
IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 2013 1

Approximation Algorithms for Min-Max Cycle
Cover Problems

Wenzheng Xu, Weifa Liang, Senior Member, IEEE, and Xiaola Lin

Abstract—As a fundamental optimization problem, the vehicle routing problem has wide application backgrounds and has been paid

lots of attentions in past decades. In this paper we study its applications in data gathering and wireless energy charging for wireless

sensor networks, by devising improved approximation algorithms for it and its variants. The key ingredients in the algorithm design

include exploiting the combinatorial properties of the problems and making use of tree decomposition and minimum weighted maximum

matching techniques. Specifically, given a metric complete graph G and an integer k > 0, we consider rootless, uncapacitated rooted,

and capacitated rooted min-max cycle cover problems in G with an aim to find k rootless (or rooted) edge-disjoint cycles covering the

vertices in V such that the maximum cycle weight among the k cycles is minimized. For each of the mentioned problems, we develop an

improved approximate solution. That is, for the rootless min-max cycle cover problem, we develop a (5 1

3
+ ǫ)-approximation algorithm;

for the uncapacitated rooted min-max cycle cover problem, we devise a (6 1

3
+ǫ)-approximation algorithm; and for the capacitated rooted

min-max cycle cover problem, we propose a (7+ǫ)-approximation algorithm. These algorithms improve the best existing approximation

ratios of the corresponding problems 6+ ǫ, 7+ ǫ, and 13+ ǫ, respectively, where ǫ is a constant with 0 < ǫ < 1. We finally evaluate the

performance of the proposed algorithms through experimental simulations. Experimental results show that the actual approximation

ratios delivered by the proposed algorithms are always no more than 2, much better than their analytical counterparts.

Index Terms—Wireless sensor networks; data gathering; mobile sinks; vehicle routing problem; min-max cycle cover; tree decompo-

sition; approximation algorithms; combinatorial optimization.

F

1 INTRODUCTION

This paper studies a fundamental optimization problem
in operations research and computer science communi-
ties – the vehicle routing problem, which has wide appli-
cation backgrounds and has been paid lots of attentions
in past decades [1], [2], [3], [4], [5], [6], [9], [10], [11],
[15], [16], [23], [30], [31]. We here are motivated by its
two application scenarios in wireless sensor networks:
one is data gathering, another is wireless recharging of
sensors.
We start from the application scenario one. In tra-

ditional wireless sensor networks (WSNs), sensors are
powered by energy-limited batteries, and there is a sta-
tionary sink. All sensed data from sensors will be relayed
to the stationary sink directly or through multihop relays
for further processing. Since sensors near to the sink
have to relay more data for others, they usually de-
plete their battery energy much faster. Such imbalanced
energy consumptions among the sensors will shorten
the network lifetime significantly. To prolong the net-
work lifetime by minimizing the energy consumptions
of sensors, a mobile sink instead of a stationary sink
has been employed to travel around the vicinities of
sensors periodically so that sensors can upload their
sensed data to the mobile sink [20], [21], [29]. Although
sink mobility can improve various network performance,

• W. Xu and W. Liang are with the Research School of Computer Science,
The Australian National University, Canberra, ACT 0200, Australia. E-
mails: wenzheng.xu@anu.edu.au, wliang@cs.anu.edu.au

• X. Lin is with the School of Information Science and Technology, Sun Yat-
Sen University, Guangzhou, 51006, China. Email: linxl@mail.sysu.edu.cn

it also results in data delivery delay due to the slow
mechanical movement of the mobile sink, where the
data delivery delay means the time duration of sensing
data from its generation to its collection by the sink.
Therefore, it is desirable to employ multiple mobile sinks
so that the traveling distance of each mobile sink can
be significantly shortened and more ‘fresh’ data (data
with less delivery delay) can be collected on time [17],
[19], [22], [34]. One fundamental optimization problem
related to this is that, given k mobile sinks located at
one or multiple depots in a large scale WSN, which
are used to collaboratively collect sensed data from the
sensors, how to find a traveling trajectory for each of
the k mobile sinks such that the longest traveling time
among them is minimized. If each of the k mobile sinks
can upload its collected data to one of its nearby depots,
the problem then is to find k rootless close traveling
tours such that the maximum traveling time among the
k tours is minimized [34]. Otherwise, each mobile sink
has to return and upload its collected data to its own
depot [17]. It thus requires that each of the k close tours
contains a root (a depot) in this case. Moreover, since
there are a limited number of available mobile sinks at
each depot, the number of traveling tours allocated to
the mobile sinks at each depot thus is restricted. Under
this constraint, the optimization problem then is to find
capacitated rooted close traveling tours for the k mobile
sinks such that the maximum traveling time among the
k tours is minimized.
We then deal with the second application scenario.

We consider a wireless rechargeable sensor network
in which each sensor can be recharged periodically to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2013.2295609

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 2013 2

avoid its energy expiration. To do so, we can employ
one or multiple mobile chargers to traverse within the
network and charge the sensors [8], [13], [18], [24], [26],
[27], [28], [32], [33]. One fundamental question related
to mobile chargers’ charging tours scheduling is that
given k ≥ 1 mobile chargers, how to schedule and
find charging tours for the k mobile chargers such that
none of sensors in the network expires. As the mobile
chargers themselves need to be recharged at depot(s)
when they finish their charging tours, each charging tour
of a mobile charger is a close tour including its depot.
One typical optimization objective of this tour finding
and scheduling problem is to minimize the maximum
traveling distance among the k mobile chargers, thus
minimizing the charging duration per tour. Also, the
number of depots and the number of mobile chargers
allocated to each depot may have restrictions, under this
constraint, the problem can be casted as rootless (rooted),
capacitated (uncapacitated) close tour problem.
In general, the vehicle routing problem in a wireless

sensor network is to dispatch k mobile vehicles from a
single depot (or multiple depots) to serve all sensors in
the network such that the latest completion time among
the k mobile vehicles is minimized, with or without the
number of vehicle capacity constraint at each depot. The
vehicle routing problem in a metric graph is equivalent
to covering all vertices in the graph with k cycles such
that the maximum cycle weight is minimized, where a
cycle weight is the weighted sum of the edges in the cycle.
We refer to this as the min-max cycle cover problem. In
more general setting, there is also a weight (or handling
time) on each vertex, a cycle weight is the weighted sum
of edges and vertices in the cycle. We note that this
general case can be reduced to the special case where
only the edges have weights by transforming a vertex-
weighted and edge-weighted graph into another edge-
weighted graph [31]. Therefore, in the rest of this paper,
we only consider edge-weighted graphs. The min-max
cycle cover problem is NP-hard by reducing from the
classical Traveling Salesman Problem (TSP) [25]. Thus,
in this paper we will focus on devising approximation
algorithms that achieve constant approximation ratios
for the min-max cycle cover problem and its variants.

1.1 Related Work

In terms of data gathering in wireless sensor networks,
Zhao et al. [34] studied the problem of finding traveling
trajectories of multiple mobile collectors such that the
maximum data gathering time among the mobile collec-
tors is minimized. They proposed a heuristic algorithm
for the problem, where the data gathering time of a trav-
eling trajectory assigned to a mobile collector consists
of the moving time of the mobile collector and the data
uploading time of sensors in the trajectory. Kim et al. [17]
considered the k traveling salesperson with neighbor-
hood problem, which aims to find k close moving trajec-
tories for the k mobile collectors such that the length of

the longest trajectory is minimized, subject to that each
trajectory contains the base station, where one mobile
collector only needs to move to the communication range
of a sensor in order to collect the accumulated data
in that sensor. They also developed an approximation
algorithm for the problem. Liang et al. [19] considered
the similar k trajectory finding problem by exploring the
combinatorial property of the problem and proposing a
fast heuristic solution.
In general, the k trajectory finding and scheduling

problem in wireless sensor networks can be abstracted
as the min-max cycle cover problem or its variants. Thus,
in the rest of this paper we focus on devising improved
approximate solution to the min-max cycle cover prob-
lem, and a closely related problem to the min-max cycle
cover problem is the min-max k-tree cover problem,
since minimum spanning trees are constant factor ap-
proximations to traveling salesman tours [10]. The min-
max k-tree cover problem is to find k edge-disjoint trees
covering all vertices in a graph such that the maximum
tree weight is minimized. Specifically, for the rootless
min-max tree cover problem, Even et al. [10] and Arkin
et al. [2] devised (4 + ǫ)-approximation algorithms inde-
pendently by adopting different algorithmic techniques.
Khani et al. [16] later improved the approximation ratio
to 3+ǫ, which implies that there is a (6+ǫ)-approximation
algorithm for the rootless min-max cycle cover problem.
Even et al. [10] also presented a (4 + ǫ)-approximation
algorithm for the capacitated rooted min-max tree cover
problem, assuming there are k roots with each having
a unit capacity, which leads to an (8 + ǫ)-approximation
algorithm for the capacitated rooted min-max cycle cover
problem, where ǫ is given constant with 0 < ǫ < 1.
There are other studies on the min-max cycle cover

problem without the use of min-max tree covers. For
example, for the single-rooted min-max k-cycle cover
problem, Frederickson et al. [11] proposed a (1+e−1/k)-
approximation algorithm, where e is the best approx-
imation ratio for the classic TSP problem. With mul-
tiple roots, Xu et al. [31] recently achieved a (7 + ǫ)-
approximation ratio for the uncapacitated rooted min-
max cycle cover problem for a vertex weighted metric
graph, and they also presented (7 + ǫ)-approximation
and (13+ǫ)-approximation algorithms for the capacitated
rooted min-max cycle cover problem with the overall
capacity being equal to or larger than k, respectively.
It must be mentioned that although our design tech-

nique for the rootless min-max cycle cover problem is
inspired by the work on the rootless min-max tree cover
problem [16], they are essentially different. That is, given
a graph G, assume that B∗

tree (or B∗) is the value of the
optimal solution to the rootless min-max tree (or cycle)
cover problem. The algorithm in [16] is based on a key
observation that there is at most one edge with weight
greater than B∗

tree/2 in any tree in an optimal min-max
tree cover of G. We however observe that there are no
edges with weight greater than B∗/2 and there are at
most two edges with weight greater than B∗/3 in any

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2013.2295609

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 2013 3

cycle of an optimal min-max cycle cover (see Lemma 3).
Therefore, at most two connected components can be
obtained by removing the edges with weights greater
than B∗/3 from any cycle in the optimal solution. In ad-
dition, unlike an existing tree decomposition technique
that only ensures the upper bound on the weighted sum
of the edges in each decomposed subtree (see Lemma 1),
our tree decomposition technique for the capacitated
rooted min-max cycle cover problem enables providing
such a tree decomposition that the weighted sum of
the edges in each decomposed subtree is bounded by
not only an upper bound but also a lower bound (see
Lemma 11).

