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Abstract—Mobile cloud computing is emerging as a main ubiquitous computing platform to provide rich cloud resources for various

applications of mobile devices. Although most existing studies in mobile cloud computing focus on energy savings of mobile devices by

offloading computing-intensive jobs from mobile devices to remote clouds, the access delays between mobile users and remote clouds

usually are long and sometimes unbearable. Cloudlet as a new technology is capable to bridge this gap, and can enhance the

performance of mobile devices significantly while meeting the crisp response time requirements of mobile users. In this paper, we study

the cloudlet placement problem in a large-scale Wireless Metropolitan Area Network (WMAN) consisting of many wireless Access

Points (APs). We first formulate the problem as a novel capacitated cloudlet placement problem that placesK cloudlets to some

strategic locations in the WMAN with the objective to minimize the average access delay between mobile users and the cloudlets

serving the users. We then propose an exact solution to the problem by formulating it as an Integer Linear Programming (ILP). Due to

the poor scalability of the ILP, we instead propose an efficient heuristic for the problem. For a special case of the problem where all

cloudlets have identical computing capacities, we devise novel approximation algorithms with guaranteed approximation ratios. We also

devise an online algorithm for dynamically allocating user requests to different cloudlets, if theK cloudlets have already been placed.

We finally evaluate the performance of the proposed algorithms through experimental simulations. Simulation results demonstrate that

the proposed algorithms are promising and scalable.

Index Terms—Cloudlet placement, cloudlet access delay minimization, mobile user request assignment, mobile cloud computing,

approximation algorithms

Ç

1 INTRODUCTION

IN recent years, mobile devices have undergone a transfor-
mation from bulky gadgets with limited functionalities to

indispensable everyday accessories. Advances in mobile
hardware technology have led to an explosive growth in
mobile application markets. Although mobile applications
are becoming increasingly computational-intensive, the
computing capacity of mobile devices remains limited, due
to the considerations of weight, size, battery life, ergonomics,
and heat dissipation of portable mobile devices [30]. A pow-
erful approach to enhancing the performance of mobile
applications is enabling mobile devices to offload some of
the workload of mobile devices to remote resource-rich
clouds [18], [39]. Although clouds have rich computing and
storage resources, they are geographically far away from
mobile users. Communication delays between the clouds
and their mobile users thus can be long and unpredictable.
This is especially problematic for mobile applications in
which a crisp response time is critical to their users, such as

augmented reality, speech recognition, navigation, language
translation, etc. [30], [32]. To reduce this long access delay,
cloudlets were proposed as an alternative solution [30] to
powerful remote clouds. Cloudlets are resource-rich server
clusters co-located with wireless Access Points (APs) in a
local network, and mobile users can offload their tasks to
local cloudlets for processing [8], [30], [33]. As cloudlets are
self-managing, with fewer requirements other than power
and Internet connectivity, they can be deployed in existing
networks, leading them to be viewed as the ‘data centers in a
box’. The physical proximity between mobile users and
cloudlets means that the cloudlet access delay on task off-
loading can be greatly reduced, compared to remote clouds,
thereby significantly improvingmobile user experiences.

Most existing studies focused on offloading tasks of mobile
users to cloudlets for energy savings of mobile devices,
assuming that the cloudlets have already been placed [7], [10],
[18], [19], [34], [35], [39]. Little attention has been paid to cloud-
let placements and the impact of different placements on
mobile users. In contrast, we focus on the cloudlet placements
in a Wireless Metropolitan Area Network (WMAN) that pro-
vides wireless Internet coverage for mobile users in a large-
scale metropolitan area, where the WMAN is often owned
and operated by local governments as public infrastruc-
tures [21]. This will bring the following benefits: (1) the metro-
politan area covered by the WMAN has a high population
density, meaning that the cloudlets will be accessible by a
large number of mobile users; (2) due to the network size of
the WMAN, service providers can take advantage of the
economics of scale when offering cloudlet services through
the WMAN, making cloudlet services more affordable to the
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general public. However, placing cloudlets in a WMAN is
challenging. The locations of cloudlets are critical to the access
delays of mobile users and the resource utilization of cloud-
lets, especially in a large-scale WMAN that consists of hun-
dreds and thousands of Access Points, where mobile users
access the cloudlets through their local APs. Due to the large
size of the WMAN, poor cloudlet placements will result in
long access delays and heavily unbalanced load among cloud-
lets, i.e., some of the cloudlets are overloaded while others are
under-loaded and even idle. Therefore, strategically placing
capacitated cloudlets will significantly improve the perfor-
mance of various mobile applications such as the average
cloudlet access delay.Wewill focus on a novel cloudlet place-
ment problem in a large-scale WMAN, where a cloudlet ser-
vice provider is planning to deployK (� 1) cloudlets at some
strategic AP locations in aWMAN for mobile user access. The
objective is to minimize the average cloudlet access delay
between the mobile users and the cloudlets serving the users.
The challenge associatedwith such placements are that:which
cloudlets should be placed towhich locations, andwhich user
requests should be assigned to which cloudlets so that the
average cloudlet access delay among the mobile users is mini-
mized. As the problem isNP-hard, is there any approximation
algorithmwith a guaranteed approximation ratio for it? In this
paperwewill address these issues.

There are several placement problems in networks such as
cache placements and server placements that have been
studied in the past decades [26], [38]. For example, the cache
placement problem is to choose K replicas or hosting serv-
ices among N potential sites, such that the latency experi-
enced by users is minimized [38], which usually is reduced
to the capacitated K-median problem. Due to the NP-hard-
ness of the latter, there are approximation algorithms for
unsplittable and splittable versions of the problem [6], [23],
where ‘unsplittable’ refers to that a user request can be
served by only one data center [6], and ‘splittable’ indicates
that the user request can be served by multiple centers [23].
In spite of some similarities between the cache/server place-
ment problem [26], [38] and the cloudlet placement problem,
they are essentially different. First, existing studies assumed
that either there is no capacity constraint on caches/servers
or the capacity of each cache/server is identical. In contrast,
we here consider cloudlets with different computing capac-
ity constraints, as cloudlets are differently configured to
meet the demands of different applications in the real
world [15], [35]. Second, existing studies simply assumed
that all user requests have identical amounts of resource
demands, while we assume that different user requests may
have different amounts of resource demands. Thus, the exist-
ing solutions to cache/server placement problem [6]may not
be applicable to the cloudlet placement problem. Particu-
larly, the number of user requests in a large-scale WMAN
usually is several orders of magnitudes of the network size,
e.g., there are several million mobile users in a metropolitan
area, compared with only several hundred nodes (access
points) in such a network. Therefore, new algorithms for
cloudlet placement problemmust be devised in order to deal
with a large number of user requests and different amounts
of resource demands by different users.

The main contributions of this paper are as follows. We
study multiple cloudlet placements in a large-scale WMAN,

by formulating a novel capacitated cloudlet placement prob-
lem with the objective of minimizing the average cloudlet
access delay. We first show that the problem is NP-hard, and
propose an exact solution by formulating it as an Integer Lin-
ear Programming (ILP). Due to the poor scalability of the
ILP, we then devise a fast, scalable heuristic. For a special
case of the problem where all cloudlets have identical com-
puting capabilities, we devise two approximation algorithms
with guaranteed approximation ratios, depending on
whether all user requests have identical resource demands
or not. We also propose an efficient online algorithm for
dynamic user request assignment to the cloudlets, provided
the K cloudlets have already been placed. We finally evalu-
ate the performance of the proposed algorithms through
experimental simulations. The simulation results demon-
strate that the proposed algorithms are very promising.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 introduces the system
model and problem definitions. Section 4 provides an ILP
solution and a fast yet scalable heuristic. Section 5 devises
two approximation algorithms for the problem when all
cloudlets have identical computing capacities, depending
on whether each user request has different computing
resource demands. Section 6 devises an online algorithm to
assign user requests to different cloudlets if all the cloudlets
have already been placed. Section 7 evaluates the perfor-
mance of the proposed algorithms by experimental simula-
tion, and Section 8 concludes the paper.

