted in Algorithm 1.

Algorithm 1 Greedy Algorithm
Input: A network G = (V,E) and a positive integer k
Output: The set VS of top-k structural hole spanners in

network G
1: Let VS ← ∅ and G0 ← G;
2: for i← 1 to k do
3: Sort vertices in graph Gi−1 in non-increasing order of

their vertex degrees, and let v1, v2, . . . , vn−(i−1) be the
sorted vertices;

4: C0
max ← 0; /* the maximum sum of all-pairs shortest

distances among the first (j − 1) networks */
5: for j ← 1 to n− (i− 1) do
6: Estimate the upper bound UB(Gi−1 \ {vj}) on the

cost C(Gi−1 \ {vj}) of network Gi−1 \ {vj}, by
invoking Procedure 1;

7: if UB(Gi−1 \ {vj}) ≤ Cj−1
max then

8: Cj
max ← Cj−1

max;
9: else

10: Calculate C(Gi−1 \ {vj}) by invoking
Procedure 2;

11: if C(Gi−1 \ {vj}) > Cj−1
max then

12: vi ← vj and Cj
max ← C(Gi−1 \ {vj});

13: else
14: Cj

max ← Cj−1
max;

15: end if
16: end if
17: end for
18: Add vertex vi to set VS ;
19: Let Gi be the residual network after the removal of

vertex vi and its incident edges from Gi−1;
20: end for
21: return Set VS .

The pruning technique is described as follows. We sort
vertices in graph Gi−1 in non-increasing order of their
degrees. The intuition behind is that it is more likely that the
removal of a large degree vertex, rather than a small degree
vertex, can significantly increase the shortest distances of
other pairs of vertices. Let v1, v2, . . . , vn−(i−1) be the sorted
vertices in Gi−1 in non-increasing order, and let Cj−1

max be the
maximum sum of all-pairs shortest distances among the first
(j − 1) graphs Gi−1 \ {v1}, Gi−1 \ {v2}, . . . , Gi−1 \ {vj−1},
i.e., Cj−1

max = maxj−1l=1 {C(Gi−1 \ {vl})}. The pruning tech-
nique first estimates the upper bound UB(Gi−1 \ {vj})
on C(Gi−1 \ {vj}), it prunes the costly calculation of
C(Gi−1 \ {vj}) if UB(Gi−1 \ {vj}) ≤ Cj−1

max. Then, Cj
max =

max{Cj−1
max, C(Gi−1 \ {vj})} = Cj−1

max.

The upper bound UB(Gi−1 \ {vj}) on C(Gi−1 \ {vj}) is
estimated as follows. Assume that graphGi−1\{vj} consists
of pij connected components G′1, G

′
2, . . . , G

′
pij

, where pij is
a positive integer. Denote by n′l the number of vertices in
connected component G′l. Then,

∑pij

l=1 n
′
l = ni = n − i.

Specifically, we first find a spanning tree Tl in each con-
nected component G′l with 1 ≤ l ≤ pij . Then, for any two
vertices u and v in G′l, the shortest distance between them
in tree Tl is no less than that in G′l, and the sum of all-pairs
shortest distances C(Tl) in tree Tl is an upper bound on
C(G′l). The upper bound UB(Gi−1\{vj}) onC(Gi−1\{vj})
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thus is

UB(Gi−1 \ {vj}) =
pij∑
l=1

C(Tl) +

pij∑
l=1

n′l(ni − n′l) · ζ, (9)

where n′l(ni − n′l) is the number of pairs between the
vertices in G′l and the vertices not in G′l, and ζ is the large
value assigned as the shortest distance of two unreachable
vertices.

The calculation of the sum of all-pairs shortest distances
C(Tl) in tree Tl proceeds as follows. For each edge (u, v)
in tree Tl of G′l, the removal of edge (u, v) from tree Tl
will disconnect the tree into two subtrees Tl,u and Tl,v that
contain vertices u and v, respectively. Let n′l,u and n′l,v be
the numbers of vertices in the two subtrees, respectively,
and n′l,u + n′l,v = n′l. Since Tl is a tree, it can be seen that
edge (u, v) is contained in 2 · n′l,u · n′l,v pairs of shortest
paths among all-pairs shortest paths in tree Tl. Therefore,
C(Tl) =

∑
(u,v)∈Tl

2n′l,un
′
l,v since the length of each edge is

one.
Procedure 1 details the estimation of the upper bound

UB(G′) on the cost C(G′) of graph G′.

Procedure 1 Estimate an upper bound on the sum of all-
pairs shortest distances
Input: an unweighted network G′ = (V ′, E′)
Output: An upper bound UB(G′) on the cost C(G′) of

graph G′

1: Assume that there are p connected components in G′,
and denote by G′1, G

′
2, . . . , G

′
p the p connected compo-

nents;
2: Let UB(G′)← 0; /* the upper bound */
3: for l← 1 to p do
4: Find a spanning tree Tl of connected component G′l,

by performing a depth-first search on G′l, since the
weight of each edge is one;

5: Choose an arbitrary vertex rl in tree Tl as its root;
6: Calculate the number of vertices n′v in the subtree

rooted at each vertex v of tree Tl by performing a
depth-first search starting from root rl;

7: for each edge (u, v) in tree Tl do
8: Assume vertex u is the parent of vertex v in tree Tl;
9: UB(G′)← UB(G′)+ 2n′v(n

′
l−n′v), where n′l is the

number of vertices in tree Tl;
10: end for
11: end for
12: for l← 1 to p do
13: UB(G′)← UB(G′) + n′l(n

′ − n′l) · ζ , where n′l and n′

are the numbers of vertices in connected components
G′l and G′, respectively;

14: end for
15: return UB(G′).

