
© The British Computer Society 2017. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

Advance Access publication on 1 March 2017 doi:10.1093/comjnl/bxw101

Data Locality-Aware Big Data Query
Evaluation in Distributed Clouds

QIUFEN XIA, WEIFA LIANG
*
AND ZICHUAN XU

Research School of Computer Science, The Australian National University, Canberra, ACT 2601,
Australia

*Corresponding author: wliang@cs.anu.edu.au

With more and more businesses and organizations outsourcing their IT services to distributed
clouds for cost savings, historical and operational data generated by the services have been grow-
ing exponentially. The generated data that are referred to as big data, stored at different geo-
graphic datacenters, now become an invaluable asset to these businesses and organizations, as they
can make use of the data through analysis to identify business advantages and make strategic deci-
sions. Big data analytics thus has been emerged as a main research topic in cloud computing. To
efficiently evaluate a big data analytic query in a distributed cloud consisting of multiple datacen-
ters at different geographic locations interconnected by the Internet, it poses great challenges: (i)
the source data of the query typically are located at different datacenters; and (ii) the resource
demands of the query may be beyond the supplies of any single datacenter at that moment. In this
paper, we formulate an online query evaluation problem for big data analytic queries in distribu-
ted clouds, with an objective to maximize the query acceptance ratio while minimizing the accumu-
lative query evaluation cost, for which we first propose a novel metric to model the usages of
different resources in the distributed cloud, by incorporating the capacities and workloads of dif-
ferent datacenters and links, as well as resource demands of different queries. We then devise effi-
cient online algorithms for query evaluations under both unsplittable and splittable source data
assumptions. We finally conduct extensive experiments by simulations to evaluate the performance
of the proposed algorithms. Experimental results demonstrate that the proposed algorithms are

promising, and outperform other heuristics at 95% confidence intervals.
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1. INTRODUCTION

With the advances in information and communication tech-
nologies, various data are generated at exponential rates. For
example, there are 4.5 quintillion bytes of data generated
daily (IBM 2015) [24], 90% of which have been created in
the last 2 years. Big data have emerged as a strategic property
of nations and organizations, and there are driving needs to
generate values from these data. Big data analytics that is a
practice of rapidly crunching big data to identify interesting
patterns and improve business strategies, has become a rap-
idly evolving field in the technology-driven business world
[23, 45]. Private and public organizations are eagerly waiting
to collect the promised results from such data analysis.
Moreover, as data pile up, efficiently managing and analyzing

the data become crucial in creating competitive advantage,
answering science questions and making effective decisions.
Evaluating queries of big data analytics requires large

quantity of storage, computing and network resources that
can be met by cloud computing platforms [46]. Cloud com-
puting has emerged as the main computing paradigm in the
21st century [3, 15, 42–45], by providing a plethora of cloud
services, including online shopping, data analysis and IT ser-
vice outsourcing. The current de facto architecture of cloud
computing, i.e. the centralized datacenters, has demonstrated
the limited success in big data analytics, e.g. MapReduce and
Hadoop. However, to meet ever-growing resource demands
by users, the centralized datacenters are built larger and lar-
ger, consuming more and more electricity, thus this is not
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eco-sustainable. In contrast, the distributed cloud, consisting
of many small- and medium-sized datacenters located at dif-
ferent geographic regions and interconnected by high-speed
communication links, has been envisioned as the premier
architecture of the next-generation computing platform [2].
Query evaluation for big data analytics in distributed

clouds typically requires lots of computing, storage and com-
munication resources across multiple datacenters. However,
such resource demands may be beyond the supplies of any
single datacenter at that moment. In addition, such query
evaluation may incur huge communication cost among the
datacenters, by replicating the source data of the query from
their datacenters to the datacenters where the query will be
evaluated. To efficiently evaluate a query for big-data analy-
tics in a distributed cloud, two important issues must be
addressed: one is to identify a set of datacenters with suffi-
cient computing and storage resources to meet the resource
demands of the query evaluation; another is to minimize the
communication cost of query evaluation, as large quantity of
data transfers among datacenters during the query evaluation
are needed, and the bandwidth availability between different
datacenters significantly varies over time which usually is the
bottleneck of such an evaluation [3, 16, 39]. To motivate our
study, we here use an example to illustrate the query process-
ing for big data analytics in a distributed cloud (see Fig. 1),
where there is a query whose source data are located at two
datacenters, v1 and v2, respectively. A naive evaluation plan
for the query is to replicate its source data from one datacen-
ter to another, e.g. from v1 to v2, or from v2 to v1, and then
evaluate the query at v2 or v1, as shown in Fig. 1(a). This
evaluation plan however may not be feasible if neither v1 nor
v2 has enough available computing and storage resources to
meet the resource demands of the query. A better solution is
to find an ideal datacenter v3 with sufficient computing and
storage resources that is not far away from both of them, as
depicted in Fig. 1(b). Unfortunately, it is very likely that
such an ideal datacenter may not exist when all datacenters

are working at their high workloads at this moment. To
respond to the query on no time, sometimes multiple data-
centers must be employed so that their aggregate available
resources can meet the resource demands of the query (e.g.
v3 and v4 are employed). Thus, the available communication
bandwidth between v3 and v4, v1 and v4 and v2 and v3 will
be crucial in order to meet the Service Level Agreement
(SLA) requirement (the response time requirement) of the
query, as shown in Fig. 1(c). Notice that, to reduce the cost
of data transfer in the network, we need to deal with data
transfer within the network carefully. Specifically, for each
big data analytic query, we first try to move query analytics
to the datacenter hosting the source data of the query. Only
when the hosting datacenter does not have enough available
computing resource to evaluate the query at the moment
(although its computing capacity may meet the resource
demands while the resource is being occupied by existing
jobs), the source data will be duplicated to other datacenters
for processing.
Motivated by the mentioned example in Fig. 1, in this

paper, we deal with online query evaluation for big data ana-
lytics in a distributed cloud. That is, for a given monitoring
period, user queries of big data analytics arrive into the sys-
tem one by one, the source data of each query are located at
different datacenters in the distributed cloud [35, 39, 40] and
need to be replicated to the other datacenters with enough
computing resource for its evaluation. We here consider two
different types of source data transfers between datacenters:
one is that the source data are unsplittable and must be trans-
ferred to only one datacenter; another is that the source data
are splittable and can be replicated to multiple datacenters.
The rationale behind splittable and unsplittable source data
lies in that the analysis of big data involves different sorts of
data. For example, compressed data (in GZip formats) cannot
be retained if they are split into different datacenters and
uncompressed separately. Further, data splitting may make
the big data analytics deliver useless results in some specific
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FIGURE 1. A motivation example of query evaluation for big data analytics.
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applications due to high correlations between different seg-
ments of the data, such as stock-price prediction on massive
data containing various correlated observations and variables.
On the other hand, the analysis based on the text data can be
partitioned into different blocks and each block can be ana-
lyzed in parallel. The online query evaluation problem under
both splittable and unsplittable source data assumptions is to
admit as many big data analytic queries as possible (i.e. the
query acceptance ratio) as long as there are enough resources
to support the evaluations of the admitted queries, while
minimizing the accumulative communication cost of the
admitted queries, where the accumulated communication cost
is defined as the total communication cost incurred by source
data replicating and intermediate data transferring for each of
the queries over the entire monitoring period.
Although extensive studies on query evaluation in clouds

have been taken in the past several years [1, 5, 12, 18, 22, 27,
28, 32, 36–38, 48], most of them focused mainly on minimiz-
ing the computing cost [5, 27, 32], storage cost [32], the ser-
ver running cost [22] or the response time in a single
datacenter [28], little attention had been paid to the communi-
cation cost when replicating source data and exchanging
intermediate results of queries among datacenters, not to men-
tion the impact of the source data locality on the cost of query
evaluation. Despite that some of the studies [6, 9, 34, 38, 41,
48] considered the data locality issue, they focused only on a
single datacenter, not on multiple datacenters at different geo-
graphic locations. In contrast, in this paper, we consider query
evaluation for big data analytics in a distributed cloud.
The main contributions of this paper are summarized as

follows. We first propose a novel metric to model the con-
sumptions of computing, storage and network resources in a
distributed cloud. We then devise online evaluation algo-
rithms for queries of big data analytics in the distributed
cloud with the aim to maximize the query acceptance ratio
while keeping the accumulative evaluation cost minimized,
under the assumptions of the source data being either split-
table or unsplittable. We finally conduct experiments by
simulations to evaluate the performance of the proposed
algorithms. Experimental results demonstrate that the pro-
posed algorithms are promising.
The reminder of this paper is organized as follows. Section 2

introduces the system model and problem definition. The
online evaluation algorithms for big data analytics are proposed
in Sections 3 and 4. The performance evaluation of the pro-
posed algorithm is given in Section 5, followed by the related
work in Section 6. The conclusion is given in Section 7.

