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Abstract—Cloud computing built on virtualization technologies promises provisioning elastic computing and bandwidth resource
services for enterprises that outsource their IT services as virtual networks. To share the cloud resources efficiently among different
enterprise IT services, embedding their virtual networks into a distributed cloud that consists of multiple data centers, poses great
challenges. Motivated by the fact that most virtual networks operate on long-term basis and have the characteristics of periodic
resource demands, in this paper we study the virtual network embedding problem of embedding as many virtual networks as possible
to a distributed cloud such that the revenue collected by the cloud service provider is maximized, while the Service Level Agreements
(SLAs) between enterprises and the cloud service provider are met. We first propose an efficient embedding algorithm for the problem,
by incorporating a novel embedding metric that accurately models the dynamic workloads on both data centers and inter-data center
links, provided that the periodic resource demands of each virtual network are given and all virtual networks have identical resource
demand periods. We then show how to extend this algorithm for the problem when different virtual networks may have different resource
demand periods. Furthermore, we also develop a prediction mechanism to predict the periodic resource demands of each virtual
network if its resource demands are not given in advance. We finally evaluate the performance of the proposed algorithms through
experimental simulation based on both synthetic and real network topologies. Experimental results demonstrate that the proposed
algorithms outperform existing algorithms from 10% to 31% in terms of performance improvement.

Index Terms—Virtual network embedding; cloud resource provisioning; embedding algorithms; periodic resource demands; distributed
clouds; cloud computing.

F

1 INTRODUCTION

ENTERPRISES nowadays are embracing a new com-
puting paradigm by outsourcing their IT service

networks as virtual networks to clouds for cost savings.
For example, a company operating video conferencing
service could run on a virtual network with a stringent
quality of service (QoS) requirement, whereas a uni-
versity delivering online courses for distance education
service may run a virtual network for real-time online
course delivery. These two different virtual networks can
be accommodated by a distributed cloud, which is also
referred to as the substrate network that consists of multi-
ple data centers connected through high-speed optical
links [35], [36], [37]. A fundamental problem for this
substrate network is how to efficiently embed as many
virtual networks as possible to it such that the revenue
of the cloud service provider is maximized, while the
Service Level Agreements (SLAs) between users and the
cloud service provider are met. This problem is referred
to as the Virtual Network Embedding (VNE) problem,
which has been extensively studied in the past few
years [3], [9], [10], [16], [23], [38], [39], [44].
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Most existing studies on the VNE problem in literature
focused on resource provisions by reserving the maxi-
mum resource demands for a virtual network through-
out its whole lifetime [8], [10], [39], [44], [42]. Such a
conservative resource provision scheme however causes
up to 85 percentage of the cloud resources under-utilized
in most time, resulting in enormous resource wastage
and economic loss [32], [35], [36]. Fortunately, nearly
90% of enterprise IT services exhibit the characteristics
of periodic resource demands [18]. By making use of
this periodic resource demand property, the utilization
ratios of cloud resources can be substantially improved
if the demanded resources by different virtual networks
can be shared through exploring their resource demand
periods, which can be illustrated by an example in
Fig. 1, where a virtual network A providing office
users with virtual desktop services usually experiences
low-workloads in weekends, whereas another virtual
network B hosting online gaming services has high-
workloads in weekends. If embedding A and B to
the substrate network while meeting their individual
maximum demands, only one of them can be embedded.
However, they both can be embedded concurrently if
their time-varying resource demands are complemen-
tary. This could potentially reduce the operational cost
of the cloud service provider.

Due to the heterogeneity of substrate resources and
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Fig. 1: A motivated example of resource sharing among virtual networks with periodic resource demands

without the knowledge of periodic resource demands of
each virtual network in advance, it poses a great chal-
lenge to embed as many virtual networks as possible into
a substrate network such that the revenue collected by
the cloud service provider is maximized, while meeting
the SLAs of users. To efficiently embed different virtual
networks to a distributed cloud with dynamic workloads
on its data centers and links, an embedding metric
that can accurately model the dynamic workloads of
cloud resources needs to be developed, and an efficient
embedding method that embeds each virtual network
to the substrate network is required to be devised such
that both the computing and the bandwidth demands
of the virtual network are met. In this paper, we will
introduce a novel embedding metric for virtual network
embedding, and develop efficient algorithms for virtual
network embedding by exploring the periodic resource
demands of virtual networks, based on the proposed
embedding metric.

Although the embedding of a single virtual network
to the substrate network have been intensively studied
in recent years, to the best of our knowledge, we have
not been aware of any study of embedding multiple
virtual networks with periodic resource demands to a
distributed cloud simultaneously. We are the first to
consider the embedding of multiple virtual networks
with periodic resource demands while meeting the SLAs
of different users, through introducing a novel embed-
ding metric that can accurately capture the dynamic
workloads of computing and bandwidth resources in a
distributed cloud.

The main contributions of this paper are as follows.
We first propose an embedding algorithm for the VNE
problem, by employing a novel metric to capture the
workloads on substrate nodes and substrate links, as-
suming that all virtual networks have identical resource
demand periods and their resource demands are given
in advance. We then extend the proposed embedding
algorithm for a general setting of the problem where
different virtual networks may have different resource

demands periods, or such resource demand periods
may not be given in advance, by developing a resource
demand prediction algorithm for each virtual network.
We finally evaluate the performance of the proposed
algorithms through experimental simulations, based on
both synthetic and real substrate network topologies.
Experimental results show that the proposed algorithms
outperform existing algorithms, improving the revenue
of the cloud service provider from 10% to 31%.

The remainder of the paper is organized as follows.
Section 2 introduces related work, followed by the sys-
tem model and problem definitions in Section 3. Sec-
tions 4 and 5 propose VNE algorithms with and with-
out the periodic resource demands of virtual networks.
Section 6 evaluates the performance of the proposed
algorithms through experimental simulations. The con-
clusion is given in Section 7.

2 RELATED WORK

Network virtualization has been recognized as a promis-
ing solution to the perceived ossification of the current
Internet [1], [14], which can improve performance of
inter- and intra-data center networks [2], [3], [4], [9], [11],
[20], [21], [29], [33], [34]. For example, Guo et. al. [20]
proposed a bandwidth reservation method between ev-
ery pair of virtual machines (VMs) within a single
data center. Ballani et. al. [2] proposed a virtual cluster
model, in which all VMs are connected to a virtual
switch to which an amount of bandwidth resource is
allocated. Wood et. al. [33] aimed to enhance seamless
interconnections of applications distributed in multiple
data centers, by utilizing the Virtual Private Network
(VPN) technique [15]. They however did not consider
joint allocations of computing and network bandwidth
resources. Their approaches thus are inapplicable to
resource allocations for applications that rely on both
computing and network bandwidth resources.

