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Abstract—Wireless energy transfer technology based on magnetic resonant coupling has emerged as a promising technology for

wireless sensor networks, by providing controllable yet continual energy to sensors. In this paper, we study the use of a mobile charger

to wirelessly charge sensors in a rechargeable sensor network so that the sum of sensor lifetimes is maximized while the travel

distance of the mobile charger is minimized. Unlike existing studies that assumed a mobile charger must charge a sensor to its full

energy capacity before moving to charge the next sensor, we here assume that each sensor can be partially charged so that more

sensors can be charged before their energy depletions. Under this new energy charging model, we first formulate two novel

optimization problems of scheduling a mobile charger to charge a set of sensors, with the objectives to maximize the sum of sensor

lifetimes and to minimize the travel distance of the mobile charger while achieving the maximum sum of sensor lifetimes, respectively.

We then propose efficient algorithms for the problems. We finally evaluate the performance of the proposed algorithms through

experimental simulations. Simulation results demonstrate that the proposed algorithms are very promising. Especially, the average

energy expiration duration per sensor by the proposed algorithm for maximizing the sum of sensor lifetimes is only 9 percent of that by

the state-of-the-art algorithm while the travel distance of the mobile charger by the second proposed algorithm is only about from 1 to

15 percent longer than that by the state-of-the-art benchmark.

Index Terms—Rechargeable sensor networks, sensor charging scheduling, partial charging, sensor lifetime maximization, service cost

minimization, mobile chargers, wireless energy transfer
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1 INTRODUCTION

WIRELESS sensor networks (WSNs) play an important
role in many monitoring and surveillance applica-

tions including environmental sensing, target tracking,
structural health monitoring, etc [1], [13], [29]. As conven-
tional sensors are powered by batteries, the limited battery
capacity obstructs the large-scale deployment of WSNs. The
wireless energy transfer based on magnetic resonant cou-
pling revolutionizes energy supplies to wireless sensor net-
works [2], [8], [11], [12], [22], [26], [27]. Unlike sensor energy
replenishments through energy harvesting that only pro-
vide temporally and spatially varying energy sources
(e.g., solar energy and wind energy) [14], [16], [17], [19], the
deployment of mobile chargers (mobile charging vehicles)

to charge sensors wirelessly has been a new promising tech-
nology that ensures sensors can be charged with high yet
stable charging rates, thereby they can operate continu-
ally [10], [11], [18], [23], [24], [25], [26], [28], [31].

It is however very challenging to design efficient charging
scheduling algorithms for mobile chargers, due to following
three inherent constraints on WSNs. The first constraint is
that the energy consumption rates of different sensors are sig-
nificantly different. Sensors near to the base station have to
relay data for the other remote sensors, and thus consume
much more energy than others [25]. In addition, the energy
consumption rate of each sensor may change over time as its
sensing data rate usually depends on the specific application
of the WSN [20], [21]. The second one is that the battery tech-
nology has not been much improved in the past decades. It
still takes a long time (e.g., 30-80 minutes) to fully charge a
commercial off-the-shelf sensor battery [20]. The final con-
straint is that a mobile charger consumes its energy not only
on sensor charging but also on its mechanical movement,
thereby incurring high charging costs [21], [26].

Several recent studies have been conducted to address
the mentioned challenges [15], [18], [21], [24]. For example,
Xu et al. [24] studied the problem of scheduling k mobile
chargers to charge a set of sensors wirelessly so that all the
sensors in the set can be fully charged as quickly as possible,
while Ren et al. [15] investigated the problem of dispatching
a mobile charger to charge as many sensors as possible
within a given time period. Shi et al. [18] employed a mobile
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charger to charge all sensors periodically such that the net-
work can operate continually. Given a set of to-be-charged
sensors with different residual lifetimes, Wang et al. [21]
devised an adaptive algorithm to schedule a mobile charger
to charge a proportion of sensors with an objective to maxi-
mize the amount of energy charged to sensors minus the
amount of energy consumed on the mobile charger’s travel-
ing, while ensuring that each chosen sensor will be charged
prior to its energy expiration.

Although the mentioned studies strive for the finest trade-
off between charging as many sensors as possible before their
energy depletions and minimizing the travel cost of the
mobile charger, there is still one major limit in these studies.
That is, they all assumed that a mobile charger must charge a
sensor to its full energy capacity. Since it takes a while (e.g.,
30-80 minutes) to fully charge a commercial off-the-shelf sen-
sor battery (e.g., Lithium battery) [20], this full-charging
model will prevent the mobile charger from charging more
sensors before these sensors expire their energy completely,
especially when there are many lifetime-critical sensors to be
charged at some moment. We here use an example to illus-
trate such a scenario. Assume that aWSN consists of two sen-
sors u and v only, the residual lifetime of each of them is 10
minutes, and it takes an hour to fully charge either of them, as
illustrated in Fig. 1a. If one mobile charger is deployed to
charge the sensors by adopting the full-charging model, then
one of themwill be charged before its energy depletion, while
the other must be dead for a period of 60�10 ¼ 50 minutes
before it can be recharged, assuming that the travel time of
the mobile charger between the two sensors is ignored, see
Fig. 1b. It can be seen that in the full-charging model, some
sensors can continue their operations without energy deple-
tions, while the others may have been dead for a long time
before they can be recharged again. However, the energy
expirations of sensors for a long period may lead to severe
consequences to the WSN. For example, in a WSN for early
forest fire detections [7], the energy depletions of some sen-
sors for several hours may delay the detection of a forest fire.
Such a detection delay may result in the fire becoming uncon-
trollable, eventually incurring significant damages and casu-
alties, since the forest fire can quickly spread by strong wind
in a very short time [7].

In contrast, if a partial-charging model is adopted, the
mobile charger can first charge sensor u for 10 minutes (the
amount of energy charged to sensor u can support its opera-
tions for a while, e.g., 5 hours, see Fig. 2a), then charge sensor
v to its full energy capacity (see Fig. 2b), and finally charge
sensor u to its full energy capacity (see Fig. 2c). It can be seen
that both of the sensors can be charged prior to their energy
expirations under the partial-charging model. Note that

although adopting the partial-charging model may increase
the travel distance of the mobile charger (see Fig. 3), such an
increase on the travel distance is worthy since the continuing
operation of sensors is a fundamental requirement for most
WSN applications. Otherwise, no sensing data will be gener-
ated by the dead sensors or “fresh” sensing data generated by
other live sensors cannot be forwarded to the base station due
to the energy expirations of relay sensors.

Unlike existing studies that adopt the full-charging
model, in this paper we adopt a novel partial-charging
model so that more sensors can be charged before their
energy depletions or their energy expiration durations can
be significantly shortened. Under this new partial-charging
model, we investigate the problem of finding a charging
tour for a mobile charger to charge a set of lifetime-critical
sensors so that the sum of sensor lifetimes is maximized. On
the other hand, we note that the mechanical movement of
the mobile charger during its charging tour will consume
energy too [21], [25]. We thus study the problem of finding
a shortest charging tour for the mobile charger, while ensur-
ing that the sum of sensor lifetimes is maximized, since
there may be multiple charging tours with the maximum
sum of sensor lifetimes. For example, in addition to the
charging tour shown in Fig. 3b, another charging tour is to
charge sensors u and v for six rounds, and each of the two
sensors is charged for only ten minutes within each charg-
ing round. We can see that both of the sensors will not run
out of their energy in this latter charging tour, but the char-
ger travels much longer than that shown in Fig. 3b.

The challenges of the problems considered in this paper
are as follows. (i) What is the amount of energy to be
charged to each sensor each time? (ii) How to schedule the
mobile charger to maximize the sum of sensor lifetimes?
and (iii) How to find a charging tour for the mobile charger
so that its travel distance is minimized? We note that these
challenges have not been addressed by existing studies, as
most existing work assumed that each sensor can be
charged only once per charging tour, while we here allow
each sensor to be charged multiple times and the amount of
energy charged at each charging can be different. Also,

Fig. 1. An illustration of the full-charging model.

Fig. 2. An illustration of the partial-charging model.

Fig. 3. The comparison of the travel distances of the mobile charger in
the full-charging and partial-charging models, respectively.
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existing work only focused on charging as many sensors as
possible in time while we aim to maximize the sum of sen-
sor lifetimes. In this paper we tackle the challenges by for-
mulating two novel optimization problems and devising
efficient algorithms for the problems.

The main contributions of this paper can be summarized
as follows. We first propose a partial-charging model to
increase sensor survival opportunities. We then formulate
two novel optimization problems of scheduling a mobile
charger to charge a set of sensors wirelessly with the aims
to maximize the sum of sensor lifetimes and to minimize
the travel distance of the charger while achieving the maxi-
mum sum of sensor lifetimes. We also propose efficient
scheduling algorithms for the problems. We finally evaluate
the performance of the proposed algorithms through exper-
imental simulations. The simulation results demonstrate
that the proposed algorithms are very promising. Espe-
cially, the average energy expiration duration per sensor by
the proposed algorithm for maximizing the sum of sensor
lifetimes is only 9 percent of that by the state-of-the-art algo-
rithm while the travel distance of the mobile charger by the
second proposed algorithm is only about from 1 to 15 per-
cent longer than that by the state-of-the-art benchmark.