2 RELATED WORK

Most existing studies focused on offloading user tasks to
remote clouds by exploring different pricingmodels and effi-
cient task scheduling [12], [16], [18], [25], [29], [36], [39].
However, the average access delay between users and
remote clouds can be prohibitively long. Instead, cloudlets
deployed in the vicinities of users have been quickly gaining
recognition as alternative offloading destinations due to the
short response time and capability of reducing the energy
consumption of mobile devices [7], [10], [14], [15], [19], [20],
[27], [28], [31], [34], [35], [37]. Cloudlet basedmobile comput-
ing now is also referred to as fog computing with the aim to
reduce the access latency between mobile users and remote
clouds, by providing compute, storage, and networking
services within the proximity of mobile users [2], [22]. For
example, the system Odessa [27] was designed to enable
interactive applications on mobile devices while satisfying
crisp response time requirements of applications. Chun
et al. [7] proposed a systemCloneCloud that aims to partition
applications between mobile devices and a local cloudlet.
Hoang et al. [14] proposed a linear programming (LP) solu-
tion for task offloading by considering the QoS requirements
of mobile users with an aim to maximize the revenue of ser-
vice providers. Xia et al. [34], [35] devised novel online algo-
rithms for dynamically admitting user requests to a cloudlet.
Cardellini et al. [5] considered that mobile users can offload
their tasks to both remote clouds and local cloudlets at the
same time, and proposed a game theory-based solution. Sim-
ilarly, Gelenbe et al. [11] dealt with offloading jobs between a
local cloud and a remote cloud, by incorporating energy con-
sumption and quality of service (QoS) criteria. Furthermore,
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cloudlets have important impacts on the mobile cloud gam-
ing industry [3], [4]. A cloudlet-assisted multi-player cloud
gaming system [4] was reported, by making use of cloudlets
as caches for video frames. Despite the increasing momen-
tum of cloudlet research, the question of where cloudlets
should be placed within a network has largely been over-
looked. Previous works typically assumed that cloudlets are
used in small private WLANs such as in campuses, build-
ings, or even at office floors. In such a setting, it can be argued
that the placement of cloudlets is trivial.Wherever the cloud-
let is placed, the small network size implies that the commu-
nication delays between the cloudlets and its users are
negligible. However, the cloudlet placement in a large-scale
WMAN is non-trivial, as there aremillions of userswith hun-
dreds and thousands of APs in the network. In such a large-
scale WMAN, the average cloudlet access delay between a
user and the cloudlet serving the user could be prohibitively
long, and the user may not be tolerable to such a long delay.
As a result, to minimize the average cloudlet access delay,
developing efficient algorithms for multiple cloudlet place-
ments in theWMANbecomes imperative.

There are two classical optimization problems closely
related to the cloudlet placement problem: the cache place-
ment problem [38] and the server placement problem [26]. The
former is to choose K replicas or hosting services among N
potential sites to minimize the latency experienced by
users [38], and the latter is to place a number of server repli-
cas among some potential locations such that the perceived
delay of users is minimized under a given traffic pattern.
Both of these two problems can be solved by a direct reduc-
tion to the capacitated K-median problem [6]. Intuitively,
the cloudlet placement problem can also be reduced to the
capacitated K-median problem. However, the problem of
concern is essentially different from the two mentioned
problems: one is that there is either no capacity constraints
on cache and servers, or all caches and servers have identi-
cal capacities, while we here assume that different cloudlets
have different capacities and different user requests may
have different computing resource demands. Another is
that directly adopting the approximation algorithm in [6]
for the cloudlet placement problem in on a large-scale
WMAN will result in poor scalability, by treating each user
request at each AP as a virtual user request, since the num-
ber of user requests in the network can be several orders of
magnitudes of the network size.

3 PRELIMINARIES

In this section we introduce the system model, define the
problems precisely, and show the NP-hardness of the
cloudlet placement problem.

3.1 System Model

We consider a WMAN G ¼ ðV [ S;EÞ consisting of many
APs and a set of potential locations for cloudlets, where V is
the set of APs and S is the set of potential locations of cloud-
lets, and E is the set of links between two APs or between an
AP and a cloudlet at a location in S. Denote by n and m the
numbers of APs and links in V and E, respectively, i.e.,
n ¼ jV j andm ¼ jEj. For each AP vj in V , let wðvjÞ represent
the expected number of user requests using the AP to access

cloudlets in the network, which is a positive integer. As APs
usually are deployed at strategic locations such as shopping
malls, train stations, schools, libraries, etc., the number of
user requests wðvÞ at each AP v per unit time can be esti-
mated by the population density in that area, or the historic
AP access information through a linear regression tech-
nique. Let Rj be a set of user requests at AP vj with
wðvjÞ ¼ jRjj, and different user requests inRj may have dif-
ferent amounts of computing resource demands. Denote
by rm a user request in Rj with the computing resource
demand gm in G. In addition, for each link ðvj; vlÞ in E,
denote by djl the data transmission latency between its two
endpoints (APs) vj and vl.

Assume that there are K cloudlets to be placed to K dif-
ferent locations in S. For simplicity, we assume that the
cloudlets will be co-located with some APs, i.e., S � V . We
further assume that K � jSj and each cloudlet Ci has lim-
ited computing resource to process user requests. Let ci be
the computing resource capacity of Ci with 1 � i � K.
Given the K placed cloudlets, mobile users can offload their
tasks to the cloudlets through their local APs. If a cloudlet is
co-located with an AP, the users at that AP will have the
minimum cloudlet access delay of the users; otherwise, the
user requests at that AP must be relayed to nearby cloudlets
for processing, resulting in a cloudlet access delay due to
the accumulative delay of multiple hop relays. Fig. 1 illus-
trates a WMAN network.

3.2 Problem Definitions

The capacitated cloudlet placement problem in a WMAN
G ¼ ðV [ S;EÞ is defined as follows. Given the network G,
a set fC1; C2; . . . ; CKg of K ð� 1Þ cloudlets with capacities
c1; c2; . . . ; cK , respectively to be placed toK locations in a set
S of potential locations with S � V , a setRj of user requests
at each AP vj 2 V , the number of user requests wðvjÞ in Rj

(i.e., wðvjÞ ¼ jRjj), and the computing resource demand gm

of each user request rm 2 Rj, assume that the delay of data

transmission on links in E is defined as d : E 7!R�0, the
problem is to place the K cloudlets to the K locations in S
such that the average cloudlet access delay between the
mobile users and the cloudlets serving their requests is min-
imized, subject to that the accumulative computing resource
allocated to all user requests in each cloudlet is no more
than its capacity, where the cloudlet access delay djl
between a user request at AP vj 2 V and a cloudlet at

Fig. 1. A WMAN G ¼ ðV;EÞ withK ¼ 3 cloudlets.
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location vl is the length of the shortest path between them.
In other words, the problem is to identify K locations from
jSj (� K) potential locations and place the K cloudlets and
to determine at which location each cloudlet Ci with capac-
ity ci should be placed such that the average cloudlet access
delay of user requests is minimized.

Assume that the K cloudlets have already been placed
into the K locations of S in G ¼ ðV [ S;EÞ, let
S0 ¼ fv1; v2; . . . ; vKg � S with cloudlet Ci being placed at
location vi 2 S0, user requests with different computing
resource demands arrive at the system dynamically. Since
the number of user requests at each AP vj may vary over
time, the workloads of different cloudlets are different over
time, some of them may be overloaded while others are
under-loaded or idle. Assuming that time is slotted into
equal time slots, the arrived user requests in the system will
be assigned to the K placed cloudlets for processing in the
beginning of each time slot t. Let wðvj; tÞ be the number of
arrived user requests at AP vj at time slot t. The dynamic user
request assignment problem is to assign user requests from dif-
ferent APs in V to the placedK cloudlets in the beginning of
time slot t such that as many user requests as possible are
assigned to the cloudlets while the average access delay
among all assigned requests is minimized.

Table 1 summarizes the symbols used in this paper.

3.3 NP-Hardness

We show the capacitated cloudlet placement problem is NP-
hard by a polynomial reduction from another NP-hard
problem—the metric K-median problem. Given a complete
metric undirected graph G0 ¼ ðV 0; E0Þ with one client at
each location vj 2 V 0, the service cost dij for the center at
location vi serving the client at location vj, and K centers,
the metric K-median problem is to place the K centers into K
locations in V 0 such that the total service cost of serving all
clients to their centers is minimized [6].

Lemma 1. The capacitated cloudlet placement problem in a
WMAN G ¼ ðV [ S;EÞ is NP-hard.

