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Abstract— In this article we study a generalized team ori-
enteering problem (GTOP), which is to find service paths for
multiple homogeneous vehicles in a network such that the
profit sum of serving the nodes in the paths is maximized,
subject to the cost budget of each vehicle. This problem has
many potential applications in IoTs and smart cities, such as
dispatching energy-constrained mobile chargers to charge as
many energy-critical sensors as possible to prolong the network
lifetime. In this article, we first formulate the GTOP problem,
where each node can be served by different vehicles, and the
profit of serving the node is a submodular function of the number
of vehicles serving it. We then propose a novel (1 − (1/e)

1
2+ε )-

approximation algorithm for the problem, where � is a given
constant with 0 < � ≤ 1 and e is the base of the natural
logarithm. In particular, the approximation ratio is about 0.33
when � = 0.5. In addition, we devise an improved approximation
algorithm for a special case of the problem where the profit is
the same by serving a node once and multiple times. We finally
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evaluate the proposed algorithms with simulation experiments,
and the results of which are very promising. Especially, the profit
sums delivered by the proposed algorithms are up to 14% higher
than those by existing algorithms, and about 93.6% of the optimal
solutions.

Index Terms— Multiple vehicle scheduling, the generalized
team orienteering problem, approximation algorithms, submod-
ular function.

I. INTRODUCTION

IN THIS article we consider a generalized team orien-
teering problem (GTOP), which has wide applications in

the domains such as Internet of Things (IoTs) and smart
cities [18], [30], [32]. We here briefly introduce its two
potential applications: (i) Dispatching multiple mobile charg-
ers to recharge sensors in rechargeable sensor networks; and
(ii) scheduling Unmanned Aerial Vehicles (UAVs) to monitor
disaster zones.

We start with the first application of the problem, that is to
dispatch multiple mobile chargers to recharge sensors. On one
hand, sensors usually are powered by energy-limited batteries.
On the other hand, they consume their battery energy when
they perform sensing, transmit and receive sensing data. They
will run out of energy eventually. An effective solution to this
sensor energy expiration problem is to dispatch the mobile
chargers to recharge energy-critical sensors, where a mobile
charger can move to the location of an energy-critical sensor,
and replenish its energy to the sensor via wireless energy
transfer [10], [11], [22], [24]–[26], [31], [34]–[38], [41]. Fig. 1
illustrates the employment of two mobile chargers to recharge
sensors in a wireless rechargeable sensor network. When many
energy-critical sensors need to be charged, the two mobile
chargers may not be enough to charge all the sensors to their
full energy capacities, due to the limited energy capacity on
each of the two chargers. Therefore, a fundamental problem
is to schedule the two chargers to recharge a portion of
energy-critical sensors such that the profit sum of the charged
sensors is maximized, subject to the energy capacity on each
mobile charger. It is understood that the more profit can be
obtained by charging a sensor with low residual energy than
that by charging a sensor with high residual energy [22], [24].

We then introduce the second application of the GTOP prob-
lem by scheduling multiple Unmanned Aerial Vehicles (UAVs)
to monitor disaster zones. Lightweight UAVs, such as a
DJI phantom 4 Pro, are widely used in aerial photography,
precision agriculture, disaster rescue, etc [14], [20], [23], [27].
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Fig. 1. An example of the generalized team orienteering problem for
dispatching two mobile chargers to recharge energy-critical sensors in a sensor
network.

Fig. 2. An example of the GTOP problem in scheduling two UAVs to monitor
PoIs in a disaster zone.

For example, when a disaster (such as an earthquake or a
flooding) occurs, the most critical issue is to rescue people
in danger as quickly as possible. However, transportation and
communication infrastructures may have been destroyed in the
disaster already. In this scenario, UAVs can be used to aid
disaster rescuing, by dispatching the UAVs to take photos or
videos for Points of Interest (PoIs), e.g., malls, schools, office
buildings, in the disaster area, and transmitting these invaluable
information (i.e., photos or videos) to a nearby rescue station
for rescue decision making, see Fig. 2. For example, UAVs
were used for taking photos in order to discover people in
danger after Hurricane “Irma” struck Florida in 2017 [13].
In this application, it is desirable to collaboratively monitor as
many PoIs as possible, since the maximum flying duration of
each UAV is limited due to its limited energy capacity, and
the maximum flying duration of a ‘DJI phantom 4 Pro’ UAV
usually is only around 30 minutes.

Other important applications of the GTOP problem include
scheduling multiple repairmen to repair sharing bikes, e.g.,
Mobikes, located around a city [30], and dispatching a fleet of
autonomous vehicles to deliver goods to different households
in the scenario of smart cities.

The GTOP problem is a generalization of the traditional
orienteering problem [18], [32] that is defined as follows.
Given a complete graph G = (V, E) and a cost budget B,
let each edge (vi, vj) ∈ E be associated with a cost c(vi, vj).
Assume that the edge costs in G satisfy the triangle inequality.
Also, let there be a profit u(vi) of serving a node vi ∈ V . The
orienteering problem is to find a simple path P in G from a

source node s to a destination node t, such that the profit sum
of the nodes in path P , denoted as

∑
vi∈P u(vi), is maximized,

subject to the constraint that the total cost of the edges in P
is no greater than the cost budget B.

Due to the wide applications, the orienteering problem has
been extensively studied in the literature. Chekuri et al. [8]
recently proposed a 1

2+� -approximation algorithm for the prob-
lem, when the starting node s and ending node t of a tour may
be different, where � is a given constant with 0 < � ≤ 1. More-
over, Paul et al. [30] devised a 1

2 -approximation algorithm for
the problem when the nodes s and t are co-located (i.e., s = t).
Although the orienteering problem has been extensively stud-
ied, many applications need to find paths for multiple vehicles
rather than just one vehicle. Here, the meaning of a vehicle
is broad; it may be a mobile charger or a UAV, depending
on the application scenario. For example, in a large-scale
sensor network, we may schedule multiple mobile chargers to
recharge as many energy-critical sensors as possible. To the
best of our knowledge, there are no performance-guaranteed
algorithms for such multi-vehicle case.

In this article, we study the GTOP problem, which is to find
service paths for K > 1 homogeneous vehicles where each
path starts at node s and ends at node t, such that the profit
sum of serving the nodes in the K paths is maximized, subject
to the cost budget on each vehicle. Furthermore, we consider
two scenarios of the problem in practical applications, such as:

(i) Node costs may also be considered in addition to edge
costs. In this case, the cost of a path becomes the sum of
its edge and node costs. For example, in a sensor network,
a mobile charger consumes its energy on both mechanical
movements (i.e., edge costs) and recharging sensors (i.e., node
costs).

(ii) Each node may be served by multiple vehicles (rather
than by only one vehicle) and a nondecreasing submodular
function can be adopted to model the profit obtained by
serving a node. In other words, the more vehicles serve a
node, the less marginal profit it will collect from the node.
For example, consider the deployment of multiple UAVs to
monitor PoIs in a disaster area, where two or more UAVs can
take photos for the same PoI, thereby obtaining more accurate
information about the PoI [24]. However, photos taken by
different UAVs may contain redundant information. In this
scenario, it is appropriate to adopt a submodular function to
model the nonredundant information of the photos taken by
different UAVs.

The novelty of this article lies in formulating a novel
problem, namely, the generalized team orienteering problem
that has many potential applications in the context of IoTs
and smart cities, and developing the very first approximation
algorithms with provable approximation ratios for the problem.