The remainder of the paper is organized as follows.
Section 2 introduces the system model, notations, notions,
and problem definitions. Section 3 calculates the maximum
sum of sensor lifetimes, and Section 4 proposes an efficient
charging scheduling algorithm so that the travel distance of
the mobile charger minimized while keeping the sum of
sensor lifetimes is maximized. Section 5 evaluates the per-
formance of the proposed algorithm. Section 6 reviews
related studies, and Section 7 concludes the paper.

2 PRELIMINARIES

In this section, we first present the network model and
charging model, then introduce notations and notions, and
finally define the problems.

2.1 Network Model
We consider a rechargeable wireless sensor network
Gs ¼ ðVs; EsÞ deployed for environmental monitoring or
event detections, where Vs is a set of sensors and a base sta-
tion. There is an edge in Es between any two sensors or a
sensor and the base station if they are within the communi-
cation range of each other. Each sensor vi 2 Vs is powered
by a rechargeable battery with energy capacity Bi. Let biðtÞ
be the sensing data rate of sensor vi at time t, which may
vary over time. We assume that there is a routing protocol
in Gs for sensing data collection that relays sensing data
from individual sensors to the base station through multi-
hop relays. For example, each sensor can upload its sensing
data to the base station via a routing path with the mini-
mum energy consumption.

Notice that each sensor consumes its battery energy when
performing sensing, data transmission, and reception [9]. We
assume that each sensor vi 2 Vs can monitor its residual
energy REiðtÞ and estimate its energy consumption rate r̂iðtÞ
in the near future, by adopting existing prediction techniques
such as linear regressions. For example, r̂iðtÞ ¼ vriðt� 1Þ þ
ð1� vÞr̂iðt� 1Þ, where r̂i is the estimation and ri is the actual
value at that moment and v is a given weight between 0 and
1. The base station keeps a copy of the energy depletion rate

riðtÞ and the residual energy REiðtÞ of each sensor vi 2 Vs.
Let u (> 0) be a given threshold, the updating of each sensor
vi 2 Vs on its energy consumption rate is performed as fol-
lows. If jr̂iðtÞ � r̂iðt� 1Þj � u, no updating report is needed;
otherwise, the updated energy consumption rate and the
residual energy of vi will be reported to the base station, and
the base station performs necessary updating accordingly.
The residual lifetime liðtÞ of each sensor vi at time t then is

liðtÞ ¼ REiðtÞ
r̂iðtÞ .

2.2 Charging Model
To maintain the long-term operation of a sensor networkGs,
its sensors will be charged by a mobile charger at certain
time points. For simplicity, in this paper we assume that
there is only one mobile charger that is located at a depot r
within the monitoring area of the WSN. The proposed algo-
rithms can be easily extended to a network with multiple
mobile chargers. The mobile charger starts from its depot to
perform its charging tour and returns to the depot for
recharging itself after the tour, and it can charge a nearby
sensor with a fixed charging rate m and move at a speed n.
Also, assume that the mobile charger consumes � units of
energy on traveling per unit length.

Since the energy consumption rate of each sensor may
experience significant changes for a long-term monitoring
period, each sensor vi 2 Vs sends a charging request
REQi ¼ ðt; vi; REi; ri; Bi �REiÞ to the base station when its
residual lifetime li is below a given critical lifetime lc (e.g., 2
hours) at time point t, where the charging request REQi

contains the time point t issuing the request, the sensor ID
vi, its residual energy REi, its energy consumption rate ri,
and the maximum amount of energy Bi �REi that can be
charged. Once receiving the charging request from sensor
vi, the base station then dispatches the mobile charger to
charge sensor vi as well as some other lifetime-critical sen-
sors in the network. Let V1 be the set of sensors with
residual lifetimes below the critical lifetime lc, i.e.,
V1 ¼ fvi j vi 2 Vs; li � lcg, and V2 ¼ Vs n V1. We assume that
the duration spent on its traveling by the mobile charger
per charging tour is much shorter than its time spent on
charging sensors [25]. We further assume that the energy
consumption rate of a sensor does not fluctuate too much
within a charging tour, or such minor fluctuations can be
neglected as the duration of a charging tour usually is short.
But the energy consumption rate of each sensor is allowed
to change at different charging tours.

To ensure that the base station will not receive any charg-
ing requests from other sensors before the mobile charger fin-
ishes its current charging tour, we find a set V ð� VsÞ of to-be-
charged sensors so that the total time for charging the sensors
in V is less than the residual lifetime of each sensor in Vs n V
minus the critical lifetime lc, i.e.,

P
vi2V

Bi�REi
m

< lj � lc for

each sensor vj 2 Vs n V , where m is the charging rate of the
mobile charger. Otherwise (the base station receives a new
charging request from a sensor vwhen the charger is perform-
ing a charging tour), the mobile charger may be far from the
location of sensor v, and the charger has to travel from its cur-
rent location to the location of sensor v to charger v, as the
residual lifetime of sensor v is very short. The travel distance
of the charger thus is dramatically prolonged.

We find the set V of to-be-charged sensors as follows. Ini-
tially, let V ¼ V1 and v1; v2; . . . ; vn2 be the sensors in
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V2 ¼ Vs n V1 with n2 ¼ jV2j. Without loss of generality,

assume that l1 � l2 � � � � � ln2 , where lj is the residual life-

time of sensor vj 2 V2. If
P

vi2V1
Bi�REi

m
< l1 � lc, then V ¼ V1

is the current set of to-be-charged sensors. Otherwise, we
move sensor v1 from set V2 to V . This procedure continues

until we identify a sensor vj with
P

vi2V1
Bi�REi

m
þPj�1

j0¼1
Bj0 �REj0

m
< lj � lc , and the set of to-be-charged sensors then

is V ¼ V1 [ fv1; v2; . . . ; vj�1g.
The partial-charging model is proposed as follows. Recall

thatREi is the amount of residual energy of sensor vi at some
time point t. The amount of energy that can be charged to sen-
sor vi at each time then ranges from 0 toBi �REi, whereBi is
the battery capacity of sensor vi. Although we allow each sen-
sor to be partially charged, it is not economical to charge only
a small amount of energy to the sensor at each time, since the
travel distance of the mobile charger can be significantly
increased by scheduling the charger to visit the sensor many
times in a single charging tour. We thus assume that at least a
unit amount of energy D must be replenished at each charg-
ing. That is, the amount of energy charged to a sensor vi 2 Vs

at each time is a value in fD; 2D; . . . ; kiD; Bi �REig, where
ki ¼ bBi�REi

D c is an integer. Assume that the value of D is large
enough so that the value of maxvi2VSfbBi

D cg is bounded by a
constant kmax, e.g., kmax ¼ 5.

Recall that each sensor vi may be charged multiple times
during each tour and the accumulated amount of energy
received by sensor vi is equal to Bi �REi. We assume that
sensor vi is charged by the mobile charger ci times and an
amount eji of energy is charged at time tji , where 1 � j � ci

and ci is a positive constant with ci � dBi�REi
D e as D is the

energy charging unit. Then,
Pci

j¼1 e
j
i ¼ Bi �REi. Denote by

REj
i the residual energy of sensor vi after the jth charging

with 0 � j � ci. Note that RE0
i is the amount of residual

energy of sensor vi before any charging, i.e., RE0
i ¼ REi.

Then, sensor vi will not deplete its energy before the

ðjþ 1Þth charging if tjþ1i � tji þ
RE

j
i

ri
. Otherwise, it will run

out of its energy from time tji þ
RE

j
i

ri
to time tjþ1i

A charging tour C of the charger for sensors in V is
defined as an order of pairs ðr; 0Þ ! ðv01; e1Þ ! ðv02; e2Þ ! � � � !
ðv0n0 ; en0 Þ ! ðr; 0Þ with starting from and ending at depot r,
where v0j is a sensor in V , ej is the amount of energy charged
to sensor v0j. A sensor can be charged multiple times in tour

C, and n0 � n ¼ jV j. Denote by wðCÞ the total length of tour

C, i.e., wðCÞ ¼Pn0
i¼0 di;iþ1, where di;iþ1 is the Euclidean dis-

tance between nodes v0i and v0iþ1, and v00 ¼ v0n0þ1 ¼ r.
We assume that the total travel time of the mobile charger

per charging tour is much shorter than its time spent on
charging sensors, but not negligible. For example, it may
take about one minute for the mobile charger traveling to the
location of a sensor from its last charging sensor location,
assuming the distance of the two sensors is 300 meters away
and the travel speed of the charger is 5 m/s [10], i.e.,
60 s ¼ 300 m

5 m=s. It then takes the charger 10 minutes to charge an
amount D of energy to the sensor. We thus assume that the
travel time of the charger from its current charging sensor
location to its next to-be-charged sensor location can be
approximated by a constant ttravel, e.g., ttravel ¼ 1minute. The
value of ttravel can be predicted through historic chargings.
Therefore, we divide time into equal time slots with each
lasting t units, i.e., t ¼ D

m
þ ttravel, where D

m
is the time spent by

the charger for charging an amount D of energy to a sensor
andm is the charging rate.We index the time slots by 1; 2; . . ..

2.3 Notions and Notations
Recall that each sensor vi will be charged by the mobile
charger ci times in its current charging tour and an amount
eji of energy will be charged to vi at time tji , where 1 � j � ci
and

Pci
j¼1 e

j
i ¼ Bi �REi. We say that sensor vi is charged in

time by the mobile charger if and only if it can operate from

time ðtþ liÞ to ðtþ li þ Bi�REi
ri
Þ (¼ tþ Bi

ri
) without any energy

depletions, where li ¼ REi
ri

is the residual lifetime of sensor
vi at time t. In other words, sensor vi will not run out of
energy before each of its ci chargings, i.e., tji � tþ liþPj�1

j0¼1 e
j0
i

ri
for each j with 1 � j � ci, where tji is the time at

which the charger performs the jth charging to sensor vi

and
Pj�1

j0¼1 e
j0
i is the accumulated amount of energy charged

to sensor vi in the first ðj� 1Þ chargings. Fig. 4a illustrates
that sensor vi is charged by the mobile charger in time,
where li ¼ 1 hour and ci ¼ 2.