With the advancement of cloud computing and net-
work virtualization technologies, joint allocation of net-
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work bandwidth and computing resources becomes fea-
sible, by utilizing virtual network embedding (VNE)
technique. In general, most existing solutions to the VNE
problem can be classified into two categories: static and
dynamic resource provisioning. Static resource provision-
ing assumes that the resource demands of each virtual
network do not change during the lifetime of the virtual
network, whereas dynamic resource provisioning deals
with the embedding of virtual networks with dynamic
resource demands over time. Existing studies in litera-
ture focused mainly on static resource provisions [6], [8],
[10], [12], [13], [26], [30], [39], [42], [44]. For example, Zhu
et. al. [44] proposed a VNE algorithm for balancing the
workload on both computing nodes and communication
links, by introducing a node/link-stress concept, and
jointly considered the workload on each node and the
links incident to the node. Chowdhury et. al. [10] devised
an algorithm that coordinates node and link mapping,
by reducing the VNE problem to a multi-commodity
flow problem under the constraint that each virtual
node can only be mapped to a specific set of candidate
substrate nodes. Cheng et. al. [8] proposed an embedding
algorithm that is similar to the Google’s PageRank algo-
rithm, where both substrate and virtual nodes are ranked
by their resource availabilities and the quality of link
connections. Lischka et. al. [26] devised an online VNE
algorithm by making use of the subgraph isomorphism
detection with the aim of maximizing the revenue-to-cost
ratio, where the revenue is the total amount of virtual
resources requested by virtual networks, and the cost
is the total amount of substrate resources spent in ac-
commodating the virtual networks. There are other static
approaches that have less constraints on nodes and links,
e.g., splittable path routing [39], embedding a virtual
node onto several substrate nodes [42], embedding a
virtual network across different substrate networks [22],
distributed and automatic embedding [23], or avoiding
cloud resource fragmentation [13]. For example, Chiang
et. al. [39] initialized the study of the VNE problem with
splittable path routing, by embedding the traffic on each
virtual link to multiple substrate paths in the substrate
network. Houidi [22] treated virtual network providers
as brokers by allowing a virtual network to be embedded
to multiple substrate networks with the aim of reducing
the embedding cost of infrastructure providers while
increasing the acceptance ratio of user requests.

There are several studies focusing on dynamic re-
source provisioning, by reallocating under-utilized re-
sources to other virtual network requests [7], [31], [40],
[41], [43]. For example, Zhang et. al. [40] studied the VNE
problem by considering opportunistic resource sharing
and topology-aware node ranking. They assumed that
each virtual network has a basic and maximum de-
mands with certain probabilities. Such an assumption
may not be realistic as it is very unlikely that a user
can provide the detailed resource demands of its virtual
network in advance. The other dynamic resource provi-
sioning approaches however perform periodic reconfig-

urations/migrations of implemented virtual networks,
which may not be feasible in practice, due to high
migration costs and/or violations of the agreed SLA re-
quirements [5]. For example, Houidi et. al. [24] proposed
an adaptive VNE algorithm that dynamically identifies
new candidate substrate resources to cater dynamic
topologies and dynamic communication requirements of
virtual networks. Similarly, there are approaches in [7],
[43] dealing with evolving virtual networks in terms of
topologies and resource demands. For example, Sun et.
al. [31] devised virtual network migration algorithms to
deal with evolving virtual networks. Zhang et. al. [41]
studied a scenario where both the demands of virtual
networks and the capacity of a substrate network change
over time. Unlike these mentioned previous works, in
this paper we deal with dynamic resource provisions
for virtual networks, by exploring periodic resource
demands of virtual networks. The essential differences
between our work and existing ones lie in a novel
embedding metric that can model the workloads of both
substrate nodes and substrate links accurately over time,
and the exploration of periodic resource demands of
virtual networks.

3 PRELIMINARIES

In this section we first introduce the substrate and virtual
networks. We then provide the revenue and cost models
of virtual network embedding. We finally define the
embedding problems of virtual networks precisely.

3.1 Substrate and virtual networks
A substrate network is represented by a node-and-edge
weighted, undirected graph Gs = (Ns, Es), where Ns

and Es are the sets of substrate nodes and links, respec-
tively. Denote by ns a substrate node in Ns and es a
substrate link in Es. Each ns represents a data center
and each es denotes a communication link (or a path)
between the two data centers corresponding to its two
endpoints. Denote by C(ns) the capacity of computing
resource in ns and B(es) the bandwidth capacity on es.

A virtual network can be represented by a node-and-
edge weighted, undirected graph Gv = (Nv, Ev), where
Nv and Ev are the sets of virtual nodes and virtual
links. Each virtual node nv ∈ Nv represents a set of
virtual machines that host specific applications. Each
virtual edge ev ∈ Ev represents a communication link
between two virtual nodes. Denote by C(nv) and B(ev)
the maximum amounts of computing and bandwidth resource
demands by virtual node nv and virtual link ev in Gv ,
respectively. Recall that a substrate network represents a
distributed cloud, while a virtual network represents an
enterprise IT service network.

Assume that time is divided into equal intervals, and
each interval is further divided into equal numbers of
time slots. Let i be the current interval and T the number
of time slots in each interval. We assume that each
interval i corresponds to one resource demand period. We
further assume that virtual network requests arrive into
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the system one by one without the knowledge of future
arrivals. All arrived requests between time slot (i − 1)
and time slot i will be examined in the beginning of
time slot i, i.e., whether a request arrived during this
period will be admitted (embedded) by the system will
be determined in the beginning of time slot i. We say a
virtual network Gv = (Nv, Ev) with a duration τ(Gv) in
the granularity of weeks or months if it is embedded to
the substrate network, it will stay there until its duration
τ(Gv) expires. Fig. 2 gives an example of virtual network
embedding.
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Fig. 2: Virtual network embedding

3.2 Periodic resource demands

Most enterprise IT services exhibit periodic resource
demands [18]. For instance, an enterprise that provides
university email services has weekly resource demands
due to the weekly activity patterns of university users.
Although periodic resource demands of a virtual net-
work request typically are not known when the request
initially arrived, they can be predicted by analyzing
the resource demand history of the virtual network
implementation, using offline profiling and online cal-
ibration [28].

Given an embedded virtual network Gv(Nv, Ev), de-
note by ĉ(nv, i, t) and b̂(ev, i, t) the predicted computing
and bandwidth resource demands of a virtual node nv ∈
Nv and a virtual link ev ∈ Ev at time slot t in interval
i. Let c(nv, i, t) and b(ev, i, t) be the actual amounts of
demanded computing and bandwidth resources at vir-
tual node nv and virtual link ev at time slot t in interval
i. The periodic computing and bandwidth resource demands
of Gv are defined as the resource demands that will be
repeated in each interval, i.e., c(nv, i, t) = c(nv, i′, t) and
b(ev, i, t) = b(ev, i′, t) for each time slot t at different
intervals i and i′ with i 6= i′. The amount of available
resources of substrate network Gs can be derived from
the accumulative resources allocated to all embedded
virtual networks at time slot t in interval i. Denote
by P (ns, i, t) and P (es, i, t) the amounts of available
computing and bandwidth resources in node ns and link
es of Gs at time slot t in interval i, where 1 ≤ t ≤ T .

3.3 Revenue and cost models

The revenue collected by a cloud service provider by
embedding virtual networks to the cloud can be defined
differently, if different economic models are adopted.
Similar to the revenue models in previous studies [10],

[40], [44], in this paper the revenue collected by embed-
ding a virtual network Gv to Gs is the sum of revenues of
the usages of computing and bandwidth resources by Gv

for its occupation period τ(Gv) in Gs, where cc and cb are
the costs of unit computing and bandwidth resources,
respectively. Denote by R(Gv) the revenue received by
embedding Gv , then,

R(Gv) =
( ∑
nv∈Nv

C(nv) · cc +
∑
ev∈Ev

B(ev) · cb
)
· τ(Gv).