Proof. We reduce the metric K-median problem to the
capacitated cloudlet placement problem as follows. Con-
sider the metric K-median problem in a given metric
complete graph G0 ¼ ðV 0; E0Þ. We construct a WMAN
G ¼ ðV [ S;EÞ from G0, where V ¼ V 0, S ¼ V 0 and
E ¼ E0. There is an AP at each location vj 2 V with only
one user request there. We now consider placing K
cloudlets with identical capacity c into G (i.e., c ¼ jV j). In
other words, there is no capacity constraint on each

TABLE 1
Symbols

Symbols Notations

G ¼ ðV [ S;EÞ a WMAN that consists of a set V of APs and a set S of potential locations for cloudlets
n (¼ jV j),m (¼ jEj) the numbers of APs in V and links in E
v an AP in V
Rj and rm a set of user requests at AP vj and a user request in the set
gm the computing resource demand of user request rm
gmin and gmax the minimum and maximum computing resource demands of all requests
r and rm r ¼ gmax

gmin
and rm ¼ gm

gmin

wðvÞ an integer weight of AP v that represents the number of user requests at v
K and Ci the number of cloudlets that need to be placed into G and the cloudlet Ci

c1, c2; . . . ; cK the computing capacities of theK cloudlets
G0 ¼ ðV 0; E0Þ a complete metric undirected graph in the metricK-median problem withK centers
vj 2 V 0 a location in V 0, and there is a client at location vj
dij the service cost for the center at location vi serving the client at location vj
pil a binary variable, where pil implies that cloudlet Ci is placed at location vl 2 S
xim an indicator variable that show whether request rm is assigned to cloudlet Ci for processing
zij the number of user requests at AP vj that are sent to cloudlet Ci for processing
N0 a basic unit (block) of the number of user requests of each AP
nj (¼ bwðvjÞ=N0c) the number of units that each AP vj has
c0 (¼ dc=N0e) the capacity of each cloudlet Ci in terms of units of requests
GU ¼ ðVU;EUÞ an auxiliary complete graph from the original graph G ¼ ðV;EÞ
v1j , v

2
j ; . . . ; v

nj
j

a set of nj virtual nodes for each AP vj

nj the number of split blocks of each AP vj, and
nr and B the total number and the set of blocks of all APs in V
e ¼ ðvxi ; vyjÞ (2 EU ) a edge between nodes vxi and vyj , and its weight is the delay between vi and vj for transmitting N0

user requests
I ¼ fi1; i2; :::; iKg the set of locations whereK cloudlets are placed
Gf ¼ ðfsg [B [ I [ ftg; EfÞ an auxiliary flow graph build from GU ¼ ðVU; EUÞ
f and f� a flow from s to t in Gf and an integral minimum cost maximum flow in Gf

Dðf�Þ the cost of flow f�
Dj the total delay incurred by the assignment of njN0 user requests at AP vj
� ¼ maxvj2V f 1

bwðvjÞ=N0cg
d ¼ N0

c

t and t� the average cloudlet access delay by algorithm Appro-Extension and the optimal solution
t0 and t0� the average cloudlet access delay by algorithm Appro through treating each request rm as rm virtual

user requests and the optimal one
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cloudlet.We can see that an optimal solution to the capaci-
tated cloudlet placement problem in G also is an optimal
solution to the metric K-median problem in G0. Since the
metricK-median problem is NP-hard [6], the capacitated
cloudlet placement problem is NP-hard too. tu

4 ALGORITHM FOR THE CAPACITATED CLOUDLET

PLACEMENT PROBLEM

In this section we first provide an integer linear program
solution, and then devise a fast, scalable heuristic for the
capacitated cloudlet placement problem.

4.1 Integer Linear Programming Formulation

We here formulate the capacitated cloudlet placement prob-
lem as an ILP. We first define a set of decision variables.
Recall that, in the capacitated cloudlet placement problem,
K cloudlets need to be placed into K different locations in a
set S of potential locations in a WMAN G ¼ ðV [ S;EÞ, such
that the average access delay of user requests is minimized,
while meeting the computing demands of each user request.
This is equivalent to decide which cloudlets are placed to
which locations in S, and which requests are assigned to
which cloudlets for processing. We thus use a binary deci-
sion variable pil to indicate whether cloudlet Ci will be
placed to location vl 2 S, where pil ¼ 1 if cloudletCi is placed
at vl; pil ¼ 0 otherwise, for all i and l with 1 � i � K and
1 � l � jSj. Similarly, we use an indicator decision variable
xlmj

to indicate whether a user request rm 2 Rj will be

assigned to a cloudlet located at vl for processing. That is,
xlmj

¼ 1 if rm 2 Rj is assigned to the cloudlet at location vl;

and 0 otherwise. Let zjl be the number of user requests at AP
vj that are assigned to the cloudlet at location vl. Clearly,P

rm2Rj
xlmj

¼ zjl. Notice that, different user requests in Rj

may be assigned to different cloudlets for processing. We

thus have 0 � zjl � wðvjÞ and
PjSj

l¼1 zjl ¼wðvjÞ, wherewðvjÞ is
the number of requests at AP vj, i.e.,wðvjÞ ¼ jRjj.

Recall that djl is the length of a shortest path between
vj 2 V and vl 2 S in terms of the accumulated delay of its
edge delays. The objective of the capacitated cloudlet place-
ment problem is to minimize the average cloud access delay
of the requests of all APs in V , i.e.,

minimize

PjV j
j¼1

PjSj
l¼1 zjldjl

PjV j
j¼1 wðvjÞ

; (1)

subject to the following constraints

XjSj

l¼1
pil ¼ 1 for each cloudlet Ci; 1 � i � K; (2)

XK

i¼1
pil � 1 for each location vl 2 S; (3)

X

rm2Rj

xlmj
¼ zjl for each APvj 2 V ;

and each location vl 2 S;

(4)

XjSj

l¼1
zjl ¼ wðvjÞ for each APvj 2 V ; (5)

zjl
wðvjÞ �

XK

i¼1
pil for each vj 2 V and vl 2 S; (6)

Xn

j¼1

X

rm2Rj

gm � xlmj
�

XK

i¼1
pilci for each vl 2 S; (7)

pil 2 f0; 1g; (8)

xlmj
2 f0; 1g; (9)

zjl 2 f0; 1; . . . ; wðvjÞg; (10)

where constraint (2) ensures that each of the K cloudlets is
placed at only one location in S, and constraint (3) ensures
that at most one cloudlet is placed at any location vl 2 S. Con-
straints (4) and (5) jointly ensure that all user requests from
each AP vj will be assigned to cloudlets for processing, while
constraint (6) ensures that whenever some user requests at
AP vj are assigned to location vl, then, one of the K cloudlets
must be placed at location vl. Constraint (7) ensures that the
total allocated computing resources to the user requests proc-
essed by each cloudlet is nomore than its capacity.

4.2 Heuristic Algorithm

The ILP solution is only applicable when the problem size is
small; otherwise, it suffers from poor scalability. We here
develop a fast, scalable solution as follows. We assume that
the K cloudlets have been sorted in decreasing order of
their capacities, i.e., cloudlet Ci has a capacity ci with c1 �
c2 � . . . � cK .

Tominimize the average cloudlet access delaywithout vio-
lating computing capacities of cloudlets, each cloudlet should
be placed to a location that can ‘cover’ as many user requests
as possible. The heuristic proceeds iteratively to find the next
location for the next cloudlet placement. Within iteration i,
assume that cloudlets C1; C2; . . . ; Ci	1 have already been
placed to locations v1; v2; . . . ; vi	1, respectively. Cloudlet Ci

thenwill be placed to a location vi that have not been occupied
by any placed cloudlet, i.e., vi 2 Ui ¼ S n fv1; v2; . . . ; vi	1g. To
find such a location vi, for each potential location vl 2 Ui, the
minimum sum Dil of delays of the user requests assigned to
cloudlet Ci is calculated if Ci is placed at location vl. Cloudlet
Ci will be placed to a locationwith theminimumvalue ofDils,
i.e., vi ¼ argminvl2Ui

fDilg. The calculation ofDil for each loca-

tion vl is as follows.
The APs that have requests to be assigned are first sorted

in increasing order of delays between the APs and a poten-
tial location vl of cloudlet Ci, i.e., dlj for each such an AP vj.
The first least r APs in the sorted AP sequence with the sum
of the resource demands by their remaining user requests
being no less than the capacity ci of Ci is identified. All the
user requests from the first r	 1 APs and some of the user
requests from the rth AP will be assigned to Ci. In particu-
lar, to determine which user requests at the rth AP should
be assigned to Ci for processing, all user requests at the rth
AP are sorted in increasing order of their computing
resource demands. The sorted user requests are assigned to
Ci one by one until the capacity ci of Ci reaches. As a result,
Dil is the sum of delays of the user requests assigned to
cloudlet Ci at potential location vl. The detailed algorithm is
described in Algorithm 1.
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Algorithm 1. Greedy_Heuristic

Input: A WMAN GðV [ S;EÞ, the set of user requests Rj at
each AP vj 2 V and the computing resource demand gm

of each user request rm 2 Rj with wðvjÞ ¼ jRjj, the com-

munication delay dðeÞ of each edge e 2 E, K cloudlets
with capacities c1; c2; . . . ; and cK , respectively, and the
set S (� V ) of potential locations for theK cloudlets.

Output: The placement locations of theK cloudlets.
1: L ;; /* the set of placed cloudlet locations */
2: Compute all pairs of shortest paths for each pair of APs

in G;
3: Sort the K cloudlets by their capacities in decreasing order.