We note that the mobile charger may not be able to
charge every sensor vi in time and the sensor may deplete
its energy several times before its last (i.e., the cith) charging
in the current charging tour, especially when there are a
large number of lifetime-critical sensors to be charged.
Fig. 4b illustrates that sensor vi has depleted its energy
completely for 2 hours before the mobile charger performs
the first charging to it. After the last charging, sensors vi

will not run out of energy until time t
ci
i þ

RE
ci
i

ri
, where t

ci
i is

the time that the charger performs the last charging and
RE

ci
i is the residual energy of sensor vi after its last charg-

ing. Denote by lilive and lidead the total live duration and dead

duration of sensor vi from time tþ li to time t
ci
i þ

RE
ci
i

ri
,

where tþ li is the time point that sensor vi will run out of
energy if the mobile charger does not charge the sensor and

t
ci
i þ

RE
ci
i

ri
is the time point that the sensor will deplete its

energy after the mobile charger has performed the last
charging to the sensor. We thus define the normalized lifetime

hi of each sensor vi in time interval ½tþ li; t
ci
i þ

RE
ci
i

ri
� as the

ratio of lilive to lilive þ lidead, i.e.,

hi ¼
lilive

lilive þ lidead
; (1)

where lilive ¼ Bi�REi
ri

as an amount Bi �REi of energy will be

charged to sensor vi. For example, in Fig. 4b, lilive ¼ 5þ 15 ¼
20 hours and lidead ¼ 2 hours. Then, hi ¼ 20

20þ2 ¼ 10
11. Note that

Fig. 4. The mobile charger charges sensor vi with ci ¼ 2 chargings and
the residual lifetime li of sensor vi initially is one hour.
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if sensor vi does not deplete its energy before any of the ci

chargings, its normalized lifetime is hi ¼ li
live

li
live
þli

dead

¼ li
live

li
live
þ0 ¼

1 since lidead ¼ 0 in this case, which is shown in Fig. 4a with

lilive ¼ 20 hours. The sum of normalized lifetimes hsum of
sensors in V then is

hsum ¼
X

vi2V
hi: (2)

The meaning of the sum of sensor normalized lifetimes
hsum can be explained as follows. Recall that the normalized
lifetime hi of each sensor vi implies the proportion of time that
the sensor lives, which also can be interpreted as its live prob-
ability at any time point, by a charging tour if the charger
replenishes sensor energy along the tour. The sum of normal-
ized lifetimes hsum thus represents the expected number of
live sensorsmaintained in the network by the charging tour.

2.4 Problem Definitions
It is desirable that every sensor should be charged before its
energy depletion, this goal however may not be met, since
the energy consumption rates of sensors may vary over time
and cannot be precisely predicted. Therefore, sometimes
there may be a large number of to-be-charged sensors in the
network and the mobile charger is not able to charge each of
them before its energy expiration. As continuing operations
of sensors is a fundamental requirement for most WSNs, the
sensor lifetime maximization problem is defined as follows.
Given a set V of to-be-charged sensors in networkGs at some
time point t, for each sensor vi 2 V , denote by REi its resid-
ual energy, ri its energy consumption rate, and Bi �REi its
energy charging demand. Recall that the mobile charger has
a charging rate m. The problem is to find a charging tour C
for the mobile charger to charge the sensors in V so that the
sum of the normalized lifetimes hsum of sensors in V is maxi-
mized, subject to the constraint that the total amount of
energy charged to each sensor vi 2 V is equal to its energy
demandBi �REi. Denote by h	sum the maximum sum of nor-
malized lifetimes of sensors in V .

Assume that the maximum sum of normalized lifetimes
h	sum is given (the calculation of h	sum will be shown later), it
is desirable to minimize the travel distance of the mobile
charger due to its mechanical movement consuming lots of
energy [25]. Given a set V of to-be-charged sensors, let
C ¼<ðr; 0Þ ! ðv01; e1Þ ! ðv02; e2Þ ! � � � ! ðv0n0 ; en0 Þ ! ðr; 0Þ>
be a charging tour of the mobile charger with starting from
and ending at depot r, where v0j is a sensor in V , ej is the
amount of energy charged to sensor v0j, and each sensor vi
in V may be charged multiple times in the tour. We then
define the service cost minimization problem with maximum sen-
sor lifetime as to find a charging tour C for the mobile char-
ger so that its travel distance, wðCÞ, is minimized, subject to
that the maximum sum of the normalized lifetimes h	sum of
all sensor can be achieved, i.e.,

mininize wðCÞ; (3)

subject to

X

v0
j
2C&v0

j
¼vi

ej ¼ Bi �REi; 8vi 2 V (4)

hsum ¼ h	sum; (5)

where constraint (4) ensures that the total amount of energy
in the multiple chargings to each sensor vi in tour C is equal
to its energy demand Bi �REi and constraint (5) ensures
that the sum of normalized lifetimes of all sensors is maxi-
mized. It can be seen that the service cost minimization
problem is NP-hard, since the well-known NP-hard travel-
ing salesman problem (TSP) is a special case of it.

3 ALGORITHM FOR THE SENSOR LIFETIME

MAXIMIZATION PROBLEM

In this section, we devise an efficient algorithm for the sen-
sor lifetime maximization problem. The basic idea behind
the algorithm is that the mobile charger can charge a sensor
with only an amount D of energy at every time slot for a
monitoring period. The problem is then reduced to a match-
ing problem between sensors and time slots.

3.1 Algorithm
Given a set V of to-be-charged sensors, we create ki virtual
sensors vi;1; vi;2; . . . ; vi;ki for each sensor vi 2 V , where

ki ¼ dBi�REi
D e, Bi and REi are the energy capacity and resid-

ual energy of sensor vi, respectively, and D is an energy
charging unit. We can see that only one time slot is needed
to charge every virtual sensor. Let V 0 ¼ fvi;j j vi 2 V; 1 � j �
kig be the set of virtual sensors and kmax ¼ maxvi2V fkig.
Also, let V 0j ¼ fvi;j j vi;j 2 V 0; 1 � i � ng be the set of the jth

virtual sensors of all sensors in V 0 and n0j ¼ jV 0j j with

1 � j � kmax. We can see that sets V 01 ; V
0
2 ; . . . ; V

0
kmax

form a

partition of set V 0, i.e., V 0j \ V 0j0 ¼ ; if j 6¼ j0 with 1 � j;

j0 � kmax, and V 0 ¼ [kmax
j¼1 V 0j .

We iteratively find time slots at which the mobile charger
charges virtual sensors in V 0. That is, we find the time slots
for charging virtual sensors in V 0j in the jth iteration with
1 � j � kmax. Specifically, denote by li;j and li;jdead the energy
expiration time slot and dead duration of each sensor vi 2 V
before the jth charging (i.e., the jth iteration), respectively.

Initially, li;1 ¼ li and li;1dead ¼ 0, where 1 � i � n. Let G00 be an
empty graph, i.e., G00 ¼ ;, and S0 ¼ fs1; s2; . . . ; sn0 g be a set
of n0ð¼ jV 0jÞ time slots.

In the jth iteration (1 � j � kmaxÞ, we first construct a

bipartite graph G0j ¼ ð[jj0¼1V 0j0 ; S0; E0j;w0jÞ from graph G0j�1 ¼
ð[j�1

j0¼1V
0
j0 ; S

0; E0j�1;w
0
j�1Þ and the virtual sensor set V 0j as fol-

lows. First, let E0j ¼ E0j�1, the weight w0jðvp; sqÞ of each edge

ðvp; sqÞ 2 E0j�1 in graph G0j is set to zero, rather than

w0j�1ðvp; sqÞ in graph G0j�1. We then add an edge ðvi;j; sqÞ to
E0j for each virtual sensor vi;j 2 V 0j and each time slot sq 2 S0.
The weight w0jðvi;j; sqÞ of edge ðvi;j; sqÞ is equal to the nor-

malized lifetime of sensor vi if the charger performs the jth

charging to it at time slot sq, i.e., w0jðvi;j; sqÞ ¼
li
live

li
live
þli;j

dead

if

q � li;j þ 1 as the sensor will not run out of its energy until

time slot li;j þ 1; otherwise, w0jðvi;j; sqÞ ¼
li
live

li
live
þli;j

dead
þq�li;j�1

,

since the dead duration of sensor vi will be prolonged from

li;jdead to li;jdead þ q � li;j � 1 if the jth charging to the sensor is

performed at the qth time slot. We then find a maximum
weighted matching Mj in graph G0j. Consider each virtual
sensor vi;j 2 V 0j , assume that it is matched to time slot sq in
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matching Mj. If q � li;j þ 1, we remove the adjacent edges

ðvi;j; sq0 Þ of vi;j from graph G0j with q0 > li;j þ 1, since sensor

vi is charged in time at the jth charging. Otherwise, we
remove the adjacent edges ðvi;j; sq0 Þ of sensor vi;j with q0 6¼ q.
Finally, we obtain the energy expiration time li;jþ1 of sensor
vi before the ðjþ 1Þth charging (i.e., iteration) by charging
sensor vi at time slot sq as virtual sensor vi;j is matched to
time slot sq in matchingMj, and the dead duration of sensor

vi before the ðjþ 1Þth charging is li;jþ1dead ¼ li;jdead þmax

fq � li;j � 1; 0g. After the kmaxth iteration, we obtain the
time slot assigned to each virtual sensor in V 0 by matching
Mkmax . In the end, we find a charging tour with the maxi-
mum sensor lifetime, by scheduling the mobile charger to
charge the virtual sensor matched to node sq at the qth time
slot with an amount D of energy, where 1 � q � n0.