In case the estimated upper bound UB(Gi−1 \ {vj})
on the cost C(Gi−1 \ {vj}) is greater than the maximum
cost Cj−1

max among the first (j − 1) graphs (i.e., this filter
cannot filter out vertex vj), we then calculate the cost
C(Gi−1 \ {vj}) in graph Gi−1 \ {vj}, by the randomized al-
gorithm in [11], which estimates the sum of all-pairs shortest
distances in a connected graph with a low time complexity
O(ε−2(ni + mi)) yet within a multiplicative relative error
ε, where ε is a given small constant with 0 < ε ≤ 1. It

must be mentioned that the randomized algorithm in [11]
is only applicable to a connected graph, which may not be
directly applicable to our case where Gi−1 \ {vj} may be
disconnected. Recall that graph Gi−1 \ {vj} consists of pij
connected components G′1, G

′
2, . . . , G

′
pij

with each G′l con-
taining n′l vertices. The sum of all-pairs shortest distances
C(G′l) inG′l can be estimated within a multiplicative relative
error ε, by applying the randomized algorithm in [11]. The
sum of all-pairs shortest distances C(Gi−1 \ {vj}) in graph
Gi−1 \ {vj} thus is

C(Gi−1 \ {vj}) =
pij∑
l=1

C(G′l) +

pij∑
l=1

n′l(ni − n′l) · ζ. (10)

Procedure 2 depicts the detailed randomized algo-
rithm for calculating the sum of all-pairs shortest distances
in a graph G′ = (V ′, E′).

Procedure 2 Calculate the sum of all-pairs shortest distances
in a graph
Input: an undirected graph G′ = (V ′, E′)
Output: The sum of all-pairs shortest distances C(G′) of G′

1: Assume there are p connected components in G′ and
denote by G′1, G

′
2, . . . , G

′
p the p connected components;

2: Let C(G′)← 0;
3: for l← 1 to p do
4: Estimate the sum of all-pairs shortest distances C(G′l)

among the connected component Gl, by applying the
randomized algorithm in [11];

5: C(G′) ← C(G′) + C(G′l) + n′l(n
′ − n′l) · ζ , where

n′l and n′ are the numbers of vertices in connected
component G′l and G′, respectively;

6: end for
7: return C(G′).

4.3 Analysis of algorithm complexity

We now analyze the time complexity of Algorithm 1 by
the following theorem.
Theorem 2. Given a social network G = (V,E) and a pos-

itive integer k, there is an algorithm, Algorithm 1, for
the top-k structural hole spanner problem in G, which
takes O(ε−2kn(n +m)) time, where n = |V |, m = |E|,
and ε is a constant with 0 < ε ≤ 1.

Proof: Following Algorithm 1, it finds a set VS of
k structural hole spanners in G within k iterations. Within
the ith iteration (1 ≤ i ≤ k), it either estimates an upper
bound UB(Gi−1 \ {vj}) on the sum of all-pairs shortest
distances C(Gi−1 \ {vj}) in graph Gi−1 \ {vj} by invoking
Procedure 1, or calculates the cost C(Gi−1 \ {vj}) by
invoking Procedure 2. We can see that the time complexity
of Procedure 1 is O(n+m).

The rest is to analyze the time complexity of
Procedure 2. Recall that Gi−1 \ {vj} consists of pij con-
nected components G′1, G

′
2, . . . , G

′
pij

. It takes O(ε−2(n′l +
m′l)) time to estimate the sum of all-pairs shortest distances
C(G′l) in G′l, by invoking the randomized algorithm in [11],
where n′l and m′l are the numbers of vertices and edges in
G′l, respectively. Therefore, it takes

∑pij

l=1O(ε−2(n′l+m
′
l)) =

O(ε−2(
∑pij

l=1 n
′
l +

∑pij

l=1m
′
l)) = O(ε−2(n + m)) to esti-

mate the cost of C(Gi−1 \ {vj}). The time complexity of
Algorithm 1 thus is O(knε−2(n+m)).
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5 A FAST YET SCALABLE ALGORITHM

So far, we have devised a heuristic algorithm for the
top-k structural hole spanner problem. However, follow-
ing Theorem 2, the time complexity O(ε−2kn(n + m)) of
Algorithm 1 is still high, especially when the network
size is very large, e.g., millions of vertices. In the following
we devise another fast yet scalable algorithm by making
use of articulation points (APs) of network G to further
prune unlikely solutions as quickly as possible. We term this
algorithm as the AP-based algorithm, whose running time is
only O(k(n+m)). In fact, its running time is linear for most
real social networks, which can be seen in later experiments.

5.1 The basic idea of the proposed algorithm
One of the instinct properties of structural hole spanners in
most real social networks is their tendency to connect mul-
tiple isolated communities. Such structural hole spanners
are referred to the articulation points in graph theory. Thus,
a top-k structural hole spanner usually is an articulation
point of a network too. However, the number of articulation
points in a real social network may be quite large, e.g.,
there are hundreds even thousands of articulation points in
each real social network of Table 1 in Section 6.1. Efficiently
identifying top-k structural hole spanners from all articula-
tion points in a large social network is a challenging issue.
In the following we devise a fast yet scalable algorithm
for the top-k structural hole spanner problem, by making
use of articulation points along with the filtering technique
introduced in the previous section to further prune unlikely
structural hole spanner candidates as early as possible.

Similar to Algorithm 1 proposed in the previous sec-
tion, the AP-based algorithm identifies the k structural hole
spanners within k iterations and removes all found spanners
from network G within each iteration. Assume that the
algorithm has already found the first (i − 1) structural
hole spanners v1, v2, . . . , vi−1 in its first (i − 1) iterations
with 1 ≤ i ≤ k. Recall that Gi−1(Vi−1, Ei−1) = G[Vi−1]
and Vi−1 = V \ {v1, v2, . . . , vi−1}. Within the ith iteration,
it finds a vertex vi ∈ Vi−1 so that the sum of all-pairs
shortest distances in graph Gi−1 \ {vi} is maximized, i.e.,
vi = argmaxvj∈Vi−1

{C(Gi−1 \ {vj})}.
Unlike that the calculation of the cost C(Gi−1 \ {vj}) of

each graph Gi−1 \ {vj} with vj ∈ Vi−1 in Algorithm 1
is very time-consuming, the AP-based algorithm efficiently
finds the ith structural hole spanner vi by exploiting only
the articulation points in Gi−1, since it is very likely that
the removal of an articulation point from graph Gi−1 will
significantly increase the shortest distances of other vertices
in the residual network.