Our major contributions are summarized as follows. (1) We
are the first to study the GTOP problem where each node
can be served by multiple vehicles and the profit collected by
serving a node is a submodular function of the number of vehi-
cles serving the node. (2) We propose a novel (1− (1/e)

1
2+� )-

approximation algorithm for the problem, where � is a given
constant with 0 < � ≤ 1 and e is the base of the natural loga-
rithm. In particular, the approximation ratio is about 0.33 when
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� = 0.5. (3) We devise an improved approximation algorithm
for a special case of the problem where the profit collected
from a node is the same no matter how many times the node
has been served by one or multiple vehicles. (4) We evaluate
the proposed algorithms against benchmarks with simulations.
Experiment results show that the profit sums delivered by
the proposed algorithms are up to 14% higher than those by
existing algorithms and 93.6% of the optimal solutions.

The rest of the paper is organized as follows. Section II
reviews related works. Section III introduces preliminary con-
cepts. Sections IV and V respectively propose approxima-
tion algorithms for the GTOP problem and its special case.
Section VI evaluates the proposed algorithms empirically, and
Section VII concludes the paper.

II. RELATED WORK

The orienteering problem and its variants have attracted a
lot of attentions due to their wide applications [18], [32]. For
the orienteering problem in metric graphs, Blum et al. [4]
proposed the first constant approximation algorithm with a
ratio of 1

4 . Bansal et al. [2] shortly improved the approximation
ratio to 1

3 . Chekuri et al. [8] recently further improved the ratio
to 1

2+� when the starting node s and the ending node t may be
different, where � is a given constant with 0 < � ≤ 1, while
Paul et al. [30] devised a 1

2 -approximation algorithm when
nodes s and t are co-located, i.e., s = t. On the other hand,
for the orienteering problem in the Euclidean space, Chen and
Har-Peled [9] proposed a Polynomial Time Approximation
Scheme (PTAS), which delivers a (1−�)-approximate solution
within time O(n

1
� ), where � is a constant with 0 < � ≤ 1 and

n is the number of nodes.
There are other studies on the team orienteering problem

(TOP), where the objective is to find service tours for multiple
vehicles and each node will be visited by no more than one
vehicle. Boussier et al. [5] proposed an exact algorithm for the
problem. Their algorithm is only applicable when the problem
size is small, since the problem is NP-hard. Archetti et al. [1]
devised a tabu search algorithm and a neighborhood search
algorithm for the problem with exponential time complexity.
Bianchessi et al. [3] proposed a branch-and-cut algorithm,
and the algorithm could find better solutions for a given set
of TOP problem instances. Vidal et al. [33] introduced a
large neighborhood method with pruning and re-optimization
techniques. Gavalas et al. [17] assumed that there is a profit
of visiting a node only when the node is visited within its
given time window. They proposed meta-heuristic approaches.
Yu et al. [40] considered the factor that the profits of visiting a
node at different time points are different, and they devised a
bee colony algorithm. Hanafi et al. [19] considered a scenario
where a node can be visited by different vehicles in a prede-
fined order, and a profit for the node is received if the vehicles
serve the node by the order. They proposed a kernel search
framework for the team orienteering problem in the scenario.
Orlis et al. [29] studied a problem of finding routes for vehicles
to replenish cash to ATMs so that the number of bank account
holders within a given distance of a replenished ATM is maxi-
mized, and devised an exact solution method based on column
generation and a meta-heuristic based on large neighborhood

search. Notice that the these meta-heuristic algorithms do not
provide any performance guarantees on the solutions they
delivered, and cannot apply for the case where a node may
be visited multiple times and the profit of visiting the node is
a nondecreasing submodular function of the number of visits.

We also notice that the submodular set function maximiza-
tion problem is related to the GTOP problem. Nemhauser
and Wolsey [28] considered the problem of maximizing a
nondecreasing submodular set function under the constraint
of choosing no more than K elements in a given set.
They devised a greedy algorithm for it, which delivers a
(1− 1/e)-approximate solution, and that result is tight, where
e is the base of the natural logarithm. They also extended
their result to the submodular function maximization problem
under the constraint of the intersection of P matriods, and
proved that their greedy algorithm can find a 1

P+1 -approximate
solution [16]. Filmus and Ward [15] improved the ratio to
1−1/e when P = 1. On the other hand, Buchbinder et al. [6]
proposed a randomized approximation algorithm for the non-
monotonically submodular function maximization problem
without any constraints, and the expectation of the delivered
solution is at least half the value of an optimal solution.
However, they assumed that it takes polynomial time to find
the element with the maximum marginal gain with respect to
a partial solution. This assumption may not be realistic, since
the orienteering problem is NP-hard.

III. PRELIMINARIES

In this section, we introduce the system model and define
the problem precisely.

A. System Model

Let G = (V ∪ {s, t}, E) be a given complete undirected
graph, where V = {v1, v2, . . . , vn} is a set of n to-be-served
nodes, s is a source node, and t is a destination node. Notice
that nodes s and t may or may not be co-located. There is an
edge in E between any two nodes in V ∪ {s, t}.

There are K > 1 vehicles to serve the nodes in V , and all
vehicles are located at source node s initially. Each vehicle k
needs to find a simple path Pk from node s to node t with
1 ≤ k ≤ K .

The cost of path Pk for vehicle k is defined as fol-
lows, where the meaning of the ‘cost’ is the amount of
energy consumed, or the amount of time elapsed, of the
vehicle, depending on the application scenario. Let Pk =<
s, v1, v2, · · · , vqk

, t >, where qk is the number of nodes
served by vehicle k in Pk except nodes s and t, and
1 ≤ k ≤ K . Fig. 3 illustrates the employment of K = 2
vehicles to serve nodes in a network.

We assume that the K vehicles are homogeneous. Denote
by c(vi, vi+1) the cost of a vehicle k for traveling between
nodes vi and vi+1, and h(vi) the service cost of vehicle k at
node vi. Assume that h(s) = h(t) = 0. The cost w(Pk) of
path Pk for vehicle k then is

w(Pk) =
qk∑

i=1

h(vi) +
qk∑

i=0

c(vi, vi+1), (1)

where v0 = s and vqk+1 = t.
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Fig. 3. Network model of the GTOP problem, where K = 2, path P1 =<
s, v1, v2, v4, v6, v8, t >, P2 =< s, v3, v4, v7, v9, v10, t >, and nodes v4 is
contained in both P1 and P2.

Denote by B the cost budget of each vehicle k. The cost
w(Pk) of path Pk for vehicle k thus must be no greater than
its cost budget B, i.e., w(Pk) ≤ B.

B. Profit Function

For each node vi ∈ V , denote by ni the number of times
that it is served by ni vehicles among the K vehicles with
0 ≤ ni ≤ K . That is, vi may be served more than once
by different vehicles. We define the total profit received by
serving the nodes in the K paths as follows.

We make use of a nondecreasing submodular function
ui(ni) to model the profit of serving node vi by the ni vehicles
among the K vehicles. Function ui(.) has three properties.
(i) ui(0) = 0; (ii) the nondecreasing property: 0 ≤ ui(x) ≤
ui(y) if 0 ≤ x ≤ y, where x and y are two integers; and (iii)
the submodularity property: for any nonnegative integer Δ,
ui(x + Δ) − ui(x) ≥ ui(y + Δ) − ui(y) if 0 ≤ x ≤ y.
This function characterizes the diminishing return received by
serving node vi with multiple times.

We here illustrate the physical meaning of function ui(ni)
with the following two examples. One example is that
ui(ni) = 1 if ni ≥ 1; otherwise (i.e., ni = 0), ui(ni) = 0.
In this example, there is a profit of 1 if node vi is served
by at least one of the K vehicles; otherwise, the profit is 0.
The other example is that ui(ni) = log2(ni + 1) [20], which
implies that the more vehicles serve a node vi, the less the
marginal gain is obtained from the serving. In other words,
this function is used to encourage visiting new nodes.