The detailed algorithm is given in Algorithm 1.

Algorithm 1. HeuristicMaxLifetime

Input: A set V of to-be-charged sensors with the residual
energy REi, energy consumption rate ri, and energy
demand Bi �REi of each sensor vi, and the energy charg-
ing unit D.

Output: a charging tour C of the mobile charger so that the sum
of normalized sensor lifetimes is maximized

1: Create ki virtual sensors vi;1; vi;2; . . . ; vi;ki for each sensor vi

in V , where ki ¼ dBi�Rei
D e. Let V 0j ¼ fv1;j; v2;j; . . . ; vn;jg,

where 1 � j � kmax;

2: Let li;1 ¼ li ¼ bREi
tri
c, li;1dead ¼ 0, graph G00 ¼ ;, and

S0 ¼ fs1; s2; . . . ; sn0 gwith n0 ¼Pn
i¼1 ki;

3: for j 1 to kmax do
4 Construct bipartite graph G0j ¼ ð[jj0¼1V 0j0 ; S0; E0j;w0jÞ from

G0j�1 ¼ ð[j�1j0¼1V
0
j0 ; S

0; E0j�1;w
0
j�1Þ and set V 0j ;

5: Find a maximum weighted matchingMj in G0j;
6: For each vi;j 2 V 0j , assume that it is matched to time slot sq

in Mj, remove its adjacent edges ðvi;j; sq0 Þ from graph G0j
with q0 > li;j þ 1 if q � li;j þ 1; otherwise, remove its
adjacent edges ðvi;j; sq0 Þwith q0 6¼ q;

7: For each vi;j 2 V 0j , obtain the energy expiration time li;jþ1
of sensor vi before the ðjþ 1Þth charging by charging sen-
sor vi at time slot sq. The dead duration of sensor vi
before the ðjþ 1Þth charging is li;jþ1dead ¼ li;jdead þmax
fq � li;j � 1; 0g;

8: end for
9: Obtain the time slot assigned to each virtual sensor from

matchingMkmax and then find a charging tour C.

We here use an example to illustrate the execution of
Algorithm 1. Assume that there are two to-be-charged
sensors v1 and v2 in the network at some time point, and
both of them have already run out of their energy, i.e.,
l1 ¼ l2 ¼ 0. Also, assume that the total live durations of the
two sensors are l1live ¼ 100 and l2live ¼ 200 time slots, respec-
tively. Algorithm 1 creates two virtual sensors vi;1 and vi;2
for each sensor vi with 1 � i � 2. Then, Algorithm 1 takes
two iterations to find the charging sequence of the virtual
sensors. In the first iteration, it first constructs a bipartite
graph G01 ¼ ðV 01 ; S0; E01; w01Þ, where V 01 ¼ fv1;1; v2;1g, S0 ¼ fs1;
s2; s3; s4g, E01 ¼ V 01 
 S0, w01ðv1;1; s1Þ ¼ 1, w01ðv1;1; sjÞ ¼

l1
live

l1
live
þj�ðl1;1þ1Þ

¼ 100
99þj for 2 � j � 4, l1;1 ¼ 0; w01ðv2;1; s1Þ ¼ 1,

w01ðv2;1; sjÞ ¼
l2
live

l2
live
þj�ðl2;1þ1Þ

¼ 200
199þj for 2 � j � 4, l2;1 ¼ 0. It

then finds a maximum weighted matching M1 in G01, where
M1 ¼ fðv1;1; s1Þ; ðv2;1; s2Þg. That is, virtual sensor v2;1 will
deplete its energy for one time slot before its next charging.
With the matching M1, it calculates the energy expiration

times of virtual sensors v1;2 and v2;2 as l1;2 ¼ l1;1 þ l1
live
2 ¼ 50,

l2;2 ¼ s2 þ l2
live
2 � 1 ¼ 101. Similarly, in the second iteration,

Algorithm 1 finds a matching M2 in G02, where
M2 ¼ fðv1;1; s1Þ; ðv2;1; s2Þ; ðv1;2; s3Þ; ðv2;2; s4Þg. In other words,
the charging sequence of the virtual sensors is v1;1 !
v2;1 ! v1;2 ! v2;2. Then, it can be seen that although both of
the sensors v1 and v2 have run out their energy, sensor v2
will deplete its energy for one time slot in the charging
sequence, since its total live duration l2live is longer than that
of sensor v1 (i.e., l

2
live ¼ 200 > l1live ¼ 100).

3.2 The Optimal Energy Charging Unit
So far we assumed that the energy charging unit D is given
in advance. However, the value of D may significantly
impact the energy expiration durations of sensors. On one
hand, a smaller energy charging unit D indicates that the
mobile charger spends less time on charging every sensor
each time. As a result, the waiting time of other to-be-
charged sensors may be reduced. On the other hand, the
smaller value D implies that mobile charger takes more time
on its movements among to-be-charged sensors, since more
times of chargings are needed to fully replenish the sensor
with a smaller charging unit D. In the following, an optimal
energy charging unit can be found so that the sum of nor-
malized sensor lifetimes is maximized.

Let Dmax be the maximum energy demand of the to-be-
charged sensors, i.e., Dmax ¼ maxvi2V fBi �REig. Also, we
assume that the energy charging unit D is a value in set

VD ¼ fDmax
p ; 2Dmax

p ; . . . ; ðp�1ÞDmax
p ;Dmaxg, where p is given posi-

tive integer, e.g., p ¼ 10. For each value D ¼ i
pDmax

(1 � i � p), we calculate the maximum sum hDsum of normal-
ized sensor lifetimes under this specified value D, by invok-
ing Algorithm 1. The optimal energy charging unit DOPT

thus is a value among all possible values in set VD so that
the maximum sum hDsum of normalized sensor lifetimes is
maximized, i.e., DOPT ¼ argmaxD¼i

pDmax;1�i�pfhDsumg.

3.3 Algorithm Analysis
The analysis of Algorithm 1 can be distinguished into two
cases. Case 1: there are a limited number of sensors to be
charged; and Case 2: there are a large number of sensors to
be charged.

Case 1. we assume that the lifetime of any sensor for con-
suming an amount D of energy is no less than the total time
of charging every sensor in V with an amount D of energy,
i.e., D

rmax
� nt (i.e., n � D

trmax
), where rmax ¼ maxvi2V frig is

the maximum energy consumption rate of sensors in V ,
t ¼ D

m
þ ttravel is the time for charging an amount D of energy

to a sensor, m is the charging rate of the mobile charger,
ttravel is the travel time from a charging sensor to the next
charging sensor, and ttravel is considered as a small constant.
We will show that Algorithm 1 finds an optimal solution
to the sensor lifetime maximization problem in this case.

Case 2 (n > D
trmax

). Algorithm 1 may or may not find an

optimal solution. Note that the number of to-be-charged
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sensors n at some time t usually is not very large since the
energy consumption rates of different sensors significantly
vary [25], and it is unlikely that a large proportion of sensors
requires to be charged at the same time.

In the following we show that Algorithm 1 finds an
optimal solution for Case 1 by the following lemma.

Lemma 1. Given a set V of to-be-charged sensors in Gs with the
residual energy REi, energy consumption rate ri, and energy
demand Bi �REi of each sensor vi 2 V , assume that
jV j ¼ n � D

trmax
. Then, Algorithm 1 finds an optimal solu-

tion to the sensor lifetime maximization problem.

Proof. Given an optimal charging tour C	 to the problem,
assume that l	ilive and l	idead are the live and dead dura-
tions of sensor vi in tour C	, respectively, where l	ilive ¼
bBi�REi

rit
c. Then, the maximum sum of normalized sensor

lifetimes is h	sum ¼
Pn

i¼1 h
	
i ¼

Pn
i¼1

l	ilive
l	i
live
þl	i

dead

by its defini-

tion. We now show that (i) the weight w01ðM1Þ of matching
M1 in Algorithm 1 is an upper bound on h	sum; and (ii)
the sum of normalized sensor lifetimes of the charging
tour C found by Algorithm 1 is w01ðM1Þ. Algorithm 1
then finds an optimal solution.

Wefirst show that (i) theweightw01ðM1Þ ofmatchingM1

is an upper bound on h	sum. We construct a matchingM in
graph G01 from tour C	, by assigning virtual sensor vi;1 to
time slot node s	j if the mobile charger performs the first
charging to sensor vi at time slot s	j in tour C	 with
1 � i � n. Denote by l	i;1dead and l	i;2dead the dead durations of
sensor vi before and after the first charging to the sensor in

tour C	, respectively. Then, l	idead ¼ l	i;1dead þ l	i;2dead. Let h
0
i ¼

l	ilive
l	i
live
þl	i;1

dead

. We can see that h0i � hi since h0i ¼
l	ilive

l	i
live
þl	i;1

dead

�
l	ilive

l	i
live
þl	i;1

dead
þl	i;2

dead

¼ l	ilive
l	i
live
þl	i

dead

¼ h	i and l	i;2dead � 0. As M1 is a

maximum weighted matching in G01, we have w01ðM1Þ �
w01ðMÞ ¼

Pn
i¼1 h

0
i �

Pn
i¼1 h

	
i ¼ h	sum.