5.2 A fast yet scalable algorithm
We partition the vertices in graph Gi−1(Vi−1, Ei−1) into
two disjoint sets: the set of articulation points VAP and
the set of non-articulation points VNAP (= Vi−1 \ VAP ),
where a vertex vj ∈ Vi−1 is contained in set VAP if it
is an articulation point (AP) in Gi−1 (i.e., the removal of
vertex vj from Gi−1 disconnects a connected component
in Gi−1); otherwise, vertex vj is contained in set VNAP .
We now estimate an upper bound UBj on the sum of all-
pairs shortest distances C(Gi−1 \{vj}) in graph Gi−1 \{vj}
for each non-articulation point (non-AP) vj ∈ VNAP , and a

lower bound LBl on C(Gi−1 \ {vl}) in graph Gi−1 \ {vl}
for each AP vl ∈ VAP . It can be seen that an AP vl
is a better structural hole spanner than a non-AP vj if
LBl > UBj . We will show that the ith structural hole
spanner vi is an AP in set VAP with the maximum lower
bound if its lower bound is greater than the maximum up-
per bound among non-APs, i.e., vi = argmaxvl∈VAP

{LBl}
if maxvl∈VAP

{LBl} > maxvj∈VNAP
{UBj}.

We first estimate the upper bound UBj on C(Gi−1 \
{vj}) for each non-AP vj ∈ VNAP . Assume that Gi−1
consists of pi connected components G′1, G

′
2, . . . , G

′
pi

with
each G′t containing n′t vertices, 1 ≤ t ≤ pi. Then,

∑pi

t=1 n
′
t =

ni−1 = n − (i − 1). Similar to Eq. (10), the sum of all-pairs
shortest distances in Gi−1 is C(Gi−1) =

∑pi

t=1 C(G
′
t) +∑pi

t=1 n
′
t(ni−1 − n′t) · ζ . For a non-AP vj ∈ VNAP , assume

that vertex vj is contained in connected component G′s of
Gi−1. Since vertex vj is not an articulation point, its removal
will not disconnect G′s. Let G′′s = G′s \ {vj}. Then, G′′s is
still connected. The sum of all-pairs shortest distances in
Gi−1 \ {vj} thus is

C(Gi−1 \ {vj})

=

pi∑
t=1,t6=s

C(G′t) + C(G′′s ) +

pi∑
t=1

n′t(ni−1 − n′t)ζ − 2(ni−1 − n′s)ζ (11)

≤
pi∑

t=1,t6=s

n′
3
t /3 + n′

3
s/3 +

pi∑
t=1

n′t(ni−1 − n′t)ζ − 2(ni−1 − n′s)ζ (12)

≤ n3/3 +

pi∑
t=1

n′t(ni−1 − n′t) · ζ − 2(ni−1 − n′s)ζ, (13)

≤ (

pi∑
t=1

n′t(ni−1 − n′t) + 2n′s + 1− 2ni−1) · ζ, as n3/3 ≤ ζ

= UBj , (14)

where in Eq. (11), 2(ni−1−n′s) is the number of unreachable
pairs of vertices between vertex vj and the vertices not in
connected component G′s, and vj is contained in connected
component G′s, Ineq. (12) holds by Lemma 1, and Ineq. (12)
holds since

∑pi

t=1,t6=s n
′
t + n′s = n − i ≤ n. Note that the

upper bound UBj can be easily calculated, by counting the
number of unreachable pairs of vertices in Gi−1 \ {vj}, i.e.,∑pi

t=1 n
′
t(ni−1 − n′t) + 2n′s − 2ni−1.

We then estimate the lower bound LBl onC(Gi−1\{vl})
for each AP vl ∈ VAP . Assume that vertex vl is contained in
a connected component G′s. Since vl is an articulation point,
the removal of vl will disconnect G′s into, say, psl connected
components G′′1 , G

′′
2 , . . . , G

′′
psl

. Denote by n′′t the number of
vertices in G′′t . Then,

∑psl

t=1 n
′′
t = n′s−1. The sum of all-pairs

shortest distances in Gi−1 \ {vl} thus is

C(Gi−1 \ {vl})

=

pi∑
t=1,t6=s

C(G′t) +

psl∑
t=1

C(G′′t ) +

pi∑
t=1

n′t(ni−1 − n′t)ζ

−2(ni−1 − n′s)ζ +
psl∑
t=1

n′′t (n
′
s − 1− n′′t )ζ

≥ (

pi∑
t=1

n′t(ni−1 − n′t) +
psl∑
t=1

n′′t (n
′
s − 1− n′′t ) + 2n′s − 2ni−1)ζ

= LBl, (15)

where
∑psl

t=1 n
′′
t (n
′
s − 1 − n′′t ) is the number of unreach-

able pairs of vertices in the psl components. Notice that∑pi

t=1 n
′
t(ni−1−n′t)+

∑psl

t=1 n
′′
t (n
′
s−1−n′′t )+2n′s−2ni−1 is

the number of unreachable pairs of vertices in Gi−1 \ {vl}.
Also, it can be seen that the value of lower bound LBl is
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maximized when the size n′s of connected component G′s
is large and all the psl connected components have roughly
equal sizes, i.e., n′′1 ≈ n′′2 ≈ · · · ≈ n′′psl

.
We finally propose the fast yet scalable algorithm, by

making use of both the lower bound estimations on APs
and the upper bound estimations on non-APs to filter out
unlikely solutions as quickly as possible. Specifically, within
iteration i with 1 ≤ i ≤ k, the AP-based algorithm first finds
the set VAP in Gi−1(Vi−1, Ei−1) and calculates the lower
bound LBl on the cost C(Gi−1\{vl}) of Gi−1\{vl} for each
AP vl ∈ VAP , by invoking Procedure 3. It then chooses a
vertex in set VAP with the maximum lower bound as the
ith structural hole spanner vi if its lower bound is no less
than the maximum upper bound among all non-APs, other-
wise, (maxvl∈VAP

{LBl} ≤ maxvj∈Vi−1\VAP
{UBj}), the AP-

based algorithm finds a vertex vi by applying the method
from Line 4 to Line 16 in Algorithm 1. The correctness of
the choice of vi is guaranteed by Lemma 2, which will be
shown later.

