
Approximation Algorithms for Min-Max
Cycle Cover Problems

Wenzheng Xu, Weifa Liang, Senior Member, IEEE, and Xiaola Lin

Abstract—As a fundamental optimization problem, the vehicle routing problem has wide application backgrounds and has been paid

lots of attentions in past decades. In this paper we study its applications in data gathering and wireless energy charging for wireless

sensor networks, by devising improved approximation algorithms for it and its variants. The key ingredients in the algorithm design

include exploiting the combinatorial properties of the problems and making use of tree decomposition and minimum weighted maximum

matching techniques. Specifically, given a metric complete graphG and an integer k > 0, we consider rootless, uncapacitated rooted,

and capacitated rooted min-max cycle cover problems in G with an aim to find k rootless (or rooted) edge-disjoint cycles covering the

vertices in V such that the maximum cycle weight among the k cycles is minimized. For each of the mentioned problems, we develop

an improved approximate solution. That is, for the rootless min-max cycle cover problem, we develop a ð5 1
3 þ �Þ-approximation

algorithm; for the uncapacitated rooted min-max cycle cover problem, we devise a ð6 1
3 þ �Þ-approximation algorithm; and for the

capacitated rooted min-max cycle cover problem, we propose a ð7þ �Þ-approximation algorithm. These algorithms improve the best

existing approximation ratios of the corresponding problems 6þ �, 7þ �, and 13þ �, respectively, where � is a constant with 0 < � < 1.

We finally evaluate the performance of the proposed algorithms through experimental simulations. Experimental results show that the

actual approximation ratios delivered by the proposed algorithms are always no more than 2, much better than their analytical

counterparts.

Index Terms—Wireless sensor networks, data gathering, mobile sinks, vehicle routing problem, min-max cycle cover, tree decomposition,

approximation algorithms, combinatorial optimization

Ç

1 INTRODUCTION

THIS paper studies a fundamental optimization problem
in operations research and computer science communi-

ties—the vehicle routing problem, which has wide applica-
tion backgrounds and has been paid lots of attentions in
past decades [1], [2], [3], [4], [5], [6], [9], [10], [11], [15], [16],
[23], [30], [31]. We here are motivated by its two application
scenarios in wireless sensor networks (WSNs): one is data
gathering, another is wireless recharging of sensors.

We start from the application scenario one. In tradi-
tional wireless sensor networks, sensors are powered by
energy-limited batteries, and there is a stationary sink. All
sensed data from sensors will be relayed to the stationary
sink directly or through multihop relays for further proc-
essing. Since sensors near to the sink have to relay more
data for others, they usually deplete their battery energy
much faster. Such imbalanced energy consumptions
among the sensors will shorten the network lifetime

significantly. To prolong the network lifetime by minimiz-
ing the energy consumptions of sensors, a mobile sink
instead of a stationary sink has been employed to travel
around the vicinities of sensors periodically so that sensors
can upload their sensed data to the mobile sink [20], [21],
[29]. Although sink mobility can improve various network
performance, it also results in data delivery delay due to
the slow mechanical movement of the mobile sink, where
the data delivery delay means the time duration of sensing
data from its generation to its collection by the sink. There-
fore, it is desirable to employ multiple mobile sinks so that
the traveling distance of each mobile sink can be signifi-
cantly shortened and more ‘fresh’ data (data with less
delivery delay) can be collected on time [17], [19], [22],
[34]. One fundamental optimization problem related to
this is that, given k mobile sinks located at one or multiple
depots in a large scale WSN, which are used to collabora-
tively collect sensed data from the sensors, how to find a
traveling trajectory for each of the k mobile sinks such that
the longest traveling time among them is minimized. If
each of the k mobile sinks can upload its collected data to
one of its nearby depots, the problem then is to find k root-
less close traveling tours such that the maximum traveling
time among the k tours is minimized [34]. Otherwise, each
mobile sink has to return and upload its collected data to
its own depot [17]. It thus requires that each of the k close
tours contains a root (a depot) in this case. Moreover, since
there are a limited number of available mobile sinks at
each depot, the number of traveling tours allocated to the
mobile sinks at each depot thus is restricted. Under this
constraint, the optimization problem then is to find capaci-
tated rooted close traveling tours for the k mobile sinks

� W. Xu is with the School of Information Science and Technology, Sun
Yat-Sen University, Guangzhou 51006, China, and the Research School
of Computer Science, The Australian National University, North Road,
CSIT Building, Canberra, ACT 0200, Australia.
E-mail: wenzheng.xu@anu.edu.au.

� W. Liang is with the Research School of Computer Science, The Australian
National University, North Road, CSIT Building, Canberra, ACT 0200,
Australia. E-mail: wliang@cs.anu.edu.au.

� X. Lin is with the School of Information Science and Technology, Sun
Yat-Sen University, Guangzhou 51006, Guangdong, China.
E-mail: linxl@mail.sysu.edu.cn.

Manuscript received 24 Mar. 2013; revised 15 Oct. 2013; accepted 4 Dec.
2013. Date of publication 19 Dec. 2013; date of current version 11 Feb. 2015.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.2295609

600 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 3, MARCH 2015

0018-9340� 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



such that the maximum traveling time among the k tours
is minimized.

We then deal with the second application scenario. We
consider a wireless rechargeable sensor network in which
each sensor can be recharged periodically to avoid its
energy expiration. To do so, we can employ one or multiple
mobile chargers to traverse within the network and charge
the sensors [8], [13], [18], [24], [26], [27], [28], [32], [33]. One
fundamental question related to mobile chargers’ charging
tours scheduling is that given k � 1mobile chargers, how to
schedule and find charging tours for the k mobile chargers
such that none of sensors in the network expires. As the
mobile chargers themselves need to be recharged at depot
(s) when they finish their charging tours, each charging tour
of a mobile charger is a close tour including its depot. One
typical optimization objective of this tour finding and
scheduling problem is to minimize the maximum traveling
distance among the k mobile chargers, thus minimizing the
charging duration per tour. Also, the number of depots and
the number of mobile chargers allocated to each depot may
have restrictions, under this constraint, the problem can be
casted as rootless (rooted), capacitated (uncapacitated) close
tour problem.

In general, the vehicle routing problem in a wireless sen-
sor network is to dispatch k mobile vehicles from a single
depot (or multiple depots) to serve all sensors in the net-
work such that the latest completion time among the k
mobile vehicles is minimized, with or without the number
of vehicle capacity constraint at each depot. The vehicle
routing problem in a metric graph is equivalent to covering
all vertices in the graph with k cycles such that the maxi-
mum cycle weight is minimized, where a cycle weight is the
weighted sum of the edges in the cycle. We refer to this as
the min-max cycle cover problem. In more general setting, there
is also a weight (or handling time) on each vertex, a cycle
weight is the weighted sum of edges and vertices in the
cycle. We note that this general case can be reduced to
the special case where only the edges have weights by trans-
forming a vertex-weighted and edge-weighted graph into
another edge-weighted graph [31]. Therefore, in the rest of
this paper, we only consider edge-weighted graphs. The
min-max cycle cover problem is NP-hard by reducing from
the classical traveling salesman problem (TSP) [25]. Thus, in
this paper we will focus on devising approximation algo-
rithms that achieve constant approximation ratios for the
min-max cycle cover problem and its variants.

1.1 Related Work

In terms of data gathering in wireless sensor networks,
Zhao et al. [34] studied the problem of finding traveling tra-
jectories of multiple mobile collectors such that the maxi-
mum data gathering time among the mobile collectors is
minimized. They proposed a heuristic algorithm for the
problem, where the data gathering time of a traveling trajec-
tory assigned to a mobile collector consists of the moving
time of the mobile collector and the data uploading time of
sensors in the trajectory. Kim et al. [17] considered the k
traveling salesperson with neighborhood problem, which
aims to find k close moving trajectories for the k mobile col-
lectors such that the length of the longest trajectory is

minimized, subject to that each trajectory contains the base
station, where one mobile collector only needs to move to
the communication range of a sensor in order to collect the
accumulated data in that sensor. They also developed an
approximation algorithm for the problem. Liang and Luo
[19] considered the similar k trajectory finding problem by
exploring the combinatorial property of the problem and
proposing a fast heuristic solution.

In general, the k trajectory finding and scheduling prob-
lem in wireless sensor networks can be abstracted as the
min-max cycle cover problem or its variants. Thus, in the
rest of this paper we focus on devising improved approxi-
mate solution to the min-max cycle cover problem, and a
closely related problem to the min-max cycle cover problem
is the min-max k-tree cover problem, since minimum span-
ning trees are constant factor approximations to traveling
salesman tours [10]. The min-max k-tree cover problem is to
find k edge-disjoint trees covering all vertices in a graph
such that the maximum tree weight is minimized. Specifi-
cally, for the rootless min-max tree cover problem, Even
et al. [10] and Arkin et al. [2] devised ð4þ �Þ-approximation
algorithms independently by adopting different algorithmic
techniques. Khani and Salavatipour [16] later improved the
approximation ratio to 3þ �, which implies that there is a
ð6þ �Þ-approximation algorithm for the rootless min-max
cycle cover problem. Even et al. [10] also presented a
ð4þ �Þ-approximation algorithm for the capacitated rooted
min-max tree cover problem, assuming there are k roots
with each having a unit capacity, which leads to an
ð8þ �Þ-approximation algorithm for the capacitated rooted
min-max cycle cover problem, where � is given constant
with 0 < � < 1.

There are other studies on the min-max cycle cover
problem without the use of min-max tree covers. For exam-
ple, for the single-rooted min-max k-cycle cover problem,
Frederickson et al. [11] proposed a ð1þ e� 1=kÞ-approxi-
mation algorithm, where e is the best approximation ratio
for the classic TSP problem. With multiple roots, Xu et al.
[31] recently achieved a ð7þ �Þ-approximation ratio for the
uncapacitated rooted min-max cycle cover problem for a
vertex weighted metric graph, and they also presented
ð7þ �Þ-approximation and ð13þ �Þ-approximation algo-
rithms for the capacitated rooted min-max cycle cover
problem with the overall capacity being equal to or larger
than k, respectively.