We then prove that (ii) the sum of normalized sensor
lifetimes of tour C is w01ðM1Þ. Assume that each virtual
sensor vi;j 2 V 0 is assigned to time slot tji in charging tour
C, where 1 � i � n and 1 � j � ki. For simplicity, we
assume that k1 ¼ k2 ¼ � � � ¼ kn ¼ k. To this end, we show

that the weight w0jðMjÞ of matching Mj is equal to the

weight w01ðM1Þ of matching M1 in Algorithm 1 for

2 � j � k, i.e., w0kðMkÞ ¼ � � � ¼ w02ðM2Þ ¼ w01ðM1Þ. Claim

(ii) then holds, since the sum of normalized sensor life-

times of tour C is w0kðMkÞ. In the following, we first con-

struct k matchings M 0
1;M

0
2; . . . ;M

0
k from M1. We then

show (ii.a) w0kðM 0
kÞ ¼ � � � ¼ w02ðM 0

2Þ ¼ w01ðM 0
1Þ; (ii.b) w01ðM 0

1Þ ¼
M 0

1ðM1Þ; and (ii.c) w0jðM 0
jÞ ¼M 0

jðMjÞ, 2 � j � k. We

finally derive that w0kðMkÞ ¼ � � � ¼ w02ðM2Þ ¼ w01ðM1Þ.
We construct k matchings M 0

1;M
0
2; . . . ;M

0
k from M1 in

graphG01;G
0
2; . . . ;G

0
k, respectively. We sort the virtual sen-

sors in V 01 by their charging time slots t1i in M1. Assume
that t11 < t12 < � � � < t1n. We can see that t1i � i for each i
with 1 � i � n since the charger can charge only one sensor
at each time slot. We construct matching M 0

j in graph G0j
fromM1, by assigning each virtual sensor vi;j0 2 [jj0¼1V 0j0 to
time slot node iþ ðj0 � 1Þn if vi;1 is matched to time slot t1i
inM1, where 1 � j0 � j and 1 � j � k.

Having the constructions, we now prove claim (ii.a):
w0kðM 0

kÞ ¼ � � � ¼ w02ðM 0
2Þ ¼ w01ðM 0

1Þ. Since we assume the

lifetime of any sensor for consuming an amount D of
energy is no less than the total time of charging every
sensor with D energy, i.e., D

trmax
� n, virtual sensor vi;j

will not deplete its energy before its charging time slot

iþ ðj� 1Þn for each j with 2 � j � k. Then, w0kðM 0
kÞ ¼ � � � ¼

w02ðM 0
2Þ ¼ w01ðM 0

1Þ.
We then prove claim (ii.b): w01ðM 0

1Þ ¼M 0
1ðM1Þ. On one

hand, the weight w01ðM 0
1Þ of matching M 0

1 is no less than

the weight w01ðM1Þ ofM1, i.e., w
0
1ðM 0

1Þ � w01ðM1Þ, since the
dead duration of virtual sensor vi;1 by charging it at time

slot i is no more than that at time slot t1i and i � t1i . On the

other hand, the weight w01ðM 0
1Þ of M 0

1 is no more than

weight w01ðM1Þ, i.e., w01ðM 0
1Þ � w01ðM1Þ, as M1 is a maxi-

mummatching in graphG01. Therefore,w
0
1ðM 0

1Þ ¼w01ðM1Þ.
We finally show claim (ii.c): w0jðM 0

jÞ ¼M 0
jðMjÞ for each

jwith 2 � j � k. Following the construction of matchings

M1;M2; . . . ;Mk in Algorithm 1, we can see that w01ðM1Þ �
w02ðM2Þ � � � � � w0kðMkÞ. On one hand, the weight w0jðM 0

jÞ
of M 0

j is no less than weight w0jðMjÞ, i.e., w0jðM 0
jÞ �

w0jðMjÞ, since w0jðM 0
jÞ ¼ w01ðM 0

1Þ ¼ w01ðM1Þ � w0jðMjÞ. On

the other hand, the weight w0jðM 0
jÞ of M 0

j is no more than

w0jðMjÞ, i.e., w0jðM 0
jÞ � w0jðMjÞ, as Mj is a maximum

matching in graph G0j. Therefore, w
0
jðM 0

jÞ ¼ w0jðMjÞ.
In summary, Algorithm 1 delivers an optimal solu-

tion to the problem for Case 1. tu
We then have the following theorem.

Theorem 1. Given a set V of to-be-charged sensors in a sensor
network Gs ¼ ðVs; EsÞ with the residual energy REi, energy
consumption rate ri, and energy demand Bi �REi of each sen-
sor vi 2 V , there is a heuristic algorithm, Algorithm 1, for
the sensor lifetime maximization problem with time complexity
Oðn3Þ, where n ¼ jV j.

Proof. We first show that Algorithm 1 delivers a feasible
solution to the problem, i.e., each virtual sensor in V 0 is
matched to a time slot in S0 in matching Mkmax in graph
G0kmax

. To this end, we show that each virtual sensor in

[j
j0¼1V

0
j is matched to a time slot in S0 in matching Mj in

graph G0j at Step 1 of Algorithm 1 for each j with
0 � j � kmax. We show this by induction on j. We can see
that the claim holds for j ¼ 0 as G00 is an empty graph. At
iteration j with 1 � j � kmax, the existence of such a
matching is guaranteed by Hall’s Theorem [4], which
says that each virtual sensor in [j

j0¼1V
0
j is matched to a

time slot in S0 in matching Mj in graph G0j if and only if

for each subset V 00j of [j
j0¼1V

0
j , the neighbor set NðV 00j Þ of

V 00j in graph G0j satisfies jNðV 00j Þj � jV 00j j. If V 00j \ Vj ¼ ;,
then jNðV 00j Þj � jV 00j j since graph G0j�1 is a subgraph of G0j
and each virtual sensor in V 00j is matched to a time slot in
S0 in matching Mj�1. Otherwise (V 00j \ Vj 6¼ ;), we know

that jNðV 00j Þj � jV 00j j as there is an edge ðvi;j; sqÞ between a

virtual sensor in V 00j \ Vj and every time slot sq 2 S, i.e.,

jNðV 00j Þj ¼ jS0j ¼ n0 � jV 0j � jV 00j j. Furthermore, note that
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Algorithm 1 does not remove any matched edges in Mj

from graph G0j at Step 1.
The time complexity analysis of Algorithm 1 is

straightforward, omitted. tu

4 ALGORITHM FOR THE SERVICE COST

MINIMIZATION PROBLEM WITH MAXIMUM

SENSOR LIFETIME

In the previous section, we found a charging tour for the
mobile charger so that the sum of the normalized sensor
lifetimes of all sensors is maximized. However, the service
cost of the mobile charger at its per charging tour may be
expensive. In this section, we focus on minimizing the ser-
vice cost of the mobile charger while ensuring that the maxi-
mum sum of normalized sensor lifetimes of sensors can be
achieved, by proposing a novel heuristic for the problem. In
the following, we first introduce the basic idea of the heuris-
tic and then elaborate its implementation in details.

4.1 Algorithm Overview
Recall that we created ki virtual sensors vi;1; vi;2; . . . ; vi;ki for
each sensor vi in V , and V 0 ¼ fvi;j j vi 2 V; 1 � j � kig,
where ki ¼ dBi�REi

D e. Each virtual sensor vi;j 2 V 0 has its
energy expiration time li;j in Algorithm 1. Also, in match-
ing Mkmax , virtual sensor node vi;j is matched to a time slot
node sq. We say that a virtual sensor vi;j is unexpired if it is
charged in time by matching Mkmax , i.e., q � li;j þ 1. Other-
wise (q > li;j þ 1), it is expired. For the depot r of the mobile
charger, we create two virtual nodes rs and rf and the loca-
tion of each of the two nodes is the same as that of depot r.

The basic idea behind the heuristic is to find a rf -rooted
tree T spanning the nodes in V 0 [ frs; rfg so that the weight
of the tree is minimized, subject to two constraints: (1) the
number of virtual sensors in the subtree rooted at each
unexpired virtual sensor vi;j is no more than its energy
deadline li;j þ 1; and (2) the number of virtual sensors in the
subtree rooted at each expired virtual sensor vi;j is equal to
q, assuming that vi;j is matched to the qth time slot in match-
ing Mkmax . Notice that constraints (1) and (2) ensure that the
sum of normalized sensor lifetimes in the found charging
tour will be maximized. Having the found tree T , a path P
starting from rs and ending at rf can then be derived from
T , and the length of P is not too much longer than the cost
of the tree T . Finally, the mobile charger charges sensors in
V along path P , where path P actually is a closed tour since
its two end nodes rs and rf are the virtual nodes that are
derived from the depot r.