Notice that although both nodes s and t are contained in
each of the K paths, we assume the profits for serving them
are zeros, i.e., us(ns) = ut(nt) = 0 with 0 ≤ ns, nt ≤ K .

The total profit received from serving the nodes in the K
paths P1, P2, . . . , PK then is

∑

vi∈
�

K
k=1 Pk

ui(ni), (2)

where ni is the number of times that vi is served by the K
vehicles.

C. Problem Definition

Given a graph G = (V ∪ {s, t}, E), the generalized
team orienteering problem (GTOP) in G is to find K paths

P1, P2, . . . , PK for K vehicles with each starting from node
s and ending at t, such that the profit sum of the nodes served
by the K vehicles, i.e.,

∑
vi∈
�K

k=1 Pk
ui(ni), is maximized,

subject to that the cost w(Pk) of each path Pk for vehicle k
is no greater than the cost budget B, i.e., w(Pk) ≤ B with
1 ≤ k ≤ K . That is,

max
∑

vi∈
�

K
k=1 Pk

ui(ni), (3)

subject to

w(Pk) ≤ B, 1 ≤ k ≤ K. (4)

Formally, we use a binary decision variable xik to indicate
whether node vi ∈ V is contained in path Pk, where xik = 1
if vi is in Pk; Otherwise, xik = 0, for all i and k with 0 ≤
i ≤ n + 1 and 1 ≤ k ≤ K , where v0 = s and vn+1 = t. The
number of paths in which vi is contained is ni =

∑K
k=1 xik .

Similarly, we use an indicator decision variable yijk to indicate
whether an edge (vi, vj) in E from vi to vj is contained in path
Pk, where yijk = 1 if it is in path Pk; Otherwise, yijk = 0,
where 0 ≤ i, j ≤ n + 1 and 1 ≤ k ≤ K .

The GTOP problem can then be formulated as follows.

max
xik,yijk

∑

vi∈
�

K
k=1 Pk

ui(
K∑

k=1

xik), (5)

subject to

n∑

i=1

xik · h(vi) +
n+1∑

i=0

n+1∑

j=0

yijk · c(vi, vi+1) ≤ B,

1 ≤ k ≤ K (6)
n+1∑

j=1

y0jk = 1,

n∑

i=0

yi,n+1,k = 1, 1 ≤ k ≤ K (7)

n+1∑

j=0,j �=i

yjik =
n+1∑

j=0,j �=i

yijk = xik, 1 ≤ i ≤ n,

1 ≤ k ≤ K (8)∑

vi,vj∈S

yijk ≤ |S| − 1, 1 ≤ k ≤ K, ∀S ⊂ V, S �= ∅ (9)

xik ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ k ≤ K (10)

x0k = xn+1,k = 1, 1 ≤ k ≤ K (11)

yijk ∈ {0, 1}, 0 ≤ i, j ≤ n + 1, 1 ≤ k ≤ K, (12)

where Constraint (6) ensures that the cost of each path Pk is no
greater than the budget B of vehicle k; Constraint (7) ensures
that nodes v0(= s) and vn+1(= t) must be contained in each
of the K paths; Constraint (8) indicates that each node vi

except nodes s and t has one incoming edge and one outgoing
edge if it is contained in path Pk, and Constraint (9) implies
that the number of edges with their endpoints contained in any
nonempty proper subset S of V is no greater than |S|−1, thus
prevents disconnected closed subtours contained in a solution.

D. Approximation Ratio

Denote by OPT the value of an optimal solution of a
maximization optimization problem. Also, denote by SOL
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the value of a feasible solution delivered by an algorithm to
the problem. The approximation ratio of the algorithm is α if
SOL ≥ α ·OPT for any problem instance, where 0 < α ≤ 1.

IV. APPROXIMATION ALGORITHM FOR THE GENERALIZED

TEAM ORIENTEERING PROBLEM

In this section, we propose a novel constant approximation
algorithm for the GTOP problem.

The proposed algorithm proceeds iteratively. Within each
iteration, one path with the maximum marginal gain is found
for one vehicle in an auxiliary graph which will be constructed
later. Thus, the algorithm has K iterations. The detailed
algorithmic description is given as follows.

A. Algorithm

Given an undirected graph G = (V ∪ {s, t}, E), the
algorithm first constructs an auxiliary graph G� = (V ∪
{s, t}, E; w� : E 
→ R

≥0) from G, where the weight w�(vi, vj)
of each edge (vi, vj) in G� is

w�(vi, vj) = c(vi, vj) +
h(vi) + h(vj)

2
, (13)

c(vi, vj) is the traveling cost between nodes vi and vj for a
vehicle k, h(vi) and h(vj) are the service costs of vehicle k
at nodes vi and vj , respectively. For any s− t path Pk in G�,
denote by w�(Pk) the weighted sum of the edges in Pk, i.e.,

w�(Pk) =
∑

(vi,vj)∈Pk

w�(vi, vj). (14)

There are two interesting relationships between graphs G
and G�, which are the corner stones of the proposed algorithm.
That is,

(i) For any s−t path Pk of vehicle k in G, the cost w(Pk) of
Pk in G (defined by Eq. (1)) is equal to the weighted sum
w�(Pk) of the edges in Pk of G� (defined by Eq. (14)).

(ii) The edge weights in G� satisfy the triangle inequality.
The proposed algorithm then finds K paths for the K

vehicles. Assume that it has found k paths P1, P2, . . . , Pk,
where Pj is the path for vehicle j, 0 ≤ k ≤ K − 1, and
1 ≤ j ≤ k. Also, assume that each node vi in V has been
served ni times in the k service paths with 0 ≤ ni ≤ k.
Initially, k = 0 and ni = 0 for each vi ∈ V . The algorithm
now finds the (k+1)th path Pk+1 for vehicle k+1 as follows.

The algorithm finds an approximate s− t path Pk+1 in G�

under the cost budget B constraint, by applying an approxima-
tion algorithm for the orienteering problem, where the profit
of serving a node vi in G� is set to

u(vi, k + 1) = ui(ni + 1)− ui(ni), (15)

and vi has already been served ni times in the previous k
paths. Denote by u(Pk+1) the profit sum of the nodes in path
Pk+1, i.e., u(Pk+1) =

∑
vi∈Pk+1

u(vi, k + 1).
After finding the (k+1)the path Pk+1, the algorithm updates

the number of times ni that vi is served. The algorithm
continues until the K paths are found.

The algorithm for the GTOP problem is presented in
Algorithm 1.

Algorithm 1 Approximation Algorithm for the GTOP Prob-
lem (approAlg)
Require: G = (V ∪{s, t}, E), K vehicles with the cost budget

B, travel cost c : E 
→ R
≥0, service cost h : V 
→ R

≥0,
and profit ui : Z

≥0 
→ R
≥0 for each vi ∈ V .

Ensure: K s − t paths such that the total profit for serving
the nodes in the paths is maximized, subject to the cost
budget constraints on the K paths.

1: Construct an auxiliary graph G� from G, where G� = (V ∪
{s, t}, E), w� : E 
→ R

≥0, and w�(vi, vj) = c(vi, vj) +
h(vi)+h(vj)

2 for each edge (vi, vj) in G�;
2: Let P ← ∅; /* the set of found paths */
3: Let k ← 0; /* the number of found paths */
4: Let ni ← 0, for each vi ∈ V ; /* the number of times ni

that each node vi has been served in the k paths */
5: while k < K do
6: Find an approximate s − t path Pk+1 in G� with cost

budget B, by applying an approximation algorithm for
the orienteering problem, where the profit for serving
each node vi in G� is set as u(vi, k + 1) = ui(ni +
1)− ui(ni);

7: P ← P ∪ {Pk+1};
8: For each node vi in path Pk+1, increase its number of

served times ni by one;
9: k ← k + 1;

10: end while
11: return the K paths in P .

