
Task Offloading with Network Function
Requirements in a Mobile Edge-Cloud Network

Zichuan Xu ,Member, IEEE, Weifa Liang , Senior Member, IEEE,

Mike Jia, Meitian Huang, and Guoqiang Mao, Fellow, IEEE

Abstract—Pushing the cloud frontier to the network edge close tomobile users has attracted tremendous interest not only from cloud

operators but also fromnetwork service providers. In particular, the deployment of cloudlets inmetropolitan area networks enables network

service providers to provide low-latency services tomobile users through implementing their specified virtualized network functions (VNFs)

whilemeeting their Quality-of-Service (QoS) requirements. In this paper, we formulate a novel task offloading problem in amobile edge-

cloud network, where each offloading task requests a specified network function with a tolerable delay.We aim tomaximize the number of

requests admittedwhileminimizing the operational cost of admitted requestswithin a finite time horizon, through either sharing existingVNF

instances or creating newVNF instances in cloudlets.We first show that the problem is NP-hard, and then devise an efficient online

algorithm for the problem by reducing it to a series ofminimumweightmaximummatching problems. Considering dynamic changes of task

offloading request patterns over time, we further develop an effective predictionmechanism for newVNF instance creations and idle VNF

instance releases to further lower the operational cost of the network service provider. Also,we devise anonline algorithmwith a competitive

ratio for a special case of the problemwhere the delay requirements of requests are negligible.We finally evaluate the performance of the

proposed algorithms through experimental simulations. Experimental results indicate that the proposed algorithms are promising.

Index Terms—Mobile edge-cloud networks, task offloading, operational cost minimization, network function virtualization,

throughput maximization, online algorithms, resource allocations in cloudlets

Ç

1 INTRODUCTION

MOBILE devices such as smart phones and tablets are
becoming the main communication tools. Meanwhile,

face recognition, natural language processing, interactive gam-
ing, and augmented reality are emerging as newmobile appli-
cations. Such mobile applications request a large amount of
computing resource for performance enhancement, thereby
leading to high-level energy consumptions. They also require
various network function services including firewalls, intru-
sion detection systems, and load balancers, to guarantee correct
and secure execution of the applications. Most of such applica-
tions have stringent Quality-of-Service (QoS) requirements
(i.e., extremely low service response delays). However, due to
the portable size of mobile devices, their computing, storage,
and battery capacities are very limited,many computing- and/
or storage-intensive applications may not be suitable to run in
mobile devices, thereby restricting the capability of mobile
devices. One promising technique to leverage the capability of
mobile devices is to offload their tasks to nearby cloudlets in a
mobile edge-cloud network viaWiFi or 5G for processing.

To meet ever-growing resource demands of offloading
tasks frommobile userswith stringent QoS requirements, net-
work service providers usually instantiate some frequently
demandedVNF instances of network functions at cloudlets in
mobile edge-cloud networks. The instantiation of VNF instan-
ces at the edge of a network can shorten the access latency of
network services and save time in creating new VNF instan-
ces. Provisioning network services with different types of
VNFs in amobile edge-cloudnetwork posesmany challenges.
For example, how many VNF instances are needed to be
instantiated such that the computing resource of cloudlets is
fully utilized while the cost and delay of their instantiations
are minimized? How should offloaded tasks be assigned to
different cloudlets while meeting their QoS requirements and
minimizing the admission cost by utilizing existing VNF
instances they requested? Finally, can the demanded number
of VNF instances at each cloudlet be predicted? In this paper
wewill address the aforementioned challenges.

To the best of our knowledge, this paper is the first one
to explore the sharing of existing VNF instances of network
functions in cloudlets for cost-efficient task offloading
while meeting QoS requirements of individual offloaded
tasks. We formulate a novel QoS-aware task offloading
optimization problem and developing efficient solutions to
the problem. Due to the nature of dynamic changes of off-
loading request patterns over time, we develop an effective
prediction mechanism to predict VNF instance demands at
each cloudlet to further reduce the operational cost of the
service provider, through dynamic creations and releases
of VNF instances at cloudlets in the network.

The main contributions of this paper are as follows. We
first formulate a novel QoS-aware task offloading problem

� Z. Xu is with the School of Software, Dalian University of Technology,
Dalian 116020, China. E-mail: z.xu@dlut.edu.cn.

� W.Liang,M. Jia, andM.Huang arewith the Research School of Computer Sci-
ence, The AustralianNational University, Canberra, ACT 0200, Australia.
E-mail: wliang@cs.anu.edu.au, {u5515287, meitian.huang}@anu.edu.au.

� G. Mao is with the School of Computing and Communications, University
of Technology Sydney, Sydney, NSW 2007, Australia.
E-mail: Guoqiang.Mao@uts.edu.au.

