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Abstract—Cloud computing built on virtualization technologies promises provisioning elastic computing and bandwidth resource

services for enterprises that outsource their IT services as virtual networks. To share the cloud resources efficiently among different

enterprise IT services, embedding their virtual networks into a distributed cloud that consists of multiple data centers, poses great

challenges. Motivated by the fact that most virtual networks operate on long-term basis and have the characteristics of periodic

resource demands, in this paper we study the virtual network embedding problem of embedding as many virtual networks as possible

to a distributed cloud such that the revenue collected by the cloud service provider is maximized, while the service level agreements

(SLAs) between enterprises and the cloud service provider are met. We first propose an efficient embedding algorithm for the problem,

by incorporating a novel embedding metric that accurately models the dynamic workloads on both data centers and inter-data center

links, provided that the periodic resource demands of each virtual network are given and all virtual networks have identical resource

demand periods. We then show how to extend this algorithm for the problem when different virtual networks may have different

resource demand periods. Furthermore, we also develop a prediction mechanism to predict the periodic resource demands of each

virtual network if its resource demands are not given in advance. We finally evaluate the performance of the proposed algorithms

through experimental simulation based on both synthetic and real network topologies. Experimental results demonstrate that the

proposed algorithms outperform existing algorithms from 10 to 31 percent in terms of performance improvement.

Index Terms—Virtual network embedding, cloud resource provisioning, embedding algorithms, periodic resource demands, distributed

clouds, cloud computing
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1 INTRODUCTION

ENTERPRISES nowadays are embracing a new computing
paradigm by outsourcing their IT service networks as

virtual networks to clouds for cost savings. For example, a
company operating video conferencing services could run on
a virtual network with a stringent quality of service require-
ment, whereas a university delivering online courses for dis-
tance education service may run a virtual network for real-
time online course delivery. These two different virtual net-
works can be accommodated by a distributed cloud, which is
also referred to as the substrate network that consists ofmultiple
data centers connected through high-speed optical links [35],
[36], [37]. A fundamental problem for this substrate network
is how to efficiently embed asmany virtual networks as possi-
ble to it such that the revenue of the cloud service provider is
maximized, while the Service Level Agreements (SLAs)
between users and the cloud service provider are met. This
problem is referred to as theVirtual Network Embedding (VNE)

problem, which has been extensively studied in the past few
years [3], [9], [10], [16], [23], [38], [39], [44].

Most existing studies on the VNE problem in literature
focused on resource provisions by reserving the maximum
resource demands for a virtual network throughout its whole
lifetime [8], [10], [39], [42], [44]. Such a conservative resource
provision scheme however causes up to 85 percentage of the
cloud resources under-utilized in most time, resulting in
enormous resource wastage and economic loss [32], [35],
[36]. Fortunately, nearly 90 percent of enterprise IT services
exhibit the characteristics of periodic resource demands [18].
By making use of this periodic resource demand property,
the utilization ratios of cloud resources can be substantially
improved if the demanded resources by different virtual
networks can be shared through exploring their resource
demand periods, which can be illustrated by an example in
Fig. 1, where a virtual network A providing office users with
virtual desktop services usually experiences low-workloads
in weekends, whereas another virtual network B hosting
online gaming services has high-workloads in weekends. If
embedding A and B to the substrate network while meeting
their individualmaximumdemands, only one of them can be
embedded. However, they both can be embedded concur-
rently if their time-varying resource demands are comple-
mentary. This could potentially reduce the operational cost
of the cloud service provider.
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Due to the heterogeneity of substrate resources and with-
out the knowledge of periodic resource demands of each vir-
tual network in advance, it poses a great challenge to embed
as many virtual networks as possible into a substrate net-
work such that the revenue collected by the cloud service
provider is maximized, while meeting the SLAs of users. To
efficiently embed different virtual networks to a distributed
cloud with dynamic workloads on its data centers and links,
an embeddingmetric that can accurately model the dynamic
workloads of cloud resources needs to be developed, and an
efficient embedding method that embeds each virtual net-
work to the substrate network is required to be devised such
that both the computing and the bandwidth demands of the
virtual network are met. In this paper, we will introduce a
novel embedding metric for virtual network embedding,
and develop efficient algorithms for virtual network embed-
ding by exploring the periodic resource demands of virtual
networks, based on the proposed embeddingmetric.

Although the embedding of a single virtual network to
the substrate network has been intensively studied in recent
years, to the best of our knowledge, we have not been aware
of any study of embedding multiple virtual networks with
periodic resource demands to a distributed cloud simulta-
neously. We are the first to consider the embedding of mul-
tiple virtual networks with periodic resource demands
while meeting the SLAs of different users, through intro-
ducing a novel embedding metric that can accurately cap-
ture the dynamic workloads of computing and bandwidth
resources in a distributed cloud.

The main contributions of this paper are as follows. We
first propose an embedding algorithm for the VNE problem,
by employing a novel metric to capture the workloads on
substrate nodes and substrate links, assuming that all vir-
tual networks have identical resource demand periods and
their resource demands are given in advance. We then
extend the proposed embedding algorithm for a general set-
ting of the problem where different virtual networks may
have different resource demand periods, or such resource
demand periods may not be given in advance, by develop-
ing a resource demand prediction algorithm for each virtual
network. We finally evaluate the performance of the pro-
posed algorithms through experimental simulations, based

on both synthetic and real substrate network topologies.
Experimental results show that the proposed algorithms
outperform existing algorithms, improving the revenue of
the cloud service provider from 10 to 31 percent.

The remainder of the paper is organized as follows.
Section 2 introduces related work, followed by the system
model and problem definitions in Section 3. Sections 4 and 5
propose VNE algorithms with and without the periodic
resource demands of virtual networks. Section 6 evaluates
the performance of the proposed algorithms through exper-
imental simulations. The conclusion is given in Section 7.

2 RELATED WORK

Network virtualization has been recognized as a promising
solution to the perceived ossification of the current Inter-
net [1], [14], which can improve performance of inter- and
intra-data center networks [2], [3], [4], [9], [11], [20], [21],
[29], [33], [34]. For example, Guo et al. [20] proposed a band-
width reservation method between every pair of virtual
machines (VMs) within a single data center. Ballani et al. [2]
proposed a virtual cluster model, in which all VMs are con-
nected to a virtual switch to which an amount of bandwidth
resource is allocated. Wood et al. [33] aimed to enhance
seamless interconnections of applications distributed in
multiple data centers, by utilizing the Virtual Private Net-
work (VPN) technique [15]. They however did not consider
joint allocations of computing and network bandwidth
resources. Their approaches thus are inapplicable to
resource allocations for applications that rely on both com-
puting and network bandwidth resources.

With the advancement of cloud computing and network
virtualization technologies, joint allocation of network
bandwidth and computing resources becomes feasible, by
utilizing virtual network embedding (VNE) technique. In
general, most existing solutions to the VNE problem can be
classified into two categories: static and dynamic resource
provisioning. Static resource provisioning assumes that the
resource demands of each virtual network do not change
during the lifetime of the virtual network, whereas dynamic
resource provisioning deals with the embedding of virtual
networks with dynamic resource demands over time.