It must be mentioned that although our design technique
for the rootless min-max cycle cover problem is inspired by
the work on the rootless min-max tree cover problem [16],
they are essentially different. That is, given a graph G,
assume that B�

tree (or B
�) is the value of the optimal solution

to the rootless min-max tree (or cycle) cover problem. The
algorithm in [16] is based on a key observation that there is
at most one edge with weight greater than B�

tree=2 in any
tree in an optimal min-max tree cover of G. We however
observe that there are no edges with weight greater than
B�=2 and there are at most two edges with weight greater
than B�=3 in any cycle of an optimal min-max cycle cover
(see Lemma 3). Therefore, at most two connected compo-
nents can be obtained by removing the edges with weights
greater than B�=3 from any cycle in the optimal solution. In
addition, unlike an existing tree decomposition technique

XU ET AL.: APPROXIMATION ALGORITHMS FOR MIN-MAX CYCLE COVER PROBLEMS 601



that only ensures the upper bound on the weighted sum of
the edges in each decomposed subtree (see Lemma 1), our
tree decomposition technique for the capacitated rooted
min-max cycle cover problem enables providing such a tree
decomposition that the weighted sum of the edges in each
decomposed subtree is bounded by not only an upper
bound but also a lower bound (see Lemma 11).

1.2 Contributions

In this paper, we deal with the vehicle routing problem and
its variants in wireless sensor networks by devising
improved approximate solutions. The main contributions of
this paper are as follows.

We first develop a ð5 1
3 þ �Þ-approximation algorithm

and a ð6 1
3 þ �Þ-approximation algorithm for the rootless

and uncapacitated rooted min-max cycle cover problems,
respectively, which improve their existing approximation
ratios 6þ � and 7þ �, while keeping the same time com-
plexity as the algorithms in [16]. We then devise a
ð7þ �Þ-approximation algorithm for the capacitated rooted
min-max cycle cover problem, which improves its existing
approximation ratio of 13þ � but with less running time
[31]. Specifically, the time complexity of the algorithm in
[31] is Oðn2:5lognðlognþ log 1

�ÞÞ while ours is Oðn2:5

ðlognþ log 1
�ÞÞ, where n is the number of vertices in graph

G and � is a constant with 0 < � < 1. We finally evaluate
the performance of the proposed algorithms through
experimental simulations. Experimental results show that
the actual approximation ratios delivered by the proposed
algorithms are always no more than 2, much better than
their analytical counterparts.

The rest of the paper is organized as follows. Section 2
introduces preliminaries. Sections 3, 4, and 5 propose
approximation algorithms for the three mentioned prob-
lems respectively. We finally evaluate the performance of
the proposed algorithms through simulations in Section 6,
and conclude our discussion in Section 7.

2 PRELIMINARIES

In this section, we first introduce several notions and nota-
tions. We then provide the precise problem definitions. We
finally introduce two important techniques: the tree decom-
position technique and the transformation technique from a
tree cover to a cycle cover.

We consider a complete graph G ¼ ðV;EÞ, and an edge
weight function: w : E 7! Zþ, and the edge weights satisfy
the triangle inequality. The vertex set and the edge set of a
graph G are referred to as V ðGÞ and EðGÞ respectively, and
jV ðGÞj and jEðGÞj are referred to as the number of vertices
and edges in G. For a weighted graph G, wðGÞ is defined asP

e2EðGÞ wðeÞ. A graphG is amulti-graph if there are multiple
edges between a pair of vertices or there is a self loop at a
vertex in the graph.

2.1 Problem Definitions

Definition 1. Given a complete graph G ¼ ðV;EÞ, a metric edge
weight function w : E 7! Zþ and a positive integer k, the root-
less min-max cycle cover problem inG is to find k edge-dis-
joint cycles C1; C2; . . . ; Ck covering all vertices in V , i.e.,

[k
i¼1V ðCiÞ ¼ V and EðCiÞ \EðCjÞ ¼ ; if i 6¼ j, such that

the maximum cycle weight,maxki¼1fwðCiÞg, is minimized.

Definition 2. Given a complete graph G ¼ ðV;EÞ, a depot set
D � V , a metric edge weight function w : E 7! Zþ, and a pos-
itive integer k, the uncapacitated rooted min-max cycle
cover problem in G is to find k edge-disjoint cycles
C1; C2; . . . ; Ck covering all vertices in V �D such that each
cycle contains exactly one depot in D and the maximum cycle
weight is minimized.

Notice that a depot can be included by multiple cycles in
this problem definition.

Definition 3. Given a complete graph G ¼ ðV;EÞ, a depot set
D � V , a metric edge weight function w : E 7! Zþ, a positive
integer k, and a constraint function f : D 7! Zþ that satisfiesP

r2D fðrÞ � k, the capacitated rooted min-max cycle
cover problem in G is to find k edge-disjoint cycles
C1; C2; . . . ; Ck covering all vertices in V �D such that each
depot r 2 D is contained by at most fðrÞ cycles, each cycle con-
tains exactly one depot from D and the maximum cycle weight
is minimized.

2.2 A Paradigm of Tree Decomposition

A widely-used tree decomposition technique [10], [16] is to
decompose a large tree (in terms of tree weight) into several
edge-disjoint smaller subtrees by bounding the tree weight.
For the sake of completeness, we state the tree decomposi-
tion by the following lemma.

Lemma 1. [10], [16] Given a tree T with weight wðT Þ, assume
that each edge in T has weight no more than b and
wðT Þ � 2b. Then, tree T can be decomposed into x edge-dis-
joint subtrees T1; . . . ; Tx such that wðTiÞ < 2b for each i

with 1 � i � x, and

Px

i¼1
wðTiÞ

x � b, where b > 0 and

2 � x � bwðT Þ
b
c.

Proof. Trees with weight in the interval ½b; 2bÞ can be split
away from T until the weight of the leftover tree is less
than 2b. Suppose that the split trees are T1; T2; . . . ; Tx

with x � 2. From the construction, we know that
wðTiÞ 2 ½b; 2bÞ for i with 1 � i � x� 1. The only tree that
may have weight less than b is Tx. Note that prior to split-
ting Tx�1, the weight of the remaining tree is at least 2b,
therefore, the average weight of Tx�1 and Tx is no less
than b. Thus, the average weight of all Tis is at least b.
Therefore, x cannot be greater than bwðT Þ

b
c. tu

2.3 A Cycle Cover Derived from a Tree Cover

We introduce a popular technique that transforms a k-tree
cover of a graph G into a k-cycle cover of G, and state this
transformation in the following lemma.

Lemma 2. Given a metric complete graph G ¼ ðV; E;wÞ, a posi-
tive integer k, and a k-tree cover T ¼ fT1; . . . ; Tkg of G with
maxTi2T fwðTiÞg � aB�, T can be transformed into an edge-
disjoint k-cycle cover C ¼ fC1; . . . ; Ckg of G such that
maxCi2CfwðCiÞg � 2aB�, where a is a constant greater than
1 and B� is the value of the optimal solution to the min-max
k-cycle cover problem in G.

602 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 3, MARCH 2015



Proof. For each tree Ti in T , a Eulerian tour with the weight
no more than 2aB� is obtained by doubling the edges in
Ti, then a cycle Ci can be derived from this tour by short-
cutting repeated vertices in the tour. As the edge weights
meet the triangle inequality, we have wðCiÞ � 2wðTiÞ, for
all i with 1 � i � k. A cycle cover C then is found with
maxCi2CfwðCiÞg � 2aB�. tu

3 ALGORITHM FOR THE ROOTLESS MIN-MAX

CYCLE COVER PROBLEM

In this section, we deal with the rootless min-max cycle
cover problem in G ¼ ðV;EÞ by devising a ð5 1

3 þ �Þ-approxi-
mation algorithm. We start with the following lemma,
which will be the cornerstone of the proposed algorithm for
the problem.

Lemma 3. Given a graph G ¼ ðV;EÞ, a metric edge weight func-
tion w : E 7! Zþ, assume that C is a cycle in G with
wðCÞ � B. Then, (i) for any edge e 2 EðCÞ, wðeÞ � B=2.
(ii) There are no more than two edges in EðCÞ with weights
greater than B=3.

Proof. Suppose that cycle C contains at least three vertices.
Otherwise, the claims are straightforward and easily ver-
ified. We start with Case (i). Suppose that there is an
edge e ¼ ðu; vÞ 2 EðCÞ with wðeÞ > B=2. Apart from a
path P1 consisting of a single edge e only in C, there is
another vertex-disjoint path P2 between u and v in C.
The length of path P2 is wðCÞ � wðP1Þ < B�B=2 ¼ B=2.
On the other hand, following the triangle inequality of
the edge weights in G, we have wðeÞ � wðP2Þ < B=2,
which contradicts the assumption. Therefore, wðeÞ � B=2
for each edge in C.

We then show Case (ii). As we assume that C contains
at least three vertices, then C contains at least three edges
as well. Now, suppose that there are at least three edges
in C with weight greater than B=3. Then, wðCÞ is larger
than 3 �B=3 ¼ B, which contradicts the assumption. tu
In the following we will devise an algorithm for the

problem. Let OPT ¼ fC�
1 ; C

�
2 ; . . . ; C

�
kg denote an optimal

solution to the rootless min-max cycle cover problem in G
and B� the maximum cycle weight in OPT , i.e.,
B� ¼ maxki¼1fwðC�

i Þg. Assume there is a guess B of B� with
B � B�. The proposed algorithm is to find a k-tree cover
T ¼ fT1; T2; . . . ; Tkg of G covering all vertices in G with
maxTi2T fwðTiÞg � 8

3B first, and then construct a cycle cover
from the tree cover by Lemma 2. As a result, a k-cycle
cover of G is obtained, and the maximum weight among
the cycles is no more than 2 � 83B ¼ 16

3 B.

3.1 Algorithm Overview

The basic idea of the proposed algorithm is as follows. A
subgraph G0 of graph G is obtained by removing all edges
with wðeÞ > B=3. Assume that G0 contains lþ h connected
components CC1; . . . ; CCl; CClþ1; . . . ; CClþh. Let Ti be an
MST of CCi for all i with 1 � i � lþ h. The lþ h con-
nected components of G0 can be further classified into
light connected components and heavy connected compo-
nents, where a connected component CCi is referred to as
a light connected component if wðTiÞ < B; otherwise, it is

referred to as a heavy connected component. Assume that G0

contains l light connected components and h heavy con-
nected components.

The general strategy adopted for the problem is to
merge the MSTs first, using the edges with weight no
more than B=2 to reduce the number of trees. Then, it is
followed by the tree decomposition with bounding the
weight of each decomposed tree within 8

3B such that the
number of decomposed trees is no more than k. We distin-
guish the rest of our discussions into three cases: Case one:
G0 does not contain any heavy connected components, i.e.,
h ¼ 0. Case two: G0 does not contain any light connected
components, i.e., l ¼ 0. And Case three: G0 contains both
light and heavy connected components, i.e., l 6¼ 0 and
h 6¼ 0. For each of these three cases we show how to find k
trees covering all vertices in G such that the maximum tree
weight is no more than 8

3B.