4.2 Algorithm
We now construct tree T . Note that n0 ¼ jV 0j time slots are
needed to charge all virtual sensors in V 0.

We first partition the nodes in V 0 into n0 disjoint sets
V 01 ; V

0
2 ; . . . ; V

0
n0 , by their energy expiration times andmatching

Mkmax . An expired virtual sensor in V 0 is contained in set V 0q ,
assuming that the sensor is matched to time slot sq in match-

ing Mkmax , while an unexpired virtual sensor vi;j 2 V 0 is con-
tained in a set V 0j0 where j0 is the maximum integer no greater

than minfli;j þ 1; n0g so that there are no expired virtual sen-

sors in each set V 0j00 with j0 < j00 � minfli;j þ 1; n0g. In other
words, j0 is the latest time slot that virtual sensor vi;j will not
deplete its energy if the mobile charger can charge it prior to

that time slot. Note that some of the n0 sets may contain none
of the virtual sensors.We can see that the number of nodes in
the first j sets is no more than j, i.e.,

Pj
j0¼1 jV 0j0 j � j, for each j

with 1 � j � n0, whichwill be shown later.
Having the n0 partitioned sets, we group them into Y

supersets V1;V2; . . . ;VY , where Y is the number of integers

satisfying that
Pj

j0¼1 jV 0j0 j ¼ j with 1 � j � n0. That is, assum-

ing that the first y� 1 supersets V1;V2; . . . ;Vy�1 contains

the first jy�1 sets V 01 ; V
0
2 ; . . . ; V

0
jy�1 , superset Vy then contains

sets V 0jy�1þ1; V
0
jy�1þ2; . . . ; V

0
jy
, where

Pjy
j0¼1 jV 0j0 j ¼ jy and 1 �

y � Y . We can see that themobile chargermust charge virtual
sensors in superset Vy�1 before charging any virtual sensor in
superset Vy for each ywith 1 � y � Y . Therefore, we can con-
sider the charging sequence of the virtual sensors in
V1;V2; . . . ;VY one by one. The detailed construction of tree T
is given as follows.

Let V 00 ¼ frsg and V 0n0þ1 ¼ frfg. We add the nodes in sets
V 00 ; V

0
1 ; V

0
2 ; . . . ; V

0
n0 to tree T one by one. Initially, T contains

only node rs. Assume that the nodes in sets V 00 ; V
0
1 ; V

0
2 ; . . . ; V

0
j

have been added to T and V 0j is not an empty set. Consider
the next non-empty set V 0k with k > j. Assume that set V 0k is
contained in superset Vy. We find a subtree Tk that contains
virtual sensors in V 0k and other k�Pk

j0¼1 jV 0j0 j unexpired
residual virtual sensors in superset Vy so that the weighted
sum of edges in Tk plus the minimum weight between Tk

and the nodes in V 0j is minimized. To this end, for each unex-
pired residual virtual sensor vi in superset V0y, we obtain a
subtree T i

k by expanding from a subtree containing only
node vi to a subtree contains virtual sensors in V 0k [ fvig and
other k�Pj

j0¼1 jV 0j0 j � jV 0k [ fvigj unexpired virtual sensors

in a greedy way. Subtree Tk then is the tree with the mini-
mum sum of tree weight plus the weight to nodes in V 0j , i.e.,
Tk ¼ argminTi

k
fwðT i

kÞ þ wðei;jÞg, where ei;j is the minimum
weighted edge between node vi and the nodes in V 0j . Finally,
we attach subtree Tk to the nearest node in V 0j in tree T and
remove the nodes in Tk from V 0kþ1; V

0
kþ2; . . . ; V

0
n0 . After we

have added nodes in V 00 [ V 01[ V 02 [ � � � [ V 0n0 to tree T , we con-
nect node rf to its nearest node in V 0n.

The rest is to transform tree T to a path P from node rs to
node rf while visiting nodes in V 0. We first find the path
from node rs to node rf in tree T . We then obtain a graph
G00 by replicating the edges in tree T except the edges on the
path and find a Eulerian path from node rs to node rf in
graph G00. We finally find a path P by shortcutting repeated
nodes in the Eulerian path. The detailed algorithm is given
in Algorithm 2.

4.3 An Example of the Execution of Algorithm 2
We here use an example to illustrate the execution proce-
dure and intermediate results of Algorithm 2. Assume
that there are three to-be-charged sensors v1; v2, and v3 in
the network at some time point (see Fig. 5a), and their resid-
ual lifetimes are 0, 1, and 4 time slots, respectively. Two vir-
tual sensors vi;1 and vi;2 are created for each sensor vi with
1 � i � 3 (see Fig. 5b). The energy expiration time and the
matched time slot in matching Mkmax found by Algo-

rithm 1 are shown in Table 1. The partitioned six virtual
sets by Algorithm 2 are V 01 ¼ fv1;1g, V 02 ¼ fv2;1g, V 03 ¼ fg,
V 04 ¼ fv3;1g, V 05 ¼ fg, V 06 ¼ fv1;2; v2;2; v3;2g, respectively. The
six virtual sets are then grouped into three supersets
V1 ¼ fV 01g, V2 ¼ fV 02g, and V3 ¼ fV 03 ; V 04 ; V 05 ; V 06g, respectively.
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Algorithm 2.HeuristicMinCost

Input: Virtual sensor set V 0, their energy expiration times li;js,
matchingMkmax , and depot r.

Output: a charging tour P so that the length of the tour is
minimized, while the sum of normalized sensor
lifetimes is the same as that from matchingMkmax .

1: Partition virtual sensors in V 0 into n0 sets V 01 ; V
0
2 ; . . . ; V

0
n0 by

their energy expiration times and matchingMkmax ;
2: Group the n0 sets into Y supersets V1;V2; . . . ;VY ;
3: Let set V0 ¼ frsg and tree T contain only node rs;
4: for k 1 to n0 do
5: if V 0k contains virtual sensors then
6: Let nk ¼ k�Pk�1

j0¼1 jV 0j0 j; // # of nodes in tree Tk;
7: Assume that j is the maximum index so that V 0j

contains virtual sensors with 0 � j < k;
8: if jV 0k j ¼ nk then
9: Tree Tk is an MST of a complete graph

G0k ¼ ðV 0k; E0k;w0 : E0k 7! RþÞ, where w0ðu; vÞ is the
Euclidean distance between any two virtual sensors
u and v in V 0k ;

10: else
11: Assume that set V 0k is contained in superset Vy;
12: for each unexpired node vi 2 [V 0

j
2VyV

0
j do

13: Obtain a minimum weighted tree T i
k covering

nodes in set V 0k [ fvig and other nk � jV 0k [ fvigj
unexpired virtual sensors in [V 0

j
2VyV

0
j in a greedy

way;
14: end for
15: Let Tk ¼ argminTi

k
fwðT i

kÞ þ wðei;jÞg, where ei;j is the

minimum weighted edge between node vi and
nodes in V 0j ;

16: end if
17: Expand tree T by connecting subtree Tk to nodes V 0j

using their minimum weighted edge;
18: Let V 0p  V 0p n V ðTkÞ for k < p � n0

19: end if
20: end for
21: Add node rf to tree T by connecting it to nodes in V 0n0 using

their minimum weighted edge;
22: Obtain a graph G00 by replicating edges in tree T except the

edges on the path from nodes rs to rf in tree T ;
23: Find a Eulerian path from nodes rs to rf in G00;
24: Obtain a charging tour P by removing repeated nodes in

the Eulerian path with shortcutting.

Initially, tree T contains only node rs. Virtual sensors in
V 01 ; V

0
2 ; . . . ; V

0
6 are added to T one by one, and a subtree Tj is

found for each virtual set V 0j , 1 � j � 6. Since virtual set V 01
contains only one node v1;1, a subtree T1 containing only
node v1;1 is attached to tree T by connecting node v1;1 to
node rs that is the nearest node in V 00 ¼ frsg (see Fig. 5c).
Similarly, a subtree T2 containing only node v2;1 2 V 02 is added
to tree T by connecting v2;1 to node v1;1 that is the nearest
node in V 01 ¼ fv1;1g (see Fig. 5d). For virtual set V 04 ¼ fv3;1g
(set V 04 is contained in superset V3), a subtree T4 is found

so that the subtree contains the node v3;1 in V 04 and

other 4�P4
j¼1 jV 0j j ¼ 4� 3 ¼ 1 node in set [V 0

j
2V3V

0
j n V 04 ¼

fv3;1; v1;2; v2;2; v3;2g n fv3;1g ¼ fv1;2; v2;2; v3;2g, and the sum of

the weight of tree T4 plus the weight of the shortest edge
between T4 and the node in V 02 is minimized, where tree T4

contains virtual sensors v3;1 and v2;2 (see Fig. 5e). After subtree

T4 has been attached to tree T , there are only two virtual sen-
sors v1;2; v3;2 left in V 06 . Subtree T6 then contains only the two
nodes and it is attached to tree T by connecting v3;2 to v3;1 (see
Fig. 5f). Finally, node rf is added to tree T by connecting it to
node v3;2 that is its nearest node in set V 06 (see Fig. 5g).

A charging tour P is derived from tree T (see Fig. 5h),
from which it can be seen that only sensor v1 will be charged
twice by the charger in the tour while both sensors v2 and v3
are charged only once, as two consecutive chargings for two
virtual sensors derived from the same real sensor can be
merged into one charging.

4.4 Incorporating the Charger Energy Capacity
In the charging model of Section 2.2, we assumed that the
mobile charger has sufficient energy to charge to-be-charged
sensors in each charging tour. However, this assumption

Fig. 5. An example of the execution of Algorithm 2.
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sometimes may not be practical, especially when there are
a large number of to-be-charged sensors or the mobile
charger itself is also energy-constrained [10], [11], [21].
Then, the charging tour delivered by Algorithm 2 for the
service cost minimization problem may be infeasible, since
the total energy consumption by the mobile charger dur-
ing the tour may exceed its energy capacity. In the follow-
ing we show how to extend Algorithm 2 to solve the
problem under the energy capacity constraint on the
mobile charger.