2. PRELIMINARIES

In this section, we first introduce the system model and query
evaluation for big data analytics in distributed clouds. We
then define the problems precisely.

2.1. System model

We consider a distributed cloud G V E,= ( ) that consists of
a number of datacenters located at different geographical
locations and interconnected by high speed links, where V
and E are the sets of datacenters and high speed links,
respectively. Let vi be a datacenter in V and ei j, a link in E
between datacenters vi and vj. Denote by C vi( ) and C ei j,( )
the computing and bandwidth resource capacities of v Vi Î
and e Ei j, Î , respectively. Assume that each datacenter
v Vi Î operates in an Infrastructure-as-a-Service environ-
ment to lease its virtualized resources (virtual machines) to
users, and each link ei j, has bandwidth resource for lease too
[43]. Since query evaluation for big data analytics usually is
both computing and bandwidth intensive, to evaluate the
query, the computing resource in datacenters and the commu-
nication bandwidth on links between inter-datacenters must
meet its resource demands. Following existing studies [21, 37,
48], we assume that the computing resource demand of each
query is given in advance, represented by the number of virtual
machines (VMs). Even if a query does not specify its
demanded number of VMs, the demand can be derived
through analyzing its historic evaluations or the demand of
other similar query evaluations, by offline predictions and
online calibrations. By referring to the amount of data pro-
cessed by a VM as the data chunk size, we further assume
that the data processing rate of a VM is given. Notice that
the data processing rate of a VM for IO-intensive opera-
tions may be easy to obtain, while the data processing rate
of a VM for CPU-intensive operations is hard to get. Since
profiling the data processing rates of VMs for different
types of operations is out of the scope of this paper, we
thus assume that the data processing rate of a VM is given
and fixed.
In the rest of this paper, we assume that time is slotted into

equal time slots, the resources in G are scheduled at the
beginning of each time slot. The amounts of available
resources of v Vi Î and e Ei j, Î at different time slots may be
significantly different, depending on their workloads. Denote
by B v t,i( ) the amount of the available computing resource in
datacenter vi and B e t,i j,( ) the amount of available communi-
cation bandwidth on link ei j, at the beginning of time slot t. In
this paper, we focus on the inter-datacenter communications
(bandwidth consumptions) between datacenters, while ignor-
ing the intra-datacenter communications within each data-
center, as the former usually is the bottleneck in such query
evaluations [8]. We here assume that the global information
of all datacenters in the distributed cloud can be monitored
by a hypervisor, data transfers among datacenters can be
executed asynchronously, and the synchronization can be
carried out at some certain stages of the query evaluation.
Such monitoring can be implemented by the Software-
Defined Networking (SDN) techniques through a centralized
SDN controller.

793DATA LOCALITY-AWARE BIG DATA QUERY EVALUATION IN DISTRIBUTED CLOUDS

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 60 NO. 6, 2017



2.2. Query evaluation

Given a query Q for big data analytics with its source data
located at multiple datacenters in G, let V VQ Í be the set of
datacenters in which the source data are located, and S v Q,i( )
the size of the source data of Q at datacenter v Vi QÎ . The
evaluation of query Q usually involves not only source data
replication to datacenters with enough resources but also
intermediate result migrations among the datacenters. This
means that the datacenters in which the query will be evalu-
ated should be close to each other for intermediate result
migrations and they should not be far away from datacenters
in VQ to reduce the communication cost of data replication.
The evaluation of query Q therefore consists of two stages:
identify a set VP of datacenters that are close to each other to
meet the resource demands of Q; and choose a subset
V VS PÍ of datacenters such that the achieved communication
cost of evaluating query Q is minimized.
The communication cost of evaluating Q is the sum of the

communication cost incurred by replicating its source data
from the datacenters in VQ to the datacenters in VS and the
communication cost between the datacenters in VS, due to
intermediate result exchanges.
To replicate the source data from a datacenter in VQ to

another datacenter in VS or migrate intermediate results
between two datacenters in VS, a routing path between the
two datacenters must be built if the source data is unsplitta-
ble; otherwise, multiple paths may be identified. Let pi k, be a
routing path in G between a pair of datacenters vi and vk, and

i k,r the portion of vi’s source data that is routed to vk. The
communication cost incurred by transferring source data
S v Q,i( ) from v Vi QÎ to v Vk SÎ along pi k, is S v Q,i( ) ·

c pi k i k, ,r ( )· , where c p c ei k e p, i k,
( ) = å ( )Î is the cost of repli-

cating a unit of data along pi k, , and e is a link in pi k, [47, 48].
Notice that the choice of pi k, will be dealt with later. The
intermediate results generated at each datacenter v Vk SÎ may
need to migrate to the other datacenters in VS for the sake of
query evaluation. Let I v Q,k( ) be the size of the intermediate
result of Q in v Vk SÎ , the communication cost incurred is
I v Q I v Q c p, ,k l k l,( ( ) + ( )) ( )· by exchanging its interme-
diate result with the one in another datacenter v Vl SÎ via a
routing path pk l, , where c p c ek l e p, k l,

( ) = å ( )Î is the
accumulative cost of replicating a unit of data via each edge
e pk l,Î . Denote by QG the communication cost of evaluating
query Q, then,

S v Q c p

I v Q I v Q c p
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where the first item in the right-hand side of Eq. (1) is the
sum of communication costs between the datacenters contain-
ing source data and the datacenters processing query Q, while

the second item is the communication cost among the data-
centers in VS by exchanging intermediate results of Q.
We consider a monitoring period that consists of T time

slots. Queries may arrive at any time slot within the monitor-
ing period, they will be either admitted or rejected at the
beginning of each time slot. A rejected query can be put back
to the waiting queue and treated as a ‘new query’ in the next
time slot. Let Q tD ( ) be the set of queries arrived between
time slots t 1- and t, and A tD ( ) the set of admitted queries
by the system at each time slot t with t T1 £ £ . Denote by
r (T) the query acceptance ratio for a monitoring period T,
which is the ratio of the number of admitted queries to the
number of arrived queries during this monitoring period, i.e.

r T
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The accumulative communication cost of evaluating all
admitted queries for a period of T, TG( ), is thus

T . 3
t
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2.3. Problem definitions