(1)
To provide the demanded computing and bandwidth

resources to a virtual network Gv = (Nv, Ev) while
meeting its SLA, the cloud service provider consumes its
resources such as electricity, software and hardware that
incur the service (operational) cost. The service cost of
embedding a virtual network Gv thus is defined as the
sum of the usage costs of amounts of cloud resources
within each time slot during its duration. Let C(Gv) be
the service cost of an embedded virtual network Gv ,
then,

C(Gv) =

τ(Gv)∑
i=1

T∑
t=1

( ∑
nv∈Nv

c(nv, i, t) · cc

+
∑
ev∈Ev

∑
es∈Es

le
v

es b(e
v, i, t) · cb

)
,

(2)

where le
v

es is 1 if virtual link ev ∈ Ev is embedded to
a path in Gs while es ∈ Es is a link in the path; 0
otherwise.

3.4 Problem definitions

Given a monitoring period consisting of I intervals with
each having T equal time slots, assume that virtual net-
work requests arrive one by one without the knowledge
of future arrivals. The arrived requests will be scheduled
in the beginning of each time slot. Let G(i, t) be the set
of arrived virtual network requests in the beginning of
time slot t in interval i, in which each virtual network Gv

spans τ(Gv) intervals in the substrate network Gs. Each
request exhibits periodic resource demands, i.e., it has
the same amounts of computing and bandwidth resource
demands in each interval i, c(nv, i, t) = c(nv, i′, t) and
b(ev, i, t) = b(ev, i′, t) for any two intervals i and i′ with
i 6= i′ during its duration τ(Gv) in Gs and t is a time slot
with 1 ≤ t ≤ T .

The virtual network embedding problem with the knowledge
of periodic resource demands is to embed as many virtual
networks in G(i, t) as possible to the substrate network
Gs for a given monitoring period I , such that the revenue
of the cloud service provider of Gs is maximized, sub-
ject to the resource demands of each embedded virtual
network at each time slot being met, where 1 ≤ i ≤ I
and 1 ≤ t ≤ T .

The virtual network embedding problem without the knowl-
edge of periodic resource demands can be defined similarly,
which is to embed as many virtual networks in G(i, t) as
possible to the substrate network without the knowledge
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TABLE 1: Symbols
Symbols Notations
i and T the current interval and the number of time slots of each interval
Gs = (Ns, Es) a substrate network with substrate node set Ns and substrate link set Es

ns and es a substrate node in Ns and a substrate link in Es

C(ns) and B(es) the computing capacity of ns and the bandwidth capacity of es

P (ns, i, t) and P (es, i, t) the amounts of available computing and bandwidth resources in ns and es at time slot t in interval i
Gv = (Nv, Ev) a virtual network with virtual node set Ev and virtual link set Ev

nv and ev a virtual node in Nv and a virtual link in Ev

C(nv) and B(ev) the maximum amounts of computing and network bandwidth resources demanded by nv and ev

ĉ(nv, i, t) and b̂(ev, i, t) the predicted amounts of computing and bandwidth resource demands of nv and ev at time slot t in interval i
c(nv, i, t) and b(ev, i, t) the actual amounts of computing and bandwidth resource demands of nv and ev at time slot t in interval i
τ(Gv) the duration of virtual network Gv

R(Gv) the revenue of embedding virtual network Gv

C(Gv) the cost of embedding virtual network Gv

cc and cb the prices for unit computing and bandwidth resources
le

v

es an indicator value shows whether ev is embedded to a path in Gs and es is a link in the path
Φ(ns) and Φ(es) the embedding metrics that model the abilities of ns and es in embedding a virtual node and link
a and b constants for the embedding metrics Φ(ns) and Φ(es) with a > 1 and b > 1
d(es) the ‘length’ of a substrate link es which equals to 1

Φ(es) if Φ(es) > 0 and 0 otherwise
p a path in the substrate network Gs

d(p) the total ‘length’ of all substrate links in path p, i.e., d(p) =
∑
es∈p d(es)

L(ns) the set of substrate links incident to substrate node ns

Ns
sel candidate substrate nodes that are selected to embed virtual nodes in a virtual network

Nv
emd virtual nodes that have been embedded into Gs

NR(ns) and NR(nv) the ranks of ns and nv that are used to select the cluster centers in Gs and Gv

nsc and nvc the cluster centers in Gs and Gv , which have the highest values of NR(ns) and NR(nv)
κ(ns) and κ(nv) the ranks of substrate nodes in Gs except nsc, and virtual nodes in Gv except nvc

of periodic resource demands of the virtual networks for
a given monitoring period I , such that the revenue of
the cloud service provider of Gs is maximized, subject
to the constraint that the resource demand violation ratio of
each virtual network Gv is bounded within its threshold
σ(Gv), where the resource demand violation ratio of a
virtual network Gv is the amount of its violated resource
demands to the total amount of its resource demands
throughout its duration τ(Gv). For example, given a
virtual network demanding one unit of resource at each
time slot of its 10-time-slot lifetime, its resource demand
violation ratio will be 10% if it is provided with 0.5 unit
resource for two time slots and one unit for the rest.

Table 1 summarizes the symbols used in this paper.

4 ALGORITHM WITH THE KNOWLEDGE OF PE-
RIODIC RESOURCE DEMANDS

In this section we consider virtual network embedding
with the knowledge of periodic resource demands. We
first devise an algorithm to embed a single virtual
network Gv = (Nv, Ev) to a substrate network Gs =
(Ns, Es). We then propose an algorithm to embed mul-
tiple virtual networks to Gs. We finally analyze the time
complexity of the proposed algorithms.

4.1 Embedding a virtual network with static and
dynamic resource demands

To embed virtual network Gv to substrate network Gs,
an embedding metric is needed. Such a metric captures
not only the amounts of available resources but also the
utilization ratios of the resources in Gs. In the following
we first introduce a novel embedding metric. We then

devise an embedding algorithm for embedding a virtual
network with static resource demands, based on the pro-
posed metric. We finally extend the algorithm to embed
a virtual network with periodic resource demands.

We start by proposing an embedding metric to capture
the workloads of substrate nodes and links in Gs. For
a given substrate node ns, the amount of available
computing resource at it and its utilization ratio will
jointly determine the embedding ability of substrate node
ns. The marginal gain of the embedding ability of ns will
diminish with the increase of its utilization ratio, since
the larger the proportion of its computing resource is
being occupied, the higher the risk of the SLA violations
substrate node ns faces. We thus use an exponential
function to model the embedding ability of substrate
node ns. Recall that P (ns, i, t) is the amount of available
computing resource of substrate node ns at time slot t
in interval i. Denote by Φ(ns) the embedding metric of
ns, then

Φ(ns) = P (ns, i, t) · a
P (ns,i,t)
C(ns) , (3)

where a is a constant with a > 1, and P (ns,i,t)
C(ns) is the

complementary ratio to the resource utilization ratio of
ns.