We assume that there is an energy capacity IE of the
mobile charger and that the mobile charger can replace its
battery or recharge itself at depot r when it depletes its
energy. Given a set of to-be-charged sensors, denote by
C ¼<ðr; 0Þ ! ðv01; e1Þ ! ðv02; e2Þ ! � � � ! ðv0n0 ; en0 Þ ! ðr; 0Þ >
the charging tour delivered by Algorithm 2. We split the
charging tour C into several, say q, sub-tours C1; C2; . . . ; Cq,
so that the total energy consumption of the charger in each
sub-tour Cj is no more than its energy capacity IE, where
q > 1 is to be determined. Assume that we have already
found the first j sub-tours C1; C2; . . . ; Cj and the first qj sen-
sors v01; v

0
2; . . . ; v

0
qj

in tour C will be charged in the j sub-

tours. Then, the ðjþ 1Þth sub-tour is Cjþ1 ¼<ðr; 0Þ ! ðv0qjþ1;
eqjþ1Þ ! ðv0qjþ2; eqjþ2Þ ! � � � ! ðv0qjþ1 ; eqjþ1Þ ! ðr; 0Þ > , where

the energy consumption of the mobile charger in sub-tour
Cjþ1 is no more than its energy capacity IE but the it will
consume more than IE energy for charging virtual sensors
v0qjþ1; v

0
qjþ2; . . . ; v

0
qjþ1 ; v

0
qjþ1þ1, or v

0
qjþ1 is the last to-be-charged

virtual sensor in tour C.

4.5 Algorithm Analysis

Theorem 2. Given a set V of to-be-charged sensors in a sensor
network Gs ¼ ðVs; EsÞ with each sensor vi 2 V having its
residual energy REi, energy consumption rate ri, and energy
demand Bi �REi, there is a heuristic algorithm, Algo-

rithm 2, for the service cost minimization problem with the
maximum sensor lifetime in time Oðn4Þ, where n is the number
of to-be-charged sensors, i.e., n ¼ jV j.

Proof.We show that the solution delivered by Algorithm 2
is feasible, by claiming that (i) the sum of nodes in the first
j sets from sets V 01 ; V

0
2 ; . . . ; V

0
n0 is no more than j, i.e.,

Pj
j0¼1 jV 0j0 j � j, where 1 � j � n0; and (ii) the sum of nor-

malized sensor lifetimes derived from tour C is the same
as that from matchingMkmax .

We first show that (i)
Pj

j0¼1 jV 0j0 j � j, 1 � j � n0. Recall
that we obtained sets V 01 ; V

0
2 ; . . . ; V

0
n0 from set V 0 by their

energy expiration times and matching Mkmax . The nodes

in [j
j0¼1V

0
j0 must be matched to a subset of time slot set

fs1; s2; . . . ; sjg in matchingMkmax . Then,
Pj

j0¼1 jV 0j0 j � j.
We then show that (ii) the sum of normalized sensor

lifetimes derived from tour C is the same as that from

matching Mkmax . From the construction of tour C, we can
see that an expired virtual sensor is charged at the same
time slot as that in matching Mkmax , while an unexpired
virtual sensor vi;j is charged at a time slot prior to its
energy deadline li;j þ 1. In other words, the live and dead
durations of each sensor in V in tour C are the same as
that in matchingMkmax , respectively. The time complexity
analysis of Algorithm 2 is straightforward, omitted. tu

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms through experimental simulations. We also
study the impact of important parameters on the algorithm
performance including network size, data rates of sensors,
the energy charging unit, and the energy capacity of the
mobile charger.

5.1 Simulation Environment
We consider a WSN consisting of from 100 to 500 sensors,
which are uniformly deployed within a 1;000 m
 1;000 m
square area at random. Both the base station and the depot r
are co-located at the center of the square. The battery capac-
ity of each sensor vi 2 Vs is Bi ¼ B ¼ 10:8 kJ [18]. The data
sensing rate bi of sensor vi is randomly chosen from an inter-
val ½bmin; bmax�, where bmin ¼ 1 kbps and bmax ¼ 10 kbps [18].
We adopt the real sensor energy consumption model in [9].
The mobile charger travels at a constant speed of n ¼ 5 m/s
with an energy consumption rate of � ¼ 0:6 kJ/m [11], [22]
The charging rate of the mobile charger m varies from a slow
one mmin ¼ 1 Watt to a fast one mmax ¼ 10 Watts, and its
default value is 5 Watts. Then, the time for fully charging a
sensor battery varies from B

mmax
¼ 10:8 kJ

10 Watts ¼ 18 minutes to
B

mmin
¼ 10:8 kJ

1 Watt ¼ 3 hours. Each to-be-charged sensor sends a

charging request to the base stationwhen its residual lifetime
is below a critical lifetime lc ¼ 2 hours. The givenmonitoring
period TM is one year. Assume that each sensor vi will run
out of its energy di � 0 times during the period TM , and it

stops working during the time interval ½tsi;j; tfi;j� due to its jth

energy depletion, where 1 � j � di The dead duration of sen-

sor vi in period TM then is calculated as
Pdi

j¼1ðtfi;j � tsi;jÞ.
In addition to the proposed algorithms HeuristicMax-

Lifetime and HeuristicMinCost, we also implement
algorithms EDF, TSP, NETWRAP in [20], and AA in [21] for
benchmark purposes. In algorithm Earliest Deadline First
(EDF), we sort to-be-charged sensors by their energy expira-
tion deadlines and the mobile charger visits the sorted sen-
sors one by one. In algorithm TSP, we calculate an
approximately shortest closed tour visiting to-be-charged
sensors without considering their energy expirations [4]. In
algorithm NETWRAP [20], the mobile charger selects the next
to-be-charged sensor that has the minimum weighted sum
of the travel time of the charger to the sensor and the resid-
ual lifetime of the sensor. Finally, in the state-of-the-art algo-
rithm AA [21], a mobile charger charges a proportion of to-
be-charged sensors before their energy expirations, so as to
maximize the total amount of energy charged to sensors
minus the total traveling energy cost of the charger. Each
value in figures is the average of the results by applying
each mentioned algorithm to 100 different network topolo-
gies with the same network size.

TABLE 1
The Energy Expiration Time and Matched Time

Slot for Each Virtual Sensor

virtual sensor v1;1 v1;2 v2;1 v2;2 v3;1 v3;2

expiration time 0 862 1 173 4 78
matched time slot 1 4 2 5 3 6
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5.2 Algorithm Performance
Recall that in algorithm HeuristicMaxLifetime, we
assumed that the average charger travel time between two
consecutive to-be-charged sensors is much shorter than the
sensor charging time for an amount of D energy, but is not
neglected. We first validate the practicality of the assump-
tion through experiments. Fig. 6a shows that the average
charger travel time is no more than 1 minute while the sen-
sor charging time is as long as 17 minutes. In addition,
Fig. 6b demonstrates that the experimental average sensor
dead duration by algorithm HeuristicMaxLifetime

matches its analytical average dead duration very well,
which means that the assumption only slightly affects
experimental results, thus it is reasonable.

We then evaluate the performance of algorithms Heuri-
sticMaxLifetime HeuristicMinCost, TSP, EDF, NET-
WRAP, and AA, by varying the network size n from 100 to 500.
Fig. 6c shows the average energy dead duration per sensor
delivered by these algorithms for a given monitoring period
TM , from which it can be seen that the average dead duration
per sensor by the proposed algorithm HeuristicMaxLife-

time ismuch shorter than that by algorithms TSP, EDF, NET-
WRAP, and AA. For example, the average dead duration by
algorithm HeuristicMaxLifetime is only around 9 per-
cent of that by algorithm AA, i.e., 9% � 26:8 minutes

290:7 minutes. The ratio-
nale behind is that algorithm HeuristicMaxLifetime can
find a charging tour so that the sum of normalized lifetimes of
all sensors is maximized while the rest of the mentioned algo-
rithms ignore minimizing the energy dead durations. Fig. 6c
also demonstrates that the average dead duration delivered
by algorithm TSP is the longest one among the mentioned
algorithms, since algorithm TSP does not consider the energy
expirations of to-be-charged sensors and schedules themobile

charger to charge the sensors along a shortest tour. Fig. 6d
plots the total travel distance of the mobile charger delivered
by the mentioned algorithms during the period of TM . Algo-
rithm HeuristicMinCost has the longest total travel dis-
tance, which is about from 1 to 15 percent longer than that by
algorithm AA. Such a minor increase on the travel distance
however is worthwhile as the average dead duration per sen-
sor by the algorithm is only about 9 percent of that by algo-
rithm AA, and the continuing operation of sensors usually is a
fundamental requirement in manyWSN applications. Notice
that although each to-be-charged sensor is allowed to be
charged multiple times, it is unnecessary that each sensor
must be chargedmany times. Fig. 6e demonstrates the percen-
tages of sensors charged once and more than once during a
charging tour delivered by the proposed algorithm Heuri-

sticMinCost, respectively, from which it can be seen that
more than 70 percent of the sensors are charged only once.
Finally, Fig. 6f shows that, in as high as 98 percent of the
chargings during period TM , the number of to-be-charged
sensors falls into Case 1, for which algorithm Heuristic-

MaxLifetime delivers the maximum sum of the normalized
lifetimes of sensors.