Cloudlet Ci has a capacity ci and c1 � c2 � . . . � cK ;
4: for i 1 toK do
5: /*Place cloudlet Ci with capacity ci to an unoccupied

location*/
6: Ui  S n L; / * the set of potential locations */
7: for each potential location vl 2 Ui do
8: Sort the APs with to-be-allocated user requests in

increasing order of their access delays dlj between AP
vj and location vl of cloudlet Ci;

9: Find the first r APs in the sorted AP sequence such that
the sum of the resource demands of the user requests
in these APs is no less than the computing capacity ci
of Ci.

10: Assign the user requests from the first r	 1 APs to
cloudlet Ci at location vl;

11: Sort the requests at the rth AP in increasing order of
their computing resource demands;

12: Allocate a subset of user requests at the rth AP to
cloudlet Ci until its computing capacity ci is met;

13: LetDil be the sum of delays of the requests assigned to
the cloudlet Ci at location vl;

14: end for
15: Place cloudlet Ci at the location vi with the minimum

sum of delays, i.e., vi ¼ argminvl2Ui
fDilg;

16: L L [ fvig;
17: end for
18: return L.

Theorem 1. Given a WMAN G ¼ ðV [ S;EÞ, a set Rj of user
requests at each AP vj 2 V , a set of user requests Rj at each vj
with wðvjÞ ¼ jRjj, and K cloudlets C1; C2; . . . ; CK with
capacities c1; c2; . . . ; cK , respectively, there is a fast, scalable
algorithm for the capacitated cloudlet placement problem,

which takes OðKn2 lognþ nmÞ time, assuming that wðvÞ �
min1�i�Kfcig for any v 2 V and 1 � K � jSj � jV j, where
n ¼ jV j andm ¼ jEj.

Proof. It can be seen that the solution delivered by Algo-

rithm 1 is a feasible solution since all user requests at
each AP vj 2 V are assigned to cloudlets and the number
of user requests assigned to each cloudlet Ci is no more
then its capacity ci. In the following we analyze the time
complexity of Algorithm 1.

Let n1 ¼ jV j þ jSj and m ¼ jEj be the number of nodes
and edges in G. Finding all pairs of shortest paths in G

takes time Oðn2
1 logn1 þ n1mÞ ¼ Oðn2 lognþ nmÞ, by

applying Dijkstra’s algorithm for single-source shortest
paths for all source nodes in V [ S, where the time com-
plexity of Dijkstra’s algorithm isOðn1 logn1 þm logn1Þ [9].
Algorithm 1 proceeds iteratively and one of the K

cloudlets will be placed within each iteration. When it pla-
ces cloudlet Ci within iteration i, identifying a location
vi 2 S n fv1; v2; . . . ; vi	1g for cloudlet Ci placement takes

OðK � jSj � jV j log jV jÞ ¼ OðKn2 lognÞ time as jSj � jV j ¼ n.
The time complexity of Algorithm 1 thus is

Oðn2 lognþ nmþKn2 lognÞ ¼ OðKn2 lognþ nmÞ. tu

5 APPROXIMATION ALGORITHMS WITH IDENTICAL
CLOUDLET CAPACITIES

In this section, we deal with a special case of the problem
where all K cloudlets have identical capacities c and devise
two approximation algorithms with guaranteed approxima-
tion ratios depending on whether all user requests have iden-
tical computing resource demands or not. We start with each
user request having identical resource demands, we then
show how to extend this solution to the general case where
different user requestsmay have different resource demands.

5.1 An Approximation Algorithm with Identical
Resource Demands

For simplicity, we assume that each request has one unit
computing resource demand (e.g., one virtual machine
(VM)) [30]. That is, gm ¼ 1 for each user request rm 2 Rj at
each AP vj. Even for this special case, the problem is still
NP-hard, which can be reduced from the capacitated
K-median problem, by assuming that each AP has only one
user request. Intuitively, this problem can be solved by
applying an approximation algorithm for the capacitated
K-median problem [6] in a graph, where the graph is
derived from G by replacing each AP node vj in G with
wðvjÞ virtual AP nodes and each virtual AP node has a sin-
gle user request. However, finding a solution in such a
large-scale graph is painstaking, since each AP may have a
large number of user requests (e.g., the network size is sev-
eral hundreds, while the number of mobile users can be
over millions). In the following we will devise a fast yet scal-
able approximation algorithm for the problem by adopting
a novel scaling technique.

The capacitated K-median problem. Given a set of locations
U with each location j 2 U having a demand wj � 0, K cen-
ters with identical service capacity M, and the service cost
dij for a center at location i serving one unit demand from
location j, the capacitated K-median problem is to find K dif-
ferent locations in U to place the K centers and allocate the
demand wj of each location j 2 U to one of the K placed
centers such that the total service cost is minimized, subject
to the capacity constraint on each centerM and demand ser-
vice constraint that the demand from a location j 2 U must
be served by only one center, where the service costs are
non-negative, symmetric, and satisfy the triangle inequality.

Theorem 2. [6] There is an approximation algorithm for the
capacitated K-median problem in the metric space, which
delivers an approximate solution with an approximation ratio
16 in the service cost, while the total demand served by each
center is no more than four times of its capacityM.

We now devise an approximation algorithm for this spe-
cial capacitated cloudlet placement problem with identical
resource demands. Our strategy is to reduce the problem
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to the capacitated K-median problem, an approximate solu-
tion to the latter will form a base of the approximate solu-
tion to the former through a proper transformation.
According to Theorem 2 that if the number of user requests
from all APs is polynomial of the number of APs n in the
WMAN, this special case of the capacitated cloudlet place-
ment problem can be reduced to the capacitated K-median
problem, by replacing the wðvjÞ user requests at each AP vj
with wðvjÞ virtual nodes, and each virtual node has only
one user request. An approximate solution to the latter in
turn returns an approximate solution to the former. How-
ever, the number of users in a WMAN typically is several
orders of magnitudes of the network size n, which makes
the user request assignment become a painstaking job.
In the following we propose a scaling technique to speed up
the user request assignment to cloudlets.

Let N0 be a basic unit (a block) of the number of user
requests to be allocated to a cloudlet, where N0 is an integer
with 1 � N0 � minvj2V fwðvjÞg, and we further assume that

N0 � c. Thus, each AP vj 2 V will have nj ¼ bwðvjÞ=N0c
units. Similarly, each cloudlet Ci will have a capacity of
c0 ¼ dc=N0e units. Given the original graph G ¼ ðV;EÞ, the
number of user requests at eachAPw : V 7!N, the data trans-

mission delay between every twoAPs d :E 7!R�0, and theK
cloudlets with identical capacity c, an auxiliary complete
graph GU ¼ ðVU;EUÞ is constructed as follows. For each AP
vj with wðvjÞ user requests, nj ¼ bwðvjÞ=N0c virtual nodes
v1j ; v

2
j ; . . . ; v

nj
j are added to VU with each as a source node of

demand 1. There is an edge e in EU for each pair of virtual
nodes vxi and vyj in VU . The weight of edge e ¼ ðvxi ; vyjÞ 2 EU is

the accumulated delay between APs vi and vj inG ofN0 user
requests (i.e.,N0dij) between them if vi 6¼ vj, and 0 otherwise.
The problem then is to place the K cloudlets with identical
capacities c0 in VU to cover all source nodes such that the
weighted sum of the edges between the placed cloudlets and
their covered source nodes is minimized. This is the capaci-
tated K-median problem, which can be solved by an approxi-
mation algorithmdue to Charikar et al. [6].

Having the approximate solution, a feasible solution to
the original problem then can be obtained. That is, the K
cloudlets will be placed at the K locations provided by
the approximate solution. For each AP vj with nj ¼
bwðvjÞ=N0c virtual nodes v1j ; v

2
j ; . . . ; v

nj
j in GU , assume that

vlj is allocated to a cloudlet at location i in the approxi-

mate solution, then N0 user requests at AP vj will be
assigned to the cloudlet, where 1 � l � nj. The remaining
wðvjÞ 	N0 � nj (< N0) user requests at AP vj will be
assigned to a nearest cloudlet with the minimum accumu-
lated access delay among the cloudlets at which the vir-

tual nodes v1j ; v
2
j ; . . . ; v

nj
j are allocated. The detailed

algorithm is given in Algorithm 2.

5.2 Approximation Algorithm with Different
Resource Demands

We now consider another special capacitated cloudlet place-
ment problem where all cloudlets have identical capacities
but different user requests may have different resource
demands, and how to extend algorithm Appro for this spe-
cial capacitated cloudlet placement problem.

Algorithm 2. Appro

Input: a WMAN GðV;EÞ, the number wðvjÞ of user requests at
each AP vj 2 V , the delay dðeÞ of each edge e 2 E, K
cloudlets with each having a capacity c, and a positive
integer N0 with 1 � N0 � minvj2V fwðvjÞg andN0 � c.