The defined embedding metric Φ(ns) favors allocating
a virtual node to a substrate node that has a large
amount of available resource and a low resource utiliza-
tion ratio. The embedding ability Φ(es) of a substrate
link es can be defined similarly,

Φ(es) = P (es, i, t) · b
P (es,i,t)
B(es) , (4)

where b > 1 is a constant and P (es, i, t) is the amount of
available bandwidth resource on es.
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Having defined the embedding abilities of substrate
links and nodes, we now introduce an embedding metric
to embed each virtual link ev to a substrate path p in Gs

that consists of one or multiple substrate links. To this
end, we first define the ‘length’ d(es) of each substrate
link es as follows.

d(es) =

{
1

Φ(es) if Φ(es) > 0,

∞ if Φ(es) = 0.
(5)

The length of a substrate link implies that the shorter
the substrate link, the more available bandwidth and
lower utilization ratio the link will have. In other words,
a substrate link without any available bandwidth will
have a longest length, and should not be used by any
routing path. Similarly, the ‘length’ d(p) of a substrate
path p is the sum of lengths of its constituent substrate
links, which is defined as follows.

d(p) =
∑
es∈p

d(es). (6)

A shorter path p will have more available bandwidth on
its constituent substrate links, thereby having a higher
embedding ability.

We now embed a virtual network Gv(Nv, Es) with
static resource demands to the substrate network
Gs(Ns, Es), using the proposed embedding metrics as
follows.

We embed each virtual node in Nv to a different
substrate node Ns, followed by embedding each virtual
link in Ev to a substrate path in Gs. To embed virtual
nodes in Nv , we construct a cluster of substrate nodes for
the virtual nodes through adding substrate nodes into
the cluster one by one. Specifically, we first identify a
cluster center with the greatest embedding ability in Gs

to embed a virtual node with the maximum resource
demand in Gv , and then find other substrate nodes one
by one iteratively with a shorter path to the selected
substrate nodes, by adopting a strategy similar to the
one in [44]. Intuitively, each added substrate node in
the cluster has not only the great embedding ability
but also a shorter path to the other substrate nodes in
the cluster, since a shorter path between two selected
substrate nodes implies the more available bandwidth
between them. Therefore, to find the cluster center, we
assign each substrate node ns ∈ Ns a rank that is
jointly determined by its embedding ability and the
accumulative embedding ability of the links incident to
it. Let L(ns) be the set of substrate links incident to
substrate node ns ∈ Ns. The rank NR(ns) of ns is defined
as the product of its embedding ability Φ(ns) and the
accumulative embedding ability of links in L(ns), i.e.,

NR(ns) = Φ(ns) ·
∑

es∈L(ns)

Φ(es). (7)

The rank NR(nv) of each virtual node nv ∈ Nv can
be defined similarly as the product of its computing
resource demand and the accumulative bandwidth re-

source demand of the virtual links incident to it, i.e.,

NR(nv) = C(nv) ·
∑

ev∈L(nv)

B(ev). (8)

Let nsc and nvc be the chosen cluster center and vir-
tual node by Eqs. (7) and (8), respectively. Then, nvc
is embedded into nsc. Having embedded nvc to nsc, the
other |Nv| − 1 cluster members will be identified one
by one iteratively. During each iteration, a virtual node
is embedded to a substrate node with high embedding
ability and the minimum distance to one of the selected
substrate nodes in the cluster. To this end, rank those not
yet selected substrate nodes by the product of the inverse
of Φ(ns) and the accumulative length from substrate
node ns to all the substrate nodes selected. Denote by
κ(ns) the rank of ns, then,

κ(ns) =
1

Φ(ns)
·
∑

ms∈Ns
sel

d(pns,ms), (9)

where Ns
sel is the set of selected substrate nodes in the

cluster, and pns,ms is the shortest path between substrate
nodes ns and ms ∈ Ns

sel.
The rank of a yet-to-be embedded virtual node nv ∈

Nv can be defined similarly, i.e.,

κ(nv) =
1

C(nv)
·

∑
mv∈Nv

emd

∑
ev∈pnv,mv

d(ev), (10)

where Nv
emd denotes the set of embedded virtual nodes,

d(ev) is the length of virtual link defined by 1
B(ev) ,

and pmv,nv is the shortest path between virtual nodes
mv ∈ Nv

emd and nv (w.r.t. the accumulative length of
its virtual links). The rationale behind the definition of
length metric d(ev) is that the length of virtual link ev

is inversely proportional to its demand Bv . Intuitively
speaking, a shortest path between an embedded virtual
node and the next virtual node to be embedded is a path
with the maximum accumulated resource demands on
the path. A virtual node nv with the minimum value
of κ(nv) will be chosen as the next virtual node to be
embedded to the substrate node ns with the lowest rank
κ(ns). If there is such a virtual node in Gv that has never
been embedded after considering all substrate nodes,
then Gv will not be admitted.

The embedding of virtual links in Ev can be dealt
similarly. Let p be a shortest path in Gs between two
substrate nodes for virtual link ev . If p does not have
enough bandwidth to meet the bandwidth demand of
ev , the substrate link in p with the minimum available
bandwidth is then removed, the next shortest path will
be found until there is not such a path. The detailed
procedure for a single virtual network embedding is
detailed in procedure EmbedOneVN-Static.

Having shown how to embed a virtual network with
static resource demands to the substrate network Gs, we
here show how to embed a virtual network Gv(Nv, Ev)
with periodic resource demands to Gs as follows.

We construct T + 1 auxiliary graphs with each having
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Procedure 1 EmbedOneVN-Static()
Input: Gv(Nv , Ev), Gs(Ns, Es)
Output: Embed Gv or reject it

1: /* Stage one: embed virtual nodes */
2: Find the cluster center ns

c with the maximum rank in substrate
network Gs by Eq. (7);

3: Find the virtual node nv
c with the maximum rank in virtual

network Gv by Eq. (8);
4: Embed virtual node nv

c to the cluster center ns
c ;

5: Nv
emd ← {n

v
c}; /* the set of embedded virtual nodes*/

6: Ns
sel ← {n

s
c}; /* the set of selected substrate nodes*/

7: Embed virtual nodes in Nv −Nv
emd to Gs one by one iteratively.

Within an iteration, a virtual node with the minimum κ(nv) is
embedded into a substrate node with the minimum κ(ns);

8: if Ns \Ns
sel = ∅ and Nv \Nv

emd 6= ∅ then
9: Reject Gv ; exit;

10: /* Stage two: embed virtual links */
11: for each virtual link ev ∈ Ev do
12: Update the weight of substrate link es by Eq. (5);
13: Let ns

1 and ns
2 be the substrate nodes that embed the two virtual

nodes connected by ev ;
14: Find a shortest path p from node ns

1 to ns
2;

15: if p cannot satisfy the resource demand B(ev) of ev then
16: Find the next shortest path from ns

1 to ns
2;

17: if no path can satisfy the demand of ev then
18: Reject Gv ; exit;
19: Embed the virtual network Gv .

different resource demands at a different time slot in
one interval, and ‘pre-embed’ each of the graphs by
procedure EmbedOneVN-Static. Virtual network Gv

will be embedded to Gs exactly by adopting one of
the T + 1 pre-embeddings that leads to the maximum
revenue. Specifically, we construct T auxiliary graphs
with each having the resource demands of Gv at time slot
t′ in an interval with 1 ≤ t′ ≤ T , and another auxiliary
graph Gvm having the average resource demands within
an interval. Denote by Gv(t′) = (Nv

t′ , E
v
t′) the auxiliary

graph with resource demands of Gv at time slot t′. Then,
Gv(t′) is constructed by setting Nv

t′ = Nv , Evt′ = Ev ,
C(nv) = c(nv, i′, t′) for each nv ∈ Nv

t′ , B(ev) = b(ev, i′, t′)
for each ev ∈ Evt′ , where i′ is one interval of the duration
τ(Gv) of Gv . Similarly, Gvm = (Nv

m, E
v
m) with Nv

m = Nv

and Evm = Ev denotes the virtual network Gv with
average resource demands within an interval, i.e., the
demands of its each virtual node and link are as follows.