3.2 Case One: GG0 Does Not Contain Any Heavy
Connected Components

We start with Case 1: there are no heavy connected compo-
nents in G0. We construct a tree cover T by merging some of
the l trees using the edges with weight no greater than B=2
so that the number of resulting trees is no more than k as
follows.

As G0 contains l light connected components only, an
auxiliary graph H ¼ ðX;EXÞ is constructed as follows. Each
vertex vi in X corresponds to a light connected component
CCi, 1 � i � l. There is an edge between two vertices vi and
vj if and only if there is an edge in G between the vertices in
CCi and CCj with weight no more than B=2 and i 6¼ j, for
all i and j with 1 � i; j � l. Let M be a maximum matching
of graphH. Then, a tree cover T of G can be found based on
M as follows.

Initially T ¼ ;. Then, for each pair of matched vertices vi
and vj in M, a resulting tree Ti;j is obtained by adding a
cheapest edge e (with weight no more than B=2) between
the MST Ti of CCi to the MST Tj of CCj, which is then
added to T . It is obvious that wðTi;jÞ � 5

2B as wðTiÞ < B,
wðTjÞ < B, and wðeÞ � B

2 . For each non-matched vertex vi
in H, add the MST Ti of CCi to T directly. Clearly, the
weight of each tree in T is no more than 5

2B. The rest is to
show that jT j � k. Notice that T contains jMjþ jX �
V ðMÞj ¼ jMj þ l� 2jMj ¼ l� jMj trees. In the following,
we show that l� jMj � k.

Consider the optimal solution OPT of the problem. We
remove all edges with weight greater than B=3 from OPT .
Following Lemma 3, there are at most two edges in each
cycle C�

i in OPT with weight larger than B=3. Thus, no
more than two connected components C�

i;1 and C�
i;2 will be

the results after the removal of all edges with weight
larger than B=3 from C�

i . The cycles in OPT thus are classi-
fied into three different categories: light cycles, heavy
cycles, and bad cycles, where a cycle C�

i is a light cycle (or
heavy cycle) if the connected components obtained by
removing all the edges with weight greater than B=3 are
contained in light connected components (or heavy com-
ponents) CCx and CCy of G0, where 1 � x; y � l (or
lþ 1 � x; y � lþ hÞ. Otherwise, C�

i is a bad cycle, which
means that one of the two connected components C�

i;1 and

XU ET AL.: APPROXIMATION ALGORITHMS FOR MIN-MAX CYCLE COVER PROBLEMS 603



C�
i;2 is in a light connected component CCj and the other is

in a heavy component CCj0 of G
0 with j 6¼ j0. Assume that

OPT contains k�l light cycles, k�h heavy cycles, and k�b bad
cycles, then jOPT j ¼ k�l þ k�h þ k�b ¼ k.

We now construct another auxiliary graph H 0 ¼ ðX;E0
XÞ

based on the k�l light cycles in OPT as follows.
Each vertex vi 2 X corresponds to a light connected

component CCi of G
0. There is a self loop edge on vertex vi

if there exists a cycle C�
x 2 OPT such that CC�

x;1 is con-
tained in CCi of G0 (there is no CC�

x;2). There is an edge
ðvi; vjÞ 2 E0

X if there is a cycle C�
x 2 OPT such that CC�

x;1

and CC�
x;2 are in connected components CCi and CCj,

respectively. Clearly, it is easy to verify that jE0
Xj ¼ k�l � k.

Let M 0 be a maximum matching of graph H 0. A tree cover
T 0 based on the maximum matching M 0 in H 0 then can be
constructed, using the similar approach as we did for the
tree cover T based on the maximum matching M in H.
Thus, T 0 contains l� jM 0j trees.

We claim that l� jMj � k by the following lemma.

Lemma 4. Given the constructed graph H ¼ ðX;EXÞ and
H 0 ¼ ðX;E0

XÞ, let M and M 0 be the maximum matchings in
H and H 0 respectively, we have l� jMj � l� jM 0j and
l� jM 0j � k, then l� jMj � k.

Proof. We start by showing that l� jMj � l� jM 0j. Note
that if there is an edge in H 0 between two different ver-
tices vi and vj in X, then there is a cycle C�

x in OPT
such that the two connected components CC�

x;1 and
CC�

x;2 derived from C�
x are contained in connected com-

ponents CCi and CCj of G
0, respectively. By Lemma 3,

CCi and CCj can be connected with an edge with
weight no greater than B=2. Therefore, there must
have an edge in H between vertices vi and vj, too. As
M is a maximum matching in H, we have jMj � jM 0j,
i.e., l� jMj � l� jM 0j.

We then show that l� jM 0j � k. Following our
assumption that there are only l light connected compo-
nents in G0, each vertex in H 0 is adjacent to at least one
edge in E0

X (a self-loop edge is counted as an edge in
E0

X too) by the construction of H 0. Then, each vertex in
X � V ðM 0Þ is adjacent to at least an edge in E0

X �M 0,
and no two distinct vertices in X � V ðM 0Þ are connected
by an edge in E0

X �M 0 as the matching M 0 is the maxi-
mum one. Thus, jX � V ðM 0Þj � jE0

Xj � jM 0j. Therefore,
T 0 contains l� jM 0j ¼ jX�V ðM 0Þj þ jM 0j � jE0

Xj � jM 0jþ
jM 0j ¼ jE0

Xj ¼ k�l � k trees. The lemma then follows. tu

3.3 Case Two: GG0 Does Not Contain Any Light
Connected Components

We then deal with Case 2: there are no light connected com-
ponents in G0. In this case l ¼ 0 and G0 contains only h
heavy connected components. A tree cover T of G can be
constructed as follows.

For the MST Ti of each connected component CCi, if
wðTiÞ � 8

3B, Ti can be decomposed into several subtrees
such that the weight of each subtree is no more than 2b by
Lemma 1, where b ¼ 4

3B. These subtrees are then added to
T ; otherwise (B � wðTiÞ < 8

3B), Ti is added to T directly,
1 � i � h. We claim that the tree cover T of G contains no
more than k trees.

Lemma 5. Given a metric graph G ¼ ðV;EÞ, assume that
B � B�, let G0 be a subgraph of G after the removal of all edges
with weight greater than B=3. Assume that each connected
component of G0 is a heavy connected component. Then, the
constructed tree cover T by the above approach is a k-tree cover
of G, and the maximum tree weight is no more than 8

3B.

Proof. We give a lower bound on the weighted sum of trees
in T first. Assume that there are x MSTs of the h heavy
connected components with weight in the interval
½B; 83BÞ, where 0 � x � h. Then, each of the rest h� x
MSTs has weight at least 8

3B. Following the construction
of T , the x MSTs are directly put into T , and each of the
h� x MSTs are decomposed into subtrees and the aver-
age weight of the decomposed subtrees is at least 4

3B by
Lemma 1. Then, the h� x MSTs are decomposed into
jT j � x subtrees in T with average tree weight no less
than 4

3B. Thus, we have

wðT Þ � ðjT j � xÞ � 4
3
Bþ x � B

� jT j 4
3
B� h

3
B since x � h:

(1)

We then estimate the upper bound of
Ph

i¼1 wðTiÞ,
using the optimal solution OPT . Assume that
OPT ¼ fC�

1 ; C
�
2 ; . . . ; C

�
kg. By removing all edges with

weight greater than B=3 from OPT , each cycle C�
i can be

partitioned into either one connected component CC�
i;1

if none or one edge is removed from it, or two connected
components CC�

i;1 and C�
i;2 if two edges are removed

from it. Following our assumption that there are only h
heavy connected components in G0 after removing all
edges with weight greater than B=3 from G, then, each
CC�

i;1 and/or CC
�
i;2 are in one of h heavy connected com-

ponents. Thus, all k cycles in OPT are heavy cycles, i.e.,
k�l ¼ k�b ¼ 0 and k�h ¼ k. Suppose the removal of edges
with weight greater than B=3 results in p heavy cycles
that have two connected components and q cycles have
only one connected components, where pþ q ¼ k�h ¼ k.
Thus, there are 2pþ q connected components derived
from OPT after the removal of edges with weight
greater than B=3, and the weighted sum of these con-
nected components is no more than pB=3þ qB, since
each of the p cycles has been removed two edges with
weight greater than B=3 and the weight of each cycle is
no more than B� with B � B�. We can merge these
2pþ q connected components into h connected compo-
nents by adding exactly 2pþ q � h edges with weight
no more than B=3 in G0, as G0 contains h heavy con-
nected components. Since the weighted sum of the
MSTs of these h connected components is the minimum
weighted sum of a forest of h trees spanning all vertices
in G, then,

Xh
i¼1

wðTiÞ � pB=3þ qBþ ð2pþ q � hÞB=3

� 4

3
kB� h

3
B as p+q=k�h �k.

(2)

Since wðT Þ ¼
Ph

i¼1 wðTiÞ, we have jT j � k by combining

Eq. (1) and Eq. (2). tu

604 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 3, MARCH 2015



3.4 Case Three:G0 Contains Both Light and Heavy
Connected Components

We now deal with Case three. We assume that G0 contains
l light connected components CC1; CC2; . . . ; CCl and h
heavy connected components CClþ1; CClþ2; . . . ; CClþh, i.e.,
l 6¼ 0 and h 6¼ 0. For each light connected component CCi

of G0, denote by wminðCCiÞ the minimum edge weight
wðeÞ between the vertices in CCi and its nearest heavy con-
nected component CCj with lþ 1 � j � lþ h if there is one
edge in G with weight no greater than B=2, i.e., wðeÞ ¼
mine0¼ðu;vÞ2Efwðe0Þ j u 2 CCi; v 2 CCj0 ; wðe0Þ � B=2; l þ
1 � j0 � lþ hg. Otherwise, wminðCCiÞ ¼ 1. Define
AðCCiÞ ¼ wðTiÞ þ wminðCCiÞ, 1 � i � l. The general strat-
egy for this case is to reduce it to cases one and two,
respectively. For the sake of convenience, in the following
we initially assume that the k�l light cycles in OPT are
given, under this assumption we show that there is a
k-tree cover of G. We later show how to find a k-tree
cover of G by removing the assumption.