Output: The placement locations of theK cloudlets.
1: Construct an auxiliary graph GU ¼ ðVU;EUÞ from G;
2: Find an approximate solution to the capacitated K-median

problem in GUðVU;EUÞ, by applying the algorithm due to
Charikar et al. [6];

3: Place the K cloudlets to their corresponding locations in the
found approximate solution;

4: For each virtual node vlj derived from AP vj, assign N0 user

requests at AP vj to the cloudlet at which vlj is allocated in

the approximate solution;
5: Assign the rest of wðvjÞ 	N0nj user requests at AP vj to the

nearest cloudlet at which the nj virtual nodes of AP vj are

allocated.

Recall that the computing resource demand of each
request rm 2 Rj of AP vj is gm. We modify the proposed
approximation algorithm Appro for this general case of dif-
ferent resource demands. Let gmax and gmin be the maxi-
mum and minimum amounts of computing resource
demands among user requests, respectively. Without loss of
generality, we assume that r ¼ gmax

gmin
is a given constant and

the computing resource demand gm of each request rm is
divisible by gmin. Specifically, we treat each user request rm
as rm (¼ gm

gmin
) virtual user requests r0m1; r

0
m2; . . . ; r

0
mrm

with

each having identical demands gmin. We then apply algo-
rithm Appro for all virtual user requests with identical com-
puting resource demands. That is, all virtual user requests
at each AP vj will be divided into a number of blocks, and
each block contains exactly N0 virtual user requests. The
solution delivered may not be a feasible solution to the orig-
inal problem, since the computing resource demands of a
user request may be split into different cloudlets for proc-
essing. To obtain a feasible solution, we modify the solution
by merging the virtual user requests derived from a user
request to one of their allocated cloudlets. We distinguish
the merge into three cases.

Case 1: All the virtual user requests of a given user
request rm are contained in a single block, which means that
all virtual user requests in that block will be assigned to a
single cloudlet for processing. Nothing needs to be adjusted
in this case.

Case 2: The virtual user requests of rm are contained in
multiple blocks, and all these blocks are assigned to a sin-
gle cloudlet. In other words, all virtual user requests of rm
are processed by a single cloudlet. We thus do nothing in
this case.

Case 3: The virtual user requests of rm are contained in
multiple blocks, and these blocks are assigned to different
cloudlets. In this case, we adjust the allocations of virtual
user requests to ensure that all virtual user requests of rm
are allocated to one cloudlet as follows. Assume that the vir-
tual user requests of rm are contained in blocks
bm1; . . . bml; . . . ; bmL, and all virtual user requests in block bml

is assigned to cloudlet Cl with 1 � l � L and 1 � l � L � K.
We further assume that cloudlet Cl0 is the cloudlet that
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results in the maximum access delay tmax
ml0

by some virtual

requests of user request rm, where tmax
ml0
¼ maxftml j 1 �

l � Lg. We then merge the virtual user requests of rm from
all other cloudlets and assign them to Cl0 . The details of the

proposed algorithm is described in Algorithm 3.

Algorithm 3. Appro-Extension

Input: a WMAN GðV;EÞ, a set Rj of user requests at each AP
vj 2 V , the number wðvjÞ of user requests in Rj, the
computing resource demand gm for each user request
rm 2 Rj, the delay dðeÞ of each edge e 2 E, K cloudlets

with a uniform computing capacity c, and a positive
integer N0 with 1 � N0 � minvj2V fwðvjÞg and N0 � c.

Output: The placement locations of theK cloudlets.
1: Let gmin and gmax be the minimum and maximum resource

demands of a single user request at any AP in V ;
2: for each AP vj 2 V do
3: for each of user request rm 2 Rj do
4: Construct gm

gmin
virtual user requests with each having

the computing resource demand gmin, assuming that
gm is divisible by gmin;

5: end for
6: end for
7: Find a solution for the K cloudlets by invoking algorithm

Appro, where each AP vj contains
P

rm2Rj

gm
gmin

virtual user

requests with each having computing resource demand
gmin;

8: for each AP vj 2 V do
9: Let bm1; bm2; . . . ; bml; . . . ; bmL the set of blocks that contain

the virtual requests of rm, and each block has been
assigned to a cloudlet in the found solution;

10: /* merge all virtual user requests of a user request from
different cloudlets to the cloudlet with the maximum
access delay from the AP in which the request is */;

11: if any of these L blocks is assigned to a different cloudlet
then

12: Identify the cloudlet Cl0 with the maximum access
delay in processing the virtual user requests of rm,
i.e., tmax

ml0
¼ maxftml j 1 � l � Lg, where tml is the

delay between the virtual requests in block bml and
the cloudlet to which they will be allocated;

13: Merge all virtual user requests that were allocated to
other cloudlets to cloudlet Cl0 .

14: end if
15: end for

5.3 Algorithm Analysis

The rest is to analyze the approximation ratios of the two
proposed algorithms Appro and Appro-Extension as
follows.

We start by analyzing the approximation ratio and time
complexity of algorithm Appro. Let G0 ¼ ðV 0; E0; d0Þ be a
graph that is identical to the original graph G ¼ ðV;E; dÞ,
i.e., V 0 ¼ V , E0 ¼ E, and d0ij ¼ dij for any two APs vi and vj
in V . However, assume that the number of user requests at
each AP vj0 in G0 is bwðvjÞ=N0cN0, which is no more than the

number of user requests wðvjÞ at AP vj in G, i.e.,
bwðvjÞ=N0cN0 � wðvjÞ. We then deploy K cloudlets in net-
work G0 while the capacity of each cloudlet Ci now is set at
d c
N0
eN0, not c. It is obvious that d c

N0
eN0 � c. For each AP vj0

in G0, we can split its bwðvjÞ=N0cN0 user requests into
nj ¼ bwðvjÞ=N0c blocks with each block containing exactly
N0 user requests. We consider two types of allocations of
user requests blocks: one is that each user request from a
block is allowed to be allocated to any cloudlet; and another
is that the whole N0 user requests of each block must be
allocated to a single cloudlet but the user requests in differ-
ent blocks can be allocated to different cloudlets. In the fol-
lowing we show that the costs of the optimal solutions to
these two types of request allocations are equal.

Theorem 3. Denote by OPT1 and OPT2 the costs of the optimal
solutions to these two types of the special cloudlet placement
problem in graph G0 ¼ ðV 0; E0; d0Þ respectively, we have
OPT1 ¼ OPT2.

Proof. It can be seen that OPT1 � OPT2, since the optimal
solution to the second type is a feasible solution to the
first type one. The rest is to show that OPT2 � OPT1.
Denote by X1 and X2 the optimal solutions to the first
and second types of request allocations, respectively.
Assume that the K cloudlets are placed at locations
i1; i2; . . . ; iK in solution X1. Recall that the bwðvjÞ=N0cN0

user requests at AP vj0 have been split into

nj ¼ bwðvjÞ=N0c blocks with each block containing N0

requests exactly. Let nr ¼
P

vj2V nj be the number of

blocks in G0 that can be represented by b1; b2; . . . ; bnr ,
respectively. Let B ¼ fb1; b2; . . . ; bnrg be the set of nr

blocks and I ¼ fi1; i2; . . . ; iKg the set of the K cloudlet
locations in solution X1.

We construct an auxiliary flow graph Gf ¼ ðfsg [B [
I [ ftg; EfÞ from the nr blocks in B and the K locations
in I as follows. There is a directed edge in Ef from source
s to each block bj 2 B with capacity 1 and cost d00sj ¼ 0.

For each block bj 2 B and each location il 2 I, there is a
directed edge in Ef from bj to il with capacity 1 and cost
d00jl ¼ djlN0 (i.e., the total delay of transmitting the N0

user requests from block bj to the cloudlet located at il).
Furthermore, there is an edge in Ef from each location
il 2 I to sink twith capacity d c

N0
e units and cost d00lt ¼ 0.