C(nv) =
1

T

T∑
t′=1

c(nv, i′, t′), for each nv ∈ Nv
m, (11)

and

B(ev) =
1

T

T∑
t′=1

b(ev, i′, t′), for each ev ∈ Evm. (12)

Let Gpre be the set of constructed T + 1 graphs, i.e.,
Gpre = {Gv(t′) | 1 ≤ t′ ≤ T} ∪ {Gvm}. A pre-embedding
of a graph in Gpre is feasible only if it can be embedded
into Gs while the resource demands of Gv at each
time slot are met. Let Gvmax be the graph among the
T + 1 auxiliary graphs that results in the maximum
revenue. The detailed algorithm is given by procedure
EmbedOneVN-Periodic.

Procedure 2 EmbedOneVN-Periodic()
Input: Gv(Nv , Ev), Gs(V s, Es)
Output: Embed Gv or reject it

1: Construct T+1 auxiliary graphs for Gv with the first T graphs cor-
responding to its resource demands at each of the T time slots, and
the last one denotes the average resource demand in one resource
demand period. Denote by Gpre be the set of the T +1 graphs, i.e.,
Gpre ← {Gv(t′) | 1 ≤ t′ ≤ T} ∪ {Gv

m};
2: Gmax ← NIL; /*Gmax ∈ Gpre is the graph that achieves the

maximum revenue*/
3: Rmax ← 0 /*the revenue by the embedding of Gmax*/;
4: for each graph G in Gpre do
5: Pre-embed each graph in Gpre by invoking

EmbedOneVN-Static, where a pre-embedding is feasible
if the embedding satisfies the resource demands of Gv at each
time slot in an interval;

6: Calculate the revenue R(G) of the pre-embedding of G;
7: if Rmax < R(G) then
8: Rmax ← R(G);
9: Gmax ← G;

10: if all graphs in Gpre are rejected then
11: Reject Gv ;
12: exit;
13: Embed Gv to Gs by the embedding of Gmax with the maximum

revenue.

4.2 Algorithm for embedding multiple virtual net-
works with identical resource demand periods

We now embed a set G(i, t) of virtual networks with
identical resource demand periods to a substrate net-
work Gs at time slot t within an interval i. To be specific,
we first embed a virtual network Gv1 ∈ G(i, t) that results
in the maximum revenue. Let G2(i, t) = G(i, t) − {Gv1}.
We then embed the next virtual network in G2(i, t)
that leads to the maximum revenue, and so on. This
procedure continues until either Gk(i, t) is empty or none
of virtual networks in it can be embedded due to lack
of cloud resources.

The detailed description of the embedding algorithm
is given by Algorithm 1.
Algorithm 1 Embedding a set G(i, t) of virtual networks with
identical resource demand periods
Input: Gs, G(i, t)
Output: Virtual networks in G(i, t) to be embedded into Gs

1: All virtual networks in G(i, t) are unmarked;
2: while G(i, t) 6= ∅ or there are unmarked virtual networks do
3: Gv

max ← NIL; /*Gv
max ∈ G(i, t) is the virtual network that

achieves the maximum revenue*/
4: Rmax ← 0 /* the revenue by the embedding of Gv

max*/;
5: for each virtual network Gv ∈ G(i, t) do
6: Pre-embed Gv by invoking EmbedOneVN-Periodic;
7: if Gv is rejected by EmbedOneVN-Periodic then
8: Gv is marked as unembeddable;
9: else

10: Let R(Gv) be the revenue by embedding of Gv ;
11: if Rmax < R(Gv) then
12: Rmax ← R(Gv);
13: Gv

max ← Gv ;
14: Embed Gv

max by invoking EmbedOneVN-Periodic;
15: G(i, t)← G(i, t) \ {Gv

max}.

4.3 Algorithm for embedding multiple virtual net-
works with different resource demand periods

So far we have assumed that all virtual networks have
identical resource demand periods. In reality, different
virtual networks may have different resource demand
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periods. For example, some enterprise IT services (e.g.,
virtual desktop services) have weekly resource demands,
whereas others (such as pay-roll services) have fort-
nightly or monthly resource demands. We here deal
with this general case of the problem by extending
Algorithm 1 to solve it.

Given a set G(i, t) of virtual networks with different
resource demand periods at time slot t in interval i, the
basic idea of the proposed algorithm is to classify virtual
networks in G(i, t) into different categories (types), by
their resource demand periods, and each virtual network
in the same type x will have the same resource demand
period Tx. Denote by X the number of different types of
virtual networks. Intuitively, the more types of virtual
networks, the more difficult embedding these virtual
networks to the substrate network will be. To reduce the
number of types (i.e., the number of resource demand
periods), we merge one type of virtual networks with a
shorter resource demand period to another type with a
longer resource demand period if the longer one is divis-
ible by the shorter one. The rationale behind this is that
the longer resource demand period can be considered as
a super-period that consists of multiple shorter periods.
For example, a virtual network with weekly resource de-
mands can be seen as a virtual network with fortnightly
resource demands. Let Tmax be the maximum resource
demand period among the virtual networks in G(i, t).
The merge procedure iteratively finds the maximum
number of resource demand periods having a Least
Common Multiple (LCM) Tlcm that is no greater than
Tmax, and merge the types corresponding to the found
resource demand periods into one type that has resource
demand period Tlcm. This merge procedure continues
until no further merge is possible. Let Y be the number
of types after the merging. We then proceed embedding
virtual networks in G(i, t) type by type, starting with
the type of virtual networks with the longest resource
demand period. That is, for virtual networks in type
Ty we embed them by invoking Algorithm 1 for all
y with 1 ≤ y ≤ Y . The detailed algorithm description is
given in Algorithm 2.

4.4 Algorithm analysis

The rest is to analyze the time complexity of the
proposed embedding algorithms Algorithm 1 and
Algorithm 2 for multiple virtual network embedding.