3.4.1 The k�l Light Cycles in OPT Are Given

Recall that the k cycles in OPT have been classified into k�l
light cycles, k�h heavy cycles, and k�b bad cycles, where
k�l þ k�h þ k�b ¼ k. Given the k�l light cycles in OPT , we first
construct the auxiliary multi-graph H 0 ¼ ðX;E0

XÞ as we did
in Case one, where X is the set of vertices corresponding to
the l light connected components of G0. The edge set E0

X is
defined by the k�l light cycles in OPT . The multi-graph H 0

may contain vertices without any adjacent edges including
self-loops, we term these vertices as the isolated vertices,
which correspond to the light connected components of G0

that contain only the vertices from bad cycles. Clearly,
jE0

Xj ¼ k�l . Let M 0 be a maximum matching of H 0. Then,
each vertex in X is either matched with another vertex or
unmatched at all. Let a� be the number of unmatched iso-
lated vertices and b� the number of unmatched vertices that
have adjacent edges including self-loops. Clearly 0 � a�;
b� � l and jM 0j ¼ ðl� a� � b�Þ=2.

We then construct an auxiliary weighted graph
H 0

a�;b� ¼ ðY; E�
Y Þ based on the maximum matching M 0 of H 0

as follows. Y contains l regular vertices, corresponding to
the l light connected components CC1; . . . ; CCl of G0, a�

heavy vertices representing the a� light connected compo-
nents will be merged to at most a� heavy connected com-
ponents of G0, and b� null vertices which imply the MSTs of
these light connected components that will be in the k-tree
cover of G. We refer to a heavy connected component CCj

that has been enlarged by merging one or multiple light
connected components into it as the updated heavy con-
nected component CC0

j, lþ 1 � j � lþ h. There is an edge in
E�

Y between two regular vertices vi and vj if there are two
connected components CC�

x;1 and CC�
x;2 derived from a

light cycle C�
x 2 OPT after the removal of all edges with

weight greater than B=3 from it, and CC�
x;1 and CC�

x;2 are
in two light connected components CCi and CCj of G0

respectively. The weight of this edge is zero. There is an
edge in E�

Y between a regular vertex vi and each of the a�

heavy vertices if AðCCiÞ 6¼ 1, and the weight of this edge
is AðCCiÞ. There is an edge in E�

Y between every null ver-
tex and every regular vertex with weight zero.

It is easily shown that a minimum weighted perfect
matching in H 0

a�;b� can be found based on the maximum
matchingM 0 inH 0. LetMðH 0

a�;b� Þ be the minimumweighted
perfect matching. Then,MðH 0

a�;b�Þ ¼ fðvi; vjÞ j ðvi; vjÞ 2 M 0g
[fðvi; a null vetrexÞ j vi is an unmatched vertex in H 0 inci-
dent to at least an edge in H 0g [fðvi; a heavy vertexÞ j vi is
an unmatched isolated vertex inH 0 andAðCCiÞ 6¼ 1g.

A k-tree cover of G, T �, then can be found based on
MðH 0

a�;b� Þ, where T � ¼ T �ðS1Þ [ T �ðS2Þ, S1 consists of all
light connected components that are either matched with
another light connected components in M 0 or unmatched
but incident to at least one edge in H 0, and S2 consists of all
updated heavy connected components.

T �ðS1Þ consists of MSTs formed by each pair of
matched light connected components in M 0 or the MST
of a light connected component that is matched with a
null vertex in MðH 0

a�;b�Þ. It is easy to see that the maxi-
mum tree weight among the trees in T �ðS1Þ is no more
than 5

2B. It can be shown that the number of trees in
T �ðS1Þ is no more than k�l through a reduction to Case
one as follows. A subgraph H 00 of H 0 is obtained by the
removal of all isolated vertices from graph H 0. Following
the similar argument in Case one, we have jT �ðS1Þj ¼
b� þ l�a��b�

2 � k�l .
T �ðS2Þ is constructed as follows. Assume that there is a

matched edge in MðH 0
a�;b�Þ between a regular vertex vi (or

light connected component CCi) and a heavy vertex. Let
CCj be the nearest heavy connected component of CCi.
Merging CCi to CCj results in an updated heavy con-
nected component CC0

j. Let T
0
j be the MST of CC0

j. Then,

wðT 0
jÞ ¼ wðTjÞ þAðCCiÞ, lþ 1 � j � lþ h. Now, the prob-

lem becomes Case two, where there are h updated heavy
connected components. A set of trees with weight no
more than 8

3B can be found through applying the tree
decomposition on each T 0

j for all j with lþ 1 � j � lþ h.
We then show that jT �ðS2Þj � k�b þ k�h, thus there is a tree
cover of G with no more than jT �j ¼ jT �ðS1Þj þ jT �ðS2Þj �
k�l þ ðk�b þ k�hÞ ¼ k trees.

Let us define some notations first. Recall that each bad
cycle C�

i 2 OPT has been divided into two connected
components CC�

i;1 and CC�
i;2 after the removal of two

edges with weight greater than B=3 from it, and one of
them is in a light connected component CCx and the
other is in a heavy connected component CCy of G0 with
1 � x � l and lþ 1 � y � lþ h. For the sake of discussion
convenience, we further assume that CC�

i;1 is the con-
nected component that is contained in a light connected
component CCx of G0. Define the excess weight of each
bad cycle C�

i , wexcessðC�
i Þ, as the weight of the connected

component CC�
i;1 of C�

i in the light connected component
plus the smaller edge weight of the two removed edges
ei;1 and ei;2. For example, assume that CC�

i;1 is the con-
nected component of C�

i in the light connected compo-
nent of G0 and ei;1 and ei;2 are the two removed edges
from C�

i with wðei;1Þ � wðei;2Þ. Then,

wexcessðC�
i Þ ¼ wðCC�

i;1Þ þ wðei;1Þ: (3)

Denote by wexcess the sum of excess weights of the k�b bad

cycles in OPT .

XU ET AL.: APPROXIMATION ALGORITHMS FOR MIN-MAX CYCLE COVER PROBLEMS 605



We show jT �ðS2Þj � k�b þ k�h by the following lemma.

Lemma 6. Let T 0
j be the MST of CC0

j for all j with lþ 1 �
j � lþ h. Notice that if no light connected component is
merged to CCj, CC

0
j is the original CCj itself. Let T �ðS2Þ be

the set of trees after applying the tree decomposition on each T 0
j

for all j with lþ 1 � j � lþ h where b ¼ 4
3B. Then,

jT �ðS2Þj � k�b þ k�h.

Proof. In the following we show that there are no more than
k�b þ k�h trees with bounding weights by decomposing
each trees T 0

j for every jwith lþ 1 � j � lþ h.
Using a similar argument as we did to obtain inequal-

ity (1) in Case two, we have,

Xlþh

j¼lþ1

w
�
T 0
j

�
� jT �ðS2Þj

4

3
B� h

3
B: (4)

Then, we show that

Xlþh

j¼lþ1

w
�
T 0
j

�
�

�
k�b þ k�h

� 4
3
B� h

3
B: (5)

Inequalities (4) and (5) imply that jT �ðS2Þj � ðk�b þ k�hÞ.
We show that inequality (5) holds due to

Plþh
j¼lþ1

wðTjÞ � ðk�b þ k�hÞ 43B� h
3B� wexcess and wðMðH 0

a�;b� ÞÞ ¼Plþh
j¼lþ1ðwðT 0

jÞ � wðTjÞÞ � wexcess.

With a similar argument as we did to obtain inequal-
ity (2) in Case two, it can be shown that

Xlþh

j¼lþ1

wðTjÞ �
�
k�b þ k�h

� 4
3
B� h

3
B� wexcess; (6)

where Tj is the MST of CCj, omitted.

We now show that wðMðH 0
a�;b� ÞÞ ¼

Plþh
j¼lþ1ðwðT 0

jÞ�
wðTjÞÞ � wexcess as follows.

Following the construction of H 0
a�;b� , wðMðH 0

a�;b� ÞÞ is
the sum of all AðCCiÞ of light connected components in
G0 that isolated vertices in H 0 correspond to, where
1 � i � l. We show that, for each light connected compo-
nent CCi that an isolated vertex in H 0 corresponds to,
AðCCiÞ is no more than the sum of excess weight of the
bad cycles that derived connected components by the
removal of edges with weight greater than B=3 are con-
tained in CCi. Then, the inequality holds.

For each light connected component CCi that an
isolated vertex vi in H 0 corresponds to, assume that
CCi contains t connected components derived from t
bad cycles C�

i1
; . . . ; C�

it
with 1 � ij � k and 1 � j � t.

Denote by CC�
i1;1

; CC�
i2;1

; . . . ; CC�
it;1

the t connected
components contained in CCi and ei1;1; . . . ; eit;1 the t
smaller weight edges among the 2t removed edges
with weight greater than B=3 from the t bad cycles.
Then, B=3 < wðeij;1Þ � B=2, 1 � j � t. Let e be the
cheapest edge by merging CCi to its nearest heavy
connected component. As AðCCiÞ ¼ wðTiÞ þ wðeÞ andPt

j¼1 wexcessðC�
ij
Þ ¼

Pt
j¼1 wðCC�

ij;1
Þ þ

Pt
j¼1 wðeij;1Þ, we

then show that

wðTiÞ þ wðeÞ �
Xt

j¼1

wðCC�
ij;1

Þ þ
Xt

j¼1

wðeij;1Þ: (7)

By the definition of edge e, we have that
wðeÞ � minfwðeij;1Þ j 1 � j � tg. Assume that wðeit;1Þ ¼
mint

j¼1wðeij;1Þ, then, wðeÞ � wðeit;1Þ. We then show that

wðTiÞ �
Pt

j¼1 wðCC�
ij;1

Þ þ
Pt�1

j¼1 wðeij;1Þ. We notice that

the t connected components CC�
ij;1

in CCi with 1 � j � t

can become a single connected subgraph spanning all
vertices in CCi, by adding extra t� 1 edges with weight

no greater than B=3. Then, wðTiÞ �
Pt

j¼1 wðCC�
ij;1

Þ þ ðt�
1ÞB=3 �

Pt
j¼1 wðCC�

ij;1
Þþ

Pt�1
j¼1 w ðeij;1Þ as Ti is an MST of

CCi and B=3 < wðeij;1Þ � B=2 for j with 1 � j � t. We

then conclude that
Plþh

j¼lþ1 wðT
0
jÞ � 4

3 ðk�b þ k�hÞB� h
3B,

which implies that there are nomore than k�b þ k�h decom-
posed trees with the maximum tree weight no greater
than 8

3B according to Lemma 1. tu

3.4.2 Without the Knowledge of the k�l Light Cycles

The above approximate solution obtained is based on an
important assumption, that is, the k�l light cycles in OPT are
given. Having the k�l light cycles, an auxiliary graph H 0 then
is constructed and a maximum matching M 0 of H 0 is found.
The values of a� and b� are then obtained through M 0. A
weighted auxiliary graph H 0

a�;b� based on a� and b� is con-
structed and a minimum weighted perfect matching
MðH 0

a�;b� Þ in H 0
a�;b� must exist. A k-tree cover T � of G finally

is derived based on MðH 0
a�;b�Þ. In the following we show

how to find the approximation solution to the problem
without knowing the k�l light cycles in OPT .