B. Algorithm Analysis

In the following, we first show that the optimization objec-
tive function is a nondecreasing submodular function. We then
show that Algorithm 1 can find an approximate path Pk in
graph G� for vehicle k. We finally analyze the approximation
ratio of Algorithm 1.

We start with the following lemma.
Lemma 1: Given K s − t paths P1, P2, . . . , PK in the

original graph G, let P = {P1, P2, . . . , PK}, and u(P) =∑
vi∈
�K

k=1 Pk
ui(ni). Then, u(P) is a nondecreasing submod-

ular function.
Proof: The lemma can be easily shown, omitted. �

Lemma 2: Algorithm 1 can find an approximate s − t
path Pk in G� for vehicle k. Also, path Pk is a feasible path
in the original graph G.

Proof: We first show that G� is a metric graph, i.e., its
edge weights satisfy the triangle inequality. Consider any three
nodes vi, vj , vl in G�, the edges formed by them are (vi, vj),
(vi, vl), and (vj , vl), respectively. We have

w�(vi, vj)

= c(vi, vj) +
h(vi) + h(vj)

2
, by Eq. (13)

≤ c(vj , vl) + c(vi, vl) +
h(vi) + h(vj)

2
,

as the travel costs in G satisfy the triangle inequality

≤ c(vj , vl) + c(vi, vl) +
h(vi) + h(vj)

2
+ h(vl)
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= c(vj , vl) +
h(vj) + h(vl)

2
+ c(vi, vl) +

h(vi) + h(vl)
2

= w�(vj , vl) + w�(vi, vl), by Eq. (13). (16)

That is, the edge weights in G� satisfy the triangle inequality.
We then can apply the approximation algorithm due to

Chekuri et al. [8] for the orienteering problem in the metric
graph G�.

The rest is to show that the cost w(Pk) of any s − t path
Pk of vehicle k in G is equal to the weighted sum w�(Pk) of
the edges in Pk of G�.

Let Pk =< s, v1, v2, · · · , vqk
, t >. Then,

w(Pk)

=
qk∑

i=1

h(vi) +
qk∑

i=0

c(vi, vi+1), by Eq. (1)

=
h(v1)

2
+

qk−1∑

i=1

h(vi) + h(vi+1)
2

+
h(vqk

)
2

+
qk∑

i=0

c(vi, vi+1)

=
h(s) + h(v1)

2
+

qk−1∑

i=1

h(vi) + h(vi+1)
2

+
h(vqk

) + h(t)
2

+
qk∑

i=0

c(vi, vi+1), as h(s) = h(t) = 0

=
qk∑

i=0

(
h(vi) + h(vi+1)

2
+ c(vi, vi+1)), as v0 = s, vqk+1 = t

=
qk∑

i=0

w�(vi, vi+1) = w�(Pk), by Eq. (13). (17)

The lemma then follows. �
We finally analyze the approximation ratio of

Algorithm 1 by the following theorem.
Theorem 1: Given a graph G = (V ∪{s, t}, E), K vehicles

with each vehicle having a cost budget B, the travel cost
function c : E 
→ R

≥0, service cost function h : V 
→ R
≥0,

and the profit function ui : Z
≥0 
→ R

≥0 for each node vi in V ,
there is an approximation algorithm, Algorithm 1, for the
GTOP problem, which delivers a (1 − (1/e)α)-approximate
solution, assuming that there is an α-approximation algorithm
for the orienteering problem with 0 < α < 1, where e is the
base of the natural logarithm.

Proof: Let paths P ∗
1 , P ∗

2 , . . . , P ∗
K be the K paths in an

optimal solution of the GTOP problem, and let A∗ be the set
of the K optimal paths, i.e., A∗ = {P ∗

1 , P ∗
2 , . . . , P ∗

K}. Also,
let A∗

k = {P ∗
1 , P ∗

2 , . . . , P ∗
k } with 1 ≤ k ≤ K .

Let A be the set of K paths delivered by Algorithm 1,
i.e., A = {P1, P2, . . . , PK}. Also, let Ak be the set of the
first k paths among the K paths, i.e., Ak = {P1, P2, . . . , Pk}
with 1 ≤ k ≤ K .

For any set Ak, denote by P̂k+1 the optimal s − t path in
G�, such that the marginal profit is maximized, i.e.,

P̂k+1 = argmax
P∈P
{u(Ak ∪ {P})− u(Ak)}, (18)

where P is the set of all feasible paths for the (k+1)th vehicle.
Notice that since the K vehicles are homogeneous, each P ∗

j

of the optimal K paths P ∗
1 , P ∗

2 , . . . , P ∗
K is a feasible path for

the (k + 1)th vehicle, i.e., {P ∗
1 , P ∗

2 , . . . , P ∗
K} ⊂ P .

Following Lemma 2, Pk+1 is an α-approximate path found
by Algorithm 1 with respect to P̂k+1, where P̂k+1 has the
maximum marginal profit. We thus have

u(Ak+1)− u(Ak)
= u(Pk+1)
≥ α · u(P̂k+1)
= α · (u(Ak ∪ {P̂k+1})− u(Ak)), (19)

where 0 ≤ k ≤ K − 1.
We now consider the relationship between u(Ak+1) and

u(Ak) as follows. For each k and j with 0 ≤ k ≤ K − 1 and
1 ≤ j ≤ K , we show that

u(Ak ∪ A∗
j ) ≤

1
α

(u(Ak+1)− u(Ak)) + u(Ak ∪ A∗
j−1)

(20)

as follows.

u(Ak ∪ A∗
j )

= u(Ak ∪ A∗
j−1 ∪ {P ∗

j }), by the definition of A∗
j

= u(Ak ∪ A∗
j−1 ∪ {P ∗

j })− u(Ak ∪ A∗
j−1) + u(Ak ∪ A∗

j−1)
≤ u(Ak ∪ {P ∗

j })− u(Ak) + u(Ak ∪ A∗
j−1),

due to the submodularity of u(.) and Ak ⊆ Ak ∪ A∗
j−1

≤ u(Ak ∪ {P̂k+1})− u(Ak) + u(Ak ∪ A∗
j−1), as P ∗

j ∈ P
and P̂k+1 is an optimal path in P with respect to Ak

≤ 1
α

(u(Ak+1)− u(Ak)) + u(Ak ∪ A∗
j−1), due to Eq. (19).

We then have

u(A∗) = u(A∗
K), as A∗ = A∗

K

≤ u(Ak ∪A∗
K), as function u(.) is nondecreasing

≤ 1
α

(u(Ak+1)− u(Ak)) + u(Ak ∪ A∗
K−1),

due to Ineq. (20) where j = K ,

≤ 2
α

(u(Ak+1)− u(Ak)) + u(Ak ∪ A∗
K−2),

due to Ineq. (20) where j = K − 1,
...

≤ K

α
(u(Ak+1)− u(Ak)) + u(Ak ∪ A∗

K−K),

=
K

α
(u(Ak+1)− u(Ak)) + u(Ak),

where A∗
K−K = A∗

0 = ∅
= βK(u(Ak+1)− u(Ak)) + u(Ak), let β =

1
α

.(21)

Re-arranging Ineq. (21), we have

u(Ak+1) ≥ βK − 1
βK

u(Ak) +
u(A∗)
βK

= a · u(Ak) + b, (22)

where a = βK−1
βK and b = u(A∗)

βK with 0 ≤ k ≤ K − 1.
We finally bound the total profit of the solution AK =
{P1, P2, . . . , PK} delivered by Algorithm 1 as follows.

u(AK) ≥ a · u(AK−1) + b, by Eq. (22)
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≥ a(a · u(AK−2) + b) + b

= a2 · u(AK−2) + ab + b

...