We study the performance of different algorithms, by vary-
ing the maximum data rate bmax from 10 to 20 kbps while set-
ting bmin ¼ 1 kbps and n ¼ 400. Fig. 7a implies that the
average dead duration per sensor by each of the algorithms
increases with the growth of bmax from 10 to 20 kbps. As a
result, there are more to-be-charged sensors in each charging
tour, and each to-be-charged sensor thus is more likely to
deplete its energy before it can be replenished. Fig. 7a also
indicates that the average dead duration per sensor by algo-
rithmHeuristicMaxLifetime is the shortest onewhile the
one delivered by algorithm TSP is the longest one. On the

Fig. 6. Performance of algorithms HeuristicMaxLifetime, HeuristicMinCost, TSP, EDF, NETWRAP, and AA by varying the network size n
from 100 to 500.
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other hand, Fig. 7b exhibits an interesting phenomenon. That
is, the total travel distance of the mobile charger delivered by
any of algorithms HeuristicMinCost, EDF, NETWRAP, and
AA becomes longer with the increase of bmax, while the one by
algorithm TSP slightly decreases. The rationale is that there
are more to-be-charged sensors in each charging tour when
the maximum data rate bmax increases, the number of charg-
ing tours during period T however significantly decreases.
Since the first four algorithms schedule the mobile charger by
taking sensor energy expirations into consideration, the travel
distances by them in each tour will become significantly lon-
ger with the increase of bmax. In contrast, in algorithm TSP,
although the increase on the number of to-be-charged sensors
in each charging tour will increase the travel distance of the
mobile charger, such an increase is insignificant as algorithm
TSP does not consider sensor energy expirations, and to-be-
charged sensors usually are close to the base station.

We also examine the performance of the mentioned algo-
rithms by increasing the charging rate m from a slow charg-
ing rate 1 Watt to a fast charging rate 10 Watts. Fig. 8a
shows that the average sensor dead duration by each of the
mentioned algorithms dramatically decreases with a faster
charging rate m, as the charging time per sensor is signifi-
cantly shortened if the mobile charger replenishes it
quicker. Fig. 8a also demonstrates that the average sensor
dead duration by algorithm HeuristicMaxLifetime is
much shorter than those by the other algorithms. For exam-
ple, the average sensor dead durations by algorithms Heu-
risticMaxLifetime, TSP, EDF, NETWRAP, and AA are
about 112, 3,500, 1,840, 1,870, and 2,700 minutes respec-
tively, when the charging rate m is 1 Watt. On the other
hand, Fig. 8b plots that the total travel distance by algorithm
HeuristicMinCost is only about from 1 to 34 percent lon-
ger than that by the state-of-the-art algorithm AA.

We further investigate the impact of the energy charging
unit D on algorithm performance, by decreasing D from B
to B

5 . It can be seen that, D ¼ B indicates that the full-charg-
ing model is adopted while D ¼ B

2 ;
B
3 ;

B
4 , or

B
5 means that the

partial-charging model is adopted. Fig. 9a implies that the
average dead duration per sensor by algorithm Heuri-

sticMaxLifetime-Given-D significantly decreases when
the value of D decreases from B to B

2 . This demonstrates that
the proposed partial-charging model can shorten sensor
energy expiration durations. Fig. 9a also indicates that the
average dead duration by the algorithm slightly decreases
with the decrease of D from B

2 to
B
5 . In contrast, Fig. 9a shows

that the performance of algorithms TSP, EDF, NETWRAP,
and AA do not change with the decrease of D as they adopt
the full-charging model. Furthermore, Fig. 9a demonstrates

that the average dead duration per sensor by algorithm
HeuristicMaxLifetime-OPT-D is from 4 to 9 percent
shorter than that by algorithm HeuristicMaxLifetime-

Given-D, where the optimal energy charging unit DOPT of
the former algorithm is found by the proposed method in
Section 3.2. On the other hand, Fig. 9b implies that the total
travel distance by algorithm HeuristicMinCost-

Given-D increases with the decrease of D.
We finally study the impact of the energy capacity of the

mobile charger IE on the performance of the proposed algo-
rithm HeuristicMinCost, by varying IE from 100 to
2;000 kJ. The mobile charger then can travel from only about
170 (� 100 kJ

0:6 kJ=m) meters to no more than 3,400 (� 2;000 kJ
0:6 kJ=m)

meters per tour. Fig. 10 shows that the total travel distance
of the mobile charger delivered by algorithm Heuristic-

MinCost dramatically decreases with the increase of the
energy capacity IE, as the mobile charger can replenish
more sensors per charging tour with a larger capacity IE.
Also, the total travel distance by algorithm Heuristic-

MinCost is no more than 18 percent (� 1978 km�1676 km
1676 km ) lon-

ger than that by the algorithm without the energy capacity
constraint, even when the mobile charger is very energy-
constrained (i.e., IE ¼ 100 kJ).

6 RELATED WORK

Wireless energy replenishment as a promisingmechanism for
prolonging the lifetime of WSNs has been recently studied in
literature [6], [15], [18], [20], [21], [24], [30]. Zhang et al. [30]
considered the problem of scheduling multiple mobile charg-
ers to optimize energy usage effectiveness to fully charge a set
of sensors, where the sensor charging time is ignored, there is
an energy capacity on each mobile charger, and mobile

Fig. 8. Performance of algorithms HeuristicMaxLifetime, Heuri-
sticMinCost, TSP, EDF, NETWRAP, and AA by varying the charging
rate m from 1 to 10 Watts while n ¼ 100.

Fig. 7. Performance of algorithms HeuristicMaxLifetime, Heuri-
sticMinCost, TSP, EDF, NETWRAP, and AA by varying the maximum
data rate bmax from 10 to 20 kbps while n ¼ 400.

Fig. 9. Performance of algorithms HeuristicMaxLifetime, Heuri-
sticMinCost TSP, EDF, NETWRAP, and AA by decreasing the energy
charging unit D from B to B

5 while bmin ¼ 1 kbps, bmax ¼ 16 kbps, and
n ¼ 400.
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chargers are allowed to transfer energy among themselves.
Xu et al. [24] studied the problem of scheduling k mobile
chargers to charge a set of sensors so that the sensors can be
fully charged as soon as possible, while Ren et al. [15] investi-
gated the problem of scheduling amobile charger to charge as
many sensors as possible within a given time period, by tak-
ing both the sensor charging time and the travel time of the
charger into consideration. Shi et al. [18] employed a wireless
charger to periodically charge all sensors such that the net-
work can perpetually operate. Wang et al. [20] proposed an
algorithm inwhich a mobile charger replenishes the next sen-
sor that has the minimum weighted sum of the travel time of
the mobile charger to the sensor and the residual lifetime of
the sensor. Given a set of to-be-charged sensors with different
residual lifetimes, they also provided an adaptive algorithm
to schedule amobile charger to charge a proportion of the sen-
sors before their energy expirations, with the objective tomax-
imize the total amount of energy charged to sensorsminus the
total traveling energy cost of the charger [21]. He et al. [6]
investigated a mobile charging problem using a Nearest-Job-
Next with preemption, and provided analytical results on the
number of charging requests served and the charging latency
of each sensor, assuming that the arrival times of sensor
charging requests follow Poisson’s distribution.

Different from thesementioned studies that adopt a simple
full-charging model, we are the first to adopt a novel partial-
charging model so that more sensors can be charged before
their energy depletions. Also, unlike the previous studies that
ignore the energy expiration durations of sensors, we study
the problem of scheduling a mobile charger to charge sensors
so that the sum of normalized sensor lifetimes is maximized,
while the travel distance of the charger isminimized.

There are some related studies in the Orienteering Prob-
lem with Time Windows (OP-TW) [3]. Given an edge-
weighted graph G ¼ ðV;EÞ and two nodes s and t, each
node v in V is associated with a time window ½RðvÞ; DðvÞ�.
The OP-TW problem is to find a s� t walk in G so that the
number of nodes visited within their time windows in
the walk is maximized. Chekuri [3] devised a polynomial-
time OðmaxflogOPT; log Lmax

Lmin
gÞ-approximation algorithm

for the problem, where Lmax and Lmin are the lengths of the
longest and shortest time windows, respectively. We note
that the OP-TW problem is essentially different from the
problems in this paper, since the objective of the OP-TW
problem is to find a s� t walk so as to visit as many nodes
as possible within their time windows, while in this paper
every to-be-charged sensor must be charged and some
sensors thus may be charged at time points after their

deadlines. Therefore, the proposed algorithms in [3] cannot
be applied to the problems in this paper.

7 CONCLUSIONS

In this paper we studied the use of a mobile charger to wire-
lessly charge sensors in a rechargeable sensor network so
that the sum of sensor survival times can be maximized
while keeping the travel distance of the mobile charger mini-
mized. Unlike existing studies that assumed a mobile char-
ger must charge a sensor to its full energy capacity before
charging the next one, we are the first to propose a partial
energy chargingmodel for sensor charging to shorten sensor
dead durations, under which we first formulate two novel
optimization problems of dispatching a mobile charger to
charge a set of sensors, which are to maximize the sum of the
sensor lifetimes and to minimize the travel distance of the
chargerwhile ensuring that themaximum sum of sensor life-
times is achieved. We then proposed an efficient algorithm
for each of the two problems, and we finally evaluated the
performance of the proposed algorithms through experi-
mental simulation. The simulation results demonstrated that
the proposed algorithms are very promising.
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