The detailed algorithm is described in Algorithm 2.

Algorithm 2 AP_Greedy
Input: A network G = (V,E) and a positive integer k
Output: The set VS of top-k structural hole spanners in G

1: Let VS ← ∅ and G0 ← G;
2: for i← 1 to k do
3: Find the set VAP in graph Gi−1(Vi−1, Ei−1) and cal-

culate the lower bound LBl on the cost C(Gi−1\{vl})
of Gi−1 \ {vl} for each vl ∈ VAP , by invoking
Procedure 3;

4: Compute the upper bound UBj on the cost C(Gi−1 \
{vj}) of graph Gi−1 \ {vj} for each vertex vj ∈ Vi−1 \
VAP , by Eq. (14);

5: if maxvl∈VAP
{LBl} > maxvj∈Vi−1\VAP

{UBj} then
6: vi ← argmaxvl∈VAP

{LBl};
7: else
8: Find the ith structural hole spanner vi in Gi−1, by

invoking a similar method from Line 4 to Line 16 in
Algorithm 1;

9: end if
10: VS ← VS ∪ {vi};
11: Let Gi be the residual network after the removal of

vertex vi and its incident edges from Gi−1;
12: end for
13: return Set VS .

5.3 Finding all articulation points in graph Gi−1

We now describe how to find all articulation points and
how to estimate the lower bound LBl for each vl ∈ VAP

efficiently, using only one Depth-First Search (DFS) traversal
on Gi−1.

Let v be an articulation point of Gi−1. In the DFS
tree construction starting from an arbitrary root r ∈ Vi−1,
assume that u1, u2, . . . , up are the children of vertex v in the
DFS tree. Let V ′i be the set of vertices in the subtree Ti rooted
at ui and G′i the connected component of Gi−1 induced by
the vertices in V ′i with 1 ≤ i ≤ p. Let G′0 be the connected
component containing the ancestors of v in the DFS tree.
Following the DFS traversal property, all edges in Gi−1 can
be partitioned into two categories: the “tree edges” and the
“non-tree edges”, respectively. And all non-tree edges are

“back edges”, which means that one endpoint of each of
such edges is a descendant of another endpoint (or another
endpoint is a proper ancestor of the endpoint) in the DFS
tree. Clearly, there is no edges between any two connected
components G′i and G′j with i 6= j and 1 ≤ i, j ≤ p, by
the DFS traversal property. If there is a back edge between a
vertex in G′i and a vertex in G′0, then both G′i and G′0 are in
the same connected component when the removal of v from
Gi−1. An illustration of this case is shown in Fig 3.

. . .u
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T
2
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back edge
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v

Fig. 3. An illustration of exploring an articulation point v and its p children
u1, u2, . . . , up during a DFS traversal on Gi−1.

Assume that p′ connected components among the p
components derived from the p children of v have back
edges. Then, the removal of v will result in (p − p′ + 1)
connected components. For the sake of convenience, we
assume that these (p − p′ + 1) connected components are
G′′1 , G

′′
2 , . . . , G

′′
p−p′+1 with each containing n′′t vertices. The

lower bound LBv of vertex v then is

LBv =

p−p′+1∑
t=1

|n′′t | · (ni−1 − 1− |n′′t |) · ζ. (16)

The linear-time procedure Procedure 3 of detecting all
articulation points and the calculation of the lower bound
of each articulation point is detailed as follows.

A vertex v is identified as an articulation point of Gi−1
if a subtree rooted at one of its children does not contain
any back edges. The induced subgraph by the set of vertices
in this subtree is a connected component after the removal
of vertex v from Gi−1. The number of vertices contained
in each such connected component is the number of de-
scendants of that child in the DFS tree. To keep track of
the number of descendants of each vertex when performing
the DFS traversal on Gi−1 and to identify those children of
the vertex without any back edges, the lower bound LBv

of v (as an articulation point) can be easily calculated. The
detailed implementation of this is given in Procedure 3
and Procedure 4, respectively.

5.4 Complexity analysis of the proposed algorithm

Lemma 2. Given a graph Gi−1 = (Vi−1, Ei−1), let VAP be
the set of articulation points in Gi−1 and VNAP = Vi−1 \
VAP . Assume the maximum lower bound among APs
is greater than the maximum upper bound among non-
APs, i.e., maxvl∈VAP

{LBl} > maxvj∈VNAP
{UBj}. Then,

the removal of vertex vi will result in the maximum cost
C(Gi−1 \ {vi}) among vertices in Vi−1, where vi is an
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Procedure 3 Finding articulation points and their lower
bound calculations

1: Find the number n′t of vertices in each connected compo-
nent G′t of graph Gi−1;

2: for each vertex u ∈ Vi−1 do
3: u.child← 0; /* number of children of u in the DFS tree*/
4: u.visited← ‘false′; /* whether u was visited before */
5: u.AP ← ‘false′; /* whether u is an articulation point */
6: LBu ← 0; /* the lower bound of vertex u */
7: end for
8: time← 0;
9: for each vertex u ∈ Gi−1 do

10: if u.visted = ‘false′ then
11: invoke Procedure Modified-DFS(Gi−1, u);
12: end if
13: end for

Procedure 4 Modified-DFS(Gi−1, u)
1: u.visited← ‘true′;
2: time← time+ 1;
3: u.discovered← time; /*the discovery time of vertex u*/
4: u.lowest ← time; /* the smallest discovery time of any

neighbor of u’s descendants (through a back-edge) */
5: cc0 ← n′t−1, where u is contained in connected component
G′t, and n′t is the number of vertices in G′t; /* the number
of vertices in G′0 after removing vertex u */