Given a distributed cloud G V E,= ( ) and a monitoring
period T, a sequence of queries for big data analytics arrives
one by one without the knowledge of future arrivals.
Assume that for each query Q, the computing resource
demand R(Q) (the number of VMs required by it) and its
source data set VQ ( VÍ ) are given in advance, the data
locality-aware online query evaluation problem with
unsplittable source data in G for a monitoring period T is
to deliver an query evaluation plan for each admitted query,
such that the query acceptance ratio r (T) is maximized,
while the accumulative communication cost TG( ) is mini-
mized. Similarly, the data locality-aware online query
evaluation problem with splittable source data in G for a
monitoring period T is to deliver a query evaluation plan
for each admitted query that its source data are allowed to
be split and distributed into multiple datacenters, such that
the query acceptance ratio r (T) is maximized, while minim-
izing the accumulative cost TG( ).
The data locality-aware online query evaluation problems

with unsplittable and splittable source data are NP-hard
through simple reductions from two NP-hard problems—the
unsplittable minimum cost multi-commodity problem [29]
and the minimum cost multi-commodity flow problem [11],
respectively. For example, we can reduce the unsplittable
minimum cost multi-commodity problem to the data locality-
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aware online query evaluation problem with unsplittable
source data as follows. Consider a special case of the data
locality-aware online query evaluation problem with unsplit-
table source data, i.e. each link has infinity bandwidth
resource and the query evaluation has no intermediate result
exchanges. A virtual sink t0 is added to the distributed cloud,
and there is a link between each datacenter and t0. Evaluating
a query in this special case is exactly the unsplittable
minimum-cost multi-commodity flow problem, which is to
route its required source data (commodities) into their com-
mon sink t0, where the communication cost corresponds to
the path cost of routing the commodities from their sources to
sink t0. Since unsplittable minimum cost multi-commodity
problem is NP-Hard [29], the data locality-aware online query
evaluation problem with unsplittable source data is NP-Hard
too. Similar reduction techniques can be applied to the data
locality-aware online query evaluation problem with splittable
source data.
The symbols used in this paper are summarized in Table 1.

3. ALGORITHM WITH UNSPLITTABLE SOURCE
DATA

In this section, we devise an efficient evaluation algorithm for
the data locality-aware online query evaluation problem with
unsplittable source data. The algorithm is executed at the
beginning of each time slot t. For each arrived query
Q Q tÎ D ( ), the algorithm first checks whether the available
VMs (computing resource) of datacenters in the distributed
cloud can meet its VM demands. If yes, the query will be
processed; otherwise it is rejected. A rejected query can be
sent back to the query waiting pool as a new query for sched-
uling in the next time slot. In the following, we deal with the
evaluation of query Q in two stages (3.2 and 3.3).

3.1. Overview

Evaluating a query includes examining its source data that is
distributed in multiple datacenters and exchanging interme-
diate results among different datacenters. One key to the
evaluation is how to select a set of datacenters that have not
only enough computing resource to analyze its source data,
but also abundant bandwidth resources to exchange inter-
mediate results and transfer source data when the selected
datacenters do not have its source data. The basic idea of the
proposed algorithm is to first find a set of potential datacen-
ters that have enough computing resource and the links
between them have enough bandwidth resource to exchange
intermediate results. The algorithm then finds a subset of the
potential datacenters that are ‘close’ to the datacenters that
store the source data to reduce the cost incurred by source
data migrating.

TABLE 1. Symbols.

Symbols Meaning

G The distributed cloud
V Set of datacenters in the distributed cloud G
E Set of links among datacenters
vi A datacenter in V
ei j, A link in E between datacenters vi and vj
C vi( ) Computing resource capacity of a datacenter vi
C ei j,( ) Bandwidth resource capacity of a link ei j,

T The monitoring period
t The current time slot t
B v t,i( ) Amount of available computing resource in

datacenter vi at time slot t
B e t,i j,( ) Amount of available communication bandwidth on

link ei j, at time slot t
B G t,( ) Total available computing resource of G at time slot t
B V t,P( ) Total available computing resource of all datacenters

in VP at time slot t
Q A big data analytic query
VQ Set of datacenters in which the source data of Q is

located
S v Q,i( ) The size of the source data of Q at datacenter v Vi QÎ
pi k, A routing path in G between a pair of datacenters vi

and vk

i k,r The portion of vi’s source data that is routed to vk
c pi k,( ) Cost of replicating a unit of data along path pi k,

e A link in G

I v Q,k( ) The size of the intermediate result of Q generated at
datacenter vk

QG The communication cost of evaluating a query Q

Q tD ( ) Set of queries arrived between time slots t 1- and t

A tD ( ) Set of admitted queries by the system at each time
slot t, t T1 £ £

r(T) The query acceptance ratio for a monitoring
period T

TG( ) The accumulative communication cost of evaluating
all admitted queries for a period of T

VP Set of potential datacenters to evaluate a query
VS Set of datacenters to evaluate a query, V VS PÍ
R(Q) The computing resource demand of a query Q

v t,iF( ) The datacenter metric of a datacenter vi at time slot t
a a constant with a 1>

e t,i j,Y( ) The link metric of a link ei j, at time slot t
b a constant with b 1>
d e t,i j,( ) Length of a link ei j, at time slot t, d e t,

e t

1

,
( ) =

Y( )
if

e t, 0Y( ) >
NR v t,i( ) The rank of a datacenter vi at time slot t
L vi( ) Set of links incident to vi in G
vc The ‘center’ of the set VP of datacenters
G V E,¢ = ( ¢ ¢) An auxiliary directed flow graph
t0 A virtual sink node
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3.2. Identification of a set VP of potential datacenters

To identify a set of datacenters that meets the VM demands
of query Q, a metric measuring the usage cost of computing
resource among the datacenters is needed. Such a metric
should take into account not only the quantity of available
computing resource but also the utilization ratio of the
resource at each datacenter. Typically, the computing ability
of a datacenter vi decreases with the increase of its utilization
ratio, as a datacenter with high resource utilization has a higher
probability of violating user resource demands or SLAs, i.e. a
datacenter with more available computing resource and low
utilization ratio is a good candidate to evaluate a query Q. The
computing ability of datacenter vi thus is modeled as its data-
center metric, denoted by v t,iF( ) at time slot t, then

v t B v t a, , , 4i i

B vi t
C vi

,

F( ) = ( ) ( )
( )
( )·

where a is a constant with a 1> that reflects the weighting in
which degree the usage cost of a resource is, B v t,i( ) is the
amount of available computing resource of vi, and

B v t

C v

,i

i

( )
( )

is the utilization ratio of computing resource of vi. A higher
v t,iF( ) means that vi has more available computing resource

and a lower usage cost of the resource, and has a higher prob-
ability to become a potential processing datacenter for query
Q. Similarly, the link metric e t,i j,Y( ) of a link ei j, between
two datacenters vi and vj at time slot t is defined by

e t B e t b, , , 5i j i j, ,

B ei j t

C ei j

, ,

,Y( ) = ( ) ( )
( )

( )·

where b 1> is a similar constant, and B e t,i j,( ) is the
available bandwidth resource of link ei j, at time slot t.
The arguments for ratio

B e t

C e

,i j

i j

,

,

( )

( )
and e t,i j,Y( ) are similar as the

ones for
B v t

C v

,i

i

( )
( )

and v t,iF( ).
The allocated VMs for evaluating query Q require commu-

nications with each other in order to exchange their inter-
mediate results. This can be implemented through building
multiple routing paths between the datacenters accommodat-
ing the VMs. To find a cheaper routing path p, the ‘length’ of
path p is defined as the sum of lengths of links in p. Let
d e t,( ) be the length of link e in p at time slot t, if

e t, 0Y( ) > , then d e t, ;
e t

1

,
( ) =

Y( )
d e t,( ) = ¥ otherwise.

This implies that the shorter the length of a link, the more
available bandwidth it has.
Having defined the cost metrics of resource usages in a dis-

tributed cloud, we now identify a set VP of potential datacen-
ters for evaluating query Q. Notice that, to enable efficient
intermediate result exchanges during the evaluation of query
Q, such a set of datacenters should be ‘close’ to each other,
and the links interconnecting them should have both enough
available bandwidth resource and low utilization. Thus, to
find such a set of datacenters, we first identify the ‘center’ of
the set VP by assigning each datacenter v Vi Î a rank,

NR v t,i( ), that is the product of datacenter metric v t,iF( ) of
vi and the accumulative metric of links incident to vi, i.e.