Theorem 1: Given a distributed cloud Gs = (V s, Es)
and a monitoring period consisting of I intervals with
each having T equal time slots, let G(i, t) be the set of
virtual network requests arrived in the beginning of time
slot t in interval i with each having an identical resource
demand period. There is an algorithm, Algorithm 1,
for the virtual network embedding problem with the
knowledge of identical resource demand periods, which
takes O(

∑I
i=1 |G(i, t)|2(|Nv

max||Es||Ns|2 + |Ns|3)), where
|G(i, t)| is the number of virtual network requests in
G(i, t), |Nv

max| is the maximum number of virtual nodes

Algorithm 2 Embedding a set G(i, t) of virtual networks with
different resource demand periods to the cloud.
Input: Gs, G(i, t), T (Gv) for each Gv ∈ G(i, t)
Output: Virtual networks in G(i, t) to be embedded into Gs

1: Classify virtual networks in G(i, t) into different types of classes
by their resource demand periods;

2: For each resource demand period Tx, if there is a larger Tx′ that
is a multiple of Tx, merge the type of virtual networks with the
resource demand period Tx to the type one with the resource
demand period Tx′ ;

3: Sort sequences of different types of virtual networks into increasing
order by resource demand periods, i.e., T1, T2, . . . , Tmax;

4: while LCM(T1, T2) > Tmax do
5: Find the maximum number of resource demand periods having

a Least Common Multiple (LCM) Tlcm that is no greater than
Tmax;

6: Replace the found resource demand periods with Tlcm;
7: Get the number Y of different types of resource demand periods;
8: for y ← 1 to Y do
9: Embed virtual networks with the resource demand period Ty

by invoking Algorithm 1;

of a virtual network for each i and t, with 1 ≤ i ≤ I and
1 ≤ t ≤ T .

Proof: We start by analyzing the time complexity
of procedure EmbedOneVN-Static that consists of two
stages. Recall that, in stage one, virtual nodes in each
virtual network Gv(Nv, Ev) ∈ G(i, t) are embedded into
substrate nodes in the substrate network Gs(Ns, Es) by
iteratively selecting a substrate node with the highest
rank κ(ns) for the virtual node nv with the highest rank
κ(nv). To calculate κ(ns) and κ(nv) for each substrate
node ns and virtual node nv , all pairs of shortest paths
in both Gs and Gv are found, which takes O(|Ns|3)
and O(|Nv|3) time, respectively. In addition, finding
a substrate node for each virtual node in Nv takes
O(|Nv||Ns|) time. Stage one thus takes O(|Ns|3 +|Nv|3 +
|Nv||Ns|) = O(|Ns|3) time, since |Nv| << |Ns|. In
stage two, each virtual link ev is embedded into a
substrate path in Gs. Since the shortest path between two
substrate nodes that correspond to the two endpoints
of ev may not have enough bandwidth to meet the
bandwidth requirement of ev , the bottleneck edge with
the minimum available bandwidth in the path then is
removed, and the next shortest path for each virtual
link ev is then found. This procedure continues until a
shortest path with enough available bandwidth is found,
or no such a shortest path exists. If there is no such
a path meeting the bandwidth requirement, the virtual
network request will be rejected. This procedure takes
O(|Es||Ns|2) time, as there are |Ev| virtual links in Gv ,
stage two takes O(|Ev||Es||Ns|2) time. Thus, procedure
EmbedOneVN-Static takes O(|Nv||Es||Ns|2 + |Ns|3)
time.

We then analyze the time complexity of procedure
EmbedOneVN-Periodic, this procedure treats each vir-
tual network Gv(Nv, Ev) with periodic resource de-
mands as T + 1 virtual networks with static resource
demands at each time slot as well as the average resource
demand at each interval. These T+1 virtual networks are
‘pre-embedded’, and Gv will be embedded exactly as one
of these T+1 pre-embeddings that leads to the maximum
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revenue. Thus, embedding a virtual network Gv with
periodic resource demands takes O(T (|Nv||Es||Ns|2 +
|Ns|3)) time.

We finally analyze the time complexity of
Algorithm 1. There are |G(i, t)| virtual networks with
periodic resource demands. Recall that Algorithm 1
chooses a virtual network that will lead to the
maximum revenue among yet-to-be embedded virtual
networks in G(i, t). To find the virtual network
with the maximum revenue, the algorithm pre-
embeds each virtual network by invoking procedure
EmbedOneVN-Periodic. In total, there are O(|G(i, t)|2)
attempts of calling the procedure. Thus, Algorithm 1
takes O(|G(i, t)|2T (|Nv||Es||Ns|2 + |Ns|3)) time to
embed all virtual networks in G(i, t), which is
O(|G(i, t)|2|(|Nv

max||Es||Ns|2 + |Ns|3)) as only the
maximum number |Nv

max| of virtual nodes of a virtual
network in ∪Ii=1 ∪Tt=1 G(i, t) needs to be considered and,
T usually is constant, i.e., T = O(1). The theorem holds.

Theorem 2: Given a distributed cloud Gs = (V s, Es)
and a monitoring period consisting of I intervals with
each having T equal time slots, let G(i, t) be the set of
arrived virtual networks in the beginning of time slot t in
interval i with each having a different resource demand
period T (Gv). There is an algorithm, Algorithm 2,
for the virtual network embedding problem with the
knowledge of different resource demand periods, which
takes O(

∑I
i=1 |G(i, t)|3(|Nv

max||Es||Ns|2 + |Ns|3)) time,
where |G(i, t)| is the number of virtual network requests
in G(i, t), |Nv

max| is the maximum number of virtual
nodes of a virtual network for each t and i with 1 ≤ i ≤ I
and 1 ≤ t ≤ T .

Proof: The proof of Theorem 2 is similar to the proof
of Theorem 1, omitted.

5 ALGORITHM WITHOUT THE KNOWLEDGE OF
PERIODIC RESOURCE DEMANDS OF VIRTUAL
NETWORK REQUESTS

The proposed algorithms so far assumed that the peri-
odic resource demands of each virtual network are given
in advance. In reality, very few users know the resource
demand periods of their virtual networks. Instead, users
normally just specify their maximum resource demands.
If the cloud service provider embeds each virtual net-
work by user specified maximum resource demands,
the resource utilization will be low, as shown in Fig. 1.
Alternatively, the cloud service provider can allocate
its resources intelligently by predicting the periodic re-
source demands of each admitted virtual network. This
can be achieved through analyzing the historic resource
demands of the virtual network. In the following we
propose a prediction algorithm for this purpose.

The basic idea behind the prediction algorithm is
to embed a newly admitted virtual network to meet
its maximum resource demands initially, by proce-
dure EmbedOneVN-Static. The algorithm adjusts the

amounts of the resources allocated to the virtual network
periodically. Specifically, let K(Gv) be the number of
intervals after which the resource demands of a virtual
network Gv will be adjusted. The amounts of resources
allocated to Gv thus will be adjusted every K(Gv) inter-
vals until its duration τ(Gv) expires. In total, there will
be b τ(Gv)

K(Gv)c adjustments of demanded resources for an
embedded virtual network Gv during its lifetime τ(Gv).

The key in the prediction is how to adjust the amounts
of resources allocated to Gv . To this end, we record its
actual resource demands of Gv at the past K(Gv) inter-
vals, and use these historic data to predict its resource
demands in the current interval i. We then allocate
the predicted amounts of resources to Gv . Recall that
ĉ(nv, i, t) is the predicted computing resource demand of
virtual node nv at time slot t in interval i, which can be
derived by an autoregressive moving average prediction
method [25] as follows.