1.2 Contributions

In this paper, we deal with the vehicle routing problem
and its variants in wireless sensor networks by devising
improved approximate solutions. The main contribu-
tions of this paper are as follows.
We first develop a (5 1

3 + ǫ)-approximation algorithm
and a (6 1

3 + ǫ)-approximation algorithm for the rootless
and uncapacitated rooted min-max cycle cover problems,
respectively, which improve their existing approximation
ratios 6 + ǫ and 7 + ǫ, while keeping the same time
complexity as the algorithms in [16]. We then devise
a (7 + ǫ)-approximation algorithm for the capacitated
rooted min-max cycle cover problem, which improves
its existing approximation ratio of 13 + ǫ but with less
running time [31]. Specifically, the time complexity of the
algorithm in [31] is O(n2.5 log n(log n+log 1

ǫ)) while ours
is O(n2.5(log n+log 1

ǫ)), where n is the number of vertices
in graph G and ǫ is a constant with 0 < ǫ < 1. We finally
evaluate the performance of the proposed algorithms
through experimental simulations. Experimental results
show that the actual approximation ratios delivered by
the proposed algorithms are always no more than 2,
much better than their analytical counterparts.
The rest of the paper is organized as follows. Section 2

introduces preliminaries. Section 3, 4, and 5 propose
approximation algorithms for the three mentioned prob-
lems respectively. We finally evaluate the performance
of the proposed algorithms through simulations in Sec-
tion 6, and conclude our discussion in Section 7.

2 PRELIMINARIES

In this section, we first introduce several notions and
notations. We then provide the precise problem defini-
tions. We finally introduce two important techniques:
the tree decomposition technique and the transformation
technique from a tree cover to a cycle cover.
We consider a complete graph G = (V,E), and an edge

weight function: w : E 7→ Z
+, and the edge weights

satisfy the triangle inequality. The vertex set and the
edge set of a graph G are referred to as V (G) and E(G)
respectively, and |V (G)| and |E(G)| are referred to as
the number of vertices and edges in G. For a weighted
graph G, w(G) is defined as

∑
e∈E(G) w(e). A graph G is

a multi-graph if there are multiple edges between a pair
of vertices or there is a self loop at a vertex in the graph.

2.1 Problem definitions

Definition 1: Given a complete graph G = (V,E),
a metric edge weight function w : E 7→ Z

+ and a
positive integer k, the rootless min-max cycle cover problem
in G is to find k edge-disjoint cycles C1, C2, . . . , Ck

covering all vertices in V , i.e., ∪ki=1V (Ci) = V and
E(Ci) ∩ E(Cj) = ∅ if i 6= j, such that the maximum
cycle weight, maxki=1{w(Ci)}, is minimized.
Definition 2: Given a complete graph G = (V,E), a

depot set D ⊂ V , a metric edge weight function w :
E 7→ Z

+, and a positive integer k, the uncapacitated rooted
min-max cycle cover problem in G is to find k edge-disjoint
cycles C1, C2, . . . , Ck covering all vertices in V −D such
that each cycle contains exactly one depot in D and the
maximum cycle weight is minimized.
Notice that a depot can be included by multiple cycles
in this problem definition.
Definition 3: Given a complete graph G = (V,E), a

depot set D ⊂ V , a metric edge weight function w :
E 7→ Z

+, a positive integer k, and a constraint function
f : D 7→ Z

+ that satisfies
∑

r∈D f(r) ≥ k, the capacitated
rooted min-max cycle cover problem in G is to find k
edge-disjoint cycles C1, C2, . . . , Ck covering all vertices
in V −D such that each depot r ∈ D is contained by at
most f(r) cycles, each cycle contains exactly one depot
from D and the maximum cycle weight is minimized.

2.2 A paradigm of tree decomposition

A widely-used tree decomposition technique [16], [10] is
to decompose a large tree (in terms of tree weight) into
several edge-disjoint smaller subtrees by bounding the
tree weight. For the sake of completeness, we state the
tree decomposition by the following lemma.
Lemma 1: [16], [10] Given a tree T with weight w(T),

assume that each edge in T has weight no more than β
and w(T) ≥ 2β. Then, tree T can be decomposed into
x edge-disjoint subtrees T1, . . . , Tx such that w(Ti) < 2β

for each i with 1 ≤ i ≤ x, and
∑

x
i=1

w(Ti)

x ≥ β, where

β > 0 and 2 ≤ x ≤ ⌊w(T)
β ⌋.

Proof: Trees with weight in the interval [β, 2β) can be
split away from T until the weight of the leftover tree is
less than 2β. Suppose that the split trees are T1, T2, . . . , Tx

with x ≥ 2. From the construction, we know that w(Ti) ∈
[β, 2β) for i with 1 ≤ i ≤ x − 1. The only tree that may
have weight less than β is Tx. Note that prior to splitting
Tx−1, the weight of the remaining tree is at least 2β,
therefore, the average weight of Tx−1 and Tx is no less
than β. Thus, the average weight of all Tis is at least β.

Therefore, x cannot be greater than ⌊w(T)
β ⌋.

2.3 A cycle cover derived from a tree cover

We introduce a popular technique that transforms a k-
tree cover of a graph G into a k-cycle cover of G, and
state this transformation in the following lemma.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2013.2295609

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 2013 4

Lemma 2: Given a metric complete graph G =
(V,E;w), a positive integer k, and a k-tree cover T =
{T1, . . . , Tk} of G with maxTi∈T {w(Ti)} ≤ αB∗, T can
be transformed into an edge-disjoint k-cycle cover C =
{C1, . . . , Ck} of G such that maxCi∈C{w(Ci)} ≤ 2αB∗,
where α is a constant greater than 1 and B∗ is the value
of the optimal solution to the min-max k-cycle cover
problem in G.

Proof: For each tree Ti in T , a Eulerian tour with
the weight no more than 2αB∗ is obtained by doubling
the edges in Ti, then a cycle Ci can be derived from
this tour by shortcutting repeated vertices in the tour. As
the edge weights meet the triangle inequality, we have
w(Ci) ≤ 2w(Ti), for all i with 1 ≤ i ≤ k. A cycle cover C
then is found with maxCi∈C{w(Ci)} ≤ 2αB∗.

3 ALGORITHM FOR THE ROOTLESS
MIN-MAX CYCLE COVER PROBLEM

In this section, we deal with the rootless min-max cycle
cover problem in G = (V,E) by devising a (5 1

3 + ǫ)-
approximation algorithm. We start with the following
lemma, which will be the cornerstone of the proposed
algorithm for the problem.

Lemma 3: Given a graph G = (V,E), a metric edge
weight function w : E 7→ Z

+, assume that C is a cycle
in G with w(C) ≤ B. Then, (i) for any edge e ∈ E(C),
w(e) ≤ B/2. (ii) There are no more than two edges in
E(C) with weights greater than B/3.

Proof: Suppose that cycle C contains at least three
vertices. Otherwise, the claims are straightforward and
easily verified. We start with Case (i). Suppose that there
is an edge e = (u, v) ∈ E(C) with w(e) > B/2. Apart
from a path P1 consisting of a single edge e only in
C, there is another vertex-disjoint path P2 between u
and v in C. The length of path P2 is w(C) − w(P1) <
B − B/2 = B/2. On the other hand, following the
triangle inequality of the edge weights in G, we have
w(e) ≤ w(P2) < B/2, which contradicts the assumption.
Therefore, w(e) ≤ B/2 for each edge in C.

We then show Case (ii). As we assume that C contains
at least three vertices, then C contains at least three edges
as well. Now, suppose that there are at least three edges
in C with weight greater than B/3. Then, w(C) is larger
than 3 ·B/3 = B, which contradicts the assumption.

In the following we will devise an algorithm for the
problem. Let OPT = {C∗

1 , C
∗
2 , . . . , C

∗
k} denote an optimal

solution to the rootless min-max cycle cover problem in
G and B∗ the maximum cycle weight in OPT , i.e., B∗ =
maxki=1{w(C

∗
i)}. Assume there is a guess B of B∗ with

B ≥ B∗. The proposed algorithm is to find a k-tree cover
T = {T1, T2, . . . , Tk} of G covering all vertices in G with
maxTi∈T {w(Ti)} ≤

8
3B first, and then construct a cycle

cover from the tree cover by Lemma 2. As a result, a k-
cycle cover of G is obtained, and the maximum weight
among the cycles is no more than 2 · 83B = 16

3 B.

3.1 Algorithm overview

The basic idea of the proposed algorithm is as follows.
A subgraph G′ of graph G is obtained by removing all
edges with w(e) > B/3. Assume that G′ contains l + h
connected components CC1, . . . , CCl, CCl+1, . . . , CCl+h.
Let Ti be an MST of CCi for all i with 1 ≤ i ≤ l+h. The
l+h connected components of G′ can be further classified
into light connected components and heavy connected
components, where a connected component CCi is re-
ferred to as a light connected component if w(Ti) < B;
otherwise, it is referred to as a heavy connected component.
Assume that G′ contains l light connected components
and h heavy connected components.
The general strategy adopted for the problem is to

merge the MSTs first, using the edges with weight no
more than B/2 to reduce the number of trees. Then, it is
followed by the tree decomposition with bounding the
weight of each decomposed tree within 8

3B such that
the number of decomposed trees is no more than k. We
distinguish the rest of our discussions into three cases:
Case one: G′ does not contain any heavy connected com-
ponents, i.e., h = 0. Case two: G′ does not contain any
light connected components, i.e., l = 0. And Case three:
G′ contains both light and heavy connected components,
i.e., l 6= 0 and h 6= 0. For each of these three cases we
show how to find k trees covering all vertices in G such
that the maximum tree weight is no more than 8

3B.

3.2 Case one: G′ does not contain any heavy con-

nected components

We start with Case 1: there are no heavy connected
components in G′. We construct a tree cover T by
merging some of the l trees using the edges with weight
no greater than B/2 so that the number of resulting trees
is no more than k as follows.
As G′ contains l light connected components only, an

auxiliary graph H = (X,EX) is constructed as follows.
Each vertex vi in X corresponds to a light connected
component CCi, 1 ≤ i ≤ l. There is an edge between
two vertices vi and vj if and only if there is an edge in
G between the vertices in CCi and CCj with weight no
more than B/2 and i 6= j, for all i and j with 1 ≤ i, j ≤ l.
Let M be a maximum matching of graph H . Then, a tree
cover T of G can be found based on M as follows.

Initially T = ∅. Then, for each pair of matched vertices
vi and vj in M , a resulting tree Ti,j is obtained by
adding a cheapest edge e (with weight no more than
B/2) between the MST Ti of CCi to the MST Tj of CCj ,
which is then added to T . It is obvious that w(Ti,j) ≤

5
2B

as w(Ti) < B, w(Tj) < B, and w(e) ≤ B
2 . For each non-

matched vertex vi in H , add the MST Ti of CCi to T
directly. Clearly, the weight of each tree in T is no more
than 5

2B. The rest is to show that |T | ≤ k. Notice that T
contains |M | + |X − V (M)| = |M | + l − 2|M | = l − |M |
trees. In the following, we show that l − |M | ≤ k.