6: u.descendant ← 0; /* the number of descendants of u in
the DFS tree */

7: for each edge (u, v) in graph Gi−1 do
8: if v.visited = ‘false′ then
9: v.π ← u; /* u is the parent of v */;

10: u.child← u.child+ 1;
11: invoke Procedure Modified-DFS(Gi−1, v);
12: u.descendant← u.descendant+ v.descendant;
13: u.lowest← min (u.lowest, v.lowest);
14: if (v.lowest ≥ u.discovered) OR (u is the root AND

u.child > 1) then
15: u.AP ← ‘true′; /* v is disconnected without u */
16: LBu ← LBu + v.descendant × (ni−1 − 1 −

v.descendant);
17: cc0 ← cc0 − v.descendant; /* the subtree of v is

not part of G′0 */;
18: end if
19: else if v 6= u.π then
20: u.lowest← min (u.lowest, v.discovered);
21: end if
22: end for
23: u.descendant← u.descendant+ 1; /*including itself*/
24: if u.AP = ‘true′ then
25: LBu ← LBu + cc0 × (ni−1 − 1− cc0).
26: end if

AP in set VAP with the maximum lower bound, i.e., vi =
argmaxvl∈VAP

{LBl}.

Proof: By the assumption that maxvl∈VAP
{LBl} >

maxvj∈VNAP
{UBj}, we know the ith structural hole span-

ner must be an articulation point. For any vertex vl ∈
VAP \ {vi}, we show that C(Gi−1 \ {vi}) ≥ C(Gi−1 \ {vl}).
Without loss of generality, assume the lower bounds of
different APs are different. Since vi is the vertex with the
maximum lower bound, LBi > LBl. In fact, LBi ≥ LBl+ζ ,
since the value of a lower bound is the product of an integer
and ζ , by Eq. (15). On the other hand, the value of LBl + ζ
is an upper bound on C(Gi−1 \ {vl}) by Eq. (14). Therefore,

C(Gi−1\{vi}) ≥ LBi ≥ LBl+ζ = UBl ≥ C(Gi−1\{vl}). (17)

The lemma then follows.

Theorem 3. Given a social network G = (V,E) and a
positive integer k, let nAP be the number of articula-
tion points in G. There is a fast yet scalable algorithm,
Algorithm 2, for the top-k structural hole spanner
problem, which takes time O(k(m + n)) if nAP is no
less than k; otherwise (nAP < k), Algorithm 2 takes
O(nAP (n + m) + (k − nAP )ε

−2n(n + m)) time, where
n = |V |, m = |E|, and ε is a constant with 0 < ε ≤ 1.

Proof: Following Algorithm 2, the detection of all
articulation points in Gi−1 and the calculation of their lower
bounds take O(n + m) time by Procedure 3. For each
vertex u, its adjacency list is traversed exactly once and
the number of descendants and children are calculated in
the post-traversal in DFS. The total amount of time for
calculating the number of descendants of each vertex in the
DFS tree is O(n). Also, it takes O(m + n) time to compute
the upper bound UBj of non-APs in Gi−1 by Eq. (14). The
ith SH spanner vi thus is an AP of Gi−1 if the number of
articulation points in it is no less than k, since the maximum
lower bound among APs usually is much larger than the
maximum upper bound among non-APs. Since the number
of articulation points in a real social network usually is quite
large, e.g., there are hundreds even thousands of articulation
points in each network of Table 1, the time complexity of
Algorithm 2 is O(k(n+m)) in practice.

6 PERFORMANCE EVALUATION

In this section we evaluate the performance of the proposed
algorithms using different datasets. We start with the ex-
perimental environment settings, then investigate the effec-
tiveness of the proposed model of structural hole spanners,
compared with other models using real datasets. We finally
study the performance of the proposed algorithms, using
the datasets in Table 1.

6.1 Experimental environment setting

We adopt five real-world datasets, which are listed in
Table 1, where GR-QC is the collaboration network from
arXiv1, covering collaborations between authors of papers
submitted to General Relativity and Quantum Cosmology
category. Epinions is an online social network of a general
consumer review site Epinions2. The Twitter dataset was
obtained from [21]. The DBLP-2011 dataset is the collabo-
ration network obtained from the DBLP web site3, and the
LiveJournal dataset describes the social network of free
on-line blogging community4.

TABLE 1
Statistics of four real-world networks

Dataset |V | |E| # of APs (%)
GR-QC 5,244 14,484 813 (15.5%)
Epinions 75,887 221,176 10,746 (14.1%)
Twitter 92,180 188,971 12,549 (13.6%)
DBLP-2011 986,324 3,353,618 90,607 (9.2%)
LiveJournal 5,363,260 27,440,444 616,973 (11.5%)

1. http://arxiv.org/
2. http://epinions.com/
3. http://www.informatik.uni-trier.de/∼ley/db/
4. http://livejournal.com/
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Fig. 4. Performance of different algorithms in network Coauthor.

To evaluate the performance of the proposed algorithms
Greedy and AP_Greedy in this paper, we will compare the
following nine state-of-the-art algorithms.

(1) Algorithm AP_BICC chooses the top-k structural hole
spanners based on articulation points and the bounded
inverse closeness centrality, which was proposed in [26].

(2) Algorithm Central finds k vertices with the smallest
average shortest distances to other vertices [26], [11], i.e.,
the k vertices with the maximum closeness centrality. The
fastest randomized algorithm proposed in [11] is applied to
compute the average shortest distances to other vertices for
every vertex.

(3) Algorithm PathCount [14] is similar to betweenness
centrality and assigns each vertex a score that is the number
of shortest paths among all-pairs shortest paths, on which
the vertex lies, then selects the top-k vertices with the
highest scores.

(4) Algorithm 2-Step [28] assigns each vertex a score
that is the number of pairs of its neighbors without edges
between them, then selects the top-k highest scores.