Fig. 1. A motivated example of resource sharing among virtual networks with periodic resource demands.
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Existing studies in literature focused mainly on static
resource provisions [6], [8], [10], [12], [13], [26], [30], [39],
[42], [44]. For example, Zhu and Ammar [44] proposed a
VNE algorithm for balancing the workload on both comput-
ing nodes and communication links, by introducing a
node/link-stress concept, and jointly considered the work-
load on each node and the links incident to the node.
Chowdhury et al. [10] devised an algorithm that coordinates
node and link mapping, by reducing the VNE problem to a
multi-commodity flow problem under the constraint that
each virtual node can only be mapped to a specific set of can-
didate substrate nodes. Cheng et al. [8] proposed an embed-
ding algorithm that is similar to the Google’s PageRank
algorithm, where both substrate and virtual nodes are
ranked by their resource availabilities and the quality of link
connections. Lischka and Karl [26] devised an online VNE
algorithm by making use of the subgraph isomorphism
detection with the aim of maximizing the revenue-to-cost
ratio, where the revenue is the total amount of virtual resour-
ces requested by virtual networks, and the cost is the total
amount of substrate resources spent in accommodating the
virtual networks. There are other static approaches that have
less constraints on nodes and links, e.g., splittable path rout-
ing [39], embedding a virtual node onto several substrate
nodes [42], embedding a virtual network across different
substrate networks [22], distributed and automatic embed-
ding [23], or avoiding cloud resource fragmentation [13]. For
example, Chiang et al. [39] initialized the study of the VNE
problemwith splittable path routing, by embedding the traf-
fic on each virtual link to multiple substrate paths in the sub-
strate network. Houidi [22] treated virtual network
providers as brokers by allowing a virtual network to be
embedded to multiple substrate networks with the aim of
reducing the embedding cost of infrastructure providers
while increasing the acceptance ratio of user requests.

There are several studies focusing on dynamic resource
provisioning, by reallocating under-utilized resources to
other virtual network requests [7], [31], [40], [41], [43]. For
example, Zhang et al. [40] studied the VNE problem by con-
sidering opportunistic resource sharing and topology-aware
node ranking. They assumed that each virtual network has
basic and maximum demands with certain probabilities.
Such an assumption may not be realistic as it is very
unlikely that a user can provide the detailed resource
demands of its virtual network in advance. The other
dynamic resource provisioning approaches however per-
form periodic reconfigurations/migrations of implemented
virtual networks, which may not be feasible in practice, due
to high migration costs and/or violations of the agreed SLA
requirements [5]. For example, Houidi et al. [24] proposed
an adaptive VNE algorithm that dynamically identifies new
candidate substrate resources to cater dynamic topologies
and dynamic communication requirements of virtual net-
works. Similarly, there are approaches in [7], [43] dealing
with evolving virtual networks in terms of topologies and
resource demands. For example, Sun et al. [31] devised vir-
tual network migration algorithms to deal with evolving
virtual networks. Zhang and Qiu [41] studied a scenario
where both the demands of virtual networks and the capac-
ity of a substrate network change over time. Unlike these
mentioned previous works, in this paper we deal with

dynamic resource provisions for virtual networks, by
exploring periodic resource demands of virtual networks.
The essential differences between our work and existing
ones lie in a novel embedding metric that can model the
workloads of both substrate nodes and substrate links accu-
rately over time, and the exploration of periodic resource
demands of virtual networks.

3 PRELIMINARIES

In this section we first introduce the substrate and virtual
networks. We then provide the revenue and cost models of
virtual network embedding. We finally define the embed-
ding problems of virtual networks precisely.

3.1 Substrate and Virtual Networks

A substrate network is represented by a node-and-edge
weighted, undirected graph Gs ¼ ðNs;EsÞ, where Ns and
Es are the sets of substrate nodes and links, respectively.
Denote by ns a substrate node in Ns and es a substrate link
in Es. Each ns represents a data center and each es denotes a
communication link (or a path) between the two data cen-
ters corresponding to its two endpoints. Denote by CðnsÞ
the capacity of computing resource in ns and BðesÞ the
bandwidth capacity on es.

A virtual network can be represented by a node-and-edge
weighted, undirected graph Gv ¼ ðNv;EvÞ, where Nv and
Ev are the sets of virtual nodes and virtual links. Each vir-
tual node nv 2 Nv represents a set of virtual machines that
host specific applications. Each virtual link ev 2 Ev repre-
sents a communication link between two virtual nodes.
Denote by CðnvÞ and BðevÞ the maximum amounts of comput-
ing and bandwidth resource demands by virtual node nv and
virtual link ev in Gv, respectively. Recall that a substrate net-
work represents a distributed cloud, while a virtual net-
work represents an enterprise IT service network.

Assume that time is divided into equal intervals, and each
interval is further divided into equal numbers of time slots.
Let i be the current interval and T the number of time slots in
each interval. We assume that each interval i corresponds to
one resource demand period. We further assume that virtual net-
work requests arrive into the system one by one without the
knowledge of future arrivals. All arrived requests between
time slot ði� 1Þ and time slot iwill be examined in the begin-
ning of time slot i, i.e., whether a request arrived during this
period will be admitted (embedded) by the system will be
determined in the beginning of time slot i. We say a virtual
network Gv ¼ ðNv;EvÞ with a duration tðGvÞ in the granular-
ity of weeks or months if it is embedded to the substrate net-
work, it will stay there until its duration tðGvÞ expires. Fig. 2
gives an example of virtual network embedding.

Fig. 2. Virtual network embedding.
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3.2 Periodic Resource Demands

Most enterprise IT services exhibit periodic resource
demands [18]. For instance, an enterprise that provides uni-
versity email services has weekly resource demands due to
the weekly activity patterns of university users. Although
periodic resource demands of a virtual network request typ-
ically are not known when the request initially arrived, they
can be predicted by analyzing the resource demand history
of the virtual network implementation, using offline profil-
ing and online calibration [28].

Given an embedded virtual network GvðNv;EvÞ, denote
by ĉðnv; i; tÞ and b̂ðev; i; tÞ the predicted computing and
bandwidth resource demands of a virtual node nv 2 Nv and
a virtual link ev 2 Ev at time slot t in interval i. Let cðnv; i; tÞ
and bðev; i; tÞ be the actual amounts of demanded comput-
ing and bandwidth resources at virtual node nv and virtual
link ev at time slot t in interval i. The periodic computing
and bandwidth resource demands of Gv are defined as the
resource demands that will be repeated in each interval, i.e.,
cðnv; i; tÞ ¼ cðnv; i0; tÞ and bðev; i; tÞ ¼ bðev; i0; tÞ for each time
slot t at different intervals i and i0 with i 6¼ i0. The amount of
available resources of substrate network Gs can be derived
from the accumulative resources allocated to all embedded
virtual networks at time slot t in interval i. Denote by
P ðns; i; tÞ and P ðes; i; tÞ the amounts of available computing
and bandwidth resources in node ns and link es of Gs at
time slot t in interval i, where 1 � t � T .

3.3 Revenue and Cost Models

The revenue collected by a cloud service provider by
embedding virtual networks to the cloud can be defined dif-
ferently, if different economic models are adopted. Similar
to the revenue models in previous studies [10], [40], [44],
in this paper the revenue collected by embedding a virtual
network Gv to Gs is the sum of revenues of the usages of
computing and bandwidth resources by Gv for its occupa-
tion period tðGvÞ in Gs, where cc and cb are the costs of unit
computing and bandwidth resources, respectively. Denote
by RðGvÞ the revenue received by embedding Gv, then,

RðGvÞ ¼
X

nv2Nv

CðnvÞ � cc þ
X
ev2Ev

BðevÞ � cb
 !