Consider the optimal solution OPT of the problem.
We remove all edges with weight greater than B/3

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2013.2295609

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 2013 5

from OPT . Following Lemma 3, there are at most two
edges in each cycle C∗

i in OPT with weight larger than
B/3. Thus, no more than two connected components
C∗

i,1 and C∗
i,2 will be the results after the removal of

all edges with weight larger than B/3 from C∗
i . The

cycles in OPT thus are classified into three different
categories: light cycles, heavy cycles, and bad cycles,
where a cycle C∗

i is a light cycle (or heavy cycle) if the
connected components obtained by removing all the
edges with weight greater than B/3 are contained in
light connected components (or heavy components) CCx

and CCy of G′, where 1 ≤ x, y ≤ l (or l+1 ≤ x, y ≤ l+h).
Otherwise, C∗

i is a bad cycle, which means that one of
the two connected components C∗

i,1 and C∗
i,2 is in a light

connected component CCj and the other is in a heavy
component CCj′ of G′ with j 6= j′. Assume that OPT
contains k∗l light cycles, k∗h heavy cycles, and k∗b bad
cycles, then |OPT | = k∗l + k∗h + k∗b = k.
We now construct another auxiliary graph H ′ =

(X,E′
X) based on the k∗l light cycles in OPT as follows.

Each vertex vi ∈ X corresponds to a light connected
component CCi of G

′. There is a self loop edge on vertex
vi if there exists a cycle C∗

x ∈ OPT such that CC∗
x,1 is

contained in CCi of G′ (there is no CC∗
x,2). There is an

edge (vi, vj) ∈ E′
X if there is a cycle C∗

x ∈ OPT such
that CC∗

x,1 and CC∗
x,2 are in connected components CCi

and CCj , respectively. Clearly, it is easy to verify that
|E′

X | = k∗l ≤ k. Let M ′ be a maximum matching of graph
H ′. A tree cover T ′ based on the maximum matching M ′

inH ′ then can be constructed, using the similar approach
as we did for the tree cover T based on the maximum
matching M in H . Thus, T ′ contains l − |M ′| trees.
We claim that l − |M | ≤ k by the following lemma.
Lemma 4: Given the constructed graph H = (X,EX)

and H ′ = (X,E′
X), let M and M ′ be the maximum

matchings in H and H ′ respectively, we have l − |M | ≤
l − |M ′| and l − |M ′| ≤ k, then l − |M | ≤ k.

Proof: We start by showing that l − |M | ≤ l − |M ′|.
Note that if there is an edge in H ′ between two dif-
ferent vertices vi and vj in X , then there is a cycle
C∗

x in OPT such that the two connected components
CC∗

x,1 and CC∗
x,2 derived from C∗

x are contained in
connected components CCi and CCj of G′, respectively.
By Lemma 3, CCi and CCj can be connected with an
edge with weight no greater than B/2. Therefore, there
must have an edge in H between vertices vi and vj , too.
AsM is a maximummatching inH , we have |M | ≥ |M ′|,
i.e., l − |M | ≤ l − |M ′|.
We then show that l−|M ′| ≤ k. Following our assump-

tion that there are only l light connected components in
G′, each vertex in H ′ is adjacent to at least one edge in
E′

X (a self-loop edge is counted as an edge in E′
X too) by

the construction of H ′. Then, each vertex in X − V (M ′)
is adjacent to at least an edge in E′

X −M ′, and no two
distinct vertices in X −V (M ′) are connected by an edge
in E′

X −M ′ as the matching M ′ is the maximum one.
Thus, |X −V (M ′)| ≤ |E′

X | − |M
′|. Therefore, T ′ contains

l − |M ′| = |X − V (M ′)| + |M ′| ≤ |E′
X | − |M

′| + |M ′| =

|E′
X | = k∗l ≤ k trees. The lemma then follows.

3.3 Case two: G′ does not contain any light con-
nected components

We then deal with Case 2: there are no light connected
components in G′. In this case l = 0 and G′ contains only
h heavy connected components. A tree cover T of G can
be constructed as follows.
For the MST Ti of each connected component CCi, if

w(Ti) ≥
8
3B, Ti can be decomposed into several subtrees

such that the weight of each subtree is no more than 2β
by Lemma 1, where β = 4

3B. These subtrees are then
added to T ; otherwise (B ≤ w(Ti) <

8
3B), Ti is added to

T directly, 1 ≤ i ≤ h. We claim that the tree cover T of
G contains no more than k trees.
Lemma 5: Given a metric graph G = (V,E), assume

that B ≥ B∗, let G′ be a subgraph of G after the removal
of all edges with weight greater than B/3. Assume that
each connected component of G′ is a heavy connected
component. Then, the constructed tree cover T by the
above approach is a k-tree cover of G, and the maximum
tree weight is no more than 8

3B.
Proof: We give a lower bound on the weighted sum

of trees in T first. Assume that there are x MSTs of the h
heavy connected components with weight in the interval
[B, 8

3B), where 0 ≤ x ≤ h. Then, each of the rest h − x
MSTs has weight at least 8

3B. Following the construction
of T , the x MSTs are directly put into T , and each of
the h − x MSTs are decomposed into subtrees and the
average weight of the decomposed subtrees is at least
4
3B by Lemma 1. Then, the h− x MSTs are decomposed
into |T | − x subtrees in T with average tree weight no
less than 4

3B. Thus, we have

w(T) ≥ (|T | − x) ·
4

3
B + x ·B

≥ |T |
4

3
B −

h

3
B since x ≤ h. (1)

We then estimate the upper bound of
∑h

i=1 w(Ti),
using the optimal solution OPT . Assume that OPT =
{C∗

1 , C
∗
2 , . . . , C

∗
k}. By removing all edges with weight

greater than B/3 from OPT , each cycle C∗
i can be

partitioned into either one connected component CC∗
i,1 if

none or one edge is removed from it, or two connected
components CC∗

i,1 and C∗
i,2 if two edges are removed

from it. Following our assumption that there are only
h heavy connected components in G′ after removing all
edges with weight greater than B/3 from G, then, each
CC∗

i,1 and/or CC∗
i,2 are in one of h heavy connected

components. Thus, all k cycles in OPT are heavy cycles,
i.e., k∗l = k∗b = 0 and k∗h = k. Suppose the removal
of edges with weight greater than B/3 results in p
heavy cycles that have two connected components and
q cycles have only one connected components, where
p + q = k∗h = k. Thus, there are 2p + q connected
components derived from OPT after the removal of
edges with weight greater than B/3, and the weighted

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2013.2295609

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 2013 6

sum of these connected components is no more than
pB/3 + qB, since each of the p cycles has been removed
two edges with weight greater than B/3 and the weight
of each cycle is no more than B∗ with B ≥ B∗. We
can merge these 2p + q connected components into h
connected components by adding exactly 2p+q−h edges
with weight no more than B/3 in G′, as G′ contains h
heavy connected components. Since the weighted sum
of the MSTs of these h connected components is the
minimum weighted sum of a forest of h trees spanning
all vertices in G, then,

h∑

i=1

w(Ti) ≤ pB/3 + qB + (2p+ q − h)B/3

≤
4

3
kB −

h

3
B as p+ q = k∗h ≤ k. (2)

Since w(T) =
∑h

i=1 w(Ti), we have |T | ≤ k by combining
Eq. (1) and Eq. (2).

3.4 Case three: G′ contains both light and heavy
connected components

We now deal with Case three. We assume
that G′ contains l light connected components
CC1, CC2, . . . , CCl and h heavy connected components
CCl+1, CCl+2, . . . , CCl+h, i.e., l 6= 0 and h 6= 0. For
each light connected component CCi of G′, denote by
wmin(CCi) the minimum edge weight w(e) between
the vertices in CCi and its nearest heavy connected
component CCj with l + 1 ≤ j ≤ l + h if there is
one edge in G with weight no greater than B/2, i.e.,
w(e) = mine′=(u,v)∈E{w(e

′) | u ∈ CCi, v ∈ CCj′ , w(e
′) ≤

B/2, l + 1 ≤ j′ ≤ l + h}. Otherwise, wmin(CCi) = ∞.
Define A(CCi) = w(Ti) + wmin(CCi), 1 ≤ i ≤ l. The
general strategy for this case is to reduce it to cases one
and two, respectively. For the sake of convenience, in
the following we initially assume that the k∗l light cycles
in OPT are given, under this assumption we show that
there is a k-tree cover of G. We later show how to find
a k-tree cover of G by removing the assumption.

3.4.1 The k∗l light cycles in OPT are given

Recall that the k cycles in OPT have been classified into
k∗l light cycles, k∗h heavy cycles, and k∗b bad cycles, where
k∗l + k∗h + k∗b = k. Given the k∗l light cycles in OPT , we
first construct the auxiliary multi-graph H ′ = (X,E′

X)
as we did in Case one, where X is the set of vertices
corresponding to the l light connected components of
G′. The edge set E′

X is defined by the k∗l light cycles in
OPT . The multi-graph H ′ may contain vertices without
any adjacent edges including self-loops, we term these
vertices as the isolated vertices, which correspond to the
light connected components of G′ that contain only the
vertices from bad cycles. Clearly, |E′

X | = k∗l . Let M
′ be

a maximum matching of H ′. Then, each vertex in X is
either matched with another vertex or unmatched at all.
Let a∗ be the number of unmatched isolated vertices and

b∗ the number of unmatched vertices that have adjacent
edges including self-loops. Clearly 0 ≤ a∗, b∗ ≤ l and
|M ′| = (l − a∗ − b∗)/2.
We then construct an auxiliary weighted graph

H ′
a∗,b∗ = (Y,E∗

Y) based on the maximum matching M ′ of
H ′ as follows. Y contains l regular vertices, corresponding
to the l light connected components CC1, . . . , CCl of G

′,
a∗ heavy vertices representing the a∗ light connected com-
ponents will be merged to at most a∗ heavy connected
components of G′, and b∗ null vertices which imply the
MSTs of these light connected components that will be
in the k-tree cover of G. We refer to a heavy connected
component CCj that has been enlarged by merging one
or multiple light connected components into it as the
updated heavy connected component CC ′

j , l+ 1 ≤ j ≤ l+ h.
There is an edge in E∗

Y between two regular vertices
vi and vj if there are two connected components CC∗

x,1

and CC∗
x,2 derived from a light cycle C∗

x ∈ OPT after
the removal of all edges with weight greater than B/3
from it, and CC∗

x,1 and CC∗
x,2 are in two light connected

components CCi and CCj of G
′ respectively. The weight

of this edge is zero. There is an edge in E∗
Y between a

regular vertex vi and each of the a∗ heavy vertices if
A(CCi) 6= ∞, and the weight of this edge is A(CCi).
There is an edge in E∗