ĉ(nv, i, t) =

K(Gv)∑
k=1

βi−kc(n
v, i− k, t), (13)

where βi−k is a given constant related to the resource
demands in interval i − k, and

∑K(Gv)
k=1 βi−k = 1 with

βi−k ≥ βi−k−1 and 0 < βi−k < 1. This prediction model
gives an insight that the resource demands Gv at the
current interval i are related to its resource demands in
its previous K(Gv) intervals. The embedding algorithm
is described by Algorithm 3.
Algorithm 3 Embedding a set G(i, t) of virtual networks with
identical resource demand periods and without the periodic
resource demands.
Input: Gs, G(i, t), K(Gv) for each Gv ∈ G(i, t)
Output: Virtual networks in G(i, t) to be embedded into Gs and

resource allocation adjustments for embedded virtual networks

1: Embed each Gv ∈ G(i, t) by allocating it with its maximum
resource demands by invoking EmbedOneVN-Static;

2: for each embedded virtual network Gv
emd in Gs do

3: Calculate the number of intervals that Gv
emd spanned in Gs so

far, and let i′ be the number;
4: if i′ > 0 and (i′ mod K(Gv)) = 0 then
5: Predict the computing resource demand of each nv of its vir-

tual nodes, ĉ(nv , i, t′), and the bandwidth resource demand
of each ev of its virtual links, b̂(ev , i, t′) by Eq. (13), for the
current interval i, where 1 ≤ t′ ≤ T ;

6: Reserve ĉ(nv , i, t), the amount of computing resource for nv ,
and b̂(ev , i, t), the amount of bandwidth resource for ev in
the next K(Gv) intervals;

Notice that it is sufficient to modify step 9 of
Algorithm 2 by invoking Algorithm 3 in order to
embed a virtual network Gv with different resource
demand periods and without the knowledge of periodic
resource demands. Due to space limitation, the descrip-
tion of this algorithm is omitted.

6 EXPERIMENTAL STUDY

In this section, we evaluate the performance of the pro-
posed algorithms and investigate the impact of different
parameters on the algorithm performance.
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6.1 Simulation settings

We adopt both synthetic and real network topologies for
the substrate network Gs. Specifically, we generate Gs

by the GT-ITM tool [19], which consists of 50 substrate
nodes, and there is an edge between each pair of nodes
with a probability of 0.1, following the similar settings
in [10], [39], [44]. We also adopt a real network topology,
GÉANT consisting of 40 nodes and 61 edges for the
substrate network Gs [17]. The computing capacity of
each substrate node in Gs is randomly drawn from 2,000
GHz to 5,000 GHz, and the bandwidth capacity of each
substrate link in Gs is drawn from 10 Mbps to 1,000
Mbps [2], [11], [20], [27]. The number of virtual nodes
of each virtual network varies from 2 to 10, and there
is a virtual link between every two virtual nodes with a
probability of 0.5. Parameters a and b in Eq. (3) are set
to 5, which will be explained later. The number of time
slots of each interval is T = 7, e.g., 7 days a week. The
monitoring period consists of 100 time slots. The arrival
rate of virtual network requests follows the Poisson
process with an average rate of 5 virtual networks per
time slot, and the duration of each virtual network varies
with no more than 50 intervals. The length of K(Gv) in
Algorithm 3 is set to 5.
Resource demands of virtual networks: For resource
demands of virtual networks within an interval, we
consider two patterns: one is the Weekday-weekend
pattern, where a virtual network has demand peaks
during either weekdays (5 demand peaks) or weekends
(2 demand peaks); another is the Random pattern, where
the number of time slots when a virtual network has
peak demands is randomly generated. In both resource
demand patterns, the amounts of peak computing and
bandwidth demands are randomly generated from 2 to
10. The off-peak resource demands are no more than 80%
of its peak resource demands.
Benchmarks: We evaluate the proposed algorithms for
the VNE problem against two state-of-the-art algorithms.
The first one is the algorithm in [44], referred to as
algorithm MAX, in which the embedding ability of each
substrate node ns is the amount of its available comput-
ing resource, i.e., Φ(ns) = P (ns, i, t), it embeds virtual
networks to Gs according to their maximum resource
demands. The second one, referred to as PAGERANK,
is a PageRank-based embedding algorithm [8], which
assigns each virtual node and each substrate node a rank
by adopting the PageRank algorithm. It then embeds
each virtual network by mapping its virtual nodes, fol-
lowed by embedding its virtual links to the substrate net-
work. For simplicity, we use algorithms ALG-PERIOD,
and ALG-NO-PERIOD to denote Algorithm 1 and
Algorithm 3 with and without the knowledge of pe-
riodic resource demands, respectively. Similarly, we use
ALG-PERIOD-DIFF and ALG-NO-PERIOD-DIFF to de-
note Algorithm 2 and its version without the knowl-
edge of periodic resource demands.
Evaluation metrics: In addition to the revenue achieved

by embedding of virtual networks, we also consider the
revenue-to-cost ratio η(Gv) to quantify the efficiency of
embedding of each virtual network Gv as follows.

η(Gv) =
R(Gv)

C(Gv)
. (14)

Given a distributed cloud Gs = (V s, Es) and a moni-
toring period I , the accumulated revenue, service cost, and
revenue-to-cost ratio within the monitoring period thus are
the total revenues collected, the total service cost spent,
and the ratio of the total revenue to the total service
cost for the monitoring period. Each value in our figures
is the mean of the results by applying the mentioned
algorithm to either 15 synthetic network topologies or
15 resource capacity settings of the GÉANT topology.
Also, 95% confidence intervals for these mean values are
presented in all figures.

6.2 Performance evaluation

We first evaluate two proposed algorithms ALG-PERIOD
and ALG-NO-PERIOD against algorithms MAX and
PAGERANK, based on the synthetic substrate networks
generated by GT-ITM. Fig. 3 shows the results when
virtual networks follow the Random resource demand
pattern. Specifically, Fig. 3(a) indicates that, on aver-
age, algorithm ALG-PERIOD admits around 15% and
30% more requests than those of algorithms MAX and
PAGERANK in a monitoring period consisting of 100 time
slots. It can also be seen from Fig. 3(b) that algorithm
ALG-PERIOD earns 10% and 31% more revenues than
these of algorithms MAX and PAGERANK. The reason
behind is that algorithm ALG-PERIOD performs fine-
grained resource allocations by exploring the periodic
resource demands and adopting a novel embedding met-
ric that takes into account both the dynamic workload
on the substrate network and the user periodic resource
demands.

It can be seen from Figures 3(a) and (b) that algorithms
MAX and PAGERANK have wider confidence intervals
for the mean of acceptance ratios and revenues. The
reason is that they allocate cloud resources according
to the maximum demands of virtual networks. Their
acceptance ratios or revenues will oscillate a lot since
each virtual network request is likely to be rejected with
high probability, and algorithm PAGERANK is the worst
among them. Figures 3(c) and 3(d) clearly demonstrate
that algorithm ALG-NO-PERIOD consistently delivers
the highest acceptance ratio and the maximum number
of admitted virtual network requests among the three
mentioned algorithms. It can be seen from Fig. 3(c) that
the virtual network acceptance ratios of algorithms MAX
and PAGERANK oscillate a lot, since the number of admit-
ted virtual networks is only affected by the amount of
available resources in the substrate network. In addition,
Fig. 3(e) implies that the revenue delivered by algorithm
ALG-NO-PERIOD is higher than that by algorithms MAX
and PAGERANK, and it has also the higher revenue-to-
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Fig. 3: The performance of different algorithms under Random resource demand patterns of virtual networks

cost ratio than these of algorithms MAX and PAGERANK
as shown in Fig. 3(f).