� tðGvÞ: (1)

To provide the demanded computing and bandwidth
resources to a virtual network Gv ¼ ðNv;EvÞ while meeting
its SLA, the cloud service provider consumes its resources
such as electricity, software and hardware that incur the
service (operational) cost. The service cost of embedding
a virtual network Gv thus is defined as the sum of the usage
costs of amounts of cloud resources within each time slot
during its duration. Let CðGvÞ be the service cost of an
embedded virtual network Gv, then,

CðGvÞ ¼
XtðGvÞ

i¼1

XT
t¼1

� X
nv2Nv

cðnv; i; tÞ � cc

þ
X
ev2Ev

X
es2Es

le
v

es bðev; i; tÞ � cb
�
;

(2)

where le
v

es is 1 if virtual link ev 2 Ev is embedded to a path in
Gs while es 2 Es is a link in the path; 0 otherwise.

3.4 Problem Definitions

Given a monitoring period consisting of I intervals with
each having T equal time slots, assume that virtual network
requests arrive one by one without the knowledge of future
arrivals. The arrived requests will be scheduled in the
beginning of each time slot. Let Gði; tÞ be the set of arrived
virtual network requests in the beginning of time slot t in
interval i, in which each virtual network Gv spans tðGvÞ
intervals in the substrate network Gs. Each request exhibits
periodic resource demands, i.e., it has the same amounts of
computing and bandwidth resource demands in each inter-
val i, cðnv; i; tÞ ¼ cðnv; i0; tÞ and bðev; i; tÞ ¼ bðev; i0; tÞ for any
two intervals i and i0 with i 6¼ i0 during its duration tðGvÞ in
Gs and t is a time slot with 1 � t � T .

The virtual network embedding problem with the knowledge
of periodic resource demands is to embed as many virtual
networks in Gði; tÞ as possible to the substrate network Gs

for a given monitoring period I, such that the revenue
of the cloud service provider of Gs is maximized, subject
to the resource demands of each embedded virtual net-
work at each time slot being met, where 1 � i � I and
1 � t � T .

The virtual network embedding problem without the knowl-
edge of periodic resource demands can be defined similarly,
which is to embed as many virtual networks in Gði; tÞ as
possible to the substrate network without the knowledge of
periodic resource demands of the virtual networks for a
given monitoring period I, such that the revenue of the
cloud service provider of Gs is maximized, subject to the
constraint that the resource demand violation ratio of each vir-
tual network Gv is bounded within its threshold sðGvÞ,
where the resource demand violation ratio of a virtual net-
work Gv is the amount of its violated resource demands
to the total amount of its resource demands throughout
its duration tðGvÞ. For example, given a virtual network
demanding one unit of resource at each time slot of its 10-
time-slot lifetime, its resource demand violation ratio will
be 10 percent if it is provided with 0.5 unit resource for two
time slots and one unit for the rest.

Table 1 summarizes the symbols used in this paper.

4 ALGORITHM WITH THE KNOWLEDGE OF PERIODIC

RESOURCE DEMANDS

In this section we consider virtual network embedding with
the knowledge of periodic resource demands. We first
devise an algorithm to embed a single virtual network
Gv ¼ ðNv;EvÞ to a substrate network Gs ¼ ðNs;EsÞ. We
then propose an algorithm to embed multiple virtual net-
works to Gs. We finally analyze the time complexities of the
proposed algorithms.

4.1 Embedding a Virtual Network with Static and
Dynamic Resource Demands

To embed virtual network Gv to substrate network Gs, an
embedding metric is needed. Such a metric captures not
only the amounts of available resources but also the utiliza-
tion ratios of the resources in Gs. In the following we first
introduce a novel embedding metric. We then devise an
embedding algorithm for embedding a virtual network
with static resource demands, based on the proposed
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metric. We finally extend the algorithm to embed a virtual
network with periodic resource demands.

We start by proposing an embedding metric to capture
the workloads of substrate nodes and links in Gs. For a
given substrate node ns, the amount of available computing
resource at it and its utilization ratio will jointly determine
the embedding ability of substrate node ns. The marginal gain
of the embedding ability of ns will diminish with the
increase of its utilization ratio, since the larger the propor-
tion of its computing resource is being occupied, the higher
the risk of the SLA violations substrate node ns faces. We
thus use an exponential function to model the embedding
ability of substrate node ns. Recall that P ðns; i; tÞ is the
amount of available computing resource of substrate node
ns at time slot t in interval i. Denote by FðnsÞ the embed-
ding metric of ns, then

FðnsÞ ¼ P ðns; i; tÞ � a
P ðns;i;tÞ
CðnsÞ ; (3)

where a is a constant with a > 1, and P ðns;i;tÞ
CðnsÞ is the comple-

mentary ratio to the resource utilization ratio of ns.
The defined embedding metric FðnsÞ favors allocating a

virtual node to a substrate node that has a large amount of
available resource and a low resource utilization ratio. The
embedding ability FðesÞ of a substrate link es can be defined
similarly,

FðesÞ ¼ P ðes; i; tÞ � b
P ðes;i;tÞ
BðesÞ ; (4)

where b > 1 is a constant and P ðes; i; tÞ is the amount of
available bandwidth resource on es.

Having defined the embedding abilities of substrate
links and nodes, we now introduce an embedding metric to

embed each virtual link ev to a substrate path p inGs that con-
sists of one or multiple substrate links. To this end, we first
define the ‘length’ dðesÞ of each substrate link es as follows:

dðesÞ ¼
1

FðesÞ if FðesÞ > 0;

1 if FðesÞ ¼ 0:

�
(5)

The length of a substrate link implies that the shorter the sub-
strate link, the more available bandwidth and lower utiliza-
tion ratio the link will have. In other words, a substrate link
without any available bandwidth will have a longest length,
and should not be used by any routing path. Similarly, the
‘length’ dðpÞ of a substrate path p is the sum of lengths of its
constituent substrate links, which is defined as follows:

dðpÞ ¼
X
es2p

dðesÞ: (6)

A shorter path p will have more available bandwidth on its
constituent substrate links, thereby having a higher embed-
ding ability.

We now embed a virtual network GvðNv;EsÞ with static
resource demands to the substrate network GsðNs;EsÞ,
using the proposed embedding metrics as follows.