NR v t v t e t, , , , 6i i
e L v

i j,

i j i,

å( ) = F( ) Y( ) ( )
Î ( )

·

where L vi( ) is the set of links incident to vi in G. The ration-
ale behind Eq. (6) is that the more available computing
resources a datacenter vi has, the more available accumulative
bandwidth of links incident to it, and the higher rank the data-
center vi will have. A datacenter with the highest rank will be
selected as the ‘center’ of the set of datacenters VP, denoted
by vc. If the available computing resource v t,cF( ) of vc can-
not meet the resource demands of query Q, the next datacen-
ter will be chosen and added to VP greedily. Specifically,
each datacenter v V Vi PÎ ⧹ is assigned a rank by the product
of the inverse of v t,iF( ) and the accumulative shortest length
from vi to all the selected datacenters v Vj PÎ , i.e.

v t
d e t

1

,
, , 7

i v V e p
i j,

j P i j i j, ,

å å
F( )

( ) ( )
Î Î

·

where pi j, is the one with the minimum accumulative length
of links, i.e. the sum of costs of links between v V Vi PÎ ⧹ and
each selected datacenter v Vj PÎ is the smallest one. The
datacenter with the smallest rank is chosen and added to VP.
This procedure continues until the accumulative computing
resource of all chosen datacenters in VP meets the demanded
number of VMs of query Q.

3.3. Selecting a subset VS of VP

Recall that the source data of query Q in datacenter v Vi QÎ
will be replicated to another datacenter for the query evalu-
ation, i.e. we assume that this source data cannot be split and
replicated to multiple datacenters for independent processing.
Such an assumption is purely for the sake of simplicity of dis-
cussion, which will remove this assumption in Section 4.
Stage 2 of the evaluation algorithm is to identify a subset VS

of VP to reduce the communication cost between the datacen-
ters hosting the source data and the datacenters performing
the query evaluation. To this end, we reduce the problem of
selecting datacenters in VP and routing paths in this stage into
an unsplittable minimum cost multi-commodity flow problem
in an auxiliary directed flow graph G V E,¢ = ( ¢ ¢) whose con-
struction is as follows.
A virtual sink node t0 and all datacenter nodes in G are

added to G¢, i.e. V V t0È¢ = { }. There is a directed link from
each node v Vj PÎ to the virtual sink node t0. The capacity of
edge ev t,j 0 is the volume of source data that vj can process at
time slot t, and its cost is set to zero. Given a pair of datacen-
ters, there are two directed edges in G¢ between them if there
is an edge in G between them. The capacity of each edge in
E v t v V V V, ,j j P P0¢ {á ñ Î Í }⧹ ∣ is set to the total volume of
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source data of query Q, and the cost of each such edge is set
to the communication cost by replicating a unit of source data
along it. The source data of query Q in each datacenter
v Vi QÎ are treated as a commodity with demand S v Q,i( ) at a
source node in G¢, which will be routed to the destination
node t0 through a potential datacenter v Vj PÎ , where the
potential datacenter vj will be added into VS in which the
source data of Q will be migrated and evaluated. Specifically,
to find a feasible solution in G¢, we first find a shortest rout-
ing path in terms of link cost for each commodity from the
source node v Vi QÎ to a datacenter v Vj PÎ . We then calcu-
late the ratio of the shortest path cost to the source data size
S v Q,i( )∣ ∣. We finally route the commodity from vi to the
datacenter vj along a routing path with the minimum ratio.
Figure 2 uses an example to illustrate the construction

of the flow graph G¢, where the set of source data locations
of query Q is V v v v v, , ,Q 2 3 4 5= { }. Due to insufficient
computing resource of datacenters in VQ, the source
data of Q have to be migrated to other set VP of potential
datacenters with sufficient computing resource, where
V v v v v v v, , , , ,P 7 8 9 10 11 12= { }. Each source data in VQ is
treated as a commodity, which will be routed to a virtual
destination node t0 through a potential datacenter in Vp,
and this datacenter will be added into V VS PÍ . Here,
V v v v, ,S 8 9 12= { }. This procedure continues until all com-
modities are successfully routed. The detailed algorithm is
described in Algorithm 1.

THEOREM 3.1. Given a distributed cloud G V E,= ( ) for a
given monitoring period of T time slots, assume that
queries for big data analytics arrive one by one without
future arrival knowledge. There is an online algorithm, i.e.
Algorithm 1, for the data locality-aware online query
evaluation problem with unsplittable source data, which takes

O Q t V V V Elogt
T

1
3 2å ( D ( ) ( + ))= ∣ ∣ · ∣ ∣ ∣ ∣ ∣ ∣ · ∣ ∣ time, where

Q tD ( ) is a set of arrived queries during each time slot t,
t T1 £ £ .

Proof. To evaluate each query Q Q tÎ D ( ), Algorithm 1
consists of two stages: identifying a set VP of potential data-
centers that not only have enough computing resource but
also are interconnected by links with abundant bandwidth
resource; and selecting a subset VS of VP to evaluate query Q.
In Stage 1, Algorithm 1 identifies a cluster VP of poten-

tial datacenters according to the defined node and link
metrics. Specifically, it first selects a datacenter with the high-
est rank as defined in Eq. (6), which takes O V( )∣ ∣ time. It
then iteratively adds datacenters into the cluster one by one
until the cluster has enough computing resource to evaluate
the query, and this procedure takes O V 2( )∣ ∣ time. Stage 1
thus takes O V 2( )∣ ∣ time.
Stage 2 of the algorithm finds a subset VS of VP as the data-

centers to evaluate query Q by transferring the problem into
an unsplittable minimum cost multi-commodity flow problem
in an auxiliary graph G V E,¢ = ( ¢ ¢). Clearly, the construction
of G¢ takes O V E( + )∣ ∣ ∣ ∣ time. Then, the algorithm routes
each commodity in the auxiliary graph by selecting a com-
modity S v Q,i( ) with the minimum ratio of minv V

S v Q

c e

,
i

i

e pi t, 0

Î
( )

å ( )Î
,

where pi t, 0
is the shortest path between vi and t0. This takes

O V V V Elog2( + )∣ ∣ ∣ ∣ ∣ ∣ · ∣ ∣ time to find all pairs of shortest
paths in G for the V∣ ∣ commodities. The total amount of time
of routing all commodities is O V V Vlog2( ( +∣ ∣ · ∣ ∣ ∣ ∣
V E O V V V Elog3 2)) = ( + )∣ ∣ · ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ · ∣ ∣ . There are

Q tD ( )∣ ∣ queries at time slot t, Algorithm 1 thus takes
O Q t V V V Elog3 2( )D ( ) ( + )∣ ∣ · ∣ ∣ ∣ ∣ ∣ ∣ · ∣ ∣ time at time slot t.

The total amount of time taken by the online
algorithm for the monitoring period T thus is t

T
1å =

O Q t V V V Elog3 2( )D ( ) ( + )∣ ∣ · ∣ ∣ ∣ ∣ ∣ ∣ · ∣ ∣ . □

4. ALGORITHM WITH SPLITTABLE SOURCE DATA

So far, we have assumed that the source data of query Q at
each datacenter can only be replicated to a single datacen-
ter. In reality, the source data of many query evaluations
can be split and distributed to multiple datacenters. We
here devise an efficient evaluation algorithm for the data
locality-aware online query evaluation problem with splitta-
ble source data, by modifying Algorithm 1. Recall that
Algorithm 1 consists of two stages: selecting a set VP of

FIGURE 2. An example of the auxiliary directed flow graph G¢ in
Stage 2 of Algorithm 1, where VQ is the set of datacenters in which
the source data of query Q are located, VP is a set of potential datacen-
ters for evaluating Q, V VS PÍ is the set of datacenters for the evalu-
ation of Q, and the highlighted edges are the edges via which data are
replicated to their destination datacenter. Notice that VP is identified
by Stage 1 of Algorithm 1, and VS ( VPÌ ) is computed in its Stage 2.
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potential datacenters, and replicating the source data to a
subset VS of VP. Source data replications usually dominate
the query response time due to large amounts of source data

and intermediate results to be replicated through the net-
work [25]. We thus devise a fast routing algorithm for the
source data replication as follows.