≥ aK · u(AK−K) + b

K−1∑

k=0

ak

= b

K−1∑

k=0

ak, as AK−K = ∅ and u(∅) = 0

= b
1− aK

1− a

=
u(A∗)
βK

1− (βK−1
βK )K

1− βK−1
βK

,

= u(A∗)(1− (1 − 1
βK

)K)

= u(A∗)(1− ((1 − 1
βK

)βK)
1
β )

≥ u(A∗)(1− (1/e)
1
β ), as (1− 1

βK
)βK ≤ 1

e

= (1− (1/e)α)u(A∗), as α =
1
β

. (23)

The theorem then follows. �
It must be mentioned that the analysis of Theorem 1 holds

only for homogenous vehicles, not for heterogenous vehicles.
This indicates that our corresponding claim in our previous
conference version [39] is incorrect.

Corollary 1: There is a (1−(1/e)
1

2+� )-approximation algo-
rithm for the GTOP problem with a time complexity of
O(KnO(1/�2)), where e is the base of the natural logarithm,
and � is a given constant with 0 < � ≤ 1.

Proof: Following Chekuri et al. [8], there is an approxi-
mation algorithm for the orienteering problem, which finds a

1
2+� -approximate s − t path P with a cost budget B, where
0 < � ≤ 1. Due to Theorem 1, the approximation ratio is
1− (1/e)0.4 ≈ 0.33 when � = 0.5.

The analysis of the time complexity is as follows. Following
Chekuri et al. [8], the running time of the 1

2+� -approximation

algorithm for the orienteering problem is O(nO(1/�2)). It can
be seen from Algorithm 1 that the algorithm in [8] will be
invoked K times. The time complexity of Algorithm 1 thus
is O(KnO(1/�2)). �

We note that the starting node s and the ending node t are
co-located in many applications. In this case, we actually find
closed tours for the K vehicles and we can obtain a better
approximation ratio for this special case of the problem as
follows.

Corollary 2: There is a (1 − 1/
√

e)-approximation algo-
rithm for the GTOP problem with a time complexity of
O(Kn3 log n), when the starting node s and ending node t
of each path Pk of vehicle k are co-located, where e is the
base of the natural logarithm and n is the number of nodes in
G, where 1 ≤ k ≤ K .

Proof: Since there is a 1
2 -approximation algorithm for

the orienteering problem which is to find an s-rooted closed
tour, due to Paul et al. [30], the approximation ratio of
Algorithm 1 then is 1− 1/

√
e, which is no less than 0.39.

On the other hand, the time complexity of the 1
2 -

approximation algorithm for the orienteering problem due
to Paul et al. [30] is O(n3 log n). The time complexity of
Algorithm 1 thus is O(Kn3 log n), as the algorithm in [30]
will be invoked K times. �

V. APPROXIMATION ALGORITHM FOR A SPECIAL CASE

In this section, we consider a special case of the generalized
team orienteering problem, where (i) the starting node s and
the ending node t are co-located (i.e., s = t); and (ii) the profit
ui(ni) that each node vi is served once and multiple times is
equal, that is, ui(0) = 0, ui(1) = ui(2) = · · · = ui(K). Such
an example of this special profit function is that, every sensor
can be charged by only one mobile charger, rather than by
multiple chargers.

Formally, given a graph G = (V ∪ {s}, E), K vehicles,
a cost budget B of each vehicle, a travel cost function c : E 
→
R

≥0, a node service cost function h : V 
→ R
≥0, and a profit

function u : V 
→ R
≥0, the team orienteering problem (TOP)

is to find K closed tours C1, C2, . . . , CK with each containing
node s, such that the profit sum of serving the nodes in the
K closed tours,

∑
vi∈
�

K
k=1 Ck

u(vi), is maximized, subject to
that the cost w(Ck) of each tour Ck is no greater than B,
where 1 ≤ k ≤ K .

Although the proposed greedy algorithm in the previous
section is applicable for the team orienteering problem with an
approximation ratio of 0.39 by Corollary 2, we here devise an
approximation algorithm for the problem, and we will show
that the algorithm is able to find a better solution than that
by the proposed greedy algorithm when the cost budget B of
each vehicle is large.

A. Algorithm

The basic idea behind the proposed algorithm is that it first
finds an approximate closed tour C in G for the orienteering
problem with a cost budget of KB, instead of B. It then
splits the tour C into the minimum number of s-rooted tours
C1, C2, . . . , CK� , subject to that the cost of each split tour is
no greater than B, where K � is the number of tours split and
K � ≥ K . It finally chooses the top-K tours with the maximum
profits among the K � tours.

Given a graph G = (V ∪ {s}, E), assume that the cost of
each tour that serves only a single node vi in V is no greater
than B, i.e., maxvi∈V {h(vi)+2c(s, vi)} ≤ B. Otherwise (i.e.,
there is a node vi in V such that h(vi)+2c(s, vi) > B), node
vi can be removed from G, since it will not be contained in
any feasible solution.

The algorithm proceeds as follows. It first constructs an
auxiliary graph G� = (V ∪ {s}, E; w� : E 
→ R

≥0) from
G, where the weight w�(vi, vj) of each edge (vi, vj) is
w�(vi, vj) = c(vi, vj) + h(vi)+h(vj)

2 . It can be seen that the
edge weights in G� satisfy the triangle inequality by Lemma 2.

The algorithm then finds a 1
2 -approximate s-rooted tour C

for the orienteering problem in G� with a cost budget of KB,
by applying an algorithm in work [30], where u(vi) is the
profit of serving each node vi in G�. Assume that C =<
s, v1, v2, · · · , vnC , s >, where nC is the number of nodes
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Fig. 4. Illustration of the approximation algorithm for the team orienteering problem, where K = 3.

in C, e.g., see Fig. 4(a). Denote by u(C) the profit sum of the
nodes in C, i.e., u(C) =

∑
vi∈C u(vi).

Having the tour C, the algorithm thirdly splits C into the
minimum number of s-rooted tours C1, C2, . . . , CK� , subject
to that the cost of each split tour is no greater than B, where
K � is a positive integer determined as follows.

The first split tour is C1 =< s, v1, v2, · · · , vl1 , s >,
where vl1 is the last node along C such that the cost of C1

is no greater than B (see Fig. 4(b)), which means the cost of
tour < s, v1, v2, · · · , vl1 , vl1+1, s > is strictly larger than
B. The residual C is path < vl1+1, vl1+2, · · · , vnC , s >
after splitting tour C1 from C.

The second split tour is C2 =<
s, vnC , vnC−1, · · · , vl2 , s >, where the vl2 is the last node
backwards along the residual C such that the cost of C2 is no
greater than B (see Fig. 4(c)), which means that the cost of
tour < s, vnC , vnC−1, · · · , vl2 , vl2−1, s > is strictly larger
than B. The residual C is path < vl1+1, vl1+2, · · · , vnl2−1 >
after splitting tour C2.