As a� and b� are non-negative integers in the interval
½0; l	 and a� þ b� � l, there are in total

Pl
a¼0ðl� aÞ ¼ lðlþ1Þ

2
possible pairs of values of a and b. a� and b� must be one

of these lðlþ1Þ
2 pairs. In each pair with a and b, we con-

struct another auxiliary weighted graph Ha;b without the
knowledge of OPT , which is constructed later. We show
that when a ¼ a� and b ¼ b�, H 0

a�;b� is a spanning sub-
graph of Ha�;b� . Thus, the minimum weighted perfect
matching MðH 0

a�;b� Þ in H 0
a�;b� is one perfect matching in

Ha�;b� . Then, instead of using MðH 0
a�;b� Þ of H 0

a�;b� to find
T �, we can use the minimum weighted perfect matching
MðHa�;b�Þ of Ha�;b� to find a k-tree cover of G, T . The dif-
ference between H 0

a�;b� and Ha�;b� is that the former can be
constructed if the k�l light cycles are given while the later
does not need this knowledge.

The weighted auxiliary graph Ha;b ¼ ðY; EY Þ is con-
structed as follows. Y contains l regular vertices vi,
1 � i � l, corresponding to the l light connected compo-
nents of G0, a heavy vertices, and b null vertices. There is
an edge in EY between two regular vertices vi and vj if
there is an edge in G with weight no greater than B=2
between the vertices in two light connected components
CCi and CCj, and the weight of the edge is zero for any
i and j with 1 � i; j � l. There is an edge in EY between
every null vertex and every regular vertex and its weight
is zero. There is an edge in EY between a regular vertex
vi and every heavy vertex if light connected component
CCi has a finite value AðCCiÞ and the weight of the edge
is AðCCiÞ for some i with 1 � i � l.

If there is a minimum weighted perfect matching in Ha;b,
let MðHa;bÞ be the minimum weighted perfect matching. A

606 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 3, MARCH 2015



k-tree cover T a;b of G can be constructed based on MðHa;bÞ
as follows.

Initially, T a;b ¼ ;. For each matched edge ðx; yÞ 2
MðHa;bÞ, assume that x must be a regular vertex with
x ¼ vi. Then, if y is a null vertex, the MST Ti of CCi is
added to T a;b. If y ¼ vj is a regular vertex with i 6¼ j, an
MST Ti;j is obtained by joining Ti of CCi and Tj of CCj

with a cheapest edge between them. Ti;j is added to T a;b.
Otherwise (y must be a heavy vertex), let CCj be the
nearest heavy connected component of CCi, i.e., AðCCiÞ
is equal to the minimum edge weight of an edge e
between the vertices in CCi and CCj plus wðTiÞ. CCi will
be merged to CCj. Let CC0

j be the updated heavy con-
nected component and T 0

j the MST of CC 0
j. Then,

T 0
j ¼ Ti [ Tj [ feg and wðT 0

jÞ ¼ wðTjÞ þAðCCiÞ. For each
updated heavy connected component CC0

j (notice that a
CC0

j may be the results by merging multiple light con-
nected components). If wðT 0

jÞ < 8
3B, T 0

j is added to T a;b

directly. Otherwise, apply tree decomposition on T 0
j to

split away subtrees from T 0
j by Lemma 1 with b ¼ 4

3B.
Add these split subtrees into T a;b.

It is easily show that the maximum tree weight of the
trees in T a;b is no more than 8

3B. We then show that when
a ¼ a� and b ¼ b�, jT a�;b� j � k as follows.

By the definitions of Ha�;b� and H 0
a�;b� , we know that

H 0
a�;b� is a spanning subgraph of Ha�;b� . Thus, there must

be a perfect matching in Ha�;b� as there is a perfect
matching in H 0

a�;b� .
We note that there are l regular vertices in Ha�;b� .

Within the perfect matching MðHa�;b� Þ, a� regular vertices
are matched to the a� heavy vertices, b� regular vertices
are matched to b� null vertices, and the rest of regular
vertices match themselves, i.e., jMðHa�;b� Þj ¼ a� þ b�þ
ðl� a� � b�Þ=2. The number of trees obtained from the
matched edges between the regular vertices and a regular
vertex and a null vertex is b� þ ðl� a� � b�Þ=2 � k�l with
the maximum tree weight 5

2B. We also notice that the
weight of the minimum weighted matching MðHa�;b� Þ in
Ha�;b� is no more than that of the minimum weighted
perfect matching MðH 0

a�;b� Þ in H 0
a�;b� , so wðMðHa�;b�ÞÞ �

wðMðH 0
a�;b� ÞÞ � wexcess. Then, the weighted sum of the

MSTs of all updated heavy connected components isPlþh
j¼lþ1 wðT 0

jÞ ¼
Plþh

j¼lþ1 wðTjÞ þ wðMðHa�;b�ÞÞ � 4
3 ðk�b þ k�hÞ

B� h
3B by combining inequality (6). Apply the tree

decomposition to each T 0
j for all j with lþ 1 � j � lþ h,

no more than k�b þ k�h trees with the maximum tree weight
8
3B can be derived by combining Inequality (4). Thus, the
number of trees covering all vertices in G is no more than
k�l þ ðk�b þ k�hÞ ¼ k.

3.5 Algorithm

The detailed algorithm is described in Algorithm 1.
Step 1 of Algorithm 1 is explained by the following

lemma.

Lemma 7. In Algorithm 1, if lþ h � 8k, there is no k-tree
cover of G with maximum tree weight 8

3B.

Proof. We show the claim by contradiction. Suppose that
there is a k-tree cover with the maximum tree weight 8

3B
when lþ h � 8k. We assume that graph Ha;b from which

the tree cover T is derived contains a heavy vertices and
b null vertices. For each light connected component
merged to a heavy component with an edge e at Step 13,
we have wðeÞ > B=3, and for the MST Tj of a heavy con-
nected component CCj, we have wðTjÞ � B for all j with
lþ 1 � j � lþ h. We only consider the trees in T heavy by
decomposing the MSTs of updated heavy connected
components at Step 14 of the algorithm. Then,

wðT heavyÞ ¼
Xlþh

j¼lþ1

wðT 0
jÞ � h �Bþ a �B=3: (8)

On the other hand, T heavy contains no more than
k� ðl� a� bÞ=2� b trees with the maximum tree weight
no greater than 8

3B. Therefore,

wðT heavyÞ � ðk� ðl� a� bÞ=2� bÞ � 8B=3: (9)

Combining inequities (8) and (9), we have

8k > ðlþ hÞ þ 3ðl� aÞ þ 4bþ 2h � lþ h; (10)

the last inequality holds due to l � a. We thus have the fol-

lowing Lemma. tu
Lemma 8. If B � B�, Algorithm 1 will deliver a k-tree cover

of G with the maximum tree weight 8
3B.

3.6 Strongly Polynomial Approximation

The proposed approximation algorithm above is a polyno-
mial algorithm only when the maximum weight of edges in
G is bounded by a polynomial of 2n. Thus, the optimal value
B� can be found within a polynomial number of iterations
by performing binary search on the interval ½0; n � wm	,
where n ¼ jV j, m ¼ jEj, and wm ¼ maxe2EfwðeÞg. Other-
wise, the proposed algorithm is a pseudo-polynomial algo-
rithm because its time complexity depends on the
maximum value of edge weights. In the following, for a
given constant 0 < � < 1, we show that the number of
guesses B of the value of B� is a polynomial of n by adopt-
ing a technique in [10].

Assume that the edge weights in G are sorted in increas-
ing order, denote by w1 � w2 � � � � � wm. It is obvious that
B� � n � wm. Using different guesses B of B�, Algorithm 1
proceeds iteratively until a feasible solution is found. Spe-
cifically, the initial guess B of B� is B ¼ wm. When B ¼ wm,
if Algorithm 1 returns that “B is too low”, which means
that this guess is too small, B� must be in the interval
½wm; n � wm	. The algorithm then guesses the next B by
binary search until a guess ð1þ �

16=3ÞB of B� is found such
that Algorithm 1 delivers a solution with the maximum
cycle weight no greater than ð163 þ �ÞB. That is, the search
interval now is narrowed down in the interval
½B; ð1þ �

16=3ÞB	. Clearly B < B�, and the upper bound of
B� is ð1þ �

16=3ÞB. Thus, ð163 þ �ÞB � ð163 þ �ÞB�, and the num-
ber of iterations (by binary search) is bounded by
dlogð n�wm

16��wm=3Þe ¼ Oðlog nþ log 1
�Þ. Otherwise, we try the next

B with value no greater than the current value wm to see
whether Algorithm 1 delivers a solution, too. The next B
thus is one of the m possible values w1; . . . ; wm which can

XU ET AL.: APPROXIMATION ALGORITHMS FOR MIN-MAX CYCLE COVER PROBLEMS 607



be found using binary search in the sequence of edge
weights until an index i of an edge weight is found such
that Algorithm 1 returns “B is too low” when B ¼ wi,
while Algorithm 1 returns a k-tree cover of G with the
maximum tree weight 8

3 � wiþ1 when B ¼ wiþ1, where
i 2 ½1; m� 1	.

If wiþ1 � n2

� � wi, then the number of iterations for search-
ing a proper B in the interval ½wi; wiþ1	 is strongly polyno-
mial with an approximation ratio of 5 1

3 þ � as discussed in
the above. Otherwise, denote by w0 ¼ n2

� � wi. If Algorithm
1 can deliver a k-tree cover with the maximum tree weight
8
3w

0 when B ¼ w0. It then performs the binary search in the
interval ½wi; w

0	 to find a better B through a series of itera-
tions by binary search. Thus, the algorithm is strongly

polynomial with an approximation ratio of 5 1
3 þ �. Other-

wise (Algorithm 1 returns that “B is too low” when
B ¼ w0), then B� � wiþ1, which is shown in the following.
Suppose that B� < wiþ1, then the cycles in OPT contain
only the edges with weight no greater than wi. Thus, the
maximum cycle weight among the cycles in OPT is at most
n � wi � n2 � wi ¼ � � w0 < � �B� < B�, since w0 < B� and
0 < � < 1. This contradicts the definition of B�. Note that
Algorithm 1 can find a solution with the maximum cycle
weight 16

3 � wiþ1, then,
16
3 � wiþ1 < 16

3 B
�. We thus have the fol-

lowing theorem.