We embed each virtual node in Nv to a different sub-
strate node Ns, followed by embedding each virtual link in
Ev to a substrate path in Gs. To embed virtual nodes in Nv,
we construct a cluster of substrate nodes for the virtual
nodes through adding substrate nodes into the cluster one
by one. Specifically, we first identify a cluster center with the
greatest embedding ability in Gs to embed a virtual node
with the maximum resource demand in Gv, and then find
other substrate nodes one by one iteratively with a shorter

TABLE 1
Symbols

Symbols Notations

i and T the current interval and the number of time slots of each interval
Gs ¼ ðNs; EsÞ a substrate network with substrate node set Ns and substrate link set Es

ns and es a substrate node inNs and a substrate link in Es

CðnsÞ and BðesÞ the computing capacity of ns and the bandwidth capacity of es

P ðns; i; tÞ and P ðes; i; tÞ the amounts of available computing and bandwidth resources in ns and es at time slot t in interval i
Gv ¼ ðNv;EvÞ a virtual network with virtual node set Ev and virtual link set Ev

nv and ev a virtual node in Nv and a virtual link in Ev

CðnvÞ and BðevÞ the maximum amounts of computing and network bandwidth resources demanded by nv and ev

ĉðnv; i; tÞ and b̂ðev; i; tÞ the predicted amounts of computing and bandwidth resource demands of nv and ev at time slot t in interval i

cðnv; i; tÞ and bðev; i; tÞ the actual amounts of computing and bandwidth resource demands of nv and ev at time slot t in interval i
tðGvÞ the duration of virtual network Gv

RðGvÞ the revenue of embedding virtual network Gv

CðGvÞ the cost of embedding virtual network Gv

cc and cb the prices for unit computing and bandwidth resources

le
v

es
an indicator value shows whether ev is embedded to a path in Gs and es is a link in the path

FðnsÞ and FðesÞ the embedding metrics that model the abilities of ns and es in embedding a virtual node and link
a and b constants for the embedding metrics FðnsÞ and FðesÞwith a > 1 and b > 1
dðesÞ the ‘length’ of a substrate link es which equals to 1

FðesÞ if FðesÞ > 0 and 0 otherwise
p a path in the substrate network Gs

dðpÞ the total ‘length’ of all substrate links in path p, i.e., dðpÞ ¼Pes2p dðesÞ
LðnsÞ the set of substrate links incident to substrate node ns

Ns
sel candidate substrate nodes that are selected to embed virtual nodes in a virtual network

Nv
emd virtual nodes that have been embedded into Gs

NRðnsÞ andNRðnvÞ the ranks of ns and nv that are used to select the cluster centers in Gs and Gv

ns
c and nv

c the cluster centers in Gs and Gv, which have the highest values of NRðnsÞ and NRðnvÞ
kðnsÞ and kðnvÞ the ranks of substrate nodes in Gs except ns

c , and virtual nodes in Gv except nv
c
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path to the selected substrate nodes, by adopting a strategy
similar to the one in [44]. Intuitively, each added substrate
node in the cluster has not only the great embedding ability
but also a shorter path to the other substrate nodes in the
cluster, since a shorter path between two selected substrate
nodes implies more available bandwidth between them.
Therefore, to find the cluster center, we assign each substrate
node ns 2 Ns a rank that is jointly determined by its embed-
ding ability and the accumulative embedding ability of the
links incident to it. Let LðnsÞ be the set of substrate links inci-
dent to substrate node ns 2 Ns. The rank NRðnsÞ of ns is
defined as the product of its embedding ability FðnsÞ and the
accumulative embedding ability of links in LðnsÞ, i.e.,

NRðnsÞ ¼ FðnsÞ �
X

es2LðnsÞ
FðesÞ: (7)

The rank NRðnvÞ of each virtual node nv 2 Nv can be
defined similarly as the product of its computing resource
demand and the accumulative bandwidth resource demand
of the virtual links incident to it, i.e.,

NRðnvÞ ¼ CðnvÞ �
X

ev2LðnvÞ
BðevÞ: (8)

Let ns
c and nv

c be the chosen cluster center and virtual node
by Eqs. (7) and (8), respectively. Then, nv

c is embedded into
ns
c . Having embedded nv

c to ns
c , the other jNvj � 1 cluster

members will be identified one by one iteratively. During
each iteration, a virtual node is embedded to a substrate
node with high embedding ability and the minimum dis-
tance to one of the selected substrate nodes in the cluster.
To this end, rank those not yet selected substrate nodes by
the product of the inverse of FðnsÞ and the accumulative
length from substrate node ns to all the substrate nodes
selected. Denote by kðnsÞ the rank of ns, then,

kðnsÞ ¼ 1

FðnsÞ �
X

ms2Ns
sel

dðpns;msÞ; (9)

where Ns
sel is the set of selected substrate nodes in the clus-

ter, and pns;ms is the shortest path between substrate nodes
ns andms 2 Ns

sel.
The rank of a yet-to-be embedded virtual node nv 2 Nv

can be defined similarly, i.e.,

kðnvÞ ¼ 1

CðnvÞ �
X

mv2Nv
emd

X
ev2pnv;mv

dðevÞ; (10)

where Nv
emd denotes the set of embedded virtual nodes,

dðevÞ is the length of virtual link defined by 1
BðevÞ, and pmv;nv

is the shortest path between virtual nodes mv 2 Nv
emd and nv

(w.r.t. the accumulative length of its virtual links). The ratio-
nale behind the definition of length metric dðevÞ is that the
length of virtual link ev is inversely proportional to its
demand Bv. Intuitively speaking, a shortest path between
an embedded virtual node and the next virtual node to
be embedded is a path with the maximum accumulated
resource demands on the path. A virtual node nv with the
minimum value of kðnvÞ will be chosen as the next virtual
node to be embedded to the substrate node ns with the

lowest rank kðnsÞ. If there is such a virtual node in Gv that
has never been embedded after considering all substrate
nodes, then Gv will not be admitted.

The embedding of virtual links in Ev can be dealt with
similarly. Let p be a shortest path in Gs between two sub-
strate nodes for virtual link ev. If p does not have enough
bandwidth to meet the bandwidth demand of ev, the sub-
strate link in p with the minimum available bandwidth is
then removed, the next shortest path will be found until
there is not such a path. The detailed procedure for a single
virtual network embedding is detailed in procedure Embe-

dOneVN-Static.
Having shown how to embed a virtual network with

static resource demands to the substrate network Gs, we
here show how to embed a virtual network GvðNv;EvÞ with
periodic resource demands to Gs as follows.

Procedure 1. EmbedOneVN-Static()

Input: GvðNv;EvÞ, GsðNs;EsÞ
Output: Embed Gv or reject it

1: /* Stage one: embed virtual nodes */
2: Find the cluster center ns

c with the maximum rank in sub-
strate network Gs by Eq. (7);

3: Find the virtual node nv
c with the maximum rank in virtual

network Gv by Eq. (8);
4: Embed virtual node nv

c to the cluster center ns
c;

5: Nv
emd  fnv

cg; /* the set of embedded virtual nodes*/

6: Ns
sel  fns

cg; /* the set of selected substrate nodes*/

7: Embed virtual nodes in Nv �Nv
emd to Gs one by one itera-

tively. Within an iteration, a virtual node with the mini-
mum kðnvÞ is embedded into a substrate node with the
minimum kðnsÞ;

8: if Ns nNs
sel ¼ ; andNv nNv

emd 6¼ ; then
9: Reject Gv; exit;
10: /* Stage two: embed virtual links */
11: for each virtual link ev 2 Ev do
12: Update the weight of substrate link es by Eq. (5);
13: Let ns

1 and ns
2 be the substrate nodes that embed the two

virtual nodes connected by ev;
14: Find a shortest path p from node ns

1 to ns
2;

15: if p cannot satisfy the resource demand BðevÞ of ev then
16: Find the next shortest path from ns

1 to ns
2;

17: if no path can satisfy the demand of ev then
18: Reject Gv; exit;
19: Embed the virtual network Gv.