Y between every null vertex and
every regular vertex with weight zero.
It is easily shown that a minimum weighted perfect

matching in H ′
a∗,b∗ can be found based on the maxi-

mum matching M ′ in H ′. Let M(H ′
a∗,b∗) be the min-

imum weighted perfect matching. Then, M(H ′
a∗,b∗) =

{(vi, vj) | (vi, vj) ∈ M ′} ∪ {(vi, a null vetrex) | vi is an
unmatched vertex in H ′ incident to at least an edge in
H ′} ∪{(vi, a heavy vertex) | vi is an unmatched isolated
vertex in H ′ and A(CCi) 6=∞}.
A k-tree cover of G, T ∗, then can be found based on

M(H ′
a∗,b∗), where T ∗ = T ∗(S1)∪T

∗(S2), S1 consists of all
light connected components that are either matched with
another light connected components inM ′ or unmatched
but incident to at least one edge in H ′, and S2 consists
of all updated heavy connected components.
T ∗(S1) consists of MSTs formed by each pair of

matched light connected components in M ′ or the MST
of a light connected component that is matched with
a null vertex in M(H ′

a∗,b∗). It is easy to see that the
maximum tree weight among the trees in T ∗(S1) is no
more than 5

2B. It can be shown that the number of trees
in T ∗(S1) is no more than k∗l through a reduction to
Case one as follows. A subgraph H ′′ of H ′ is obtained
by the removal of all isolated vertices from graph H ′.
Following the similar argument in Case one, we have
|T ∗(S1)| = b∗ + l−a∗

−b∗

2 ≤ k∗l .
T ∗(S2) is constructed as follows. Assume that there is

a matched edge in M(H ′
a∗,b∗) between a regular vertex vi

(or light connected component CCi) and a heavy vertex.
Let CCj be the nearest heavy connected component of
CCi. Merging CCi to CCj results in an updated heavy
connected component CC ′

j . Let T
′
j be the MST of CC ′

j .
Then, w(T ′

j) = w(Tj)+A(CCi), l+1 ≤ j ≤ l+h. Now, the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2013.2295609

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 2013 7

problem becomes Case two, where there are h updated
heavy connected components. A set of trees with weight
no more than 8

3B can be found through applying the tree
decomposition on each T ′

j for all j with l+1 ≤ j ≤ l+h.
We then show that |T ∗(S2)| ≤ k∗b + k∗h, thus there is a
tree cover of G with no more than |T ∗| = |T ∗(S1)| +
|T ∗(S2)| ≤ k∗l + (k∗b + k∗h) = k trees.
Let us define some notations first. Recall that each bad

cycle C∗
i ∈ OPT has been divided into two connected

components CC∗
i,1 and CC∗

i,2 after the removal of two
edges with weight greater than B/3 from it, and one
of them is in a light connected component CCx and
the other is in a heavy connected component CCy of
G′ with 1 ≤ x ≤ l and l + 1 ≤ y ≤ l + h. For the sake
of discussion convenience, we further assume that CC∗

i,1

is the connected component that is contained in a light
connected component CCx of G′. Define the excess weight
of each bad cycle C∗

i , wexcess(C
∗
i), as the weight of the

connected component CC∗
i,1 of C∗

i in the light connected
component plus the smaller edge weight of the two
removed edges ei,1 and ei,2. For example, assume that
CC∗

i,1 is the connected component of C∗
i in the light

connected component of G′ and ei,1 and ei,2 are the two
removed edges from C∗

i with w(ei,1) ≤ w(ei,2). Then,

wexcess(C
∗
i) = w(CC∗

i,1) + w(ei,1). (3)

Denote by wexcess the sum of excess weights of the k∗b
bad cycles in OPT .
We show |T ∗(S2)| ≤ k∗b + k∗h by the following lemma.
Lemma 6: Let T ′

j be the MST of CC ′
j for all j with

l + 1 ≤ j ≤ l + h. Notice that if no light connected
component is merged to CCj , CC ′

j is the original CCj

itself. Let T ∗(S2) be the set of trees after applying the tree
decomposition on each T ′

j for all j with l+1 ≤ j ≤ l+h
where β = 4

3B. Then, |T ∗(S2)| ≤ k∗b + k∗h.
Proof: In the following we show that there are no

more than k∗b + k∗h trees with bounding weights by de-
composing each trees T ′

j for every j with l+1 ≤ j ≤ l+h.
Using a similar argument as we did to obtain inequal-

ity (1) in Case two, we have,

l+h∑

j=l+1

w(T ′
j) ≥ |T

∗(S2)|
4

3
B −

h

3
B. (4)

Then, we show that

l+h∑

j=l+1

w(T ′
j) ≤ (k∗b + k∗h)

4

3
B −

h

3
B. (5)

Inequalities (4) and (5) imply that |T ∗(S2)| ≤ (k∗b + k∗h).
We show that inequality (5) holds due to∑l+h
j=l+1 w(Tj) ≤ (k∗b + k∗h)

4
3B −

h
3B − wexcess and

w(M(H ′
a∗,b∗)) =

∑l+h
j=l+1(w(T

′
j)− w(Tj)) ≤ wexcess.

With a similar argument as we did to obtain inequal-
ity (2) in Case two, it can be shown that

l+h∑

j=l+1

w(Tj) ≤ (k∗b + k∗h)
4

3
B −

h

3
B − wexcess, (6)

where Tj is the MST of CCj , omitted.

We now show that w(M(H ′
a∗,b∗)) =

∑l+h
j=l+1(w(T

′
j) −

w(Tj)) ≤ wexcess as follows.
Following the construction of H ′

a∗,b∗ , w(M(H ′
a∗,b∗)) is

the sum of all A(CCi) of light connected components
in G′ that isolated vertices in H ′ correspond to, where
1 ≤ i ≤ l. We show that, for each light connected com-
ponent CCi that an isolated vertex in H ′ corresponds
to, A(CCi) is no more than the sum of excess weight
of the bad cycles that derived connected components by
the removal of edges with weight greater than B/3 are
contained in CCi. Then, the inequality holds.
For each light connected component CCi that an

isolated vertex vi in H ′ corresponds to, assume that
CCi contains t connected components derived from t
bad cycles C∗

i1
, . . . , C∗

it
with 1 ≤ ij ≤ k and 1 ≤ j ≤

t. Denote by CC∗
i1,1

, CC∗
i2,1

, . . . , CC∗
it,1

the t connected
components contained in CCi and ei1,1, . . . , eit,1 the t
smaller weight edges among the 2t removed edges with
weight greater than B/3 from the t bad cycles. Then,
B/3 < w(eij ,1) ≤ B/2, 1 ≤ j ≤ t. Let e be the
cheapest edge by merging CCi to its nearest heavy
connected component. As A(CCi) = w(Ti) + w(e) and∑t

j=1 wexcess(C
∗
ij
) =

∑t
j=1 w(CC∗

ij ,1
)+

∑t
j=1 w(eij ,1), we

then show that

w(Ti) + w(e) ≤
t∑

j=1

w(CC∗
ij ,1) +

t∑

j=1

w(eij ,1). (7)

By the definition of edge e, we have that w(e) ≤
min{w(eij ,1) | 1 ≤ j ≤ t}. Assume that w(eit,1) =
mintj=1 w(eij ,1), then, w(e) ≤ w(eit,1). We then show that

w(Ti) ≤
∑t

j=1 w(CC∗
ij ,1

) +
∑t−1

j=1 w(eij ,1). We notice that
the t connected components CC∗

ij ,1
in CCi with 1 ≤ j ≤ t

can become a single connected subgraph spanning all
vertices in CCi, by adding extra t−1 edges with weight
no greater than B/3. Then, w(Ti) ≤

∑t
j=1 w(CC∗

ij ,1
)+(t−

1)B/3 ≤
∑t

j=1 w(CC∗
ij ,1

)+
∑t−1

j=1 w(eij ,1) as Ti is an MST
of CCi and B/3 < w(eij ,1) ≤ B/2 for j with 1 ≤ j ≤ t.

We then conclude that
∑l+h

j=l+1 w(T
′

j) ≤
4
3 (k

∗
b+k∗h)B−

h
3B,

which implies that there are no more than k∗b + k∗h
decomposed trees with the maximum tree weight no
greater than 8

3B according to Lemma 1.

3.4.2 Without the knowledge of the k∗l light cycles

The above approximate solution obtained is based on an
important assumption, that is, the k∗l light cycles in OPT
are given. Having the k∗l light cycles, an auxiliary graph
H ′ then is constructed and a maximum matching M ′ of
H ′ is found. The values of a∗ and b∗ are then obtained
through M ′. A weighted auxiliary graph H ′

a∗,b∗ based
on a∗ and b∗ is constructed and a minimum weighted
perfect matchingM(H ′

a∗,b∗) inH ′
a∗,b∗ must exist. A k-tree

cover T ∗ of G finally is derived based on M(H ′
a∗,b∗). In

the following we show how to find the approximation
solution to the problem without knowing the k∗l light
cycles in OPT .

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2013.2295609

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 2013 8

As a∗ and b∗ are non-negative integers in the interval

[0, l] and a∗+b∗ ≤ l, there are in total
∑l

a=0(l−a) =
l(l+1)

2
possible pairs of values of a and b. a∗ and b∗ must be

one of these l(l+1)
2 pairs. In each pair with a and b, we

construct another auxiliary weighted graph Ha,b without
the knowledge of OPT , which is constructed later. We
show that when a = a∗ and b = b∗, H ′

a∗,b∗ is a spanning
subgraph ofHa∗,b∗ . Thus, the minimumweighted perfect
matching M(H ′

a∗,b∗) in H ′
a∗,b∗ is one perfect matching in

Ha∗,b∗ . Then, instead of using M(H ′
a∗,b∗) of H

′
a∗,b∗ to find

T ∗, we can use the minimum weighted perfect matching
M(Ha∗,b∗) of Ha∗,b∗ to find a k-tree cover of G, T . The
difference between H ′

a∗,b∗ and Ha∗,b∗ is that the former
can be constructed if the k∗l light cycles are given while
the later does not need this knowledge.

The weighted auxiliary graph Ha,b = (Y,EY) is con-
structed as follows. Y contains l regular vertices vi, 1 ≤
i ≤ l, corresponding to the l light connected components
of G′, a heavy vertices, and b null vertices. There is an
edge in EY between two regular vertices vi and vj if
there is an edge in G with weight no greater than B/2
between the vertices in two light connected components
CCi and CCj , and the weight of the edge is zero for any
i and j with 1 ≤ i, j ≤ l. There is an edge in EY between
every null vertex and every regular vertex and its weight
is zero. There is an edge in EY between a regular vertex
vi and every heavy vertex if light connected component
CCi has a finite value A(CCi) and the weight of the edge
is A(CCi) for some i with 1 ≤ i ≤ l.