Theorem 1. Given a metric complete graph G ¼ ðV;EÞ and a
positive integer k, there is a ð5 1

3 þ �Þ-approximation algorithm
for the rootless min-max cycle cover problem in G, which takes
Oððn2k2 þ k5Þðlog nþ log 1

�ÞÞ time, where n ¼ jV j and � is a
constant with 0 < � < 1.

Proof. Combining Lemmas 2 and 8 and the above discus-
sions, the approximation ratio of the proposed algorithm
is straightforward, omitted.

The rest is to analyze the time complexity of the pro-
posed algorithm. The number of iterations of the binary
search for the optimal B� is at most Oðlog nþ log 1

�Þ by
the above discussion. In each iteration, Algorithm 1 is
invoked and its time complexity is analyzed as follows.

It takes Oðn2Þ time to obtain a subgraph G0 of G by
removing the edges with weight greater than B=3.
Finding the MSTs of all connected components in G0

takes Oðn2Þ time. Within Algorithm 1, there are no
more than lðlþ1Þ

2 ¼ Oðl2Þ tree covers T a;b of G to be con-
structed. For each tree cover T a;b, the auxiliary graph
Ha;b can be constructed in time Oðn2Þ as the edges in
Ha;b can be determined by the number of edges in G.
It is also known that Ha;b contains no more than 2l
vertices, it takes Oðð2lÞ3Þ ¼ Oðl3Þ time to finding a min-
imum weighted perfect matching by applying an algo-
rithm in [12]. The construction of tree cover T a;b takes
OðnÞ time as the tree decomposition can be imple-
mented by depth-first search on the MSTs of updated
heavy connected components. Thus, Algorithm 1
takes Oðn2Þ þOðl2ÞðOðn2Þ þOðl3Þ þOðnÞÞ ¼ Oðn2l2 þ
l5Þ ¼ Oðn2k2 þ k5Þ as l � lþ h � 8k by Lemma 7. Thus,
the time complexity of the proposed algorithm is
Oððn2k2 þ k5Þðlog nþ log 1

�ÞÞ. tu

4 ALGORITHM FOR THE UNCAPACITATED ROOTED

MIN-MAX CYCLE COVER PROBLEM

In this section, we focus on the uncapacitated rooted min-
max cycle cover problem, for which we devise a
ð6 1

3 þ �Þ-approximation algorithm as follows.

4.1 Algorithm

The proposed algorithm for this problem is to find no more
than k trees covering all vertices in V �D with each tree
having exactly one depot from D, such that the maximum
tree weight is no greater than 19

6 B when B � B�
r . To this

end, Algorithm 1 for the rootless min-max tree cover prob-
lem will be invoked. That is, it first finds k trees covering all
vertices in V �D with the maximum tree weight 8

3B. It then
connects each found tree to its nearest depot by an edge

608 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 3, MARCH 2015



with weight at most B=2. The detailed algorithm is
described in Algorithm 2.

4.2 Algorithm Analysis

The correctness and approximation ratio of the proposed
algorithm are guaranteed by the following lemmas.

Assuming that OPTr is an optimal solution to the prob-
lem and B�

r is the optimal value. Define wðv;DÞ ¼
minr2Dfwðv; rÞg as the minimum distance between each
vertex v in V �D and the depot set D. Then, there is an
important property of an optimal (uncapacitated or capaci-
tated) rooted min-max cycle cover of G: the maximum
value of wðv;DÞ for all vertices in V �D is no greater
than B�

r=2.

Lemma 9.maxv2V�Dfwðv;DÞg � B�
r=2.

Proof. Let vmax be the vertex in V �D such that
wðvmax;DÞ ¼ maxv2V�Dfwðv;DÞg. Assume that vertex
vmax is in the cycle C� 2 OPTr and rC� is the depot of C�.
Then, wðvmax; rC� Þ � wðC�Þ=2 � B�

r=2 by Lemma 3. Fol-
lowing the definition of wðvmax;DÞ, we have
wðvmax;DÞ � wðvmax; rC�Þ � B�

r=2. tu

Lemma 10. If B � B�
r , Algorithm 2 will deliver an uncapaci-

tated rooted k-tree cover of G with the maximum tree weight
19
6 B.

Proof. We first argue that Algorithm 1 delivers a k-tree
cover of G�Dwith the maximum tree weight 8

3B at Step
1 of Algorithm 2. Given the OPTr, the depot vertices in
the cycles of OPTr can be shortcut, thus, a feasible k-cycle
cover C of graph G�D then can be obtained, and
maxC�

i
2CwðC�

i Þ � B�
r . Let OPT be an optimal solution to

the rootless min-max cycle cover problem in graph
G�D with the optimal value B�, then, B� �
maxC�

i
2CwðC�

i Þ � B�
r . Therefore, B � B�

r � B�. Thus,
Algorithm 1 can find a k-tree cover T of graph G�D
with the maximum tree weight 8

3B by Lemma 8.
We then show that the minimum distance between

each found tree and its nearest depot is no more
than B=2 as minv2Ti;r2Dfwðv; rÞg ¼ minv2Tifwðv;DÞg �
maxv2V�Dfwðv;DÞg � B�

r=2 � B=2. Then, the weight of
each tree in S is no more than 8

3Bþ B
2 ¼ 19

6 B. tu

We thus have the following theorem.

Theorem 2. Given a metric complete graph G ¼ ðV; E;wÞ, a
depot set D � V , and a positive integer k, there is a
ð6 1

3 þ �Þ-approximation algorithm for the uncapacitated
rooted min-max cycle cover problem in G, which takes
Oððn2k2 þ k5Þðlog nþ log 1

�ÞÞ time, where n ¼ jV j and � is a
given constant with 0 < � < 1.

Proof. Following Lemmas 2, 10, and the similar analysis in
the previous section, the analysis of the approximation
ratio and the time complexity of the proposed algorithm
is straightforward, omitted. tu

5 ALGORITHM FOR THE CAPACITATED ROOTED

MIN-MAX CYCLE COVER PROBLEM

In this section we devise a ð7þ �Þ-approximation algorithm
for the capacitated rooted min-max cycle cover problem, in
which each depot d in D has a maximum serving capacity
on the number of vehicles it can serve. This general problem
can be reduced to one special case of the problem, that is,
each depot can only serve one vehicle and there are at least
k depots in total [31], because each depot rwith fðrÞ serving
capacity can be treated as fðrÞ ’virtual’ depots with a unit
serving capacity, and the fðrÞ virtual depots are located at
the same location. Therefore, in the rest we only consider
this special case of the problem.

We start with the following crucial lemma.

Lemma 11. Given a tree T with weight wðT Þ, assume that each
edge in T has weight no more than B and wðT Þ � 3B, then T
can be decomposed into x edge-disjoint trees T1; . . . ; Tx such

that 3
2B � wðTiÞ < 3B for each i with 1 � i � x� 1 and

B � wðTxÞ < 3B, where B > 0 and 2 � x � bwðT Þ3B=2c.

Proof. By Lemma 1, when b is set as 3
2B, T can be decom-

posed into x edge-disjoint trees T 0
1; . . . ; T

0
x with

3
2B � wðT 0

i Þ < 3B for each i with 1 � i � x� 1,
wðT 0

xÞ < 3B, and wðT 0
x�1Þ þ wðT 0

xÞ � 3B, where 2 �
x � bwðT Þ3B=2c.

We now construct Ti from T 0
i as follows. If wðT 0

i Þ � B,

Ti ¼ T
0
i for all i with i ¼ 1; . . . ; x; otherwise Ti ¼ T

0
i for all

iwith i ¼ 1; . . . ; x� 2. The rest is to construct the last two

trees Tx�1 and Tx. Following the construction of T
0
x�1 and

T
0
x, their union T 0

x�1;x ¼ T
0
x�1 [ T

0
x is connected and the

weight of T 0
x�1;x is within 3B � wðT 0

x�1;xÞ < 4B. We then

split off a subtree T
00
x�1 from T 0

x�1;x with the bounded

weight in the interval ½B; 2BÞ. Denote by T
00
x the leftover

tree. Now, if 3
2B � wðT 00

x�1Þ � 2B, then wðT 00
x Þ ¼

wðT 0
x�1;xÞ � wðT 00

x�1Þ � 3B� 2B ¼ B and wðT 00
x Þ < 4B�

3
2B < 3B. For this case, Tx�1 ¼ T

00
x�1 and Tx ¼ T

00
x . Other-

wise (B � wðT 00
x�1Þ < 3

2B), then wðT 00
x Þ � 3B� 3

2B ¼ 3
2B

and wðT 00
x Þ < 4B�B ¼ 3B. Tx�1 ¼ T

00
x and Tx ¼ T

00
x�1.

The lemma then follows. tu

5.1 Algorithm

Let OPTr be an optimal solution to the capacitated rooted
cycle cover problem in G with the optimal value B�

r .
Assume that B � B�

r . The idea of the proposed algorithm is

XU ET AL.: APPROXIMATION ALGORITHMS FOR MIN-MAX CYCLE COVER PROBLEMS 609



to find no more than k trees covering all vertices in V �D
with the maximum tree weight 3B first, by applying the tree
decomposition technique. It then connects the found trees
to the depots in set D through a maximum matching in an
auxiliary bipartite graph while ensuring that the shortest
distance between the vertices in each tree and its matched
depot is no more than B=2. The detailed algorithm is given
in Algorithm 3.

5.2 Algorithm Analysis

To show the correctness of Algorithm 3, we have:

Lemma 12. If B � B�
r , Algorithm 3 will find a k-tree cover in

which each tree contains a distinct depot in D and no depot is
contained by more than one tree, such that the maximum tree
weight is 7

2B.

Proof. Given an optimal solution OPTr of the problem, a set
OPT of segments (or lines) that do not contain any
depots can be derived as follows.

Define OPT , fT �
i j T �

i ¼ C�
i � fðri; xiÞ; ðri; yiÞg for all

C�
i 2 OPTr; ðri; xiÞ; ðri; yiÞ 2 C�

i g. That is, T �
i is a segment

of C�
i by the removal of the depot ri and its two adjacent

edges from C�
i . Then, wðT �

i Þ � B�
r � B.