We construct T þ 1 auxiliary graphs with each having
different resource demands at a different time slot in one
interval, and ‘pre-embed’ each of the graphs by procedure
EmbedOneVN-Static. Virtual network Gv will be embed-
ded to Gs exactly by adopting one of the T þ 1 pre-embed-
dings that leads to the maximum revenue. Specifically, we
construct T auxiliary graphs with each having the resource
demands of Gv at time slot t0 in an interval with 1 � t0 � T ,
and another auxiliary graph Gv

m having the average
resource demands within an interval. Denote by Gvðt0Þ ¼
ðNv

t0 ; E
v
t0 Þ the auxiliary graph with resource demands of Gv

at time slot t0. Then, Gvðt0Þ is constructed by setting Nv
t0 ¼

Nv, Ev
t0 ¼ Ev, CðnvÞ ¼ cðnv; i0; t0Þ for each nv 2 Nv

t0 , BðevÞ ¼ b

ðev; i0; t0Þ for each ev 2 Ev
t0 , where i0 is one interval of

the duration tðGvÞ of Gv. Similarly, Gv
m ¼ ðNv

m;E
v
mÞ with
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Nv
m ¼ Nv and Ev

m ¼ Ev denotes the virtual network Gv with
average resource demands within an interval, i.e., the
demands of its each virtual node and link are as follows:

CðnvÞ ¼ 1

T

XT
t0¼1

cðnv; i0; t0Þ; for each nv 2 Nv
m; (11)

and

BðevÞ ¼ 1

T

XT
t0¼1

bðev; i0; t0Þ; for each ev 2 Ev
m: (12)

Let Gpre be the set of constructed T þ 1 graphs, i.e., Gpre ¼
fGvðt0Þ j 1 � t0 � Tg [ fGv

mg. A pre-embedding of a graph
in Gpre is feasible only if it can be embedded into Gs while the
resource demands of Gv at each time slot are met. Let Gv

max

be the graph among the T þ 1 auxiliary graphs that results
in the maximum revenue. The detailed algorithm is given
by procedure EmbedOneVN-Periodic.

Procedure 2. EmbedOneVN-Periodic()

Input: GvðNv;EvÞ, GsðV s; EsÞ
Output: Embed Gv or reject it

1: Construct T þ 1 auxiliary graphs for Gv with the first T
graphs corresponding to its resource demands at each of
the T time slots, and the last one denotes the average
resource demand in one resource demand period. Denote
by Gpre be the set of the T þ 1 graphs, i.e., Gpre  fGvðt0Þ j
1 � t0 � Tg [ fGv

mg;
2: Gmax  NIL; /*Gmax 2 Gpre is the graph that achieves the

maximum revenue*/
3: Rmax  0 /*the revenue by the embedding of Gmax*/;
4: for each graph G in Gpre do
5: Pre-embed each graph in Gpre by invoking EmbedOneVN-

Static, where a pre-embedding is feasible if the embed-
ding satisfies the resource demands of Gv at each time
slot in an interval;

6: Calculate the revenue RðGÞ of the pre-embedding of G;
7: if Rmax < RðGÞ then
8: Rmax  RðGÞ;
9: Gmax  G;
10: if all graphs in Gpre are rejected
11: Reject Gv;
12: exit;
13: Embed Gv to Gs by the embedding of Gmax with the maxi-

mum revenue.

4.2 Algorithm for Embedding Multiple Virtual
Networks with Identical Resource Demand
Periods

We now embed a set Gði; tÞ of virtual networks with identi-
cal resource demand periods to a substrate network Gs at
time slot twithin an interval i. To be specific, we first embed
a virtual network Gv1 2 Gði; tÞ that results in the maximum
revenue. Let G2ði; tÞ ¼ Gði; tÞ � fGv1g. We then embed the
next virtual network in G2ði; tÞ that leads to the maximum
revenue, and so on. This procedure continues until either
Gkði; tÞ is empty or none of virtual networks in it can be
embedded due to lack of cloud resources.

The detailed description of the embedding algorithm is
given by Algorithm 1.

Algorithm 1. Embedding a Set Gði; tÞ of Virtual Net-
works with Identical Resource Demand Periods

Input: Gs, Gði; tÞ
Output: Virtual networks in Gði; tÞ to be embedded into Gs

1: All virtual networks in Gði; tÞ are unmarked;
2: while Gði; tÞ 6¼ ; or there are unmarked virtual networks do
3: Gv

max  NIL; /*Gv
max 2 Gði; tÞ is the virtual network that

achieves the maximum revenue*/
4: Rmax  0 /* the revenue by the embedding of Gv

max*/;
5: for each virtual network Gv 2 Gði; tÞ do
6: Pre-embed Gv by invoking EmbedOneVN-Periodic;
7: if Gv is rejected by EmbedOneVN-Periodic then
8: Gv is marked as unembeddable;
9: else
10: Let RðGvÞ be the revenue by embedding of Gv;
11: if Rmax < RðGvÞ then
12: Rmax  RðGvÞ;
13: Gv

max  Gv;
14: Embed Gv

max by invoking EmbedOneVN-Periodic;
15: Gði; tÞ  Gði; tÞ n fGv

maxg.

4.3 Algorithm for Embedding Multiple Virtual
Networks with Different Resource Demand
Periods

So far we have assumed that all virtual networks have iden-
tical resource demand periods. In reality, different virtual
networks may have different resource demand periods. For
example, some enterprise IT services (e.g., virtual desktop
services) have weekly resource demands, whereas others
(such as pay-roll services) have fortnightly or monthly
resource demands. We here deal with this general case of
the problem by extending Algorithm 1 to solve it.

Given a set Gði; tÞ of virtual networks with different
resource demand periods at time slot t in interval i, the basic
idea of the proposed algorithm is to classify virtual net-
works in Gði; tÞ into different categories (types), by their
resource demand periods, and each virtual network in the
same type x will have the same resource demand period Tx.
Denote by X the number of different types of virtual net-
works. Intuitively, the more types of virtual networks, the
more difficult embedding these virtual networks to the sub-
strate network will be. To reduce the number of types (i.e.,
the number of resource demand periods), we merge one
type of virtual networks with a shorter resource demand
period to another type with a longer resource demand
period if the longer one is divisible by the shorter one.
The rationale behind this is that the longer resource
demand period can be considered as a super-period that
consists of multiple shorter periods. For example, a vir-
tual network with weekly resource demands can be seen
as a virtual network with fortnightly resource demands.
Let Tmax be the maximum resource demand period
among the virtual networks in Gði; tÞ. The merge proce-
dure iteratively finds the maximum number of resource
demand periods having a Least Common Multiple (LCM)
Tlcm that is no greater than Tmax, and merge the types
corresponding to the found resource demand periods into
one type that has resource demand period Tlcm. This
merge procedure continues until no further merge is pos-
sible. Let Y be the number of types after the merging. We
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then proceed embedding virtual networks in Gði; tÞ type
by type, starting with the type of virtual networks with
the longest resource demand period. That is, for virtual
networks in type Ty we embed them by invoking Algo-

rithm 1 for all y with 1 � y � Y . The detailed algorithm
description is given in Algorithm 2.