(5) Algorithm PageRank [24] assigns each vertex v a
PageRank score r(v) that is the visiting probability of v
by a random surfer, r(v) = 1/n initially. The algorithm
then updates r(v) with a new value r(v) = (1 − α)/n +
α
∑

(u,v)∈E r(u)/deg(u), where α = 0.85 is the random
jump parameter. It finally chooses the top-k vertices with
the highest PageRank scores.

(6) Algorithm Constraint [10] measures the constraint
on each vertex by its neighbors and selects k vertices with
the lowest constraint scores.

(7) Algorithm HAM [16] proposed a harmonic modularity
method to tackle the detections of both communities and
structural hole spanners simultaneously. Notice that we
compared algorithm HAM only under the smallest network
GR-QC with 5,244 nodes, due to that the space complexity
of that algorithm is very high, i.e., O(n2).

(8) Algorithm HIS [21] assigns each vertex v a score that
simulates the likelihood of v as a structural hole spanner
across the given subset of communities, assuming that l
communities are given.

(9) Algorithm MaxD [21] is to find a set of k vertices
such that the minimum cut of communities will be reduced
significantly, after removing these vertices, assuming that l

communities are given. For any pair of communities, the
algorithm selects d2k/(l(l − 1))e vertices as structural hole
spanners using a greedy strategy. In each round, it chooses
the vertex whose removal will result in a maximum decrease
of the minimum cut.

Notice that all our experiments were performed on a
desktop with Intel(R) Core(TM) i7-4790 CPU (3.6 GHz), 8 GB
RAM, and the operating system of Windows 8.1 enterprise.

6.2 Effectiveness of the proposed model
We first evaluate the effectiveness of the proposed model
using the definition in [10], such as the number of commu-
nities that an individual spans and the size of each spanned
community. Given a social network G = (V,E) and the set
of communities C = {C1, C2, . . . , Cl} in G, suppose S is
the set of structural hole spanners found by an algorithm,
where Ci is a community in G and 1 ≤ i ≤ l. The quality of
the solution S is measured by two metrics: (1) the number
of distinct communities that individuals in S span; and (2)
the sum of the sizes of communities spanned by S. We
evaluate the performance of different algorithms using these
two metrics in order to find out the extent to which our
model maps the real structural hole spanners. We use the
Coauthor dataset containing 53,442 vertices and 127,968
edges, which has been used for the same purpose in [21].
The communities in this network are publication venues,
e.g, journals or conferences, and authors who published in
the same journal or conference form a community.

Fig. 4 shows the performance of different algorithms by
increasing the number of structural hole spanners k from 1
to 50, using the Coauthor dataset. Fig. 4 (a) clearly illus-
trates that algorithms Greedy and AP_Greedy outperform
the other algorithms. For example, the numbers of com-
munities connected to structural hole spanners found by
algorithms Greedy and AP_Greedy are as high as eleven
when k = 50, while the number by algorithm AP_BICC is
only seven and the numbers by the rest of the algorithms are
no more than three. On the other hand, Fig. 4 (b) shows that
the number of users in the communities connected to the
structural hole spanners delivered by algorithms Greedy
and AP_Greedy are much more than those by the other
mentioned algorithms. Fig. 4 validates our claim in Sec-
tion 2.2 that our model can identify the vertices connecting
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Fig. 5. Performance of different algorithms in network GR-QC.

with larger communities. In a nutshell, algorithms Greedy
and AP_Greedy can guarantee to find structural hole span-
ners connecting more communities and larger communities
in this dataset while the other algorithms find individuals
connecting less numbers of communities.

6.3 Performance on real datasets

We now evaluate the performance of the mentioned al-
gorithms including the proposed algorithms Greedy and
AP_Greedy, and benchmark structure-based algorithms
AP_BICC, Central, PathCount, 2-Step, PageRank,
Constraint, and HAM in different social networks listed in
Table 1. In this experiment, we do not compare community-
based algorithms such as HIS and MaxD, since no ground-
truth communities are available and using any type of
community detection method can be subject to unfairness.

Fig. 5 (a) plots the number of vertices in the maximum
connected component in graph G \ S by different algo-
rithms in network GR-QC, where S is the set of structural
hole spanners found by an algorithm, and G \ S is the
graph by removing vertices in S and their incident edges
from graph G. Intuitively, good structural hole spanners
are connected to many yet large communities and their
removal from G will disconnect these communities. As a
result, the size of the maximum connected component in
graph G \S significantly decreases. In contrast, the removal
of poor structural hole spanners may not disconnect the
communities to which they are connected, or disconnect
only a few yet small communities from large communities.
Then, the size of the maximum connected component in
graph G\S is still large. We thus can see that the smaller the
size of the maximum connected component in graph G \ S
is, the better the found spanners are. Fig. 5 (a) shows that
the sizes of the maximum connected components in graph
G \ S by algorithms Greedy and AP_Greedy are much
smaller than those by the other algorithms. For example, the
sizes of the maximum connected components by algorithms
Greedy and AP_Greedy decrease from 4,158 vertices in
graph G to only 3,572 vertices in graph G \ S when k = 50,
while the size by algorithm AP_BICC is 3,663 vertices, and
the sizes by the other algorithms are even no less than 3,900
vertices. Therefore, it can be seen that algorithms Greedy
and AP_Greedy find much better structural hole spanners
than the other algorithms in network GR-QC.

Fig. 5 (b) investigates the performance of different al-
gorithms in terms of the optimization objective in net-
work GR-QC, which was shown in Eq. (4) of Section 2.2,
i.e., C(G \ S) − C(G). It can be seen that the values of

C(G \ S) − C(G) in the solutions delivered by algorithms
Greedy and AP_Greedy are much larger than those by the
other algorithms. Specifically, the values of C(G\S)−C(G)
by algorithms Greedy and AP_Greedy are 20% larger than
that by algorithm AP_BICC when k = 50, and even from
2.5 times to 14 times the values by algorithms Central,
PathCount, 2-Step, PageRank, Constraint, and HAM.
The rationale behind is explained as follows. On one hand,
although the structural hole spanners identified by algo-
rithm AP_BICC connect different communities, some struc-
tural hole spanners may connect to the same communities.
On the other hand, the individuals found by the other
algorithms may not connect many communities, though
these algorithms find important individuals in the network,
such as algorithm PageRank detects the individuals with
high reputation, algorithms Central, and PathCount find
vertices by degree centrality, closeness centrality, and be-
tweenness centrality, respectively, and algorithm 2-Step
identifies the vertices with the smallest clustering coeffi-
cients.