The third split tour is C3 =<
s, vl1+1, vl1+2, · · · , vl3 , s >, where vl3 is the last
node along the residual C such that the cost of C3 is no
greater than B (see Fig. 4(d)), which indicates that the cost of
tour < s, vl1+1, vl1+2, · · · , vl3 , vl3+1, s > is strictly larger
than B. The residual C is path < vl3+1, vl3+2, · · · , vnl2−1 >
after splitting tour C3. The split procedures of rest tours are
similar to that of tour C3. Let K � be the number of split tours
in the end. Fig. 4(d) shows that K � = 4 tours C1, C2, C3, C4

have been split from tour C, where the last split tour C4

consists of only nodes s and v9.
Having split K � tours C1, C2, . . . , CK� , let u(Ck) be the

profit of tour Ck, which is the profit sum of the nodes in tour
Ck, i.e.,

u(Ck) =
∑

vi∈Ck

u(vi), (24)

where 1 ≤ k ≤ K �.
For the sake of convenience, we assume that u(C1) ≥

u(C2) ≥ · · · ≥ u(CK�). The algorithm finally chooses the
top-K tours with the largest profits among the K � tours,
i.e., C1, C2, . . . , CK , as the solution to the team orienteering
problem if K ≤ K �. For example, the algorithm chooses tours
C1, C2, and C3 as the solution, since the profit of tour C4 is

Algorithm 2 Approximation Algorithm for the Team Orien-
teering Problem (approAlgSpecial)

Require: G = (V ∪ {s}, E), K vehicles with cost budget B,
travel cost c : E 
→ R

≥0, service cost h : V 
→ R
≥0, and

profit u : V 
→ R
>0.

Ensure: K s-rooted closed tours such that the total profit for
serving the nodes in the tours in maximized, subject to the
cost budget constraints on the K tours.

1: Construct an auxiliary graph G� = (V ∪ {s}, E; w� : E 
→
R

≥0) from G, where w�(vi, vj) = c(vi, vj) + h(vi)+h(vj)
2

for each edge (vi, vj) in G�;
2: Find a 1

2 -approximate tour C for the orienteering problem
in G� with cost budget KB, by invoking an algorithm
from [30];

3: Split tour C into, say K �, s-rooted tours C1, C2, . . . , CK� ,
such that the cost of each split tour is no greater than B;

4: Let C be the set of the K tours with the maximum profits
among the K � tours;

5: return the K tours in C.

the smallest. Otherwise (K > K �), the K � tours form the
solution to the problem.

The algorithm for the team orienteering problem is pre-
sented in Algorithm 2.

B. Algorithm Analysis

We assume that K ≥ 2. Otherwise (i.e., K = 1), the
team orienteering problem degenerates to the orienteering
problem. In the following, we first obtain a nontrivial upper
bound on the team orienteering problem. We then analyze the
approximation ratio of the proposed algorithm.

Assume that the optimal solution contains K tours
C∗

1 , C∗
2 , . . . , C∗

K . Denote by OPT the optimal value, i.e.,
OPT =

∑
vi∈
�K

k=1 C∗
k

u(vi). Meanwhile, denote by C∗
L the

optimal solution to the orienteering problem in G� with the
cost budget KB.

We start with the following important lemma.
Lemma 3: The optimal value OPT of the team orienteering

problem in G is no greater than the value of the optimal
solution C∗

L to the orienteering problem in G� with cost budget
KB, i.e., OPT ≤ u(C∗

L).
Proof: Consider the optimal solution consisting of the K

tours C∗
1 , C∗

2 , . . . , C∗
K . Since each tour contains the root s,
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a tour C that visits root s and the nodes in the K tours can be
constructed, such that the profit u(C) of tour C is the profit
sum of the nodes in the K tours, and the cost w(C) of tour C
is no greater than KB, as the cost of each of the K tours is
no larger than B. It then can be seen that tour C is a feasible
solution to the orienteering problem in G� with the cost budget
KB. Since C∗

L is the optimal solution, we have

OPT =
∑

vi∈
�

K
k=1 V (C∗

k)

u(vi) = u(C) ≤ u(C∗
L). (25)

The lemma then follows. �
We then analyze the approximation ratio of Algorithm 2,

by distinguishing into two cases: (i) the number K � of split
tours in Algorithm 2 is no more than K , i.e., K � ≤ K; and
(ii) K � > K .

Theorem 2: Algorithm 2 delivers a 1
2 -approximate solu-

tion to the team orienteering problem in G if K � ≤ K . Oth-
erwise (K � > K ≥ 2), it delivers an α-approximate solution,
where α = K

2� KB
B−2Δ � , B is the cost budget of each vehicle,

Δ = 1
2 maxvi∈V {2c(s, vi)+ h(vi)} is half the maximum cost

for serving a node in V , and Δ ≤ B
2 . In addition, the time

complexity of Algorithm 2 is O(n3 log n), where n is the
number of nodes in G.

Proof: We first consider case (i) that K � ≤ K . Since
K � ≤ K , the solution delivered by Algorithm 2 consists of
the K � split tours C1, C2, . . . , CK� . We have that

∑

vi∈
�K�

k=1 Ck

u(vi) = u(C)

≥ 1
2
· u(C∗

L), as C is a
1
2

-approximate solution

≥ 1
2
·OPT, by Lemma 3. (26)

We then consider case (ii) that K � > K ≥ 2 as follows.
We first bound the number K � of split tours by Algorithm 2.
It can be seen that Δ = maxvi∈V {w�(s, vi)}.

Recall that the cost w�(C) of tour C is no greater than KB.
After splitting off C1 from C, the cost of the residual C is
no more than KB − (B −Δ) = (K − 1)B + Δ, as the cost
of tour < s, v1, v2, · · · , vl1 , vl1+1, s > is strictly larger
than B and the cost of edge (vl1+1, s) is no more than Δ.
Similarly, after splitting off C2, the cost of the residual C is
no greater than (K − 1)B +Δ− (B−Δ) = (K − 2)B +2Δ.
Furthermore, after splitting off C3, the cost of the residual C
is no more than (K − 2)B + 2Δ− (B − 2Δ), since the cost
of tour < s, vl1+1, vl1+2, · · · , vl3 , vl3+1, s > is strictly
larger than B, and the costs w(s, vl1+1) and w(vl3+1, s) of
both edges (s, vl1+1) and (vl3+1, s) are no more than Δ. That
is, the cost the residual C will be reduced by at least (B−2Δ)
for splitting off each of the tours C3, C4, . . . , CK�−1 except
the last tour CK� . Thus, the number K � of split tours from C
is upper bounded by

K � ≤ 2 + � (K − 2)B + 2Δ
B − 2Δ

�

= �KB − 2Δ
B − 2Δ

� ≤ � KB

B − 2Δ
�. (27)

Since Algorithm 2 chooses the top-K tours with the
largest profits among the K � split tours and K ≤ K �, the
profit of the chosen K tours should be no less than K

K� of the
profit of the K � tours, i.e., u(C) ≥ K

K� ·
∑

vi∈
�K�

k=1 Ck
u(vi).

The ratio of u(C) to OPT thus is

u(C)
OPT

≥
K
K� ·

∑
vi∈
�K�

k=1 Ck
u(vi)

OPT

≥
K
K� · 1

2OPT

OPT
, by Ineq. (26)

=
1
2
· K

K �

≥ 1
2
· K

� KB
B−2Δ�

, by Ineq. (27). (28)

Remark: We compare the approximation ratio K
2� KB

B−2Δ � of

Algorithm 2 against the ratio (1−1/
√

e) of Algorithm 1.
On one hand, the value of (1 − 1/

√
e) is no more than 0.4.

On the other hand, assume that the value of � KB
B−2Δ� can be

approximated by KB
B−2Δ , when the value of K is sufficiently

large. Then, the approximation ratio K
2� KB

B−2Δ � ≈ K
2 KB

B−2Δ
=

B−2Δ
2B ≥ 0.4 ≥ 1 − 1/

√
e, if B ≥ 10Δ. Notice that in many

applications, the cost budget B of each vehicle usually is much
larger than the maximum cost 2Δ of serving only a single
node, as a vehicle can serve many nodes with its cost budget.

We finally analyze the time complexity of Algorithm 2.
The construction of graph G� takes time O(m), where
m = |E|. The invoking of the algorithm in [30] takes time
O(n3 log n), where n = |V |. Notice that the tour splitting
will take time only O(n). Therefore, the time complexity of
Algorithm 2 is O(m)+O(n3 log n)+O(n) = O(n3 log n).