Algorithm 2. Embedding a Set Gði; tÞ of Virtual Networks
with Different Resource Demand Periods to the Cloud

Input: Gs, Gði; tÞ, T ðGvÞ for each Gv 2 Gði; tÞ
Output: Virtual networks in Gði; tÞ to be embedded into Gs

1: Classify virtual networks in Gði; tÞ into different types of
classes by their resource demand periods;

2: For each resource demand period Tx, if there is a larger Tx0
that is a multiple of Tx, merge the type of virtual networks
with the resource demand period Tx to the type one with the
resource demand period Tx0 ;

3: Sort sequences of different types of virtual networks into
increasing order by resource demand periods, i.e., T1,
T2; . . . ; Tmax;

4: while LCMðT1; T2Þ > Tmax do
5: Find the maximum number of resource demand periods

having a Least Common Multiple Tlcm that is no greater
than Tmax;

6: Replace the found resource demand periods with Tlcm;
7: Get the number Y of different types of resource demand

periods;
8: for y 1 to Y do
9: Embed virtual networks with the resource demand period

Ty by invoking Algorithm 1;

4.4 Algorithm Analysis

The rest is to analyze the time complexity of the proposed
embedding algorithms Algorithm 1 and Algorithm 2

for multiple virtual network embedding.

Theorem 1. Given a distributed cloud Gs ¼ ðV s; EsÞ and a mon-
itoring period consisting of I intervals with each having T
equal time slots, let Gði; tÞ be the set of virtual network
requests arrived in the beginning of time slot t in interval i
with each having an identical resource demand period. There
is an algorithm, Algorithm 1, for the virtual network
embedding problem with the knowledge of identical resource

demand periods, which takes OðPI
i¼1 jGði; tÞj2ðjNv

maxjjEsjj
Nsj2 þ jNsj3ÞÞ, where jGði; tÞj is the number of virtual net-
work requests in Gði; tÞ, jNv

maxj is the maximum number of
virtual nodes of a virtual network for each i and t, with
1 � i � I and 1 � t � T .

Proof. We start by analyzing the time complexity of proce-
dure EmbedOneVN-Static that consists of two stages.
Recall that, in stage one, virtual nodes in each virtual net-
work GvðNv;EvÞ 2 Gði; tÞ are embedded into substrate
nodes in the substrate network GsðNs;EsÞ by iteratively
selecting a substrate node with the highest rank kðnsÞ for
the virtual node nv with the highest rank kðnvÞ. To calcu-
late kðnsÞ and kðnvÞ for each substrate node ns and virtual
node nv, all pairs of shortest paths in both Gs and Gv are

found, which takes OðjNsj3Þ and OðjNvj3Þ time, respec-
tively. In addition, finding a substrate node for each

virtual node in Nv takes OðjNvjjNsjÞ time. Stage one thus

takes OðjNsj3 þ jNvj3 þ jNvjjNsjÞ ¼ OðjNsj3Þ time, since
jNvj < < jNsj. In stage two, each virtual link ev is
embedded into a substrate path in Gs. Since the shortest
path between two substrate nodes that correspond to the
two endpoints of ev may not have enough bandwidth to
meet the bandwidth requirement of ev, the bottleneck
edge with the minimum available bandwidth in the path
then is removed, and the next shortest path for each vir-
tual link ev is then found. This procedure continues until
a shortest path with enough available bandwidth is
found, or no such a shortest path exists. If there is no
such a path meeting the bandwidth requirement, the
virtual network request will be rejected. This procedure

takes OðjEsjjNsj2Þ time, as there are jEvj virtual links

in Gv, stage two takes OðjEvjjEsjjNsj2Þ time. Thus, proce-

dure EmbedOneVN-Static takes OðjNvjjEsjjNsj2þ
jNsj3Þ time.

We then analyze the time complexity of procedure
EmbedOneVN-Periodic, this procedure treats each vir-
tual network GvðNv;EvÞwith periodic resource demands
as T þ 1 virtual networks with static resource demands
at each time slot as well as the average resource demand
at each interval. These T þ 1 virtual networks are ‘pre-
embedded’, and Gv will be embedded exactly as one of
these T þ 1 pre-embeddings that leads to the maximum
revenue. Thus, embedding a virtual network Gv with

periodic resource demands takes OðT ðjNvjjEsjjNsj2þ
jNsj3ÞÞ time.

We finally analyze the time complexity of Algo-

rithm 1. There are jGði; tÞj virtual networks with peri-
odic resource demands. Recall that Algorithm 1

chooses a virtual network that will lead to the maxi-
mum revenue among yet-to-be embedded virtual net-
works in Gði; tÞ. To find the virtual network with the
maximum revenue, the algorithm pre-embeds each vir-
tual network by invoking procedure EmbedOneVN-

Periodic. In total, there are OðjGði; tÞj2Þ attempts of
calling the procedure. Thus, Algorithm 1 takes

OðjGði; tÞj2T ðjNvjjEsjjNsj2þ jNsj3ÞÞ time to embed all

virtual networks in Gði; tÞ, which is OðjGði; tÞj2j
ðjNv

maxjjEsjjNsj2 þ jNsj3ÞÞ as only the maximum number
jNv

maxj of virtual nodes of a virtual network in

[Ii¼1 [Tt¼1 Gði; tÞ needs to be considered and, T usually
is constant, i.e., T ¼ Oð1Þ. The theorem holds. tu

Theorem 2. Given a distributed cloud Gs ¼ ðV s; EsÞ and a mon-
itoring period consisting of I intervals with each having T
equal time slots, let Gði; tÞ be the set of arrived virtual networks
in the beginning of time slot t in interval i with each having
a different resource demand period T ðGvÞ. There is an algo-
rithm, Algorithm 2, for the virtual network embedding
problem with the knowledge of different resource demand peri-

ods, which takes OðPI
i¼1 jGði; tÞj3ðjNv

maxjjEsjjNsj2 þ jNsj3ÞÞ
time, where jGði; tÞj is the number of virtual network requests
in Gði; tÞ, jNv

maxj is the maximum number of virtual nodes of a
virtual network for each t and i with 1 � i � I and 1 � t � T .

Proof. The proof of Theorem 2 is similar to the proof of
Theorem 1, omitted. tu
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5 ALGORITHM WITHOUT THE KNOWLEDGE OF

PERIODIC RESOURCE DEMANDS OF VIRTUAL

NETWORK REQUESTS

The proposed algorithms so far assumed that the periodic
resource demands of each virtual network are given in
advance. In reality, very few users know the resource
demand periods of their virtual networks. Instead, users nor-
mally just specify their maximum resource demands. If the
cloud service provider embeds each virtual network by user
specified maximum resource demands, the resource utiliza-
tion will be low, as shown in Fig. 1. Alternatively, the cloud
service provider can allocate its resources intelligently by
predicting the periodic resource demands of each admitted
virtual network. This can be achieved through analyzing the
historic resource demands of the virtual network. In the fol-
lowingwe propose a prediction algorithm for this purpose.