Given a flow f from s to t in graph Gf , the cost of the
flow is defined as

P
e2Ef

fe � d00e . Following the assumption

that the number of user requests in G is no more than the
total capacity of the K cloudlets, i.e.,

P
vj2V wðvjÞ � K � c,

we then have nr ¼
P

vj2V bwðvjÞ=N0c � Kd c
N0
e, and the

value of amaximumflow inGf from s to t is nr.
The minimum cost maximum flow problem in Gf is to find

a maximum flow from node s to node t with the mini-
mum cost [1]. From the optimal solution X1 to the first
type of request allocation, we can construct a fractional
maximum flow f (not necessarily having the minimum
cost of the flow) to the minimum cost maximum flow
problem in Gf , i.e., for the N0 user requests in each block
bj, assume that xji user requests of the N0 requests are
allocated to the cloudlet located at i 2 I, the fractional

flow fji from block bj to location i is
xji
N0
. It can be easily

verified that the cost of this fractional flow is OPT1. On
the other hand, the capacity of each edge in graph Gf is
integral. Following the well-known integrality property
for the minimum cost maximum flow problem [1], there
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is an integral minimum cost maximum flow f� for the
problem. That is, for each block bj 2 B and each location
il 2 I, the flow f�jl from bj to il is either 0 or 1 as the capac-

ity of edge ðbj; ilÞ is 1. Denote byDðf�Þ the cost of flow f�,
i.e., Dðf�Þ ¼P

e2Ef
f�e � d00e . Then, Dðf�Þ � OPT1, since the

solution X1 is a feasible solution to the minimum cost
maximum flow problem in Gf . Also, we know that this
integral maximum flow f� corresponds to a feasible solu-
tion with cost Dðf�Þ to the second type of request alloc-
ation. As X2 with cost OPT2 is an optimal solution to
the problem, then OPT2 � Dðf�Þ. Therefore, we have
OPT2 � Dðf�Þ � OPT1. We thus have OPT2 ¼ OPT1. tu

Theorem 4. Given a WMAN G ¼ ðV;EÞ with wðvjÞ user
requests at each AP vj 2 V and K cloudlets with identical
capacity of c, assume that each request takes a unit of computing
resource. There is an approximation algorithm, Algorithm 2,
for the special cloudlet placement problem with identical
resource demands, which delivers a solution with the average
access delay of 16ð1þ �Þ-optimal, while the accumulated com-
puting demand by each cloudlet is no more than 8ð1þ dÞc. The
time complexity of the algorithm is OððPn

j¼1 njÞ9Þ, where

� ¼ maxvj2V f 1
bwðvjÞ=N0cg � 1, d ¼ N0

c � 1,N0 is a positive inte-

ger with 1 � N0 � minvj2V fwðvjÞg, N0 � c, nj ¼ bwðvjÞN0
c for

all jwith 1 � j � n.

Proof. We first analyze the approximation ratio of Algo-
rithm 2 as follows. Denote by OPT the optimal (or mini-
mum) total delay for the special capacitated cloudlet
placement problem in GðV;EÞ. Denote by OPTU the opti-
mal total service cost for the capacitated K-median prob-
lem in the auxiliary graph GUðVU;EUÞ.

Following the construction ofGU and Theorem 3,OPTU

is no more than OPT as the number of user requests njN0

at each AP vj in GU is no more than the number of user
requests wðvjÞ at AP vj in G, i.e., bwðvjÞ=N0cN0 � wðvjÞ,
and the capacity d c

N0
eN0 of each cloudlet in GU is no less

than the capacity c of the cloudlet inG, i.e., d c
N0
eN0 � c. Fol-

lowing Theorem 2, the cost (or the total delay) of the
approximate solution delivered by the approximation algo-
rithm for the capacitatedK-median problem in graphGU is
no more than 16 �OPTU . Denote by Dj the total delay
incurred by assigning the njN0 user requests at AP vj to
their allocated cloudlets in the approximate solution. Then,P

vj2V Dj � 16 �OPTU . Since the rest wðvjÞ 	 njN0 (� N0)

user requests at AP vj are assigned to their nearest cloudlet
among the cloudlets to which the njN0 user requests are
allocated, the total delay incurred by these wðvjÞ	 njN0

user requests is no more than
Dj

njN0
N0 ¼ Dj

nj
. Therefore, the

total delay by assigning all user requests to theK cloudlets

is no more than
P

vj2V ðDj þ Dj

nj
Þ ¼ P

vj2V Djð1þ 1
nj
Þ �

ð1 þ �ÞPvj2V Dj � ð1 þ �Þ16 �OPTU � ð1 þ �Þ16 �OPT ,

where � ¼maxvj2V f 1njg ¼ maxvj2V f 1
bwðvjÞ=N0cg � 1.

We then show that the number of user requests served
by each cloudlet in the solution by Algorithm 2 is
no more than 8ð1þ dÞc, where d ¼ N0

c � 1. Following
Theorem 2, the number of user requests allocated to each

cloudlet is no more than 4d c
N0
eN0 � 4ð c

N0
þ 1ÞN0 ¼ 4ð1 þ

N0
c Þc ¼ 4ð1þ dÞc in the approximate solution delivered by

the approximation algorithm in [6]. We show that after
having assigned the rest wðvjÞ 	 njN0 ð� N0Þ user
requests from each AP vj to the cloudlets, the number of
user requests served by each cloudlet is no more than
twice the number of user requests prior to this assign-
ment. Assume that for a deployed cloudlet Ci, it pro-
cesses user requests from APs v1; v2; . . . ; vp before
assigning the remaining user requests. Following Algo-

rithm 2, cloudlet Ci will process no less than N0 user
requests from each of these p APs. Since there are no
more than N0 remaining user requests at each of the p
APs, the number of user requests assigned to cloudlet Ci

thus is no more than 8ð1þ dÞc.
Wefinally analyze the time complexity ofAlgorithm 2.

It can be seen that GU ¼ ðVU;EUÞ contains nU ¼
Pn

j¼1 nj

nodes and mU ¼ nU ðnU	1Þ
2 edges, where nj ¼ bwðvjÞN0

c and

1 � j � n. The time complexity of Algorithm 2 is domi-
nated by invoking the approximation algorithm for the
capacitated K-median problem in GU [6], while the run-
ning time of the latter is dominated by the time of finding
an optimal solution to the liner programming relaxation of
the capacitated K-median problem. Given an LP, it is
shown that there is an algorithm with time complexity

Oðn3:5
v LÞ for calculating its optimal solution, where nv is

the number of variables in the LP and L is the number of
bits in the input of the LP [17]. Following [6], there are
nv ¼ nU þmU variables in the LP of the capacitated
K-median problem and the number of bits in the input
L is OðnU þmUÞ. Therefore, the time complexity of

Algorithm 2 is Oðn3:5
v LÞ ¼ OððnU þmUÞ3:5ðnU þmUÞÞ ¼

OððnU þmUÞ4:5Þ ¼ Oðm4:5
U Þ ¼ Oðn9

UÞ ¼ OððPn
j¼1 njÞ9Þ. tu

Notice that if the capacity of each cloudlet is not allowed
to be overloaded, we may set the capacity of each cloudlet
to c

8ð1þdÞ instead of c, then apply the approximation algo-
rithm for this new capacity. Following Theorem 4, none of
the cloudlet will violate its original capacity c.

We proceed by analyzing the performance of algorithm
Appro-Extension by the following theorem.

Theorem 5. Given a WMAN G ¼ ðV;EÞ,K cloudlets with iden-
tical capacity of c, a set Rj of user requests at each AP vj 2 V

with different computing resource demands, let wðvjÞ ¼ jRjj,
assuming that the maximum and minimum resource demands
among user requests are gmax and gmin respectively, and the
computing resource demand gm of any user request rm is divis-
ible by gmin. Then, there is an approximation algorithm, algo-
rithm Appro-Extension, for the special cloudlet
placement problem with different resource demands, which
delivers a solution with the approximation ratio of 16rð1þ �Þ
while the total computing resource needed by each cloudlet is
no more than 8rð1þ dÞ times of its optimal one c. The time

complexity of the algorithm is OððPn
j¼1 njÞ9Þ, where r ¼ gmax

gmin

is an integer, � ¼ maxvj2V f 1
bwðvjÞ=N0cg � 1, d ¼ N0

c � 1, N0 �
c is a positive integer with 1 � N0 � minvj2V fwðvjÞg, and
nj ¼ bwðvjÞN0

c for all j with 1 � j � n.
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Proof. We first analyze the approximation ratio of algo-
rithm Appro-Extension. Let t0 be the average access
delays delivered by algorithm Appro through treating
each user request rm as gm

gmin
virtual user requests.