If there is a minimum weighted perfect matching in
Ha,b, let M(Ha,b) be the minimum weighted perfect
matching. A k-tree cover Ta,b of G can be constructed
based on M(Ha,b) as follows.

Initially, Ta,b = ∅. For each matched edge (x, y) ∈
M(Ha,b), assume that x must be a regular vertex with
x = vi. Then, if y is a null vertex, the MST Ti of CCi is
added to Ta,b. If y = vj is a regular vertex with i 6= j,
an MST Ti,j is obtained by joining Ti of CCi and Tj of
CCj with a cheapest edge between them. Ti,j is added
to Ta,b. Otherwise (y must be a heavy vertex), let CCj

be the nearest heavy connected component of CCi, i.e.,
A(CCi) is equal to the minimum edge weight of an edge
e between the vertices in CCi and CCj plus w(Ti). CCi

will be merged to CCj . Let CC ′
j be the updated heavy

connected component and T ′
j the MST of CC ′

j . Then,
T ′
j = Ti ∪ Tj ∪ {e} and w(T ′

j) = w(Tj) + A(CCi). For
each updated heavy connected component CC ′

j (notice
that a CC ′

j may be the results by merging multiple light
connected components). If w(T ′

j) < 8
3B, T ′

j is added to
Ta,b directly. Otherwise, apply tree decomposition on T ′

j

to split away subtrees from T ′
j by Lemma 1 with β = 4

3B.
Add these split subtrees into Ta,b.

It is easily show that the maximum tree weight of the
trees in Ta,b is no more than 8

3B. We then show that
when a = a∗ and b = b∗, |Ta∗,b∗ | ≤ k as follows.

By the definitions of Ha∗,b∗ and H ′
a∗,b∗ , we know that

H ′
a∗,b∗ is a spanning subgraph of Ha∗,b∗ . Thus, there

must be a perfect matching in Ha∗,b∗ as there is a perfect
matching in H ′

a∗,b∗ .
We note that there are l regular vertices in Ha∗,b∗ .

Within the perfect matching M(Ha∗,b∗), a
∗ regular ver-

tices are matched to the a∗ heavy vertices, b∗ regular
vertices are matched to b∗ null vertices, and the rest
of regular vertices match themselves, i.e., |M(Ha∗,b∗)| =
a∗+b∗+(l−a∗−b∗)/2. The number of trees obtained from
the matched edges between the regular vertices and a
regular vertex and a null vertex is b∗+(l−a∗−b∗)/2 ≤ k∗l
with the maximum tree weight 5

2B. We also notice
that the weight of the minimum weighted matching
M(Ha∗,b∗) in Ha∗,b∗ is no more than that of the min-
imum weighted perfect matching M(H ′

a∗,b∗) in H ′
a∗,b∗ ,

so w(M(Ha∗,b∗)) ≤ w(M(H ′
a∗,b∗)) ≤ wexcess. Then, the

weighted sum of the MSTs of all updated heavy con-

nected components is
∑l+h

j=l+1 w(T
′
j) =

∑l+h
j=l+1 w(Tj) +

w(M(Ha∗,b∗)) ≤
4
3 (k

∗
b+k∗h)B−

h
3B by combining inequal-

ity (6). Apply the tree decomposition to each T ′
j for all j

with l+1 ≤ j ≤ l+h, no more than k∗b +k∗h trees with the
maximum tree weight 8

3B can be derived by combining
Inequality (4). Thus, the number of trees covering all
vertices in G is no more than k∗l + (k∗b + k∗h) = k.

3.5 Algorithm

The detailed algorithm is described in Algorithm 1.
Step 2 of Algorithm 1 is explained by the following

lemma.
Lemma 7: In Algorithm 1, if l + h ≥ 8k, there is no

k-tree cover of G with maximum tree weight 8
3B.

Proof: We show the claim by contradiction. Suppose
that there is a k-tree cover with the maximum tree weight
8
3B when l + h ≥ 8k. We assume that graph Ha,b from
which the tree cover T is derived contains a heavy
vertices and b null vertices. For each light connected
component merged to a heavy component with an edge
e at Step 13, we have w(e) > B/3, and for the MST Tj of
a heavy connected component CCj , we have w(Tj) ≥ B
for all j with l+1 ≤ j ≤ l+h. We only consider the trees
in Theavy by decomposing the MSTs of updated heavy
connected components at Step 14 of the algorithm. Then,

w(Theavy) =
l+h∑

j=l+1

w(T ′
j) ≥ h ·B + a ·B/3. (8)

On the other hand, Theavy contains no more than
k− (l− a− b)/2− b trees with the maximum tree weight
no greater than 8

3B. Therefore,

w(Theavy) ≤ (k − (l − a− b)/2− b) · 8B/3. (9)

Combining inequities (8) and (9), we have

8k > (l + h) + 3(l − a) + 4b+ 2h ≥ l + h, (10)

the last inequality holds due to l ≥ a.
We thus have the following Lemma.
Lemma 8: If B ≥ B∗, Algorithm 1 will deliver a k-

tree cover of G with the maximum tree weight 8
3B.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2013.2295609

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 2013 9

Algorithm 1 Rootless-Tree-Cover

Input: G = (V,E), a metric w : E 7→ Z
+, k, and B

Output: a set T of trees which is a k-tree cover covering
all vertices in G with the maximum tree weight 8

3B
1: Let CC1, . . . , CCl+h be the l light and h heavy con-

nected components of G after the removal of all
edges with weight greater than B/3;

2: if l + h ≥ 8k then
3: return “B is too low”; EXIT;
4: end if
5: for a← 0 to l do
6: for b← 0 to l − a do
7: Ta,b ← ∅; /* the k-tree cover set*/
8: Construct a graph Ha,b that contains l regular

vertices, a heavy vertices, and b null vertices;
9: Find a minimum weighted perfect matching

M(Ha,b) in Ha,b;
10: if there is such a perfect matching in Ha,b then
11: For each matched edge between two regular

vertices vi and vj , an MST Ti,j is obtained by
joining the MST Ti of CCi and the MST j of
CCj through a cheapest edge between them,
and add Ti,j to Ta,b;

12: For each regular vertex vi that is matched to
a null vertex, add the MST Ti of CCi to Ta,b;

13: For each regular vertex vi that is matched to a
heavy vertex, the light connected component
CCi is merged to its nearest heavy connected
component CCj , denote by CC ′

j the updated
heavy connected component and T ′

j be the
MST of CC ′

j ;
14: For the MST T ′

j of each updated heavy con-
nected component, if w(T ′

j) < 8
3B, add T ′

j to
Ta,b; otherwise, T ′

j is decomposed into several
subtrees, such that the weight of each split
away subtree is no more than 8

3B by Lemma 1,
where β = 4

3B, add these subtrees to Ta,b;
15: if |Ta,b| ≤ k then
16: return Ta,b
17: end if
18: end if
19: end for
20: end for
21: return “B is too low”

3.6 Strongly polynomial approximation

The proposed approximation algorithm above is a poly-
nomial algorithm only when the maximum weight of
edges in G is bounded by a polynomial of 2n. Thus,
the optimal value B∗ can be found within a polynomial
number of iterations by performing binary search on
the interval [0, n · wm], where n = |V |, m = |E|, and
wm = maxe∈E{w(e)}. Otherwise, the proposed algo-
rithm is a pseudo-polynomial algorithm because its time
complexity depends on the maximum value of edge
weights. In the following, for a given constant 0 < ǫ < 1,

we show that the number of guesses B of the value of
B∗ is a polynomial of n by adopting a technique in [10].

Assume that the edge weights in G are sorted in
increasing order, denote by w1 ≤ w2 ≤ · · · ≤ wm. It
is obvious that B∗ ≤ n · wm. Using different guesses B
of B∗, Algorithm 1 proceeds iteratively until a feasible
solution is found. Specifically, the initial guess B of B∗

is B = wm. When B = wm, if Algorithm 1 returns
that “B is too low”, which means that this guess is
too small, B∗ must be in the interval [wm, n · wm]. The
algorithm then guesses the next B by binary search
until a guess (1 + ǫ

16/3)B of B∗ is found such that
Algorithm 1 delivers a solution with the maximum
cycle weight no greater than (163 + ǫ)B. That is, the
search interval now is narrowed down in the interval
[B, (1 + ǫ

16/3)B]. Clearly B < B∗, and the upper bound

of B∗ is (1 + ǫ
16/3)B. Thus, (163 + ǫ)B ≤ (163 + ǫ)B∗, and

the number of iterations (by binary search) is bounded
by ⌈log(n·wm

16ǫ·wm/3)⌉ = O(log n+ log 1
ǫ). Otherwise, we try

the next B with value no greater than the current value
wm to see whether Algorithm 1 delivers a solution,
too. The next B thus is one of the m possible values
w1, · · · , wm which can be found using binary search in
the sequence of edge weights until an index i of an edge
weight is found such that Algorithm 1 returns “B is too
low” when B = wi, while Algorithm 1 returns a k-tree
cover of G with the maximum tree weight 8

3 ·wi+1 when
B = wi+1, where i ∈ [1,m− 1].

If wi+1 ≤
n2

ǫ · wi, then the number of iterations for
searching a proper B in the interval [wi, wi+1] is strongly
polynomial with an approximation ratio of 5 1

3 + ǫ as

discussed in the above. Otherwise, denote by w′ = n2

ǫ ·wi.
If Algorithm 1 can deliver a k-tree cover with the max-
imum tree weight 8

3w
′ when B = w′. It then performs

the binary search in the interval [wi, w
′] to find a better B

through a series of iterations by binary search. Thus, the
algorithm is strongly polynomial with an approximation
ratio of 5 1

3 + ǫ. Otherwise (Algorithm 1 returns that “B
is too low” when B = w′), then B∗ ≥ wi+1, which is
shown in the following. Suppose that B∗ < wi+1, then
the cycles in OPT contain only the edges with weight no
greater than wi. Thus, the maximum cycle weight among
the cycles in OPT is at most n · wi ≤ n2 · wi = ǫ · w′ <
ǫ·B∗ < B∗, since w′ < B∗ and 0 < ǫ < 1. This contradicts
the definition of B∗. Note that Algorithm 1 can find a
solution with the maximum cycle weight 16

3 ·wi+1, then,
16
3 · wi+1 < 16

3 B∗. We thus have the following theorem.

Theorem 1: Given a metric complete graph G = (V,E)
and a positive integer k, there is a (5 1

3+ǫ)-approximation
algorithm for the rootless min-max cycle cover problem
inG, which takes O((n2k2+k5)(log n+log 1

ǫ)) time, where
n = |V | and ǫ is a constant with 0 < ǫ < 1.

Proof: Combining Lemmas 2 and 8 and the above
discussions, the approximation ratio of the proposed
algorithm is straightforward, omitted.