The basic idea behind the prediction algorithm is to
embed a newly admitted virtual network to meet its
maximum resource demands initially, by procedure
EmbedOneVN-Static. The algorithm adjusts the amounts
of the resources allocated to the virtual network periodi-
cally. Specifically, let KðGvÞ be the number of intervals after
which the resource demands of a virtual network Gv will be
adjusted. The amounts of resources allocated to Gv thus
will be adjusted every KðGvÞ intervals until its duration

tðGvÞ expires. In total, there will be b tðGvÞ
KðGvÞc adjustments of

demanded resources for an embedded virtual network Gv

during its lifetime tðGvÞ.
The key in the prediction is how to adjust the amounts of

resources allocated to Gv. To this end, we record its actual
resource demands of Gv at the pastKðGvÞ intervals, and use
these historic data to predict its resource demands in the
current interval i. We then allocate the predicted amounts
of resources to Gv. Recall that ĉðnv; i; tÞ is the predicted com-
puting resource demand of virtual node nv at time slot t in
interval i, which can be derived by an autoregressive mov-
ing average prediction method [25] as follows:

ĉðnv; i; tÞ ¼
XKðGvÞ

k¼1
bi�kcðnv; i� k; tÞ; (13)

where bi�k is a given constant related to the resource

demands in interval i� k, and
PKðGvÞ

k¼1 bi�k ¼ 1 with bi�k �
bi�k�1 and 0 < bi�k < 1. This prediction model gives an
insight that the resource demands Gv at the current interval
i are related to its resource demands in its previous KðGvÞ
intervals. The embedding algorithm is described by
Algorithm 3.

Notice that it is sufficient to modify step 9 of Algo-

rithm 2 by invoking Algorithm 3 in order to embed a
virtual network Gv with different resource demand peri-
ods and without the knowledge of periodic resource
demands. Due to space limitation, the description of this
algorithm is omitted.

6 EXPERIMENTAL STUDY

In this section, we evaluate the performance of the proposed
algorithms and investigate the impact of different parame-
ters on the algorithm performance.

Algorithm 3. Embedding a Set Gði; tÞ of Virtual Networks
with Identical Resource Demand Periods and without the
Periodic Resource Demands

Input: Gs, Gði; tÞ,KðGvÞ for each Gv 2 Gði; tÞ
Output: Virtual networks in Gði; tÞ to be embedded into Gs

and resource allocation adjustments for embedded vir-
tual networks

1: Embed each Gv 2 Gði; tÞ by allocating it with its maximum
resource demands by invoking EmbedOneVN-Static;

2: for each embedded virtual network Gv
emd in Gs for

3: Calculate the number of intervals that Gv
emd spanned in Gs

so far, and let i0 be the number;
4: if i0 > 0 and ði0modKðGvÞÞ ¼ 0 do
5: Predict the computing resource demand of each nv of its

virtual nodes, ĉðnv; i; t0Þ, and the bandwidth resource

demand of each ev of its virtual links, b̂ðev; i; t0Þ by
Eq. (13), for the current interval i, where 1 � t0 � T ;

6: Reserve ĉðnv; i; tÞ, the amount of computing resource for

nv, and b̂ðev; i; tÞ, the amount of bandwidth resource for
ev in the nextKðGvÞ intervals;

6.1 Simulation Settings

We adopt both synthetic and real network topologies for the
substrate network Gs. Specifically, we generate Gs by the
GT-ITM tool [19], which consists of 50 substrate nodes, and
there is an edge between each pair of nodes with a probabil-
ity of 0:1, following the similar settings in [10], [39], [44]. We

also adopt a real network topology, G�EANT consisting of
40 nodes and 61 edges for the substrate network Gs [17].
The computing capacity of each substrate node in Gs is ran-
domly drawn from 2,000 to 5,000 GHz, and the bandwidth
capacity of each substrate link in Gs is drawn from 10 to
1,000 Mbps [2], [11], [20], [27]. The number of virtual nodes
of each virtual network varies from 2 to 10, and there is a
virtual link between every two virtual nodes with a proba-
bility of 0:5. Parameters a and b in Eq. (3) are set to 5, which
will be explained later. The number of time slots of each
interval is T ¼ 7, e.g., seven days a week. The monitoring
period consists of 100 time slots. The arrival rate of virtual
network requests follows the Poisson process with an aver-
age rate of 5 virtual networks per time slot, and the duration
of each virtual network varies with no more than 50 inter-
vals. The length ofKðGvÞ in Algorithm 3 is set to 5.

Resource demands of virtual networks. For resource demands
of virtual networks within an interval, we consider two pat-
terns: one is the Weekday-weekend pattern, where a virtual
network has demand peaks during either weekdays (five
demand peaks) or weekends (two demand peaks); another is
the Random pattern, where the number of time slots when a
virtual network has peak demands is randomly generated.
In both resource demand patterns, the amounts of peak com-
puting and bandwidth demands are randomly generated
from 2 to 10. The off-peak resource demands are no more
than 80 percent of its peak resource demands.

Benchmarks. We evaluate the proposed algorithms for
the VNE problem against two state-of-the-art algorithms.
The first one is the algorithm in [44], referred to as
algorithm MAX, in which the embedding ability of each sub-
strate node ns is the amount of its available computing
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resource, i.e., FðnsÞ ¼ P ðns; i; tÞ, it embeds virtual networks
to Gs according to their maximum resource demands. The
second one, referred to as PAGERANK, is a PageRank-based
embedding algorithm [8], which assigns each virtual node
or each substrate node a rank by adopting the PageRank
algorithm. It then embeds each virtual network by mapping
its virtual nodes, followed by embedding its virtual links to
the substrate network. For simplicity, we use algorithms
ALG-PERIOD, and ALG-NO-PERIOD to denote Algo-

rithm 1 and Algorithm 3 with and without the knowl-
edge of periodic resource demands, respectively. Similarly,
we use ALG-PERIOD-DIFF and ALG-NO-PERIOD-DIFF to
denote Algorithm 2 and its version without the knowl-
edge of periodic resource demands.

Evaluation metrics. In addition to the revenue achieved by
embedding of virtual networks, we also consider the reve-
nue-to-cost ratio hðGvÞ to quantify the efficiency of embed-
ding of each virtual network Gv as follows:

hðGvÞ ¼ RðGvÞ
CðGvÞ : (14)

Given a distributed cloud Gs ¼ ðV s; EsÞ and a monitor-
ing period I, the accumulated revenue, service cost, and

revenue-to-cost ratio within the monitoring period thus are
the total revenues collected, the total service cost spent, and
the ratio of the total revenue to the total service cost for the
monitoring period. Each value in our figures is the mean of
the results by applying the mentioned algorithm to either 15
synthetic network topologies or 15 resource capacity set-

tings of the G�EANT topology. Also, 95 percent confidence
intervals for these mean values are presented in all figures.

6.2 Performance Evaluation

We first evaluate two proposed algorithms ALG-PERIOD

and ALG-NO-PERIOD against algorithms MAX and PAG-

ERANK, based on the synthetic substrate networks generated
by GT-ITM. Fig. 3 shows the results when virtual networks
follow the Random resource demand pattern. Specifically,
Fig. 3a indicates that, on average, algorithm ALG-PERIOD

admits around 15 and 30 percent more requests than those
of algorithms MAX and PAGERANK in a monitoring period
consisting of 100 time slots. It can also be seen from Fig. 3b
that algorithm ALG-PERIOD earns 10 and 31 percent more
revenues than these of algorithms MAX and PAGERANK. The
reason behind is that algorithm ALG-PERIOD performs

Fig. 3. The performance of different algorithms under Random resource demand patterns of virtual networks.
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fine-grained resource allocations by exploring the periodic
resource demands and adopting a novel embedding metric
that takes into account both the dynamic workload on the
substrate network and the user periodic resource demands.