�

VI. PERFORMANCE EVALUATION

In this section we evaluate the performance of the proposed
algorithms. We also study the impact of important parameters,
including the number of vehicles, the network size, and the
cost budgets of vehicles, on the performance of the proposed
algorithms.

A. Experimental Settings

We consider three applications of the GTOP problem: the
first application is to schedule UAVs to monitor PoIs in a
disaster area; the second one is to dispatch multiple mobile
chargers to charge sensors in a sensor network; and the
final one consists of classic benchmark instances of the team
orienteering problem but the starting node s and ending node
t are different, where the optimal solutions (or near-optimal
solutions) to the instances are known. The main difference
of the three applications is that, the profit of monitoring a
PoI by multiple UAVs is larger than that by a single UAV
in the first application [20], while the profits of serving a
node once and multiple times are the same in the second and
third applications [33], [36]. In the following, we describe the
experimental settings of the three applications, respectively.
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1) Application A: Employing UAVs to Monitor PoIs: We
consider a disaster area with from 50 to 200 PoIs in a
2 km×2 km square [20]. The number of UAVs K varies
from 1 to 5, which stay at a depot s initially and the depot
is located at the center of the square. The energy capacity
B of each UAV is 89.2 Wh [12]. Also, the flying energy
consumption of each UAV between any two PoIs vi and vj

is c(vi, vj) = γ · dij , where γ is the energy consumption on
flying per unit length with γ = 17.84 J/m [12], and dij is their
Euclidean distance. In addition, the energy consumption h(vi)
for monitoring a PoI vi is randomly chosen from an interval
[500 J, 1,000 J]. Finally, the profit of monitoring a PoI vi is
u(vi) = pi · log2(ni + 1) [20], where ni is the times visited
by the K UAVs, pi is the priority of vi, and pi is randomly
chosen from an interval [pmin, pmax] with pmin = 1 and
pmin = 5.

2) Application B: Dispatching Chargers to Charge Sensors:
There are from 50 to 200 sensors deployed in a 1 km×1 km
square area randomly [25]. The battery capacity of each sensor
vi is 10.8 kJ [22]. Also, the residual energy rei of sensor vi is
randomly chosen from an interval [0, 10.8 kJ], and the profit
ui(vi) of recharging sensor vi is the amount of energy charged
to it, i.e., ui(vi) = 10.8 kJ−rei. It can be seen that the profit
of recharging one sensor with less residual energy is larger
than that of recharging the other sensor with much residual
energy.

A depot s is located at the center of the square area, and K
mobile chargers are located at the depot initially, where the
value of K varies from 1 to 8. We assume that the energy
capacity B of each mobile charger is 2,000 kJ [21]. Also,
the traveling energy consumption of a charger between any
two nodes vi and vj is c(vi, vj) = γ · dij , where γ is the
energy consumption on traveling per unit length with γ =
0.6 kJ/m [21], and dij is the Euclidean distance between vi

and vj . On the other hand, the amount of energy consumption
on recharging sensor vi by a charger is h(vi) = 10.8 kJ−rei

ρ ,
where 10.8 kJ−rei is the amount of energy charged to vi, and
ρ is the energy charging efficiency of a charger with ρ = 0.95.

3) Application C: Benchmark Instances: We consider
the 157 network instances given by [7], [33], where the starting
node s and ending node t are different. The 157 instances are
classified into four sets 4, 5, 6, and 7 [33], where the network
topologies of different instances in the same set are identical,
but the numbers of vehicles K (from 2 to 4) and the capacities
of each vehicle B of the different instances are different. The
number of nodes in the four sets are 100, 66, 64, and 102,
respectively. Each node except nodes s and t is allowed to be
visited no more than once.

All datasets used in this article are available at the website:
https://zenodo.org/record/4047986#.X21VvIu-u2u.

B. Benchmark Algorithms

We here consider two algorithms for the benchmark
purpose against the proposed algorithms approAlg and
approAlgSpecial.

(1) Algorithm partitionAlg [34] first sorts all nodes in
anticlockwise order with centering at node s. Assume that

v1, v2, . . . , vn is the order of sorted nodes. The algorithm
then partitions the nodes into K disjoint sets V1, V2, . . . , VK ,
by the energy capacities of the K vehicles. That is, nodes
v1, v2, . . . , vn1 are in set V1, where n1 = �n · 1

K �; nodes
vn1+1, vn1+2, . . . , vn2 are in set V2, where n2 = �n · 2

K �;
. . .; nodes vnK−1+1, vnK−1+2, . . . , vnK are in set VK , where
nK = �n · KK � = n. After partitioning the nodes, the algorithm
finds an s − t path Pk of vehicle k for serving the nodes in
each set Vk by applying the approximation algorithm for the
orienteering problem [8].

(2) Algorithm forestAlg [1] finds the K paths by starting
with a forest with K trivial trees and each tree Tk consists of
an edge (s, t) between the starting nodes s and the ending
node t initially. Assume that some nodes have been inserted
to the forest already.

For each node vi, assume that it has been contained in ni of
the K trees with 0 ≤ ni ≤ K . The algorithm calculates both
the marginal profit πi = ui(ni +1)−ui(ni) and the increased
cost δi of serving vi, where the increased cost of serving vi is
the smallest difference between the cost of the s− t path Pk

visiting nodes in Tk and the cost of the s− t path P �
k visiting

both nodes in Tk and vi, subject to the constraints that the cost
of P �

k is no larger than B and vi was not contained in Tk, i.e.,
δi = minK

k=1,vi /∈Tk, w(P �
k)≤B{w(P �

k) − w(Pk)}. Notice that
given a tree Tk containing s and t, an s− t path Pk visiting
nodes in Tk can be derived as follows. First, obtain a graph G��

by replicating edges in Tk except the edges on the path from s
to t in Tk. Then, find a Eulerian path from s to t in graph G��.
Finally, shortcut repeated nodes in the Eulerian path. It can be
seen that the cost of path Pk is no more than twice the cost of
tree Tk. The algorithm then inserts a node vj to the forest with
the maximum ratio of the marginal profit πj to the increased
cost δj of serving node vj , i.e., vj = argmaxvi∈V {πi

δi
}. This

procedure of the forest growth continues until the insertion of
any node will violate the cost budgets of the K vehicles.

The value in each figure is the average of the results out
of 50 problem instances with the same network size. The
running time of each algorithm is obtained based on a server
with a 2.7 GHz Intel i7 CPU and an 8 GB RAM.

C. Algorithm Performance in the Application of Employing
UAVs to Monitor PoIs

We first investigate the algorithm performance, by increas-
ing the UAV energy capacity B from 50 Wh to 100 Wh
when there are n = 100 PoIs and K = 2 UAVs in the
network. Fig. 5 demonstrates that the profit sum by algorithm
approAlg is around from 4% to 48% larger than that by
algorithm partitionAlg, and is from 8% to 14% larger
than that by algorithm forestAlg. It also can be seen that
the profit sum by algorithm partitionAlg will not increase
when the UAV energy capacity B is over 70 Wh, as each PoI
will be monitored no more than once by UAVs in the solution
delivered by the algorithm.

We then study the performance of the proposed by increas-
ing the number of UAVs K from 1 to 5 in a network with
n = 100 PoIs. Fig. 6 shows that the profit sum by algorithm
approAlg is about 10% higher than that by algorithm
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Fig. 5. Performance of different algorithms by varying the UAV energy
capacity B from 50 Wh to 100 Wh, when n = 100 and K = 2.