Algorithm 1 Algorithm for the data locality-aware online query evaluation problem with unsplittable source data.

Input: The distributed cloud graph G V E,= ( ), query set Q tD ( ), the monitoring period consisting of T time slots.
Output: The query acceptance ratio and the accumulative communication cost of evaluating admitted queries.
1: for t 1¬ to T do
2: Q Q tÎ D ( ) is the query being evaluated;
3: Get the amount of available computing resources of G at t, i.e. B G t,( ), and resource demand of Q, i.e. R Q ;( )
4: if B G t R Q,( ) < ( ) then
5: Q is rejected;
6: else
7: /* Stage 1 */:
8: V ;p ¬ Æ
9: Calculate rank NR v t,i( ) for each datacenter v Vi Î according to Eq. (6), and select the datacenter with the maximum

rank, i.e. vc;
10: V V v ;P P cÈ¬ { }
11: Get the total amount of available computing resource of all datacenters in VP at time slot t, i.e. B V t, ;P( )
12 while B V t R Q,P( ) < ( ) and V Vp ¹ Æ⧹ do
13: Find v V Vi pÎ ⧹ , with minimum value of Eq. (7), V V v ;p P iÈ¬ { }
14: /* Stage 2 */:
15: n V ;Q Q¬ ∣ ∣ /* the number of commodities of Q */
16: while n 0Q > do
17: Create an auxiliary graph G V E,¢ = ( ¢ ¢), E E¢ ¬ , and V V t0È¢ ¬ , where t0 represents a virtual destination for all

commodities of Q, i.e. S v Q v V, , ;i i Q( ) " Î
18: for each potential datacenter v Vj PÎ do
19: Add an edge ej t, 0

from vj to t0;
20: The cost of ej t, 0

is 0, and its capacity is the volume of source data that vj can process at time slot t;
21: for each edge e in E¢ do
22: The capacity of e is set to the total volume of source data of query Q;
23: The cost of e, c(e), is set to the communication cost for replicating one unit of data of Q;
24: while n 0Q > and there is one datacenter in VP that can accommodate one of the left commodities do
25: for each commodity S v Q,i( ) do
26: Find a path pi t, 0

from vi to t0 with minimum accumulated cost of all edges along the path;
27: Calculate the ratio c e S v Q, ;e p i

i t, 0
å ( )/ ( )Î

28: Route the commodity with the minimum ratio c e S v Q, ;e p i
i t, 0

å ( )/ ( )Î delete this commodity;
29: n n 1;Q Q¬ -
30: Update capacities and costs of edges in G¢;
31: if n 0Q > and V Vp ¹ Æ⧹ then
32: Add the datacenter in V Vp⧹ with minimum value of Eq. (7) into VP;
33: Update available computing resources of datacenters and bandwidth resources of links in G;
34: else
35: if n 0Q > and V Vp = Æ⧹ then
36: Q is rejected;
37: Break;
38: if nQ = 0 then
39: Q is admitted;
40: Return;
41: Q t Q t Q ;D ( ) ¬ D ( ) { }⧹
42: Return the query acceptance ratio and the accumulative communication cost of evaluating admitted queries.
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Having selected the set Vp of potential datacenters, we first
construct an auxiliary graph G V E,¢ = ( ¢ ¢) as follows. A vir-
tual sink node t0 and all datacenter nodes in G are added to
G¢, i.e. V V t0È¢ = { }. There is a directed link from each
node v Vj PÎ to the virtual sink node t0. The capacity of link
ev t,j 0 is the amount of source data that vj can process at time
slot t, and the cost of the link is set to zero. For each pair of
datacenters, there are two directed edges in G¢ between them
if there is a link in G between them. The capacity of each
link in E v t v V V V, ,j j P P0¢ {á ñ Î Í }⧹ ∣ is set to the total
volume of source data of query Q, since all source data of
query Q may be routed through an edge in E v t,j 0¢ {á ñ⧹ ∣
v V V V,j P PÎ Í }, and the cost of each such edge is set to the
communication cost by replicating a unit of source data along
it. The source data in each datacenter v Vi QÎ are treated as a

commodity with demand S v Q,i( ) in G¢, which will be routed
to the destination node t0.
We then reduce the source data replication problem to the

minimum cost multi-commodity flow problem in G¢.
A feasible solution to the minimum cost multi-commodity
flow problem in G¢ will return a feasible solution to the
source data replication problem in G. To speed up the source
data replication, we employ a fast approximation algorithm
for the minimum cost multi-commodity flow problem, due to
Garg and Könemann [13]. Note that the use of Garg and
Könemann’s algorithm allows us to explore a fine-grained
trade-off between the source data replication accuracy and
its running time by an appropriate accuracy ε with 0<

1 3e £ . Only the queries whose source data can be fully
replicated will be admitted by the system; otherwise, the

Algorithm 2. Algorithm for the data locality-aware query evaluation problem with splittable source data.

Input: The distributed cloud graph G V E,= ( ), a set of queries Q tD ( ), the set of VMs to evaluate each query Q Q tÎ D ( ) at
each time slot t, the monitoring period consisting of T time slots, the accuracy parameter ε.

Output: The query acceptance ratio and the accumulative communication cost of evaluating admitted queries.
1: for t 1¬ to T do
2: Q Q tÎ D ( ) is the query being evaluated;
3: Get the total amount of available computing resources of G at time slot t, i.e. B G t, ;( )
4: Get the total amount of computing resource to process all source data of Q, i.e. R Q ;( )
5: if B G t R Q,( ) < ( ) then
6: Q is rejected;
7: else
8: /* stage 1 */:
9: V ;p ¬ Æ /* the set of potential datacenters to process Q */
10: Calculate rank NR v t,i( ) for each datacenter v Vi Î according to Eq. (6), and select the datacenter with the maximum

rank, i.e. vc;
11: V V v ;P P cÈ¬ { }
12: Get the total available computing resources of all datacenters in VP at time slot t, i.e. B V t, ;P( )
13: while B V t R Q,P( ) < ( ) and V Vp ¹ Æ⧹ do
14: Find v V Vi pÎ ⧹ , with minimum value of Eq. (7), V V v ;p P iÈ¬ { }
15: /* stage 2 */:
16: Create an auxiliary graph G V E,¢ = ( ¢ ¢), E E¢ ¬ , and V V t0È¢ ¬ , where t0 represents a virtual destination for all

commodities of Q, i.e. S v Q v V, , ;i i Q( ) " Î
17: for each potential datacenter v Vj PÎ do
18: Add an edge ej t, 0

from vj to t0;
19: The cost of ej t, 0

is 0, and its capacity is the volume of source data that vj can process at time slot t;
20: for each edge e in E¢ do
21: The capacity of e is set to the total volume source data of query Q;
22: The cost of e, c (e), is set to the communication cost for replicating one unit of source data of Q;
23: Call Garg and Könemann’s algorithm on flow graph G¢ with VQ∣ ∣ commodities;
24: if All source data of Q are routed then
25: Q is admitted;
26: else
27: Q is rejected;
28: Q t Q t Q ;D ( ) ¬ D ( ) { }⧹
29: Return the query acceptance ratio and the accumulative communication cost of all admitted queries.
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query will be rejected. The details of the algorithm are
described in Algorithm 2.