Fig. 4 depicts the performance curves when the
resource demands of virtual networks follow the
Weekday-weekend resource demand pattern, from
which it can be seen that algorithms ALG-PERIOD
and ALG-NO-PERIOD outperform the others in terms
of the acceptance ratios, revenues, and revenue-to-
cost ratios. In addition, the acceptance ratio of algo-
rithm ALG-PERIOD with pattern Weekday-weekend
(Fig. 4 (a)) is higher than that of it with pattern Random
(Fig. 3 (a)), so is its revenue that can be seen from
Figures 3(b) and 4(b), respectively. This is because that
there are more opportunities for virtual networks with
complimentary resource demands to share resources
with each other. For the sake of clarity, in the rest of
evaluation, we will focus only on the Random resource
demand pattern.

We now evaluate algorithms ALG-PERIOD-DIFF and
ALG-NO-PERIOD-DIFF against algorithms MAX and
PAGERANK, by assigning the resource demand period
of each virtual network with one of the values in

{7, 14, 15, 30}. It can be seen from Fig. 5 that algo-
rithms ALG-PERIOD-DIFF and ALG-NO-PERIOD-DIFF
outperform algorithms MAX and PAGERANK. Further-
more, by comparing the results in Fig. 3 and Fig. 5,
it can be seen that algorithms ALG-PERIOD-DIFF
and ALG-NO-PERIOD-DIFF are inferior to their coun-
terparts, ALG-PERIOD and ALG-NO-PERIOD. For ex-
ample, as shown in Fig. 5(a), the acceptance ratio
by algorithm ALG-PERIOD-DIFF is lower than that
by algorithm ALG-PERIOD in Fig. 3(a), since algo-
rithm ALG-PERIOD-DIFF merges the type of vir-
tual networks with a shorter resource demand pe-
riod to the type with a longer resource demand pe-
riod that is a multiple of the shorter one. This means
that the resource availability check process (Step 5
in procedure EmbedOneVN-Periodic) will consider a
longer interval, thereby increasing the rejection prob-
ability of virtual networks. Furthermore, it can be
seen from Figures 5(b) and 5(c) that the accumu-
lated revenue of algorithm ALG-NO-PERIOD-DIFF is
roughly the same as that of algorithm ALG-NO-PERIOD,
whereas the accumulated revenue-to-cost ratio of algo-
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Fig. 4: The performance of different algorithms under Weekday-weekend resource demand patterns

rithm ALG-NO-PERIOD-DIFF is much lower than that
of algorithm ALG-NO-PERIOD. In other words, the cost
by algorithm ALG-NO-PERIOD-DIFF is much higher
than that by algorithm ALG-NO-PERIOD, because more
substrate links are needed in order to embed each virtual
link, given that the rejection probability of a virtual link
increases.

6.3 Performance evaluation using GÉANT topology
To evaluate the performance of the proposed algo-
rithms in real networks, we now evaluate algorithms
ALG-PERIOD and ALG-NO-PERIOD against algorithms
MAX and PAGERANK in the GÉANT network. It can
be seen from Figures 6(a) and 6(b) that algorithms
ALG-PERIOD and ALG-NO-PERIOD outperform algo-
rithms MAX and PAGERANK in terms of the acceptance
ratio and revenue. Specifically, Fig. 6(b) shows that
algorithm consistently achieves higher revenues than
those of algorithms MAX and PAGERANK, and the over-
lapping on that by the confidence intervals by these
algorithms are trivial. For example, the revenue by
ALG-NO-PERIOD is around twice that of algorithm

PAGERANK, and 30% more than that of algorithm MAX.
Also, it must be mentioned that the acceptance ratios by
all algorithms in GÉANT are lower than that in random
topologies generated by GT-ITM. This is because the
network size of GÉANT is smaller and has less number
of edges compared with the topologies generated by
GT-ITM. Also, it can be seen from Fig. 6(c) that al-
gorithm ALG-NO-PERIOD outperforms algorithms MAX
and PAGERANK. For example, within a monitoring period
of 100 intervals, the accumulated revenue-to-cost ratio
by algorithm ALG-NO-PERIOD is around 30% and 35%
higher than those by algorithms MAX and PAGERANK,
respectively.

6.4 Impact of parameters
We then study the impact of constant parameters a and
b in embedding metrics in Eqs. (3) and (4) on the per-
formance of the proposed algorithms ALG-NO-PERIOD
and ALG-PERIOD, by varying their values from 5 to
57. For the sake of simplicity, we only evaluate the
algorithms for virtual networks with Random resource
demand patterns. Figures 7(a) and 7(b) demonstrate that
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Fig. 5: The performance of different algorithms with different resource demand periods and under Random resource
demand patterns of virtual networks
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Fig. 6: The performance of different algorithms using GÉANT topology under Random resource demand patterns
of virtual networks
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the larger the value of a, the lower the acceptance ratio.
This implies that when there is a larger a, each substrate
node is reluctant to accommodate a virtual node when
its utilization rate is nearly full, otherwise leading to SLA
violations. Fig. 7(c) plots the resource demand violations
by algorithm ALG-NO-PERIOD for different values of
a. It can be seen that algorithm ALG-NO-PERIOD has
the highest and lowest resource demand violation ratios
when a = 5 and a = 57, respectively. The algorithm
delivers a resource demand violation ratio less than 0.5%
when a = 5, but achieves a relatively high acceptance
ratio. This is why we set a = 5 in the default setting.

7 CONCLUSION

In this paper we considered virtual network embedding
problems with and without the knowledge of periodic
resource demands in a substrate network. We devised
efficient embedding algorithms, by incorporating novel
embedding metrics and periodic resource demands of
virtual network requests, provided that periodic resource

demands of each virtual network are given and all vir-
tual networks have identical resource demand periods;
otherwise, we proposed a period prediction method to
predict the periodic resource demands of each admitted
virtual network. We finally evaluated the performance
of the proposed algorithms through experimental sim-
ulations, based on both synthetic and real substrate
networks. Experimental results demonstrate that the pro-
posed algorithms are promising, and outperform exist-
ing heuristics.

ACKNOWLEDGEMENT

We appreciate the three anonymous referees and the
Associate Editor for their constructive comments and
valuable suggestions, which help us significantly im-
prove the quality and presentation of the paper.

REFERENCES
[1] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming the

Internet impasse through virtualization. Computer, Vol. 38, pp.34–
41, IEEE, 2005.



2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2535215, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, XX 2015 14

[2] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards
predictable datacenter networks. Proc. ACM SIGCOMM, 2011.

[3] M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rab-
bani, Q. Zhang, and M. Zhani. Data center network virtualization:
a survey. Communications Surveys &Tutorials, Vol. 15, pp. 909–928,
IEEE, 2013.

[4] T. Benson, A. Akella, A. Shaikh, and S. Sahu. CloudNaaS: a cloud
networking platform for enterprise applications. Proc. ACM SOCC,
2011.

[5] R. Bradford, E. Kotsovinos, A, Feldmann, and H. Schiöberg. Live
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