It can be seen from Figs. 3a and 3b that algorithms MAX

and PAGERANK have wider confidence intervals for the
mean of acceptance ratios and revenues. The reason is that
they allocate cloud resources according to the maximum
demands of virtual networks. Their acceptance ratios or rev-
enues will oscillate a lot since each virtual network request
is likely to be rejected with high probability, and algorithm
PAGERANK is the worst among them. Figs. 3c and 3d clearly
demonstrate that algorithm ALG-NO-PERIOD consistently
delivers the highest acceptance ratio and the maximum
number of admitted virtual network requests among the
three mentioned algorithms. It can be seen from Fig. 3c
that the virtual network acceptance ratios of algorithms
MAX and PAGERANK oscillate a lot, since the number of
admitted virtual networks is only affected by the amount
of available resources in the substrate network. In addi-
tion, Fig. 3e implies that the revenue delivered by
algorithm ALG-NO-PERIOD is higher than that by
algorithms MAX and PAGERANK, and it has also the higher

revenue-to-cost ratio than these of algorithms MAX and
PAGERANK as shown in Fig. 3f.

Fig. 4 depicts the performance curves when the resource
demands of virtual networks follow the Weekday-weekend
resource demand pattern, from which it can be seen that
algorithms ALG-PERIOD and ALG-NO-PERIOD outperform
the others in terms of the acceptance ratios, revenues, and
revenue-to-cost ratios. In addition, the acceptance ratio of
algorithm ALG-PERIOD with pattern Weekday-weekend

(Fig. 4a) is higher than that of it with pattern Random

(Fig. 3a), so is its revenue that can be seen from Figs. 3b
and 4b, respectively. This is because that there are more
opportunities for virtual networks with complimentary
resource demands to share resources with each other. For
the sake of clarity, in the rest of evaluation, we will focus
only on the Random resource demand pattern.

We now evaluate algorithms ALG-PERIOD-DIFF and
ALG-NO-PERIOD-DIFF against algorithms MAX and PAG-

ERANK, by assigning the resource demand period of each
virtual network with one of the values in f7; 14; 15; 30g. It
can be seen from Fig. 5 that algorithms ALG-PERIOD-DIFF
and ALG-NO-PERIOD-DIFF outperform algorithms MAX

and PAGERANK. Furthermore, by comparing the results in

Fig. 4. The performance of different algorithms under Weekday-weekend resource demand patterns.
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Figs. 3 and 5, it can be seen that algorithms ALG-PERIOD-
DIFF and ALG-NO-PERIOD-DIFF are inferior to their
counterparts, ALG-PERIOD and ALG-NO-PERIOD. For
example, as shown in Fig. 5a, the acceptance ratio by algo-
rithm ALG-PERIOD-DIFF is lower than that by algorithm
ALG-PERIOD in Fig. 3a, since algorithm ALG-PERIOD-

DIFF merges the type of virtual networks with a shorter
resource demand period to the type with a longer resource
demand period that is a multiple of the shorter one. This
means that the resource availability check process (Step 5 in
procedure EmbedOneVN-Periodic) will consider a longer
interval, thereby increasing the rejection probability of
virtual networks. Furthermore, it can be seen from Figs. 5b
and 5c that the accumulated revenue of algorithm ALG-NO-

PERIOD-DIFF is roughly the same as that of algorithm
ALG-NO-PERIOD, whereas the accumulated revenue-to-
cost ratio of algorithm ALG-NO-PERIOD-DIFF is much
lower than that of algorithm ALG-NO-PERIOD. In other
words, the cost by algorithm ALG-NO-PERIOD-DIFF is
much higher than that by algorithm ALG-NO-PERIOD,

because more substrate links are needed in order to embed
each virtual link, given that the rejection probability of a
virtual link increases.

6.3 Performance Evaluation Using G�EANT
Topology

To evaluate the performance of the proposed algorithms in
real networks, we now evaluate algorithms ALG-PERIOD

and ALG-NO-PERIOD against algorithms MAX and PAG-

ERANK in the G�EANT network. It can be seen from Figs. 6a
and 6b that algorithms ALG-PERIOD and ALG-NO-PERIOD

outperform algorithms MAX and PAGERANK in terms of the
acceptance ratio and revenue. Specifically, Fig. 6b shows
that algorithm consistently achieves higher revenues than
those of algorithms MAX and PAGERANK, and the overlap-
ping on that by the confidence intervals by these algorithms
are trivial. For example, the revenue by ALG-NO-PERIOD is
around twice that of algorithm PAGERANK, and 30 percent
more than that of algorithm MAX. Also, it must be mentioned
that the acceptance ratios by all algorithms in G�EANT are

Fig. 5. The performance of different algorithms with different resource demand periods and under Random resource demand patterns of virtual
networks.

Fig. 6. The performance of different algorithms using G�EANT topology under Random resource demand patterns of virtual networks.

Fig. 7. The impact of a on the performance of different algorithms.
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lower than that in random topologies generated by GT-ITM.
This is because the network size of G�EANT is smaller and
has less number of edges compared with the topologies gen-
erated by GT-ITM. Also, it can be seen from Fig. 6c that
algorithm ALG-NO-PERIOD outperforms algorithms MAX

and PAGERANK. For example, within a monitoring period of
100 intervals, the accumulated revenue-to-cost ratio by algo-
rithm ALG-NO-PERIOD is around 30 and 35 percent higher
than those by algorithms MAX and PAGERANK, respectively.

6.4 Impact of Parameters

We then study the impact of constant parameters a and b in
embedding metrics in Eqs. (3) and (4) on the performance of
the proposed algorithms ALG-NO-PERIOD and ALG-

PERIOD, by varying their values from 5 to 57. For the sake
of simplicity, we only evaluate the algorithms for virtual
networks with Random resource demand patterns. Figs. 7a
and 7b demonstrate that the larger the value of a, the lower
the acceptance ratio. This implies that when there is a larger
a, each substrate node is reluctant to accommodate a virtual
node when its utilization rate is nearly full, otherwise lead-
ing to SLA violations. Fig. 7c plots the resource demand vio-
lations by algorithm ALG-NO-PERIOD for different values
of a. It can be seen that algorithm ALG-NO-PERIOD has the
highest and lowest resource demand violation ratios when

a ¼ 5 and a ¼ 57, respectively. The algorithm delivers a
resource demand violation ratio less than 0:5 percent when
a ¼ 5, but achieves a relatively high acceptance ratio. This is
why we set a ¼ 5 in the default setting.

7 CONCLUSION

In this paper we considered virtual network embedding
problems with and without the knowledge of periodic
resource demands in a substrate network. We devised effi-
cient embedding algorithms, by incorporating novel embed-
ding metrics and periodic resource demands of virtual
network requests, provided that periodic resource demands
of each virtual network are given and all virtual networks
have identical resource demand periods; otherwise, we pro-
posed a period prediction method to predict the periodic
resource demands of each admitted virtual network. We
finally evaluated the performance of the proposed algo-
rithms through experimental simulations, based on both
synthetic and real substrate networks. Experimental results
demonstrate that the proposed algorithms are promising,
and outperform existing heuristics.
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