THEOREM 4.1. Given a distributed cloud G V E,= ( ) for a
given monitoring period of T time slots, assume that queries
for big data analytics arrive into the system one by one
without the knowledge of future arrivals, and the source data
of each query can be split to multiple datacenters for inde-
pendent evaluation. There is an online algorithm, i.e.
Algorithm 2, for the data locality-aware online query
evaluation problem with splittable source data, which takes

O Q t Vt
T

1
2 4*( )eå D ( )=

-∣ ∣ · ∣ ∣ time,1 where ε is a given
accuracy parameter with 0 1 3e< £ .

Proof. The difference between Algorithm 2 and
Algorithm 1 lies in Stage 2 that selects a subset VS from
the identified set VP of potential datacenters. Following
Theorem 3.1, Stage 1 takes O V 2( )∣ ∣ time to identify the set
of datacenters VP with sufficient computing resource to meet
the VM demands of query Q Q tÎ D ( ). We thus only analyze
the time complexity of Stage 2 of Algorithm 2 as follows.
Stage 2 constructs an auxiliary graph G V E,¢ = ( ¢ ¢), and

transfers the problem of selecting a set VS of datacenters from
VP to the minimum cost multi-commodity problem by treat-
ing the source data of each query as a commodity. The con-
struction of the auxiliary graph G¢ takes O V E( + )∣ ∣ ∣ ∣ time,
where V V¢ =∣ ∣ ∣ ∣ and E O E¢ = ( )∣ ∣ ∣ ∣ . Following Garg and
Könemann’s algorithm for the minimum cost multi-
commodity problem, it takes O M V2 2 2* e( ¢ )- ∣ ∣ time to route
M commodities from their sources to a common destination t0
in the auxiliary graph G¢, where V V 1¢ = +∣ ∣ ∣ ∣ . There
are Q tD ( )∣ ∣ queries at each time slot t, and each query has
VQ∣ ∣ commodities (source data) to route, V VQ £∣ ∣ ∣ ∣, i.e.
M Q t VQ= D ( )∣ ∣ · ∣ ∣. Stage 2 of Algorithm 2 takes
O V O V2 4 2 4* *e e( ¢ ) = ( )- -∣ ∣ ∣ ∣ time. Algorithm 2 thus
takes O Q t Vt

T
1

2 4*( )eå D ( ) (=
-∣ ∣ · ∣ ∣ time. □

5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms and investigate the impact of different parameters
on the algorithm performance.

5.1. Simulation settings

We consider a distributed cloud G V E,( ) consisting of 20
datacenters. There is an edge between a pair of nodes with a
probability of 0.2 generated by the GT-ITM tool [17]. The
computing capacity of each datacenter and the bandwidth cap-
acity of each link are randomly drawn from value intervals
[1000, 3000] GHz, and [100, 1000]Mbps, respectively [4, 14].

The total volume of source data of each query is in the range
of [128, 512] GB, which is randomly distributed between 1
and 4 datacenters. Each VM has the computing capacity of
2.5 GHz and can process 256MB data chunk [31], according
to the settings of Amazon EC2 Instances [3]. Parameters a and
b are set as 24 and 26 in default settings, respectively. We
assume that the monitoring period T is 800 time slots with
each time slot lasting 5 minutes. We further assume that the
number of queries issued within each time slot is ranged
between 5 and 45, and each query evaluation spans between 1
and 10 time slots. According to the on-demand pricing of
Amazon CloudFront, users pay only for the contents that are
delivered to them through the network without minimum com-
mitments or up-front fees, and the fee charged for transmitting
1 GB data is in the range of [$0.02, $0.06]. Unless otherwise
specified, we will adopt these default settings. Each value in
the figures is the mean of the results by applying the mentioned
algorithm 15 times. Also, 95% confidence intervals for these
mean values are presented in all figures.
To evaluate the proposed algorithms, two heuristics are

used as evaluation baselines: one is to choose a datacenter
with the maximum number of available VMs and then repli-
cate as much source data as possible to the datacenter. If the
datacenter cannot meet the query resource demands, it then
picks the next datacenter with the second largest number of
available VMs. This procedure continues until the VM
demands of the query are met. Another is to select a data-
center randomly and places as much source data as possible
to the datacenter. If the available number of VMs in the cho-
sen datacenter is not enough to process the query, it then
chooses the next one randomly. This procedure continues
until the VM demands of the query are satisfied. For simpli-
city, we refer to the proposed Algorithm 1 for the data
locality-aware online query evaluation problem with unsplitta-
ble source data, Algorithm 2 for data locality-aware online
query evaluation problem with splittable source data, and the
two baselines algorithms as algorithms DL-Unsplittable,
DL-Splittable, Greedy and Random, respectively.

5.2. Algorithm performance evaluation

We first evaluate the performance of the proposed algorithms
DL-Unsplittable and DL-Splittable, in terms of
the query acceptance ratio, the total accumulative communi-
cation cost, the accumulative communication cost for source
data replication, and the accumulative communication cost
for intermediate result exchanges, where the accumulative
communication cost is the average communication cost of all
admitted queries during a monitoring time period T.
Figure 3(a) plots the curves of query acceptance ratios of

DL-Unsplittable, DL-Splittable, Greedy and
Random, respectively, from which it can be seen that the
query acceptance ratios of algorithms DL-Unsplittable1O f n O f n nlogO 1*( ( )) = ( ( ) )( ) .
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and DL-Splittable are much higher than these of the
other algorithms, because algorithms DL-Unsplittable
and DL-Splittable consider the data-locality of queries
and identify datacenters with enough computing and band-
width resources. Furthermore, algorithm DL-Splittable
delivers the highest acceptance ratio among the mentioned
algorithms, which is 3%, 11% and 22% higher than those of
algorithms DL-Unsplittable, Greedy and Random,

respectively. The rationale is that algorithm DL-Splittable
can move portions of source data through multiple paths to
multiple datacenters with the minimum communication cost.
The query thus has a higher probability to be accepted by the
system, and the total accumulative communication cost for
evaluating the query and replicating its source data is reduced,
while algorithm DL-Unsplittable may not move the
source data along a path to a datacenter with the minimum
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FIGURE 3. Performance evaluation of different algorithms. (a) The query acceptance ratio of different algorithms. (b) The accumulative com-
munication cost of different algorithms. (c) The accumulative communication cost for source data replication of different algorithms. (d) The
accumulative communication cost for intermediate result exchanges of different algorithms. (e) The average running times of different algo-
rithms per time slot.
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communication cost, as the datacenter may not meet the com-
puting resource demand of the source data. For algorithms
Greedy and Random, the former selects the datacenter with
the most computing resource while ignoring the paths from
source data to the selected datacenter. This causes a higher
communication cost, and the latter randomly chooses a datacen-
ter, neglecting both computing resource and bandwidth resource
demands. This may decrease the acceptance ratio and increase
the communication cost, as there is no guarantees that the
selected datacenters and their links have enough resources for
the query evaluation.
Figure 3(b) plots the curves of the accumulative communi-

cation costs of the four mentioned algorithms. Clearly, the
accumulative communication costs of algorithms Greedy
and Random are worse in comparison with these of algo-
rithms DL-Unsplittable and DL-Splittable, which
are around 1.6 times that of algorithms DL-Unsplittable
and DL-Splittable. The accumulative communication
cost of algorithm DL-Splittable is higher than that of
algorithm DL-Unsplittable, because it accepts more
queries than that of algorithm DL-Unsplittable as
shown by Fig. 3(a).
Figure 3(c) depicts the accumulative communication cost of

source data replication of different algorithms. It can be seen
that algorithm DL-Splittable has the lowest accumulative
communication cost. However, as shown by Fig. 3(d), it does
incur a higher accumulative communication cost on the inter-
mediate result exchanges than those of other algorithms. The
reason is that each source data of algorithm DL-Splittable
is split into multiple portions with each moving to a different
datacenter, these portions need to exchange their intermediate
results to form the final result, which result in the highest cost
of exchanging intermediate results. In addition, from Fig. 3(d),
it can be seen that algorithm Greedy has almost zero commu-
nication cost for intermediate result exchanges, as this algorithm
always chooses a datacenter with the maximum available com-
puting resource, which may satisfy the demand of all source
data of a query, meaning that all source data of the query may
have been moved to one datacenter, and there is no communi-
cation incurred by exchanging intermediate results.
Figure 3(e) depicts the running time of different algo-