The rest is to analyze the time complexity of the pro-
posed algorithm. The number of iterations of the binary

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2013.2295609

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 2013 10

search for the optimal B∗ is at most O(log n+ log 1
ǫ) by

the above discussion. In each iteration, Algorithm 1 is
invoked and its time complexity is analyzed as follows.
It takes O(n2) time to obtain a subgraph G′ of G

by removing the edges with weight greater than B/3.
Finding the MSTs of all connected components in G′

takes O(n2) time. Within Algorithm 1, there are no
more than l(l+1)

2 = O(l2) tree covers Ta,b of G to be
constructed. For each tree cover Ta,b, the auxiliary graph
Ha,b can be constructed in time O(n2) as the edges in
Ha,b can be determined by the number of edges in G. It is
also known that Ha,b contains no more than 2l vertices,
it takes O((2l)3) = O(l3) time to finding a minimum
weighted perfect matching by applying an algorithm
in [12]. The construction of tree cover Ta,b takes O(n)
time as the tree decomposition can be implemented by
depth-first search on the MSTs of updated heavy con-
nected components. Thus, Algorithm 1 takes O(n2) +
O(l2)(O(n2)+O(l3)+O(n)) = O(n2l2+l5) = O(n2k2+k5)
as l ≤ l+h ≤ 8k by Lemma 7. Thus, the time complexity
of the proposed algorithm is O((n2k2+k5)(log n+log 1

ǫ)).

4 ALGORITHM FOR THE UNCAPACI-
TATED ROOTED MIN-MAX CYCLE COVER
PROBLEM

In this section, we focus on the uncapacitated rooted
min-max cycle cover problem, for which we devise a
(6 1

3 + ǫ)-approximation algorithm as follows.

4.1 Algorithm

The proposed algorithm for this problem is to find no
more than k trees covering all vertices in V − D with
each tree having exactly one depot from D, such that the
maximum tree weight is no greater than 19

6 B when B ≥
B∗

r . To this end, Algorithm 1 for the rootless min-max
tree cover problem will be invoked. That is, it first finds
k trees covering all vertices in V −D with the maximum
tree weight 8

3B. It then connects each found tree to its
nearest depot by an edge with weight at most B/2. The
detailed algorithm is described in Algorithm 2.

4.2 Algorithm analysis

The correctness and approximation ratio of the proposed
algorithm are guaranteed by the following lemmas.
Assuming that OPTr is an optimal solution to the

problem and B∗
r is the optimal value. Define w(v,D) =

minr∈D{w(v, r)} as the minimum distance between each
vertex v in V − D and the depot set D. Then, there
is an important property of an optimal (uncapacitated
or capacitated) rooted min-max cycle cover of G: the
maximum value of w(v,D) for all vertices in V − D is
no greater than B∗

r/2.
Lemma 9: maxv∈V−D{w(v,D)} ≤ B∗

r/2.
Proof: Let vmax be the vertex in V − D such that

w(vmax, D) = maxv∈V−D{w(v,D)}. Assume that vertex

Algorithm 2 Uncapacitated-Rooted-Tree-Cover

Input: G = (V,E), a metric w : E 7→ Z
+, k, a depot set

D (D ⊂ V), and B
Output: a set S which is a rooted k-tree cover with

maximum tree weight at most 19
6 B.

1: Call Algorithm 1 with inputs G − D = G(V −
D,E − {(r, v) | (r, v) ∈ E, r ∈ D, v ∈ V − D}), w, k,
and B.

2: if Algorithm 1 delivers a k-tree cover T of graph
G−D with maximum tree weight 8

3B then
3: S ← ∅;
4: For each Ti ∈ T , connect Ti to its nearest depot ri,

and add the resulting tree rooted at ri into S ;
5: return S ;
6: else
7: return “B is too low”;
8: end if

vmax is in the cycle C∗ ∈ OPTr and rC∗ is the de-
pot of C∗. Then, w(vmax, rC∗) ≤ w(C∗)/2 ≤ B∗

r/2 by
Lemma 3. Following the definition of w(vmax, D), we
have w(vmax, D) ≤ w(vmax, rC∗) ≤ B∗

r/2.

Lemma 10: If B ≥ B∗
r , Algorithm 2 will deliver an

uncapacitated rooted k-tree cover of G with the maxi-
mum tree weight 19

6 B.

Proof: We first argue that Algorithm 1 delivers a
k-tree cover of G − D with the maximum tree weight
8
3B at Step 1 of Algorithm 2. Given the OPTr, the
depot vertices in the cycles of OPTr can be shortcut,
thus, a feasible k-cycle cover C of graph G − D then
can be obtained, and maxC∗

i
∈C w(C

∗
i) ≤ B∗

r . Let OPT be
an optimal solution to the rootless min-max cycle cover
problem in graph G−D with the optimal value B∗, then,
B∗ ≤ maxC∗

i
∈C w(C

∗
i) ≤ B∗

r . Therefore, B ≥ B∗
r ≥ B∗.

Thus, Algorithm 1 can find a k-tree cover T of graph
G−D with the maximum tree weight 8

3B by Lemma 8.

We then show that the minimum distance between
each found tree and its nearest depot is no more than
B/2 as minv∈Ti,r∈D{w(v, r)} = minv∈Ti

{w(v,D)} ≤
maxv∈V−D{w(v,D)} ≤ B∗

r/2 ≤ B/2. Then, the weight
of each tree in S is no more than 8

3B + B
2 = 19

6 B.

We thus have the following theorem.

Theorem 2: Given a metric complete graph G =
(V,E;w), a depot set D ⊂ V , and a positive integer
k, there is a (6 1

3 + ǫ)-approximation algorithm for the
uncapacitated rooted min-max cycle cover problem in
G, which takes O((n2k2 + k5)(log n+ log 1

ǫ)) time, where
n = |V | and ǫ is a given constant with 0 < ǫ < 1.

Proof: Following Lemmas 2, 10, and the similar
analysis in the previous section, the analysis of the
approximation ratio and the time complexity of the
proposed algorithm is straightforward, omitted.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2013.2295609

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 2013 11

5 ALGORITHM FOR THE CAPACITATED
ROOTED MIN-MAX CYCLE COVER PROB-
LEM

In this section we devise a (7 + ǫ)-approximation algo-
rithm for the capacitated rooted min-max cycle cover
problem, in which each depot d in D has a maximum
serving capacity on the number of vehicles it can serve.
This general problem can be reduced to one special case
of the problem, that is, each depot can only serve one
vehicle and there are at least k depots in total [31],
because each depot r with f(r) serving capacity can
be treated as f(r) ’virtual’ depots with a unit serving
capacity, and the f(r) virtual depots are located at the
same location. Therefore, in the rest we only consider
this special case of the problem.
We start with the following crucial lemma.
Lemma 11: Given a tree T with weight w(T), assume

that each edge in T has weight no more than B and
w(T) ≥ 3B, then T can be decomposed into x edge-
disjoint trees T1, . . . , Tx such that 3

2B ≤ w(Ti) < 3B for
each i with 1 ≤ i ≤ x − 1 and B ≤ w(Tx) < 3B, where
B > 0 and 2 ≤ x ≤ ⌊w(T)

3B/2⌋.

Proof: By Lemma 1, when β is set as 3
2B, T can be

decomposed into x edge-disjoint trees T ′
1, . . . , T

′
x with

3
2B ≤ w(T ′

i) < 3B for each i with 1 ≤ i ≤ x− 1, w(T ′
x) <

3B, and w(T ′
x−1) + w(T ′

x) ≥ 3B, where 2 ≤ x ≤ ⌊w(T)
3B/2⌋.

We now construct Ti from T ′
i as follows. If w(T ′

i) ≥ B,
Ti = T

′

i for all i with i = 1, . . . , x; otherwise Ti = T
′

i

for all i with i = 1, . . . , x− 2. The rest is to construct the
last two trees Tx−1 and Tx. Following the construction of
T

′

x−1 and T
′

x, their union T ′
x−1,x = T

′

x−1∪T
′

x is connected
and the weight of T ′

x−1,x is within 3B ≤ w(T ′
x−1,x) < 4B.

We then split off a subtree T
′′

x−1 from T ′
x−1,x with the

bounded weight in the interval [B, 2B). Denote by T
′′

x

the leftover tree. Now, if 3
2B ≤ w(T

′′

x−1) ≤ 2B, then

w(T
′′

x) = w(T ′
x−1,x) − w(T

′′

x−1) ≥ 3B − 2B = B and

w(T
′′

x) < 4B − 3
2B < 3B. For this case, Tx−1 = T

′′

x−1

and Tx = T
′′

x . Otherwise (B ≤ w(T
′′

x−1) < 3
2B), then

w(T
′′

x) ≥ 3B − 3
2B = 3

2B and w(T
′′

x) < 4B − B = 3B.

Tx−1 = T
′′

x and Tx = T
′′

x−1. The lemma then follows.

5.1 Algorithm

Let OPTr be an optimal solution to the capacitated
rooted cycle cover problem in G with the optimal value
B∗

r . Assume that B ≥ B∗
r . The idea of the proposed

algorithm is to find no more than k trees covering all
vertices in V −D with the maximum tree weight 3B first,
by applying the tree decomposition technique. It then
connects the found trees to the depots in set D through a
maximummatching in an auxiliary bipartite graph while
ensuring that the shortest distance between the vertices
in each tree and its matched depot is no more than B/2.
The detailed algorithm is given in Algorithm 3.

5.2 Algorithm analysis

To show the correctness of Algorithm 3, we have:

Algorithm 3 Capacitated-Rooted-Tree-Cover

Input: G = (V,E), a metric w : E 7→ Z
+, k, D (D ⊂

V, |D| ≥ k), and B
Output: A rooted k-tree cover S of G in which each

tree has a distinct root in D with the maximum tree
weight 7

2B.
1: A subgraph of G−D is then obtained by removing

all edges in G−D with the weight greater than B/2.
Assume that the subgraph contains y components:
CC1, . . . , CCy . Let Ti be the MST of CCi for all i
with 1 ≤ i ≤ y;

2: T ← ∅; S ← ∅;
3: For each Ti, if w(Ti) < 3B, add Ti to T ; otherwise,

Ti is decomposed into xi edge-disjoint subtrees by
Lemma 11, add the xi subtrees into T ;

4: if |T | ≤ k then
5: Construct a bipartite graph H = (T , D,E′). There

is an edge in E′ between a tree vertex T ∈ T and
a depot r ∈ D if there is an edge in G between a
vertex in T and r with weight no more than B/2;

6: Find a maximum matching M(H) in H ;
7: if each tree vertex T is matched in M(H) then
8: For each tree T ∈ T , connect T to its matched

depot r with the cheapest edge between them
and add the resulting tree rooted at r to S ;

9: return S
10: else
11: return “B is too low”.
12: end if
13: else
14: return “B is too low”.
15: end if

Lemma 12: If B ≥ B∗
r , Algorithm 3 will find a k-tree

cover in which each tree contains a distinct depot in D
and no depot is contained by more than one tree, such
that the maximum tree weight is 7

2B.