Fig. 5 (c) plots the number of communities that individu-
als in S span. Since ground-truth communities are unavail-
able, we adopt the notion of conductance to define communi-
ties in a social network [36]. It is validated that conductance
is one of the two definitions that consistently give the best
performance in identifying ground-truth communities [36].
Based on the conductance definition, we find communities
in a social network by applying the approximate PageRank
algorithm in [2]. Fig. 5 (c) demonstrates that the numbers
of communities connected to the spanners delivered by the
proposed algorithms Greedy and AP_Greedy are larger
than those by the other algorithms.

Fig. 5 (d) studies the running times of different algo-
rithms in network GR-QC. It can be seen that the running
times of algorithms HAM and Greedy are much longer than
that of the other algorithms. For example, the running times
of these two algorithms are 3,232 seconds and 246 seconds,
respectively, when k = 50, while the running times of the
other algorithms are no more than one second, where the
time complexities of algorithms HAM, Greedy, PathCount,
Central, AP_Greedy, 2-Step, Constraint, PageRank,
and AP_BICC are O(cn3), O(ε2n(n + m)), O(n(n + m)),
O(ε2(n+m)), O(k(n+m)), O(dmax(n+m)), O(dmax(n+
m)), O(l(n +m)), and O(n log n +m), respectively, where
dmax is the maximum vertex degree, c and l are the numbers
of iterations needed so that algorithms HAM and PageRank
converge, respectively.

We then study the performance of different algorithms
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Fig. 6. Performance of different algorithms in network Epinions.
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Fig. 7. Performance of different algorithms in network Twitter.
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Fig. 8. Performance of different algorithms in network DBLP-2011.
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Fig. 9. Performance of different algorithms in network LiveJournal.

in network Epinions, whose size is larger than that of
network GR-QC. Fig. 6 (a), (b), (c), and (d) demonstrate the
performance of the eight mentioned algorithms, in terms of
the size of the maximum connected component in graph
G\S, the value of C(G\S)−C(G), the number of spanned
communities, and the running time of each mentioned
algorithm, respectively. Similar to the performance of the
algorithms in network GR-QC, the structural hole spanners
found by algorithms Greedy and AP_Greedy are the best
among the eight algorithms. Also, it can be seen that the
structural hole spanners identified by algorithm AP_BICC
are only slightly worse than those by algorithms Greedy
and AP_Greedy.

We finally investigate the performance of the men-
tioned algorithms in three much larger networks Twitter,
DBLP-2011, and LiveJournal, which are plotted in Fig-
ures 7, 8, and 9, respectively. Again, we can see that Fig. 7,
Fig. 8, and Fig. 9 show that the structural hole spanners
delivered by algorithms Greedy and AP_Greedy are much
better than those identified by the other mentioned algo-
rithms. On the other hand, the performance of algorithm
AP_BICC is similar to that of algorithm PageRank in
network Twitter, but better than the latter in networks
DBLP-2011 and LiveJournal.

In summary, it can been seen that the structural hole
spanners found by the proposed algorithms Greedy and
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AP_Greedy are much better than those by the other existing
algorithms for all mentioned social networks, while the
performances of existing algorithms depend on the structure
of the social networks. Also, algorithm AP_Greedy is highly
scalable and its running time in network LiveJournal
with more than five million vertices and over 27 million
edges is only about 145 seconds when k = 50 (see Fig. 9
(d)), whereas the running time of algorithm Greedy is much
longer than the other algorithms.

7 RELATED WORK

Over last few years, the size of real networks has in-
creased enormously, developing efficient algorithms for
finding influential individuals in such large-scale networks
with unique properties such as structural hole spanners
has become a challenging task. Moreover, building accurate
models that truly reflect the properties of structural hole
spanners is crucial to identify such individuals. Neverthe-
less, researchers take lots of effort towards this aim.

The notion of structural hole spanners was first intro-
duced by Burt [10] to find the key employees in orga-
nizations for integrating operations across functional and
business boundaries. This concept later was further refined
in [1], [8], [9]. A few studies have exploited the concept
of structural holes in order to design strategic games for
network formation [14], [20]. Goyal et al. [14] presented
a network formation model that a vertex u serves as an
intermediary between many vertices. However, this strategy
leads to the star network and real networks do not follow
a star topology. In order to tackle this problem, Kleinberg et
al. [20] designed a game by building a model of the payoffs
that arise from filling structural holes. This payoff is a
decreasing function of the number of paths with length two
between each pair of neighbors to avoid the star topology.
One of the limitations of the model presented by Kleinberg
et al. [20] is that this model needs careful tuning of param-
eters such as the link maintenance cost that is not easily
achieved in large-scale networks. Another line of research
in computer science is to find structural hole spanners in
order to incorporate them in contagion, and can be divided
in two categories as follows.

Structural-based Models: Goyal et al. [14] formulated
a structural hole spanner as a vertex that resides on more
shortest paths between different pairs of vertices. Since
counting the number of shortest paths in large networks
is time-consuming, Tang et al. [28] proposed to only count
the number of shortest paths with length two on which
a vertex lies. In this model, any shortest path of length
greater than two will be ignored, thus the model suggests
candidates that are connected to smaller rather than larger,
richer and more influential communities. A fairly common
case under this model is its failure of finding good quality
structural hole spanners when a vertex is densely connected
to two communities. For example, in Fig. 1, vertex v1 forms
more length-2 paths than that of v2, while v2 is connected
to more communities and is a better structural hole based
on Burt’s theory [10]. However, this model suggests v1 as
a better structural hole spanner. In order to address this
problem, Ugander et al. [33] defined the structural diversity
of an individual as the number of connected components
in its contact neighborhood, which is a similar notion as

structural hole spanners, and studied the role of structural
diversity in contagion of information within real social
networks. Huang et al. [17] studied the top-k structural
diversity search in large networks and developed efficient
algorithms for massive dynamic networks. However, only
a small number of vertices in each community can be
part of contact neighborhood, and they can form multiple
connected components. Similarly, Tong et al. [32] defined
the gateway-ness of a vertex v, proportional to the paths
between source vertices S and target vertices T , on which
v lies. In addition, each path is given a score, which is
inversely proportional to its length.