Denote by t the average access delay of user requests
delivered by algorithm Appro-Extension. According
to algorithm Appro-Extension, we can see that the
difference between t0 and t lies in the adjustments of
virtual user requests of a user request that are assigned
to different cloudlets in Case 3. Specifically, when the
virtual user requests of rm are allocated to multiple
blocks (i.e., bm1; . . . bml; . . . bmL) and these blocks then are
assigned to different cloudlets, all other virtual user
requests of rm in other blocks will be reassigned to
cloudlet Cl0 that accommodates the virtual requests of

rm with the maximum access delay tmax
ml0

. Denote by t0ml

the access delay that is experienced by one of the virtual
user request in block bml. Clearly, we have
PL

l¼1 t
0
ml > tmax

ml0
. Also, after moving all virtual user

requests of rm from other cloudlets to Cl0 , the delay tm
experienced by user request rm will be tmax

ml0
, i.e., tm ¼

tmax
ml0

. In addition, the number of virtual user requests

moved to Cl0 is no more than rm (¼ gm
gmin

) times of the

number of virtual user requests in Cl0 . The relationship

between t0 and t is analyzed as follows:

t0 ¼
Pn

j¼1
P

rm2Rj

PL
l¼1 t

0
ml

Pn
j¼1

P
rm2Rj

gm
gmin

�
Pn

j¼1
P

rm2Rj
tmax
ml0Pn

j¼1
P

rm2Rj

gm
gmin

since
PL

l¼1 t
0
ml > tmax

ml0
;

¼
Pn

j¼1
P

rm2Rj
tmax
ml0Pn

j¼1
P

rm2Rj
rm

since rm ¼ gm
gmin

;

�
Pn

j¼1
P

rm2Rj
tmax
ml0Pn

j¼1
P

rm2Rj
r

since r ¼ gmax
gmin
� rm;

¼
Pn

j¼1
P

rm2Rj
tmax
ml0

r
Pn

j¼1 wðvjÞ

(11)

¼ t

r
: (12)

Notice that the rationale from Eq. (11) to Eq. (12) is
that tmax

ml0
is the access delay of rm by algorithm Appro-

Extension. In other words, we have

t � rt0; (13)

which means that the average delay will be no greater
than r times of the average access delay t0 by the solution
achieved through treating each user request rm as rm vir-
tual user requests.

Let t� be the optimal solution to the capacitated cloud-
let problem with identical cloudlet capacities and differ-
ent user resource demands, and t�m be the delay
experienced by request rm in the optimal solution t�.
Similarly, denote by t0� the optimal solution of the prob-
lem by treating each user request rm as gm

gmin
virtual user

requests, and t0�ml the delay experienced by the virtual

user request of user request rm in block bml in this opti-
mal solution. We now show that t0� is no greater than t�

as follows:

t0� ¼
Pn

j¼1
P

rm2Rj

PL
l¼1 t

0�
ml

Pn
j¼1

P
rm2Rj

gm
gmin

(14)

�
Pn

j¼1
P

rm2Rj
t�m

Pn
j¼1

P
rm2Rj

rm
(15)

�
Pn

j¼1
P

rm2Rj
t�m

Pn
j¼1 wðvjÞ

since rm � 1;

¼ t�;

(16)

where the rationale from Eq. (14) to Inequality (15) is that
the total delay by all virtual user requests is a lower
bound of the total delay of user requests, as the comput-
ing resource demands of a user request may be split into
different cloudlets. Having inequalities (13), (16), and
Theorem 4, we have

t � rt0 � 16rð1þ �Þt0� � 16rð1þ �Þt�: (17)

Thus, t will be no more than 16rð1þ �Þ times of the opti-
mal one t�. That is, the approximation ratio of algo-
rithm Appro-Extension is 16rð1þ �Þ.

We then show the bound of the amount of computing
resource allocated to user requests in each cloudlet. Since
the number of virtual requests of request rm that are
moved to Cl0 is no more than rm, the total computing

resource demands in Cl0 will be no more than rm times its

current one by algorithm Appro. Thus, the total amount
of computing resources allocated to user requests will be
no more than r times of the capacity by algorithm Appro,
i.e., 8rð1þ dÞc.

The time complexity analysis is similar to the analysis
in Theorem 4, omitted. tu

6 ONLINE USER REQUEST ASSIGNMENT

In this section we deal with the dynamic user request
assignment problem so as to minimize the average cloudlet
access delay of mobile users, assuming that the K cloudlets
have already been placed in the WMAN. We also assume
that time is slotted into equal time slots, and user request
assignments will proceed in the beginning of each time slot.
In the following we first devise an online algorithm for such
dynamic user request assignments, and then analyze the
performance of the proposed online algorithm.

6.1 Online Algorithm

The idea behind the algorithm is similar to the one of Algo-
rithm 3, the algorithm is invoked in the beginning of each
time slot t. That is, we first create a number of virtual user
requests for each user request at each AP, then reduce the
virtual user request assignment problem to the minimum-
cost maximum flow problem in another auxiliary flow network
G0, and finally adjust the virtual request assignments to
ensure that each user request will be assigned to a single
cloudlet for processing. The detailed algorithm is described
as follows.
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For each request rm at AP vj, we first create rm ¼ gm
gmin

vir-
tual user requests r0m;1; r

0
m;2; . . . ; r

0
m;rm

with each having identi-

cal computing resource demand gmin. We then construct a
flow network G0 ¼ ðV [ S [ fa; bg; E0Þ from the WMAN
GðV;EÞ and the K cloudlet placement locations, where there
is a ‘virtual source’ a and a ‘virtual sink’ b in G0. For each AP
vj 2 V , there is a directed edge in E0 from source a to vj with
capacity

P
rm2Rj

rm and a cost of 0, whileRj is the set of user

requests at AP vj. For each AP vj 2 V and each cloudlet
vi 2 S, there is a directed edge in E0 from vj to vi with a suffi-
ciently large capacity and a cost of dji (i.e., the shortest access
delay of assigning a user request from AP vj to cloudlet vi).
Furthermore, for each cloudlet located at vi 2 S, there is a

directed edge inE0 from vi to sink bwith capacity
c0
i
ðtÞ

gmin
(i.e., the

maximum number of virtual user requests that can be proc-
essed by the cloudlet at location vi with its residual capacity
c0iðtÞ at time slot t) and cost 0. Fig. 2 shows the construction of
such an auxiliary graph G0. Having G0, the solution to the
problem is to find a minimum-cost maximum flow f� in G0,
by applying the algorithm in [1],which then returns a solution
the dynamic user request assignment problem. Specifically,
given the flow f�, we can adjust the assignments of virtual
user requests by merging the virtual user requests of each
user request rm that are assigned to different cloudlets to a sin-
gle cloudlet. Assume that the virtual user requests
r0m;1; r

0
m;2; . . . ; r

0
m;rm

of a user request rm at AP vj are assigned

to a set of cloudletsCi1 ; Ci2 ; . . . ; Cim and the access delay from

vj to Cik is the minimum one, then, all these virtual requests

will be re-assigned to cloudletCik .We refer to this online algo-

rithm asAlgorithm Online_Assignment.

6.2 Algorithm Analysis

We now analyze the correctness and the time complexity of
the proposed online algorithm by Theorem 6 as follow.

Theorem 6. There is an online algorithm Online_Assign-

ment for the dynamic user request assignment problem in
G ¼ ðV;EÞ, where the accumulated computing resource allo-
cated to all assigned requests at each cloudlet Ci is no more
than r times its residual computing capacity c0i with

1 � i � K, where r ¼ gmax
gmin

, gmax and gmin are the maximum

and minimum resource demands by a single user request.

Proof. It can be easily verified that the solution delivered by
Algorithm Online_Assignment is a feasible solution,
since each user request is assigned to a cloudlet. In the
following, we show that the total computing resource

demand by all newly assigned user requests at each
cloudlet is no more than r times its residual capacity at
that time slot.

In the assignment of virtual user requests in auxiliary
graph G0, none of the residual capacity of any cloudlet
has been violated, as the capacity on edge hvi; bi is the
residual capacity of the cloudlet at location vi. However,
merging all virtual user requests of a user request from
the other cloudlets to a cloudlet may violate the residual
capacity constraint of the cloudlet to which all other vir-
tual user requests move. Following Theorem 5, the num-
ber of virtual requests of each user request rm is no more
than rm. Thus, the total residual capacity thus will be vio-
lated by no more than a factor of r as r ¼ gmax

gmin
. tu

7 PERFORMANCE EVALUATION

In this section we evaluate the performance of the pro-
posed algorithms, based on both real and synthetic net-
work topologies.

7.1 Experiment Settings

We assume that a WMAN GðV;EÞ consists of 200 APs in the
default setting, and there is an edge between every pair of
nodeswith a probability of 0:02. The network is generated by
a popular tool GT-ITM [13]. We assume that the number of
cloudlets is 10 percent of network size, i.e., K ¼
10% � 200 ¼ 20, and the set of potential placement locations
of the cloudlets is Swith S ¼ V . The number of user requests
wðvÞ at each AP v 2 V is randomly drawn from an interval
[50, 500] [21]. To evaluate the proposed algorithms in real
scenarios, we also adopt the real WIFI network topology in
the Hong Kong Mass Transit Railway (HKMTR) [15], which
contains 18 APs corresponding to the 18 districts in Hong
Kong, and the number of requests at each AP is proportional
to the population within its corresponding district. The com-
puting resource demand gm of each user request rm varies
from 50 to 200 MHz [34], [35]. Let gsum be the total amount of
computing resource demands of all user requests, then
gsum ¼

Pn
j¼1

P
rm2Rj

gm. The capacity of each cloudlet is ran-

domly drawn from 100,000 MHz to agsum MHz with a � 1,
and the sum of capacities of the K cloudlets is no less than
gsum. The delay of each link in G is randomly generated
between 5 and 50 ms [30]. Unless otherwise specified, these
default parameters will be adopted in our simulation.