Fig. 6. Performance of different algorithms by varying the number of UAVs
K from 1 to 5 when there are n = 100 PoIs.

forestAlg, and is significantly larger than that by algorithm
partitionAlg when there are more than two UAVs in
the network. For example, the profits sums by algorithms
approAlg, partitionAlg and forestAlg are 422, 302,
and 383, respectively, when K = 2. The rationale behind is
that each PoI will be monitored no more than once in algorithm
partitionAlg, while the PoI may be monitored multiple
times by different UAVs in both algorithms forestAlg
and approAlg, where the profit of monitoring the PoI has
a diminishing return with multiple visits. Fig. 6 also plots
an interesting phenomenon, that is, that the profit sums by
algorithms approAlg and partitionAlg are equal when
only one UAV is employed, as the GTOP problem degenerates
to the traditional orienteering problem when K = 1 and they
thus deliver the same solution.

We also evaluate the performance of different algorithms by
increasing the number of PoIs n from 50 to 200 when there
are K = 2 UAVs. Fig. 7 shows that the profit sum of the tours
delivered by the proposed algorithm approAlg is about from
9% to 58% higher than that by algorithm partitionAlg,
and is around from 1% to 15% higher than that by algorithm
forestAlg. For example, the profit sums by algorithms
approAlg, partitionAlg and forestAlg are 550,
451, and 492, respectively, when there are n = 150 PoIs.
Fig. 7 demonstrates that the profit sum by each of the three
mentioned algorithms increases with the growth of the number
n of PoIs. The rationale behind is that PoIs are more densely
located in a larger network, and the energy consumption of a

Fig. 7. Performance of different algorithms by varying the number of PoIs
n from 50 to 200 when K = 2.

Fig. 8. Performance of different algorithms by varying the energy capacity
B from 1,000 kJ to 5,000 kJ when n = 200 and K = 2.

UAV on its flying between different PoIs thus becomes smaller.
Therefore, each UAV has more energy to monitor more PoIs.

D. Algorithm Performance in the Application of Dispatching
Multiple Mobile Chargers to Charge Sensors

We first evaluate the performance of different algorithms,
by varying the energy capacity B of each charger from
1,000 kJ to 5,000 kJ when there are n = 200 sensors and K =
2 chargers in the network. Fig. 8 shows that the profit sum by
algorithm approAlgSpecial is slightly smaller than that
by algorithm approAlg when the energy capacity B of each
charger is no more than 2,000 kJ, while the profit sum by
the former algorithm is up to 4% larger than that by the latter
when B is larger than 2,000 kJ, which validates our claim that
the approximation ratio of algorithm approAlgSpecial
is larger than that of algorithm approAlg when the value
of B is large (also see the analysis of Theorem 2 in
Section V-B). Fig. 8 also demonstrates that the profit sums
by algorithms approAlg and approAlgSpecial are from
3% to 16% higher than those by algorithms partitionAlg
and forestAlg.

We then investigate the algorithm performance, by increas-
ing the number of mobile chargers K from 1 to 8 in a network
with n = 200 sensors. Fig. 9 demonstrates that the profit
sums by algorithms approAlg and approAlgSpecial is
up to 16% larger than those by algorithms partitionAlg
and forestAlg. Fig. 9 illustrates two interesting phenom-
enons: one is that the profit sums by algorithms approAlg,
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Fig. 9. Performance of different algorithms by varying the number of chargers
K from 1 to 10 when n = 200 and Bmax = 1, 500 kJ.

Fig. 10. Performance of different algorithms by varying the network size n
from 50 to 200, when K = 2 and B = 2, 000 kJ.

approAlgSpecial and partitionAlg are equal when
one (K = 1) mobile charger is employed, as the GTOP
problem degenerates to the traditional orienteering problem
when K = 1; another is that the profit sums by the four
algorithms are close to each other when K = 8 mobile
chargers are employed, since almost all sensors are charged
in the charging tours delivered by each of the four algorithms
when K = 8 chargers are employed.

We further study the performance of different algorithms
by varying the network size n from 50 to 200 when there
are K = 2 mobile chargers in the sensor network. Fig. 10
shows that the profit sums of the tours delivered by the
proposed algorithms approAlg and approAlgSpecial
are about from 5% to 16% higher than those by algo-
rithms partitionAlg and forestAlg, respectively.
For example, the profit sums by algorithms approAlg,
approAlgSpecial, partitionAlg and forestAlg
are 616, 613, 540, and 529, respectively, when the network
size n is 200.

E. Algorithm Performance With the Benchmark Instances

We finally study the performance of different algorithms
with the 157 benchmark instances [33]. In addition to
algorithms approAlg, partitionAlg, and forestAlg,
we also consider a heuristic algorithm UHGS [33] that can find
a near-optimal solution. Notice that the quality of a solution
delivered by an algorithm is measured by a percentage of
the deviation from the best-known solution (BKS) so far with

Fig. 11. Performance of different algorithms in the 157 benchmark
instances [33].

expensive computation [33], which is 100(1− u
uBSK

), where
u is the profit of the solution and uBKS is the profit of
the BKS.

Experimental results showed that algorithm approAlg can
find 8 optimal solutions for the 157 instances, while algorithm
UHGS delivers 128 optimal solutions. Notice that the objective
of this article is not to find optimal solutions to the team
orienteering problem, as the problem is NP-hard. Instead, the
goal of this article is to find performance-guaranteed solutions
within a short time.

On the other hand, Fig. 11(a) shows that the average
performance gaps of algorithms UHGS and approAlg, which
are about 0.02% and 6.4%, respectively, outperform the aver-
age performance gaps of algorithms partitionAlg and
forestAlg. Fig. 11(a) also demonstrates that the solution
delivered by algorithm approAlg is about 93.6% (=1-6.4%)
of the optimal solution, which is much better, compared
with its analytical approximation ratio 1 − (1/e)

1
2+� = 1 −

(1/e)
1

2+0.5 ≈ 0.33 with � = 0.5. This clearly indicates that
the estimate on the theoretical approximation ratio 0.33 is very
conservative.

Fig. 11(b) compares the running times of different algo-
rithms, from which it can be seen that the running time of
algorithm UHGS is quite long, as high as 192 seconds, while
the running time of algorithm approAlg only takes about
2.3 seconds.

Although the performance of algorithm UHGS is better than
that of the proposed algorithm approAlg, it may be more
practical to apply algorithm approAlg in real applications,
as it can find a performance-guaranteed solution within an
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acceptable time frame. For example, in the application of
employing UAVs to monitor PoIs in a disaster area, it is
urgent to find high-quality flying tours for the UAVs in a short
time. Otherwise, if a long time is needed to find high-quality
flying tours, the waiting time of some PoIs before they are
monitored by a UAV may be prohibitively long, people who
are trapped at the PoIs may have already been dead when the
PoIs are monitored later. In addition, algorithm approAlg
is applicable to scenarios in which each node can be visited
by multiple vehicles, and the profit of monitoring the node
is a submodular function of the number of vehicles visiting
it. However, algorithm UHGS serves as a benchmark as it can
deliver a near-optimal solution at the expense of the excessive
amount of running time.

VII. CONCLUSION

In this article we studied the generalized team orienteering
problem, where each node can be served by multiple vehicles
and the profit of serving the node is a submodular function
of the number of vehicles serving it. We proposed a novel
(1 − (1/e)

1
2+� )-approximation algorithm for the problem,

where � is a given constant with 0 < � ≤ 1 and e the
base of the natural logarithm. Particularly, the approximation
ratio is about 0.33 when � = 0.5. For a special case of
the problem where the profit of serving a node is the same
no matter whether it is served only once or multiple times,
we proposed an improved approximation algorithm with a
better approximation ratio. We finally evaluated the proposed
algorithms with simulations, and experimental results showed
that the proposed algorithms are very promising.
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