Community-based Models: Lou et al. [21] proposed the
very first model to find structural holes in a social network,
assuming that communities in the network are given. The
objective in their model is to maximize a utility function that
measures the degree to which structural hole spanners span
communities. One instantiation of their utility function is to
find a set of vertices whose removal leads to the maximum
decreases on the number of inter-community edges. One
major concern about this model is that communities usually
are not known, thus the quality of the solution relies on the
quality of communities found. Moreover in Fig. 1, the re-
moval of v1 decreases the number of inter-community edges
by 8 and the removal v2 decreases the inter-community
edges by 6. Therefore, this model implies v1 as the preferred
structural hole spanner. However, v2 should be a better
structural hole as it bridges more communities.

8 CONCLUSION

In this paper we studied the top-k structural hole spanner
problem in a large social network. We first proposed a novel
model to measure the quality of structural hole spanners.
We then formulated the problem as an optimization prob-
lem and showed its NP-hardness. We thirdly devised two
fast yet scalable algorithms for the problem, by developing
innovative filtering techniques that can filter out unlikely
solutions as early as possible. The developed filtering tech-
niques are capable to provide fast estimations on the upper
and lower bounds of the cost of an optimal solution and can
explore articulation points in a social network. We finally
evaluated the performance of the proposed algorithms and
validated the effectiveness of the proposed model, through
extensive experiments on real datasets. Experimental results
demonstrated that the proposed model can capture the char-
acteristics of structural hole spanners accurately, and the
proposed algorithms are very promising, which outperform
several other existing heuristics.

REFERENCES

[1] G. Ahuja, “Collaboration networks, structural holes, and innova-
tion: A longitudinal study,” Administ. Sci. Quart., vol. 45, no. 3, pp.
425–455, Sep. 2000.

[2] R. Andersen, F. Chuang, and K. Lang, “Local graph partitioning
using PageRank vectors,” in Proc. 47th Annu. IEEE Symp. Found.
Comput. Sci. (FOCS), 2006, pp. 475–486.

[3] R. Andersen and K. J. Lang, “Communities from seed sets,” in
Proc. 15th Int. Conf. World Wide Web (WWW), 2006, pp. 223–232.

[4] A. Bar-Noy, S. Khuller, and B. Schieber, “The complexity of finding
most vital arcs and nodes,” Technical Report CS-TR-35-39, Com-
puter Science Department, University of Maryland, 1995.

[5] M. A. Beauchamp, “An improved index of centrality,” Behavioral
Sci., vol. 10, no. 2, pp. 161–163, 1965.



1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2651825, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, 2016 14

[6] C. Borgs, M. Brautbar, J. Chayes, and B. Lucier, “Maximizing social
influence in nearly optimal time,” in Proc. 25th Annu. ACM-SIAM
Symp. Discrete Algorithms (SODA), 2014, pp. 946–957.

[7] C. Budak, D. Agrawal, and A. El Abbadi, “Limiting the spread of
misinformation in social networks,” in Proc. ACM 20th Int. Conf.
World Wide Web (WWW), 2011, pp. 665–674.

[8] R. S. Burt, “Structural holes and good ideas,” American J. Sociology,
vol. 110, no. 2, pp. 349–399, 2004.

[9] R. S. Burt, “Secondhand brokerage: evidence on the importance
of local structure for managers, bankers, and analysts,” Academy
Manage. J., vol. 50, no. 1, pp. 119–148, Feb. 2007.

[10] R. S. Burt, Structural holes: The social structure of competition. Har-
vard university press, 2009.

[11] S. Chechik, E. Cohen, and H. Kaplan, “Average distance queries
through weighted samples in graphs and metric spaces: high scal-
ability with tight statistical guarantees,” in Proc. 18th Int. Workshop
Approximation Algorithms Combinatorial Optimization Problems, 19th
Int. Workshop Randomization Comput., 2015, pp. 659–679.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to algorithms. MIT press, 2009.

[13] M. Girvan and M. E. Newman, “Community structure in social
and biological networks,” Proc. Nat. Academy Sci. (PNAS), vol. 99,
no. 12, pp. 7821–7826, Jun. 2002.

[14] S. Goyal and F. Vega-Redondo, “Structural holes in social net-
works,” J. Econ. Theory, vol. 137, no. 1, pp. 460–492, Nov. 2007.

[15] A. Guille, H. Hacid, C. Favre, and D. A. Zighed, “Information
diffusion in online social networks: A survey,” ACM SIGMOD
Record, vol. 42, no. 2, pp. 17–28, Jul. 2013.

[16] L. He, C. T. Lu, J. Ma, J. Cao, L. Shen, and P. S. Yu, “Joint
community and structural hole spanner detection via harmonic
modularity,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov-
ery Data Mining, 2016, pp. 875–884.

[17] X. Huang, H. Cheng, R.-H. Li, L. Qin, and J. X. Yu, “Top-k
structural diversity search in large networks,” in Proc. VLDB
Endowment, vol. 6, no. 13, pp. 1618–1629, 2013.

[18] U. Kang and C. Faloutsos, “Beyond’caveman communities’: Hubs
and spokes for graph compression and mining,” in Proc. IEEE 11th
Int. Conf. Data Mining, 2011, pp. 300–309.

[19] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread
of influence through a social network,” in Proc. 9th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2003, pp. 137–146.
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