Assume that the subgraph of G�D obtained after
the removal of all edges with weight greater than B=2
contains y connected components CC1; . . . ; CCy. Fol-
lowing Lemma 3, no edges in the segments of OPT

will be removed at Step 1, these segments in OPT
then are partitioned into y classes, depending on in
which connected components of a subgraph they are
contained and the subgraph is induced from G�D
by removing all edges with weight greater than B=2.
Denote by OPTi the set of segments contained by con-
nected component CCi for each i with 1 � i � y. For
the segments in OPTi, denote by D�

i the set of depots
in their corresponding cycles in OPTr and D� as the
union of all D�

i . Clearly, D
�
i 6¼ ;, D�

i \D�
j ¼ ; if i 6¼ j,

[y
i¼1D

�
i ¼ D� 
 D,

Py
i¼1 jD�

i j ¼ jD�j ¼ k, and jOPTij ¼
jD�

i j, 1 � i � y.
In the following we show that (i) the number of trees

in T obtained at Step 3 is no more than k; and (ii) each
tree in T is matched to a different depot inD at Step 3.

We first show case (i): jT j � k. Assume that
T ¼ [y

i¼1T i and T i \ T j ¼ ; if i 6¼ j, where T i is the set
of trees obtained by decomposing Ti at Step 3 for all i
with 1 � i � y. To this end, we only need to show that
jT ij � jD�

i j for all i with 1 � i � y. For each MST Ti of
CCi, if wðTiÞ < 3B, then jT ij ¼ 1 � jD�

i j. Otherwise,

wðTiÞ �
3

2
jT ij �

1

2

� �
B; by Lemma 11. (11)

The rest is to estimate an upper bound on wðTiÞ as fol-
lows. Through adding jOPTij � 1 edges in CCi with
weight no greater than B=2 to connect different segments
of OPTi, a connected component that spans all vertices in
connected component CCi can be obtained. Thus,

wðTiÞ � jOPTij �Bþ ðjOPTij � 1Þ �B=2

¼ 3

2
jOPTij �

1

2

� �
B ¼ 3

2
jD�

i j �
1

2

� �
B:

(12)

Combining inequalities (11) and (12), we have that

jT ij � jD�
i j. Thus, jT j ¼

Py
i¼1 jT ij �

Py
i¼1 jD�

i j ¼ k.
We then show case (ii): each tree can be matched by a

different depot in set D. As D�
i \D�

j ¼ ; if i 6¼ j, we only
need to show that each tree in T i will match a depot in
setD�

i for all iwith 1 � i � y.
If jT ij ¼ 1 which implies that there is only one tree in

it, then there must have an edge with weight no greater
than B=2 that connects the tree and a depot in D�

i as
jD�

i j � 1. Otherwise (jT ij � 2), we have wðTiÞ � 3B by
Lemma 11. Then, there must exist such a matching from
the trees in T i to depots in D�

i , which is guaranteed by
the Hall’s Theorem [7] which says that for each subset A
of T i, the neighbor setNðAÞ of A satisfies jNðAÞj � jAj.

Consider any subset A of T i, its neighbor setNðAÞ is a
subset of D�

i that the shortest distance from a vertex in a
tree in A to a depot in the subset of D�

i is no more than
B=2. Let OPT �

i ðAÞ denote the subset of segments in OPTi

that have non-empty intersections of the vertices in the
segments and the trees in A. Namely, T �

i 2 OPT �
i ðAÞ if

and only if there is a tree T in A such that V ðT Þ\
V ðT �

i Þ 6¼ ;. Then, jNðAÞj � jOPT �
i ðAÞj and jOPT �

i ðAÞj �
jAj, which are shown as follows.

We start with that jNðAÞj � jOPT �
i ðAÞj. Since B � B�

r

and the distance between each vertex and its depot in

610 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 3, MARCH 2015



OPTr is at most B=2, there is an edge in the constructed
auxiliary graph H ¼ ðT ; D;E0Þ between a tree T 2 A and
a depot r 2 D�

i if T intersects a segment T �
l of the cycle

C�
l with depot at r. Hence, jNðAÞj � jOPT �

i ðAÞj.
We then show that jOPT �

i ðAÞj � jAj. Recall that each
edge in a tree of A is an edge of the MST Ti of connected
component CCi. A subgraph G0

i of CCi is obtained by
removing all edges in each subtree of Ti in A and add-
ing all edges of segments in OPT �

i ðAÞ. Then, G0
i will

become a connected subgraph by adding no more than
ðjOPT �

i ðAÞj � 1Þ edges in CCi with weight no greater
than B=2, since CCi itself is a connected component
which contains only the edges with weight no greater
than B

2 . Denote by G
00
i the connected subgraph and EA

the set of no more than ðjOPT �
i ðAÞj � 1Þ added edges.

Then, jEAj � jOPT �
i ðAÞj � 1. As Ti is an MST of CCi,

w
�
G

00
i

�
� wðTiÞ: (13)

Meanwhile,

w
�
G

00
i

�
¼ w

�
G0

i

�
þ wðEAÞ

¼ wðTiÞ � wðAÞ þ wðOPT �
i ðAÞÞ þ wðEAÞ:

(14)

Combining inequalities (13) and (14) we have

wðOPT �
i ðAÞÞ þ wðEAÞ � wðAÞ: (15)

According to Lemma 11, wðAÞ � ð32 jAj � 1
2ÞB, since A is a

subset of T i. On the other hand,

w
�
OPT �

i ðAÞ
�
þ wðEAÞ � jOPT �

i ðAÞj � B

þ ðjOPT �
i ðAÞj � 1Þ �B

2

¼ 3

2
jOPT �

i ðAÞj � 1

2

� �
B:

(16)

Therefore, jOPT �
i ðAÞj � jAj by inequalities (15) and (16).

In conclusion, each tree in T i can be matched to a dif-
ferent depot in D�

i , 1 � i � y. Thus, each tree in
T ¼ [y

i¼1T i can be matched to a different depot in
D� ¼ [y

i¼1D
�
i 
 D. It is also clear that the maximum tree

weight of trees in S is no more than 7
2B. tu

Theorem 3. Given a metric complete graph G ¼ ðV;EÞ, a depot
set D � V , an integer k, and a constraint f : D 7! Zþ

(
P

r2D fðrÞ � k), there is a ð7þ �Þ-approximation algorithm
for the capacitated rooted min-max cycle cover problem in G,
which takes Oðn2:5ðlog nþ log 1

�ÞÞ time, where n ¼ jV j and �
is a constant with 0 < � < 1.

Proof. Following Lemmas 2 and 12, the approximation ratio
of the proposed algorithm can be easily derived, omitted.
We now analyze its time complexity.

Let n ¼ jV j. With the similar argument as we did in
Theorem 1, the number of iterations for finding the opti-
mal B�

r is bounded by Oðlognþ log 1
�Þ. The rest is to ana-

lyze the time complexity of Algorithm 3 as follows.
The removal of the edges with weights greater than

B=2 from G�D takes Oðn2Þ time, while finding the
MSTs of the y connected components in the resulting
graph takes Oðn2Þ time too. Finding a tree cover of

G�D takes OðnÞ time, by decomposing the y MSTs.
The construction of the bipartite graph H ¼ ðT ; D; E0Þ
requires Oðn2Þ time. As H contains no more than
kþ jDj ¼ OðnÞ vertices, the minimum weighted maxi-
mum matching in H can be found in time Oðn2:5Þ by
applying an algorithm in [14]. Then, each tree in T is
connected to its matched depot in D, which takes
Oðn2Þ time. Thus, the time complexity of Algorithm

3 is Oðn2Þ þOðn2Þ þOðnÞ þOðn2Þ þOðn2:5Þ þOðn2Þ ¼
Oðn2:5Þ, which means that the running time of the pro-
posed algorithm is Oðn2:5ðlog nþ log 1

�ÞÞ. tu

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms through experimental simulations. We also
investigate the impact of important parameters including
network size n and the number of cycles k on the algorithm
performance.

6.1 Simulation Environment

We consider a network G consisting of 100 to 500 vertices
randomly deployed in a 1;000 m� 1;000 m square region.
In the default setting, the number of cycles k varies from
1 to 10. For the (uncapacitated or capacitated) rooted
min-max cycle cover problem, we assume that there are
10 depots randomly deployed in the region with each
being contained by at most one cycle in the capacitated
rooted min-max cycle cover problem. Each value in fig-
ures is the mean of the results by applying the mentioned
algorithms to 50 different network topologies of the same
network size.

To evaluate the performance of the proposed algorithms,
we use the lower bounds of the maximum cycle length as
approximations of the optimal costs. Specifically, for the
rootless min-max cycle cover problem, the lower bound on
the maximum cycle length is LB optimal ¼

Pk
i¼1 wðTiÞ=k,

where subtrees T1; T2; . . . ; Tk are obtained by removing the
k� 1 largest-weight edges from a minimum spanning tree
in graph G. For the (uncapacitated or capacitated) rooted
min-max cycle cover problem, the lower bound is
LB optimal ¼ wðT 0Þ=k, where tree T 0 is a minimum span-
ning tree in a graph G0, and G0 is derived from graph G by
contracting all depots in D into a single vertex rD. That is,
we remove all depots in D and their adjacent edges from G
first, and we then introduce a new vertex rD and there is an
edge between each vertex v 2 V �D and rD with edge
weight being the minimum edge weight between vertex v
and any depot r inD, i.e., wðv; rDÞ ¼ minr2Dfwðv; rÞg.

6.2 Performance Evaluation of Proposed
Algorithms

We first investigate the performance of algorithm Root-

less Min-Max Cycle Cover for the rootless min-max
cycle cover problem. Fig. 1a plots the performance
curves of algorithm Rootless Min-Max Cycle Cover

and the lower bound on the maximum cycle length, by
varying network size n while fixing the number of cycles
k at 5, from which it can be seen that the delivered solu-
tion is fractional of the optimal. In detail, the maximum
cycle length obtained by algorithm Rootless Min-Max

XU ET AL.: APPROXIMATION ALGORITHMS FOR MIN-MAX CYCLE COVER PROBLEMS 611



Cycle Cover is around from 1.6 to two times of the
lower bound of the optimal one, which is far less than
its analytical approximation ratio 5 1

3 þ �. By varying the
number of cycles k from 1 to 10 while fixing network
size n at 500, Fig 1b clearly shows that with the growth
of the number of cycles k, the maximum cycle length in
the solution delivered by algorithm Rootless Min-Max

Cycle Cover will decrease, and its actual value is
around from 1.4 to two times of the lower bound on the
optimal one. This indicates that the estimate on its theo-
retical approximation ratio 5 1

3 þ � is very conservative.
We then study the performance of the proposed algo-

rithms for uncapacitated and capacitated rooted min-max
cycle cover problems in Figs. 2 and 3, respectively. It can be
seen from both figures that the performance of the algo-
rithms for both problems have the similar behaviors as that
in Fig. 1. The ratios of the maximum cycle length delivered
by the proposed algorithms to their lower bounds on the
optimal ones are much less than their theoretical approxi-
mation ratios 6 1

3 þ � and 7þ �, respectively.