rithms, from which it can be seen that the running time of
algorithm DL-Splittable is the longest one, algorithm
DL-Unsplittable takes the second highest running
time, while algorithms Greedy and Random spend much
less time. Although algorithms DL-Splittable and DL-
Unsplittable take more running time than those of the
other two algorithms, they however achieve much better per-
formance, i.e. higher query acceptance ratios.
Notice that the query acceptance ratios of different algo-

rithms may drop with the arrivals of large number of queries
that demand high quantity of computing resource within very
short time, as the accumulative computing resource in the
system is limited. This may lead to an unstable system if such

queries are rejected frequently due to lack of resources.
Although query evaluation in such a scenario is out of the
scope of this paper, our solution can be extended to enhance
the system stability in this mentioned scenario. That is, a cer-
tain fraction of the resources in a distributed cloud can be
reserved to handle queries demanding high quantity of
resources. The proposed algorithm can be applied to the
admissions of such queries, by considering the reserved
amounts of computing and bandwidth resources as ‘resource
capacities’, and the reserved amounts can be calculated
according to historical arrival patterns of queries. In case
there is no resource reserved, resource sharing can be enabled
to allow the resources to be shared with other queries.

5.3. Impact of the number of datacenters on the
performance of different algorithms

We then study the impact of the number of datacenters on the
query acceptance ratio, the accumulative communication cost,
the accumulative communication cost for source data replica-
tion and the accumulative communication cost for interme-
diate result exchanges of algorithms DL-Unsplittable
and DL-Splittable, by varying the number from 10 to
40. For the sake of convenience, we use n to represent the
number of datacenters in Figs. 4 and 5.
Figures 4(a) and 5(a) plot the query acceptance ratio curves

of algorithms DL-Unsplittable and DL-Splittable,
from which it can be seen that the query acceptance ratios
first grow with the increase of n, and then keep stable after
n = 30. Specifically, the acceptance ratios grow by 27% and
25% when the value of n increases from 10 to 20 in Figs 4(a)
and 5(a), respectively. The reason is that with the increase of
the number of datacenters, more and more queries are admit-
ted by the system as more computing resource is available.
The query acceptance ratio approaches 100% when n= 40.
Figure 4(b) illustrates the accumulative communication cost
curve of algorithm DL-Unsplittable. As shown in Fig. 4
(b), the accumulative communication cost by algorithm DL-
Unsplittable decreases, with the growth of the number
of datacenters n. This is because that more datacenters mean
more routing paths with lower communication costs from
source data transfers. In addition, more datacenters also imply
the selected datacenters have more computing resource with
high bandwidth resource in their links. Figure 4(c) depicts
curves of the accumulative communication cost for source
data replications of algorithm DL-Unsplittable, from
which it can be seen that the accumulative communication
cost for source data replication first increases and then
decreases with the growth of n. The reason is that when n is
small, the number of datacenters to which source data will
be replicated is small, the cost of routing paths along which
source data are replicated is small. While with the increase
of the number of datacenters, some longer routing paths with
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abundant computing resource are selected to replicate the
source data. When n is sufficiently large, say n= 30, some
datacenters that have abundant computing resource and are
close to the source data locations are selected, the accumulative
communication cost for source data replication thus decreases.
The accumulative communication cost of algorithm DL-

Splittable first increases from n= 10 to n= 20, and then
decreases with the increase of the value of n, as depicted in
Fig. 5(b). The rationale is that more queries are admitted from
n= 10 to n= 20 as shown in Fig. 5(a). Due to the limited
available computing resource when n= 20, portions of
the source data of each query need to be moved to the
chosen datacenters for their query evaluations, thereby greatly
increasing the communication costs for intermediate result
exchanges as shown in Fig. 5(d). The decrease on the accu-
mulative communication cost from n= 20 to n= 40 is due to
the fact that algorithm DL-Splittable-Alg has more
opportunities to choose datacenters that are close to each
other to reduce the communication cost of intermediate result
exchanges, as clearly shown by Fig. 5(d). The accumulative
communication cost of source data replication decreases with
the increase of n as depicted in Fig. 5(c), since more datacen-
ters imply more routing paths with lower communication

costs for source data transfers. Notice that although the
communication cost (i.e. bandwidth resource consumption)
increases from n= 10 to n= 20, the query acceptance ratio
increases too, as shown in Fig. 5(a). With the increase of n,
the bandwidth consumption of each query may increase, the
computing resource capacity of the distributed cloud increases
too, allowing to admit more queries.

5.4. Impact of the number of source data locations on
algorithm performance

We now evaluate the impact of the maximum number of data
sources of each query on the query acceptance ratio, the accu-
mulative communication cost, the accumulative communica-
tion cost for source data replication and the accumulative
communication cost for intermediate result exchanges by
varying the value from 2 to 8. Figures 6 and 7 are the result
charts, where S (Q) is employed to represent the maximum
number of source data locations of query Q.
Figures 6(a) and 7(a) plot the query acceptance ratio curves

of algorithms DL-Unsplittable and DL-Splittable,
respectively. From Fig. 6(a), it can be seen that the query
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acceptance ratio of algorithm DL-Unsplittable grows
first and then decreases with the increase of S (Q). For
example, in Fig. 6(a) the query acceptance ratio increases
from 88% to 94% when S Q 2( ) = and S Q 4( ) = , respect-
ively, and then decreases to 55% and 30% when S Q 6( ) =
and S Q 8( ) = . The rationale is that fewer data sources mean
that it has a larger volume of source data at each of source
data locations (datacenters). This may also increase the prob-
ability of query rejection rate due to the lack of computing
resource. However, if the number of data sources S (Q) is
quite high (i.e. the source data of the query are distributed
more datacenters), then more frequent source data replication
and intermediate result exchanges are needed. Such queries
also tend to be rejected by the system as limited bandwidth
resource is imposed between datacenters. In contrast, the query
acceptance ratio by algorithm DL-Splittable steadily
decreases with the growth of S (Q). This is because the volume
of source data of a query at each datacenter does not affect the
admission decision of the query, as the source data may be
split to multiple datacenters, and more source data replications
are therefore incurred, which increases the rejection probability
of the query.
Figures 6(b) and 7(b) plot the accumulative communication

cost curves of algorithm DL-Unsplittable. It can be

seen that the accumulative communication cost increases with
the growth of S (Q). For example, in Fig. 6(b), when S (Q) is
8, the accumulative communication cost is 1.1 times, 1.3
times and 2.3 times of that when the values of S (Q) are 2, 4
and 6, respectively, while the cost for intermediate result
exchanges can be seen from Figs 6(d) and 7(d). The accumu-
lative cost for source data replication of algorithm DL-
Unsplittable as depicted in Fig. 6(c) decreases with the
increase of S (Q). The cost of source data replication by algo-
rithm DL-Splittable as illustrated in Fig. 7(c) first
increases and then decrease with the growth of S (Q).