We evaluate the performance of proposed algorithms
Heuristic, Appro, and Appro-Extension against other
two heuristics. One places theK cloudlets to APs randomly.
Another places the K cloudlets to the top-K APs, where an
AP is a top-K AP if the number of user requests at it is one
of the top-K values, and the rationale of this heuristic is to
place cloudlets to K ‘hotspot’ (busiest) APs that have more
user requests than others. For the sake of brevity, we refer
to these two heuristics as algorithms Random and Top-K,
respectively. In addition, the optimal solution obtained by
the ILP is referred to as algorithm OPT, which can be found
by applying the tool of lp_solve [24].

7.2 Performance Evaluation in the HKMTR Network

We first evaluate the performance of algorithms Heuristic
and Appro against that of algorithms Random, Top-K, and

Fig. 2. The auxiliary graph G0 ¼ ðV [ S [ fa; bg; E0Þ.

2876 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016



OPT for the capacitated cloudlet placement problem, in the
HKMTR network, by setting K ¼ 3 and all the 18 AP loca-
tions being considered as the potential locations of the K
cloudlets. Fig. 3a depicts the curves of the average cloudlet
access delay delivered by algorithm Heuristic, from
which it can be seen that algorithm Heuristic outperforms
algorithms Random and Top-K by 30 and 10 percent in
terms of the average cloudlet access delay, respectively. Fur-
thermore, algorithm Heuristic delivers a near optimal
average cloudlet access delay that is no more than 1.3 times
of the optimal one. Fig. 3b shows the performance of approx-
imation algorithm Appro against the other two benchmark
algorithms, from which it can be seen that algorithm Appro

significantly outperforms its benchmark counterparts.

7.3 Performance Evaluation of Different Algorithms
in Synthetic Networks

We then evaluate the performance of different algorithms in
synthetic networks, by varying the number of APs n from
10 to 1;000, while fixing the ratio of the number of cloudlets
to the number of APs at 0:1, i.e., K=n ¼ 0:1. Fig. 4 plots the
curves of average cloudlet access delays delivered by differ-
ent algorithms, from which it can be seen that algorithm

Heuristic significantly outperforms algorithms Random

and Top-K, and algorithm Top-K is only marginally better
than algorithm Random. Specifically, the average cloudlet
access delay by algorithm Heuristic is less than those by
algorithms Random and Top-K by 25 and 35 percent,
respectively. In addition, the figure also shows that the aver-
age cloudlet access delay by algorithm Heuristic is no
more than 1.5 times of the optimal one, algorithm Heuris-

tic thus is very promising in practice.
We now study the performance of approximation

algorithm Appro against other heuristics for the problem
when all cloudlets have identical capacities and all user
requests have identical computing resource demands, i.e.,
gm ¼ 1 for each user request rm, by varying n from 10 to
1;000 while fixing K=n ¼ 0:1. To evaluate the actual perfor-
mance of algorithm Appro against its analytical result, we
here use a lower bound on the optimal cost of the problem
as an estimation of the optimal delay OPT as this is a mini-
mization problem, where the lower bound is obtained by
solving a linear programming that is relaxed from the ILP
of the problem. It must be mentioned that this estimation to
the optimal solution is very conservative, and the optimal
solution OPT usually is much larger than this estimation.
For the sake of convenience, we refer to OPT_LB as an
estimation of OPT.

Fig. 5 plots the curves of average cloudlet access delays
by algorithms Appro, Heuristic, Top-K, and Random

against the lower bound OPT_LB of the optimal solution. It
can be seen from this figure that the average cloudlet access
delay by algorithm Appro is nearly optimal, which is only
from 5 to 10 percent difference from the optimal one. Fig. 5
clearly indicates that the performance of algorithm Appro

is significantly better than those of algorithms Heuristic,
Top-K, and Random. Specifically, the average cloudlet
access delay by algorithm Appro is 10 to 20 percent less
than that by algorithm Heuristic, and nearly 50 percent
less than those by algorithms Top-K and Random.

We thirdly study the performance of approximation
algorithm Appro-Extension against other heuristics for
the problem when all cloudlets have identical capacities but
different users may request different amounts of computing
resource, by varying n from 10 to 1;000 while fixing
K=n ¼ 0:1. It can be seen from Fig. 6 that the average cloud-
let access delay by algorithm Appro-Extension is less
than those of other algorithms, which is about 10, 40, and
50 percent lower than those of algorithms Heuristic,
Top-K, and Random, respectively. In addition, the solution
by algorithm Appro-Extension is nearly optimal, since
its average cloudlet access delay is only around 10 percent

Fig. 3. The average cloudlet access delays of different algorithms in the
HKMTR network.

Fig. 4. The average cloudlet access delays of different algorithms with
different cloudlet capacities and different resource demands.

Fig. 5. The average cloudlet access delays of different algorithms with
identical cloudlet capacities and identical resource demands.

XU ETAL.: EFFICIENTALGORITHMS FOR CAPACITATED CLOUDLET PLACEMENTS 2877



higher than that of OPT if n � 50, and 15 percent higher than
that of OPT_LB otherwise. Further, the average cloudlet
access delays by algorithms Heuristic, Appro-Exten-
sion, and Random rise slightly when n increases from 600
to 1;000, because in large-scale networks user requests usu-
ally have a higher probability to be routed to cloudlets via a
longer path.

The rest is to investigate the impact of the number of cloud-
letsK on the performance of different algorithms, by varying
K from 20 to 100while fixingn at 200. Figs. 7a and 7b illustrate
the curves of the average cloudlet access delays delivered by
different algorithms for the problem with and without the
identical capacity constraint on theK cloudlets, fromwhich it
can be seen that the average cloudlet access delays by algo-
rithms Heuristic and Appro are much smaller than those
by algorithmsTop-K andRandom. Also, the average cloudlet
access delay by each mentioned algorithm decreases with the
increase ofK, since each user request will have more chances
to be assigned to its nearest cloudlet. The similar performance
results of algorithm Appro-Extension can be found in
Fig. 7c, omitted.

7.4 Performance Evaluation of the Online Algorithm

Wefinally investigate the performance of algorithm Online_

Assignment for a monitoring period of 24 hours with each
hour as a time slot and fixing the number of APs in the
WMAN at 200. We consider two arrival patterns of user
requests within the 24-hour monitoring period: (1) the uni-
form user request pattern, where the number of user requests
received at each AP v 2 V at each time slot follows the uni-
form distribution within an interval ½ð1	 rÞwðvÞ; ð1þ rÞ
wðvÞ
; and (2) the lognormal user request pattern, where the
number of user requests arrived at each AP during a day usu-
ally starts to rise at around 9:00 am, reaching a peak at around
12:00 pm, and leveling off before 6:00 pm. For simplicity, the

uniform user request pattern and lognormal user request
pattern are referred to as patterns Uniform and Lognormal

for short.
Fig. 8 plots the curves of average cloudlet access delays

by algorithm Online_Assignment under two different
user request patterns: Uniform and Lognormal. From
Figs. 8 and 4, it can been seen that the average cloudlet
access delay by algorithm Online_Assignment with
Uniform request pattern is only no more than twice that by
algorithm Heuristic. Thus, Fig. 8 indicates that the cloud-
let placements delivered by algorithms Heuristic and
Appro, based on the expected number of user requests at
each AP is also applicable to the case where the user request
fluctuations at APs are insignificant. Also, it can be seen
from Fig. 8 that the average cloudlet access delay by algo-
rithm Online_Assignment with Lognormal has a slight
increase starting from 9:00 am to 6:00 pm, due to the user
request congestion during that period.

8 CONCLUSION AND FUTURE WORKS

Cloudlets have been emerged as an important technology
that can extend the computing capabilities significantly of
resource-constrained mobile devices. In this paper we first
studied the capacitated cloudlet placement problem in a
large-scale Wireless Metropolitan Area Network with the
objective to minimize the average cloudlet access delay
betweenmobile users and the cloudlets serving their requests.
We then provided an exact solution to the problem when the
problem size is small, otherwise, we proposed a fast yet scal-
able heuristic for it. For a special case of the problemwhen all
cloudlets have identical computing capacities, we devised
two novel approximation algorithms, depending on whether
identical resource demands by all user requests. We finally

Fig. 6. The average cloudlet access delays of different algorithms with
identical cloudlet capacities and different user resource demands.

Fig. 7. The impact of the number of cloudletsK on the performance of different algorithms.

Fig. 8. The average cloudlet access delays of algorithm Online_

Assignment under two different user request patterns: Uniform and
Lognormal.
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evaluated the performance of the proposed algorithms by
experimental simulations. The simulation results showed that
the proposed algorithms are very promising. In the future we
will study this problem by investigating the delay impact
between users and their APs.
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