Proof: Given an optimal solution OPTr of the prob-
lem, a set OPT of segments (or lines) that do not contain
any depots can be derived as follows.

Define OPT , {T ∗
i | T

∗
i = C∗

i − {(ri, xi), (ri, yi)} for
all C∗

i ∈ OPTr, (ri, xi), (ri, yi) ∈ C∗
i }. That is, T ∗

i is a
segment of C∗

i by the removal of the depot ri and its
two adjacent edges from C∗

i . Then, w(T
∗
i) ≤ B∗

r ≤ B.

Assume that the subgraph of G − D obtained after
the removal of all edges with weight greater than B/2
contains y connected components CC1, . . . , CCy . Follow-
ing Lemma 3, no edges in the segments of OPT will
be removed at Step 1, these segments in OPT then
are partitioned into y classes, depending on in which
connected components of a subgraph they are contained
and the subgraph is induced from G−D by removing all
edges with weight greater than B/2. Denote by OPTi the
set of segments contained by connected component CCi

for each i with 1 ≤ i ≤ y. For the segments in OPTi,
denote by D∗

i the set of depots in their corresponding

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2013.2295609

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 2013 12

cycles in OPTr and D∗ as the union of all D∗
i . Clearly,

D∗
i 6= ∅, D

∗
i ∩ D∗

j = ∅ if i 6= j, ∪yi=1D
∗
i = D∗ ⊆ D,∑y

i=1 |D
∗
i | = |D

∗| = k, and |OPTi| = |D
∗
i |, 1 ≤ i ≤ y.

In the following we show that (i) the number of trees
in T obtained at Step 3 is no more than k; and (ii) each
tree in T is matched to a different depot in D at Step 6.
We first show case (i): |T | ≤ k. Assume that T =
∪yi=1Ti and Ti ∩ Tj = ∅ if i 6= j, where Ti is the set
of trees obtained by decomposing Ti at Step 3 for all
i with 1 ≤ i ≤ y. To this end, we only need to show that
|Ti| ≤ |D

∗
i | for all i with 1 ≤ i ≤ y. For each MST Ti of

CCi, if w(Ti) < 3B, then |Ti| = 1 ≤ |D∗
i |. Otherwise,

w(Ti) ≥ (
3

2
|Ti| −

1

2
)B, by Lemma 11. (11)

The rest is to estimate an upper bound on w(Ti) as
follows. Through adding |OPTi| − 1 edges in CCi with
weight no greater than B/2 to connect different segments
of OPTi, a connected component that spans all vertices
in connected component CCi can be obtained. Thus,

w(Ti) ≤ |OPTi| ·B + (|OPTi| − 1) ·B/2

= (
3

2
|OPTi| −

1

2
)B = (

3

2
|D∗

i | −
1

2
)B. (12)

Combining inequalities (11) and (12), we have
that |Ti| ≤ |D

∗
i |. Thus, |T | =

∑y
i=1 |Ti| ≤

∑y
i=1 |D

∗
i | = k.

We then show case (ii): each tree can be matched by a
different depot in set D. As D∗

i ∩D
∗
j = ∅ if i 6= j, we only

need to show that each tree in Ti will match a depot in
set D∗

i for all i with 1 ≤ i ≤ y.
If |Ti| = 1 which implies that there is only one tree in

it, then there must have an edge with weight no greater
than B/2 that connects the tree and a depot in D∗

i as
|D∗

i | ≥ 1. Otherwise (|Ti| ≥ 2), we have w(Ti) ≥ 3B by
Lemma 11. Then, there must exist such a matching from
the trees in Ti to depots in D∗

i , which is guaranteed by
the Hall’s Theorem [7] which says that for each subset A
of Ti, the neighbor set N(A) of A satisfies |N(A)| ≥ |A|.

Consider any subset A of Ti, its neighbor set N(A)
is a subset of D∗

i that the shortest distance from a
vertex in a tree in A to a depot in the subset of D∗

i is
no more than B/2. Let OPT ∗

i (A) denote the subset of
segments in OPTi that have non-empty intersections of
the vertices in the segments and the trees in A. Namely,
T ∗
i ∈ OPT ∗

i (A) if and only if there is a tree T in A such
that V (T) ∩ V (T ∗

i) 6= ∅. Then, |N(A)| ≥ |OPT ∗
i (A)| and

|OPT ∗
i (A)| ≥ |A|, which are shown as follows.

We start with that |N(A)| ≥ |OPT ∗
i (A)|. Since B ≥ B∗

r

and the distance between each vertex and its depot in
OPTr is at most B/2, there is an edge in the constructed
auxiliary graph H = (T , D,E′) between a tree T ∈ A
and a depot r ∈ D∗

i if T intersects a segment T ∗
l of the

cycle C∗
l with depot at r. Hence, |N(A)| ≥ |OPT ∗

i (A)|.
We then show that |OPT ∗

i (A)| ≥ |A|. Recall that each
edge in a tree of A is an edge of the MST Ti of connected
component CCi. A subgraph G′

i of CCi is obtained
by removing all edges in each subtree of Ti in A and
adding all edges of segments in OPT ∗

i (A). Then, G
′
i will

become a connected subgraph by adding no more than
(|OPT ∗

i (A)| − 1) edges in CCi with weight no greater
than B/2, since CCi itself is a connected component
which contains only the edges with weight no greater
than B

2 . Denote by G
′′

i the connected subgraph and EA

the set of no more than (|OPT ∗
i (A)| − 1) added edges.

Then, |EA| ≤ |OPT ∗
i (A)| − 1. As Ti is an MST of CCi,

w(G
′′

i) ≥ w(Ti). (13)

Meanwhile,

w(G
′′

i) = w(G′
i) + w(EA)

= w(Ti)− w(A) + w(OPT ∗
i (A)) + w(EA). (14)

Combining inequalities (13) and (14) we have

w(OPT ∗
i (A)) + w(EA) ≥ w(A). (15)

According to Lemma 11, w(A) ≥ (32 |A|−
1
2)B, since A is

a subset of Ti. On the other hand,

w(OPT ∗
i (A)) + w(EA) ≤ |OPT ∗

i (A)| ·B

+(|OPT ∗
i (A)| − 1) ·

B

2

= (
3

2
|OPT ∗

i (A)| −
1

2
)B.(16)

Therefore, |OPT ∗
i (A)| ≥ |A| by inequalities (15) and (16).

In conclusion, each tree in Ti can be matched to a
different depot in D∗

i , 1 ≤ i ≤ y. Thus, each tree in
T = ∪yi=1Ti can be matched to a different depot in
D∗ = ∪yi=1D

∗
i ⊆ D. It is also clear that the maximum

tree weight of trees in S is no more than 7
2B.

Theorem 3: Given a metric complete graph G = (V,E),
a depot set D ⊂ V , an integer k, and a constraint f : D 7→
Z
+ (

∑
r∈D f(r) ≥ k), there is a (7 + ǫ)-approximation

algorithm for the capacitated rooted min-max cycle cover
problem in G, which takes O(n2.5(log n + log 1

ǫ)) time,
where n = |V | and ǫ is a constant with 0 < ǫ < 1.

Proof: Following Lemmas 2 and 12, the approxi-
mation ratio of the proposed algorithm can be easily
derived, omitted. We now analyze its time complexity.
Let n = |V |. With the similar argument as we did

in Theorem 1, the number of iterations for finding the
optimal B∗

r is bounded by O(log n+log 1
ǫ). The rest is to

analyze the time complexity of Algorithm 3 as follows.
The removal of the edges with weights greater than

B/2 from G−D takes O(n2) time, while finding the MSTs
of the y connected components in the resulting graph
takes O(n2) time too. Finding a tree cover of G−D takes
O(n) time, by decomposing the y MSTs. The construction
of the bipartite graph H = (T , D,E′) requires O(n2)
time. AsH contains no more than k+|D| = O(n) vertices,
the minimum weighted maximum matching in H can be
found in time O(n2.5) by applying an algorithm in [14].
Then, each tree in T is connected to its matched depot in
D, which takes O(n2) time. Thus, the time complexity of
Algorithm 3 is O(n2)+O(n2)+O(n)+O(n2)+O(n2.5)+
O(n2) = O(n2.5), which means that the running time of
the proposed algorithm is O(n2.5(log n+ log 1

ǫ)).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2013.2295609

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 2013 13

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the
proposed algorithms through experimental simulations.
We also investigate the impact of important parameters
including network size n and the number of cycles k on
the algorithm performance.

6.1 Simulation environment

We consider a network G consisting of 100 to 500 vertices
randomly deployed in a 1, 000m×1, 000m square region.
In the default setting, the number of cycles k varies
from 1 to 10. For the (uncapacitated or capacitated)
rooted min-max cycle cover problem, we assume that
there are 10 depots randomly deployed in the region
with each being contained by at most one cycle in the
capacitated rooted min-max cycle cover problem. Each
value in figures is the mean of the results by applying the
mentioned algorithms to 50 different network topologies
of the same network size.
To evaluate the performance of the proposed al-

gorithms, we use the lower bounds of the maxi-
mum cycle length as approximations of the optimal
costs. Specifically, for the rootless min-max cycle cover
problem, the lower bound on the maximum cycle

length is LB optimal =
∑k

i=1 w(Ti)/k, where subtrees
T1, T2, · · · , Tk are obtained by removing the k−1 largest-
weight edges from a minimum spanning tree in graph G.
For the (uncapacitated or capacitated) rooted min-max
cycle cover problem, the lower bound is LB optimal =
w(T ′)/k, where tree T ′ is a minimum spanning tree in a
graph G′, and G′ is derived from graph G by contracting
all depots in D into a single vertex rD. That is, we
remove all depots in D and their adjacent edges from G
first, and we then introduce a new vertex rD and there is
an edge between each vertex v ∈ V −D and rD with edge
weight being the minimum edge weight between vertex
v and any depot r in D, i.e., w(v, rD) = minr∈D{w(v, r)}.

6.2 Performance evaluation of proposed algorithms

We first investigate the performance of algorithm
Rootless Min-Max Cycle Cover for the rootless
min-max cycle cover problem. Fig. 1 (a) plots the perfor-
mance curves of algorithm Rootless Min-Max Cycle

Cover and the lower bound on the maximum cycle
length, by varying network size n while fixing the
number of cycles k at 5, from which it can be seen that
the delivered solution is fractional of the optimal. In
detail, the maximum cycle length obtained by algorithm
Rootless Min-Max Cycle Cover is around from 1.6
to 2 times of the lower bound of the optimal one, which
is far less than its analytical approximation ratio 5 1

3 + ǫ.
By varying the number of cycles k from 1 to 10 while
fixing network size n at 500, Fig 1 (b) clearly shows that
with the growth of the number of cycles k, the maxi-
mum cycle length in the solution delivered by algorithm
Rootless Min-Max Cycle Cover will decrease, and

its actual value is around from 1.4 to 2 times of the
lower bound on the optimal one. This indicates that the
estimate on its theoretical approximation ratio 5 1

3 + ǫ is
very conservative.