7 CONCLUSIONS

In this paper we have dealt with a fundamental optimiza-
tion problem—the vehicle routing problem and its variants.
We have devised approximation algorithms with constant
approximation ratios, by exploiting the combinatorial prop-
erty of the problems and employing the tree decomposition
and maximum matching techniques. We finally evaluate
the performance of the proposed algorithms through exper-
imental simulations. Experimental results demonstrate that
the proposed algorithms are very efficient and promising.
The empirical approximation ratios are no more than 2,
which are far less than their analytical counterparts 5 1

3 þ �,
6 1
3 þ � and 7þ �, respectively.

REFERENCES

[1] D. Applegate, W. Cook, S. Dash, and A. Rohe, “Solution of a Min-
Max Vehicle Routing Problem,” INFORM J. Computing, vol. 14,
pp. 132-143, 2002.

[2] E.M. Arkin, R. Hassin, and A. Levin, “Approximations for Mini-
mum and Min-Max Vehicle Routing Problems,” J. Algorithms,
vol. 59, pp. 1-18, 2006.

[3] I. Averbakh and O. Berman, “ðp� 1Þ=ðpþ 1Þ-Approximate Algo-
rithms for p-Traveling Salesmen Problems on a Tree with Minmax
Objective,”Discrete Applied Math., vol. 75, pp. 201-216, 1997.

[4] A.M. Campbell, D. Vandenbussche, and W. Hermann, “Routing
for Relief Efforts,” J. Transportation Science, vol. 42, pp. 127-145,
2008.

[5] J. Carlsson, D. Ge, A. Subramaniam, and Y. Ye, “Solving Min-Max
Multi-Depot Vehicle Routing Problem,” Proc. FIELDS Workshop
Global Optimization, 2007.

[6] J. Desrosiers, Y. Dumas, M. M. Solomon, and F. Soumis, “Time
Constrained Routing and Scheduling,” Handbooks in Operations
Research and Management Science, vol. 8, pp. 35-139, Elsevier, 1995.

[7] R. Diestel, Graph Theory. Springer-Verlag, 2000.
[8] M. Erol-Kantarci and H.T. Mouftah, “Suresense: Sustainable Wire-

less Rechargeable Sensor Networks for the Smart Grid,” IEEE
Wireless Comm., vol. 19, no. 3, pp. 30-36, June 2012.

[9] G. Even, N. Garg, J. K€onemann, R. Ravi, and A. Sinha, “Covering
Graphs Using Trees and Stars,” Proc. Int’l Workshop Approximation
Algorithms for Combinatorial Optimization Problems (APPROX),
pp. 24-35, 2003.

[10] G. Even, N. Garg, J. K€onemann, R. Ravi, and A. Sinha, “Min-Max
Tree Covers of Graphs,” Operations Research Letters, vol. 32,
pp. 309-315, 2004.

[11] G.N. Frederickson, M.S. Hecht, and C.E. Kim, “Approximation
Algorithms for Some Routing Problems,” Proc. 17th Ann. Founda-
tions of Computer Science (FOCS), 1976.

[12] H.N. Gabow, “Data Structures for Weighted Matching and Near-
est Common Ancestors with Linking,” Proc. First Ann. ACM-
SIAM Symp. Discrete Algorithms (SODA), 1990.

[13] S. Guo, C. Wang, and Y. Yang, “Mobile Data Gathering with Wire-
less Energy Replenishment in Rechargeable Sensor Networks,”
Proc. IEEE INFOCOM, 2013.

[14] J.E. Hopcroft and R.M. Karp, “An n5=2 Algorithm for Maximum
Matchings in Bipartite Graphs,” SIAM J. Computing, vol. 2,
pp. 225-231, 1973.

[15] R. Jothi and B. Raghavachari, “Approximating k-Traveling
Repairman Problem with Repairtimes,” J. Discrete Algorithms,
vol. 5, pp. 293-303, Elsevier, 2007.

[16] M.R. Khani and M.R. Salavatipour, “Improved Approximation
Algorithms for the Min-Max Tree Cover and Bounded Tree Cover
Problems,” Proc. 14th Int’l Workshop and 15th Int’l Conf. Approxima-
tion, Randomization, and Combinatorial Optimization: Algorithms and
Techniques (APPROX), pp. 302-314, 2011.

[17] D. Kim, B.H. Abay, R.N. Uma, W. Wu, W. Wang, and A.O.
Tokuta, “Minimizing Data Collection Latency in Wireless Sensor
Network with Multiple Mobile Elements,” Proc. IEEE INFOCOM,
2012.

[18] Z. Li, Y. Peng, W. Zhang, and D. Qiao, “J-RoC: A Joint Routing
and Charging Scheme to Prolong Sensor Network Lifetime,” Proc.
IEEE 19th Int’l Conf. Network Protocols (ICNP), 2011.

[19] W. Liang and J. Luo, “Network Lifetime Maximization in Sensor
Networks with Multiple Mobile Sinks,” Proc. IEEE 36th Conf. Local
Computer Networks (LCN), IEEE, 2011.Fig. 2. The performance of algorithm Uncapacitated Rooted Min-Max

Cycle Cover.

Fig. 3. The performance of algorithm Capacitated Rooted Min-Max
Cycle Cover.

Fig. 1. The performance of algorithm Rootless Min-Max Cycle Cover.

612 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 3, MARCH 2015



[20] W. Liang, J. Luo, and X. Xu, “Prolonging Network Lifetime via a
Controlled Mobile Sink in Wireless Sensor Networks,” Proc. IEEE
GLOBECOM, 2010.

[21] W. Liang, P. Schweitzer, and Z. Xu, “Approximation Algorithms
for Capacitated Minimum Spanning Forest Problems in Wireless
Sensor Networks with a Mobile Sink,” IEEE Trans. Computers,
vol. 62, no. 10, pp. 1932-1944, Oct. 2013.

[22] M. Ma and Y. Yang, “Data Gathering in Wireless Sensor Networks
with Mobile Collectors,” Proc. IEEE Int’l Symp. Parallel and Distrib-
uted Symp. (IPDPS), 2008.

[23] H. Nagamochi and K. Okada, “Approximating the Minmax
Rooted-Tree Cover in a Tree,” Information Processing Letters,
vol. 104, pp. 173-178, 2007.

[24] Y. Shi, L. Xie, Y.T. Hou, and H.D. Sherali, “On Renewable Sensor
Networks with Wireless Energy Transfer,” Proc. IEEE INFOCOM,
2011.

[25] V.V. Vazirani, Approximation Algorithms. Springer, 2001.
[26] C. Wang, J. Li, F. Ye, and Y. Yang, “Multi-Vehicle Coordination

for Wireless Energy Replenishment in Sensor Networks,” Proc.
IEEE 27th Int’l Symp. Parallel & Distributed Systems (IPDPS), IEEE,
2013.

[27] L. Xie, Y. Shi, Y.T. Hou, and H.D. Sherali, “Making Sensor Net-
works Immortal: An Energy-Renewal Approach with Wireless
Power Transfer,” IEEE/ACM Trans. Networking, vol. 20, no. 6,
pp. 1748-1761, Dec. 2012.

[28] L. Xie, Y. Shi, Y.T. Hou, W. Lou, H.D. Sherali, and S.F. Midkiff,
“On Renewable Sensor Networks with Wireless Energy Transfer:
The Multi-Node Case,” Proc. IEEE Ninth Ann. CS Comm. Soc. Conf.
Sensor, Mesh and Ad Hoc Comm. and Networks (SECON), 2012.

[29] Z. Xu, W. Liang, and Y. Xu, “Network Lifetime Maximization in
Delay-Tolerant Sensor Networks with a Mobile Sink,” Proc. IEEE
Eighth Int’l Conf. Distributed Computing in Sensor Systems (DCOSS),
2012.

[30] Z. Xu, L. Xu, and C. Li, “Approximation Results for Min-Max Path
Cover Problems in Vehicle Routing,” J. Naval Research Logistics,
vol. 57, pp. 728-748, 2010.

[31] Z. Xu, D. Xu, and W. Zhu, “Approximation Results for a Min-Max
Location-Routing Problem,” Discrete Applied Math., vol. 160,
pp. 306-320, 2012.

[32] S. Zhang, J. Wu, and S. Lu, “Collaborative Mobile Charging for
Sensor Networks,” Proc. IEEE Ninth Int’l Conf. Mobile Ad-Hoc and
Sensor Systems (MASS), 2012.

[33] M. Zhao, J. Li, and Y. Yang, “Joint Mobile Energy Replenishment
and Data Gathering in Wireless Rechargeable Sensor Networks,”
Proc. 23rd Int’l Teletraffic Congress (ITC), 2011.

[34] M. Zhao, M. Ma, and Y. Yang, “Efficient Data Gathering with
Mobile Collectors and Space-Division Multiple Access Technique
in Wireless Sensor Networks,” IEEE Trans. Computers, vol. 60,
no. 3, pp. 400-417, Mar. 2011.

Wenzheng Xu received the BSc and ME
degrees in computer science from Sun Yat-Sen
University, Guangzhou, China, in 2010 and
2008, respectively. He is currently working
toward the PhD degree at Sun Yat-Sen Univer-
sity and is a visiting student at the Australian
National University. His research interests
include routing algorithms and protocols design
for wireless ad hoc and sensor networks, approx-
imation algorithms, combinatorial optimization,
and graph theory.

Weifa Liang (M’99-SM’01) received the BSc
degree from Wuhan University, China in 1984,
the ME degree from the University of Science
and Technology of China in 1989, and the PhD
degree from the Australian National University in
1998, all in computer science. He is currently an
associate professor in the Research School of
Computer Science at the Australian National Uni-
versity. His research interests include design and
analysis of energy-efficient routing protocols for
wireless ad hoc and sensor networks, cloud com-

puting, graph databases, design and analysis of parallel and distributed
algorithms, approximation algorithms, combinatorial optimization, and
graph theory. He is a senior member of the IEEE.

Xiaola Lin received the BSc and MSc degrees in
computer science from Peking University, Bei-
jing, China, in 1982 and 1985, respectively, and
the PhD degree in computer science from Michi-
gan State University in the USA in 1992. He is
currently a full professor in the Department of
Computer Science at Sun Yat-Sen University,
Guangzhou, China. His research interests
include parallel and distributed computing and
computer networks.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

XU ET AL.: APPROXIMATION ALGORITHMS FOR MIN-MAX CYCLE COVER PROBLEMS 613



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