5.5. Impact of parameters a and b on the performance
of different algorithms

We finally investigate the impact of parameters a and b on
algorithms DL-Unsplittable and DL-Splittable on
the query acceptance ratio and accumulative communication
cost, by varying their values from 21 to 211 when T= 800. It
can be seen from Fig. 8(a) that the query acceptance ratios of
algorithms DL-Unsplittable and DL-Splittable
reach their peaks when a 24= . The rationale behind is that
when a 24< , the datacenter metric of each datacenter
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vi, v t,iF( ), is not large enough to impact its ranking in the
selection of processing datacenters. This results in that the algo-
rithms may choose datacenters with less available computing
resource, thereby increasing the rejection probability of quer-
ies with large volume of source data. On the other hand,
when a 24> , the algorithms may select datacenters whose
incident links have less available bandwidth resource, since
the datacenter metric dominates the ranking of datacenters,
queries with high communication demands tend to be rejected.
Similar behavior patterns can be observed in Fig. 8(b). Figure 8
(c) demonstrates that the acceptance ratios of the two algorithms
reach their peaks when b 26= and then decrease when b 26> .
The rationale is that when b 26< , the link metric ( e t,i j,Y( )) of
incident links of a datacenter is too low to dominate the ranking
of the datacenter. This may lead to some datacenters with insuf-
ficient network resource on their incident links to be selected,
thereby increasing the rejection probability of queries with more
communication demands. In contrast, when b 26> , the ranking
of a datacenter will be dominated by its incident link metric

e t,i j,Y( ), and the selected datacenters may reject some queries
as they may not have enough available computing resource.
Similarly, it can be seen from Fig. 8(d) the accumulative com-
munication cost is its minimum when b 26= .

In summary, the values of a and b impact not only the
selected datacenters directly but also the query acceptance
ratio and accumulative communication cost. Such impact can
be seen from Fig. 8. Although it is difficult to derive the
‘optimal’ values of a and b for a distributed cloud, they can
be easily set (or adjusted dynamically) in experiments by a
simple rationale. That is, larger values for a and b lead to
higher marginal costs in resource usages, implying allocating
overloaded resources conservatively.

6. RELATED WORK

Existing studies on big data analytics in clouds have been
conducted in recent years [1, 5, 7, 12, 18, 21, 22, 26–28, 30,
32, 36, 37, 48]. Among the studies, Mian et al. [32] exam-
ined query evaluation in a public cloud, by selecting a con-
figuration for the query such that the sum of computing and
storage costs of the configuration is minimized, assuming
that all data accessed by the query are the local data. Kllapi
et al. [28] provided a distributed query processing platform,
Optique, to reduce the query response time. However, none
of them considered the communication cost of query
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evaluation, which in fact cannot be ignored due to the mas-
sive data migration and the limited bandwidth among servers
in a datacenter. Bruno et al. [5] proposed an optimization
framework for continuous queries in cloud-scale systems.
Particularly, they continuously monitored the query execu-
tion, collected runtime statistics and adopted different execu-
tion plans during the query evaluation. If a new plan is better
than the current one, they will adopt the new plan with min-
imal cost. A similar problem was studied in [27], the only dif-
ference is that [27] lies in a small sample of data drawn for
query execution to estimate the cost of the query evaluation
plan. However, providing an accurate execution plan is time-
consuming due to the massive data analysis in cloud-scale
datacenters, and suboptimal plans can be disastrous with large
data sets. Liu et al. [30] proposed three information retrieval
for ranked query schemes to reduce the query overhead on
the cloud. They assumed that users can choose the query
ranks to determine the percentage of matched results to
return. To this end, a mask matrix is used to filter out a cer-
tain percentage of matched results. Their primary motivation
is providing users a scheme to restrict the number of results.

Unfortunately, the correct filtering and the returned results are
difficult to decide. There are other studies that focused mainly
on minimizing the computing cost [5, 27, 32, 41], the storage
cost [32], the query response time [28] or the server running
cost [22]. Little attention has ever been paid to the communi-
cation cost in big data analytic query evaluations in a distribu-
ted cloud. Also, source data locality is another important
issue which impacts the cost of query evaluation. Although
several recent papers [34, 38, 41] considered data locality
when dealing with query evaluation, they focused only on
one single location (datacenter). For example, Tung et al.
[38] investigated the query evaluation on databases, each of
which is represented by a rooted, edge-labeled directed graph,
i.e. a distributed graph. Authors in [22] tackled the resource
allocation problem in clouds based on big data system, by
developing a VM allocation model to handle big data tasks.
Their objective is to minimize the cost for running physical
servers instead of the communication cost of data transfers
between datacenters. In addition, some approaches are
designed with offline processing style and involves high over-
head for starting and executing queries, thus they are not ideal
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FIGURE 7. The impact of the number source data locations on the performance of algorithm DL-Splittable over different monitoring peri-
ods. (a) The impact of the number of source data locations on acceptance ratio. (b) The impact of the number of source data locations on accu-
mulative communication cost. (c) The impact of the number of source data locations on accumulative communication cost for source data
replication. (d) The impact of the number of source data locations on accumulative communication cost for intermediate result exchanges.

806 Q. XIA et al.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, VOL. 60 NO. 6, 2017



for online big data analytics. For example, authors in [36]
discussed offline batching disk I/Os to improve MapReduce
performance, which is not suitable for real-time query pro-
cessing. They assumed that all related data are sent to one
datacenter for processing. However, the available cloud
resources in this datacenter may not meet the resource
demands of the query. Other studies focused only on deliver-
ing solutions through adopting different query evaluation
strategies that are commonly used in RDBMS [10], which
ignored the optimization of the query evaluation cost.
There are several studies that focused on geo-distributed

data analytics [19, 20, 33, 35, 39, 40]. For example, Heintz
et al. [19] considered streaming data analytics by designing
aggregation algorithms to optimize WAN traffic and the delay
in obtaining the analysis results. Pu et al. [33] proposed a sys-
tem to reduce query response times by optimizing the place-
ment of both data and queries, and devised an online heuristic
to redistribute data sets among the datacenters prior to query
arrivals and to place the queries to reduce their response
times. Rabkin et al. [35] considered real-time analysis of data
that is continuously created across wide-area networks.
Vulimiri et al. [39] considered the problem of evaluating big-
data queries on data distributed in a wide-area network, they
designed an architecture and algorithms to optimize query

execution plans and data replication to minimize bandwidth
cost, by formulating the problems into an integer linear pro-
gram or a non-linear integer program, which however might
not be scalable if the problem size is large. These studies
however limit their discussions on specific big-data analytics
such as real-time streaming data analytics in geo-distributed
datacenters [19, 35], or only focused on bandwidth resource
capacities while ignored the computing capacity of datacen-
ters [33, 39, 40].
Different from these mentioned studies, in this paper, we

consider efficient query evaluation for big data analytics that
are computationally intensive in a distributed cloud by taking
into account not only the computing capacity of each data-
center but also the bandwidth capacity of each link. The
main feature of this study is how to tightly couple the source
data and the computing resource demands of each query,
since the source data of a query usually are located at differ-
ent datacenters. A query can be efficiently evaluated only
when its source data are easily accessible and its computing
resource demand can be met by the allocated datacenters.
We term this problem as the online query evaluation problem
by jointly considering source data localities, query evaluation
datacenter selection, source data replication and intermediate
evaluation result exchanges, with an objective to maximize
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the query acceptance ratio while minimizing the accumula-
tive communication cost of the query evaluation.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we considered online query evaluation for big
data analytics in a distributed cloud, with an objective to
maximize the query acceptance ratio while keeping the
accumulative communication cost minimized, for which we
first proposed a novel metric to model the usages of various
cloud resources at different datacenters of the distributed
cloud. We then devised efficient online algorithms for the
problem under both splittable and unsplittable source data
assumptions based on the proposed cost model. We finally
conducted extensive experiments by simulation to evaluate
the performance of the proposed algorithms, and experimen-
tal results demonstrate that the proposed algorithms are
promising, and outperform two mentioned heuristics at 95%
confidence intervals.
We will explore the following topics based on this work as

our future work: the consideration of big data queries based
on dynamically changing source data and resource sharing
between different queries within each datacenter. In our future
work, we will explore efficient updating and synchronizing
mechanisms of placed source data to avoid source data trans-
fers if there are only small changes in source data. In add-
ition, different queries can share resources with each other for
cost savings. Since resource sharing only happens if the VMs
of different queries are allocated in the same physical server,
we will propose further refinement of query evaluations
within each datacenter.
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