100 200 300 400 500
Network Size n

0

1

2

3

4

5

6

7

8

M
ax

 C
y
cl

e
L

en
g
th

 (
k
m

) Rootless Min-Max
LB_optimal

(a) The max cycle length when
k = 5.

1 2 3 4 5 6 7 8 9 10
Number of Cycles k

0

5

10

15

20

25

M
ax

 C
y

cl
e

L
en

g
th

 (
k

m
) Rootless Min-Max

LB_optimal

(b) The max cycle length when
n = 500

Fig. 1. The performance of algorithm Rootless

Min-Max Cycle Cover.

We then study the performance of the proposed al-
gorithms for uncapacitated and capacitated rooted min-
max cycle cover problems in Fig. 2 and 3, respectively.
It can be seen from both figures that the performance
of the algorithms for both problems have the similar
behaviors as that in Fig. 1. The ratios of the maximum
cycle length delivered by the proposed algorithms to
their lower bounds on the optimal ones are much less
than their theoretical approximation ratios 6 1

3 + ǫ and
7 + ǫ, respectively.

100 200 300 400 500
Network Size n

0

1

2

3

4

5

6

7

8

M
ax

 C
y
cl

e
L

en
g
th

 (
k
m

) Uncapacitated Rooted Min-Max
LB_optimal

(a) The max cycle length when
k = 5.

1 2 3 4 5 6 7 8 9 10
Number of Cycles k

0

5

10

15

20

25

M
ax

 C
y

cl
e

L
en

g
th

 (
k

m
) Uncapacitated Rooted Min-Max

LB_optimal

(b) The max cycle length when
n = 500.

Fig. 2. The performance of algorithm Uncapacitated

Rooted Min-Max Cycle Cover.

100 200 300 400 500
Network Size n

0

1

2

3

4

5

6

7

8

M
ax

 C
y
cl

e
L

en
g
th

 (
k
m

) Capacitated Rooted Min-Max
LB_optimal

(a) The max cycle length when
k = 5.

1 2 3 4 5 6 7 8 9 10
Number of Cycles k

0

5

10

15

20

25

M
ax

 C
y

cl
e

L
en

g
th

 (
k

m
) Capacitated Rooted Min-Max

LB_optimal

(b) The max cycle length when
n = 500.

Fig. 3. The performance of algorithm Capacitated

Rooted Min-Max Cycle Cover.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2013.2295609

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 2013 14

7 CONCLUSIONS

In this paper we have dealt with a fundamental op-
timization problem - the vehicle routing problem and
its variants. We have devised approximation algorithms
with constant approximation ratios, by exploiting the
combinatorial property of the problems and employ-
ing the tree decomposition and maximum matching
techniques. We finally evaluate the performance of the
proposed algorithms through experimental simulations.
Experimental results demonstrate that the proposed al-
gorithms are very efficient and promising. The empirical
approximation ratios are no more than 2, which are far
less than their analytical counterparts 5 1

3 + ǫ, 6 1
3 + ǫ and

7 + ǫ, respectively.

REFERENCES

[1] D. Applegate, W. Cook, S. Dash, and A. Rohe. Solution of a Min-
Max Vehicle Routing Problem. INFORM Journal on Computing,
Vol.14, pp.132-143, 2002.

[2] E. M. Arkin, R. Hassin, and A. Levin. Approximations for mini-
mum and min-max vehicle routing problems. Journal of Algorithms,
Vol.59, pp.1-18, 2006.

[3] I. Averbakh and O. Berman. (p−1)/(p+1)-approximate algorithms
for p-traveling salesmen problems on a tree with minmax objective.
Discrete Applied Mathematics, Vol.75, pp.201-216, 1997.

[4] A. M. Campbell, D. Vandenbussche, and W. Hermann. Routing
for relief efforts. Journal of Transportation Science, Vol.42, pp.127-
145, 2008.

[5] J. Carlsson, D. Ge, A. Subramaniam, and Y. Ye. Solving min-max
multi-depot vehicle routing problem. Proc. of the FIELDS Workshop
on Global Optimization, 2007.

[6] J. Desrosiers, Y. Dumas, M. M. Solomon, and F. Soumis. Time con-
strained routing and scheduling. Handbooks in Operations Research
and Management Science, Elsevier, Vol.8, pp. 35-139, 1995.

[7] R. Diestel. Graph Theory. Springer-Verlag, 2000.
[8] M. Erol-Kantarci and H. T. Mouftah. Suresense: sustainable wire-

less rechargeable sensor networks for the smart grid. IEEE Wireless
Communications, Vol.19, pp.30-36, 2012.

[9] G. Even, N. Garg, J. Könemann, R. Ravi, and A. Sinha. Covering
graphs using trees and stars. Proc. of APPROX, LNCS, Vol.2764,
pp.24-35, 2003.

[10] G. Even, N. Garg, J. Könemann, R. Ravi, and A. Sinha. Min-max
tree covers of graphs. Operations Research Letters, Vol.32, pp.309-
315, 2004.

[11] G. N. Frederickson, M. S. Hecht, and C. E. Kim. Approximation
algorithms for some routing problems. Proc. of FOCS, IEEE, 1976.

[12] H. N. Gabow. Data structures for weighted matching and nearest
common ancestors with linking. Proc. of SODA, ACM, 1990.

[13] S. Guo, C. Wang, and Y. Yang. Mobile data gathering with wireless
energy replenishment in rechargeable sensor networks. Proc. of
INFOCOM, IEEE, 2013.

[14] J. E. Hopcroft and R. M. Karp. An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM Journal on Computing, Vol.2,
pp.225-231, 1973.

[15] R. Jothi and B. Raghavachari. Approximating k-traveling re-
pairman problem with repairtimes. Journal of Discrete Algorithms,
Elsevier, Vol.5, pp.293-303, 2007.

[16] M. R. Khani and M. R. Salavatipour. Improved approximation
algorithms for the min-max tree cover and bounded tree cover
problems. Proc. of APPROX, LNCS, Vol.6845, pp.302-314, 2011.

[17] D. Kim, B.H. Abay, R.N. Uma, W. Wu, W. Wang, and A. O. Tokuta.
Minimizing data collection latency in wireless sensor network with
multiple mobile elements. Proc. of INFOCOM, IEEE, 2012.

[18] Z. Li, Y. Peng, W. Zhang, and D. Qiao. J-RoC: a joint routing and
charging scheme to prolong sensor network lifetime. Proc. of ICNP,
IEEE, 2011.

[19] W. Liang and J. Luo. Network lifetime maximization in sensor
networks with multiple mobile sinks. Proc. of LCN, IEEE, 2011.

[20] W. Liang, J. Luo and X. Xu. Prolonging network lifetime via
a controlled mobile sink in wireless sensor networks. Proc. of
Globecom, IEEE, 2010.

[21] W. Liang, P. Schweitzer, and Z. Xu. Approximation algorithms
for capacitated minimum spanning forest problems in wireless
sensor networks with a mobile sink. IEEE Trans. Computers, Vol.62,
pp.1932-1944, 2013.

[22] M. Ma, Y. Yang. Data gathering in wireless sensor networks with
mobile collectors. Proc. of IPDPS, IEEE, 2008.

[23] H. Nagamochi and K. Okada. Approximating the minmax rooted-
tree cover in a tree. Information Processing Letters, Vol.104, pp.173-
178, 2007.

[24] Y. Shi, L. Xie, Y. T. Hou, and H. D. Sherali. On renewable Sensor
Networks with wireless energy transfer. Proc. of INFOCOM, IEEE,
2011.

[25] V. V. Vazirani. Approximation Algorithms. Springer, 2001.
[26] C. Wang, J. Li, F. Ye, and Y. Yang. Multi-vehicle coordination for

wireless energy replenishment in sensor networks. Proc. of IPDPS,
IEEE, 2013.

[27] L. Xie, Y. Shi, Y. T. Hou, and H. D. Sherali. Making sensor
networks immortal: an energy-renewal approach with wireless
power transfer. IEEE/ACM Trans. Netw., Vol.20, pp.1748-1761, 2012.

[28] L. Xie, Y. Shi, Y. T. Hou, W. Lou, H. D. Sherali, and S. F. Midkiff.
On renewable sensor networks with wireless energy transfer: the
multi-node case. Proc. of SECON, IEEE, 2012.

[29] Z. Xu, W. Liang, and Y. Xu. Network lifetime maximization in
delay-tolerant sensor networks with a mobile sink. Proc. of DCOSS,
IEEE, 2012.

[30] Z. Xu, L. Xu, and C. Li. Approximation results for min-max
path cover problems in vehicle routing. Journal of Naval Research
Logistics, Vol.57, pp.728-748, 2010.

[31] Z. Xu, D. Xu, and W. Zhu. Approximation results for a min-max
location-routing problem. Discrete Applied Mathematics, Vol.160,
pp.306-320, 2012.

[32] S. Zhang, J. Wu, and S. Lu. Collaborative mobile charging for
sensor networks. Proc. of MASS, IEEE, 2012.

[33] M. Zhao, J. Li, and Y. Yang. Joint mobile energy replenishment
and data gathering in wireless rechargeable sensor networks. Proc.
of 23rd Intl Teletraffic Congress (ITC), IEEE, 2011.

[34] M. Zhao, M. Ma, and Y. Yang. Efficient data gathering with mobile
collectors and space-division multiple access technique in wireless
sensor networks. IEEE Trans. Computers, Vol.60, pp.400-417, 2011.

Wenzheng Xu received the ME and BSc de-
grees in computer science from Sun Yat-Sen
University, Guangzhou, China, in 2010 and
2008, respectively. He is currently a Ph.D candi-
date at Sun Yat-Sen University and a visiting stu-
dent at the Australian National University. His re-
search interests include routing algorithms and
protocols design for wireless ad hoc and sensor
networks, approximation algorithms, combinato-
rial optimization, and graph theory.

Weifa Liang (M’99–SM’01) received the PhD
degree from the Australian National University
in 1998, the ME degree from the University of
Science and Technology of China in 1989, and
the BSc degree from Wuhan University, China
in 1984, all in computer science. He is currently
an Associate Professor in the Research School
of Computer Science at the Australian National
University. His research interests include design
and analysis of energy-efficient routing protocols
for wireless ad hoc and sensor networks, cloud

computing, design and analysis of parallel and distributed algorithms,
approximation algorithms, and graph theory. He is a senior member of
the IEEE.

Xiaola Lin received the MSc and BSc degrees
in Computer Science from Peking University,
Beijing, China in 1985 and 1982 respectively,
and the Ph.D degree in Computer Science from
Michigan State University in the States in 1992.
He is currently a full professor in the Department
of Computer Science at Sun Yat-Sen Univer-
sity, Guangzhou, China. His research interests
include parallel and distributed computing and
computer networks.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TC.2013.2295609

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