Manuscript received 3 May 2018; revised 5 Oct. 2018; accepted 19 Oct. 2018.
Date of publication 23 Oct. 2018; date of current version 30 Sept. 2019.
(Corresponding author: Weifa Liang.)
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMC.2018.2877623

2672 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 11, NOVEMBER 2019

1536-1233� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
mailto:
mailto:
mailto:
mailto:

in a mobile edge-cloud network that consists of a number of
cloudlets co-located with Access Points (APs). We aim to
maximize the number of admissions of offloading requests
within a finite time horizon while minimizing the admission
cost of admitted requests, assuming that different task off-
loading requests request different VNF services and have
different end-to-end delay requirements. We then devise an
efficient algorithm for admissions of a set of task offloading
requests through a non-trivial reduction that reduces the
problem to a series of minimumweight maximummatching
problems. We also develop an efficient online algorithm for
dynamic offloading request admissions, in addition to an
effective prediction mechanism to predict the demanded
number of VNF instances of each different network function
at each cloudlet. For a special case of the problem where the
end-to-end delay requirement is negligible, we devise an
online algorithm with a provable competitive ratio, by
adopting the primal-dual dynamic updating method [5].
We finally evaluate the performance of the proposed algo-
rithms through experimental simulations, and results dem-
onstrate that the proposed algorithms are promising.

The remainder of the paper is arranged as follows.
Section 2 will survey the state-of-the-art on task offloading
in mobile edge computing environments, and distinguish
our work in this paper from previous studies. Section 3 will
introduce the system model, notations and problem defini-
tions. Section 4 will develop a prediction mechanism, and
devise algorithms for the problem based on the built predic-
tion mechanism. Section 5 will develop an online algorithm
with a provable competitive ratio for a special case of the
problem. Section 6 will provide some experimental results
on the performance of the proposed algorithms, and
Section 7 concludes the paper.

2 RELATED WORK

As a key enabling technology of 5G, mobile edge-cloud net-
works have gained tremendous attention recently [15].
Also, with the emergence of complicated and resource-hun-
gry mobile applications, offloading user tasks to cloudlets
of a nearby mobile edge-cloud network is becoming an
important approach to reduce the energy consumption of
mobile devices and improve mobile user QoSs.

Extensive studies on task offloading in mobile edge-cloud
networks have been conducted [1], [2], [3], [4], [9], [11], [15],
[19], [20], [23]. For example, Chen et al. [1] investigated the
problem of task offloading for mobile edge computing in a
software-defined ultra-dense network with the aim to mini-
mize the total execution duration of all tasks. However, they
assumed that edge clouds are deployed at each base station,
and VNF placement is not considered. Chen et al. [2] investi-
gated the problem of multi-user computation offloading for
mobile edge clouds in a multi-channel wireless interference
environment. They formulated their problem as a multi-
player game and designed a mechanism for the problem as a
Nash equilibrium. However, they did not consider the place-
ment of virtualized network functions. Zhang [24] treated
data offloading as a coalitional game-based pricing scheme,
formulated the problem as coalitional non-transferable utility
game, and conducted theoretical and empirical analysis on
their proposed solution. Song et al. [18] investigated the task
assignment problem in a mobile edge network with node,
link, and security constraints, and proposed a heuristic for it.
Jia et al. [11] dealt with minimizing the maximum delay

among offloaded tasks in a distributed cloudlet network
through balancing the workload among cloudlets. Xu
et al. [21], [22] devised efficient approximation and online
algorithms to the assignment of offloading requests to cloud-
lets. Xia et al. [19] considered opportunistic task offloading
under link bandwidth, mobile device energy, and cloudlet
computing capacity constraints.

None of the mentioned studies considered task offloading
with VNF service requirement. However, there are several
dedicated studies focussing on VNF placement in conven-
tional networks or mobile edge network [13], [16], [23]. For
example, Kuo et al. [13] studied the problem of service chain
embedding in SDNs with both node and edge capacity con-
straints. They proposed a primal-dual based solution with
bounded error, and a randomized approximation algorithm
with average performance guarantees. All the aforementioned
studies assumed that each offloaded task will be assigned an
amount of dedicated computing resource. No consideration
has ever been given for existing VM or VNF instance sharing
in cloudlets, not to mention there is any predictionmechanism
to predict future demands on VNF instances of different net-
work functions by their creations and releases to further
reduce the service costs and delays. With imminent 5G tech-
nology, provisioning extremely low-latency services has
emerged as a new trend, and existing studies ignore the
latency in eitherwireless access networks (frommobile devices
to APs) or mobile edge networks (between APs and the core
network). It must be mentioned that the work in this paper is
an extension of thework fromour conference paper [10].

3 PRELIMINARIES

In this section, we first introduce the system model and
notations, and then define the problems precisely.

3.1 System Model
Given a mobile edge-cloud network G ¼ ðV [C;EÞ where
V is the set of AP nodes, C is a set of cloudlets co-located
with some AP nodes, and E is the set of links between AP
nodes. Since cloudlets are usually co-located with APs in
coffee shops, base stations, libraries, school buildings, air-
ports, or shopping malls in metropolitan areas within the
proximity of mobile users, only a limited number of servers
can be installed within each cloudlet, due to the space or
cooling limitation of the locations. Thus, each cloudlet
clj 2 C is assumed to have computing capacity capj with
1 � j � jCj, where jCj is the cardinality of set C. Assuming
that time is divided into equal time slots, the amounts of
available computing and storage resources in each cloudlet
at each time slot vary, due to admissions and departures of
offloading task requests. Let capjðtÞ be the amount of avail-
able computing resource of cloudlet clj at time slot t with
1 � t � T and 1 � j � jCj, where T is the monitoring period
in terms of numbers of time slots. Fig. 1 is an example of a
mobile edge-cloud network.

3.2 Task Offloading and VNF Instances
With the development of mobile technology, mobile appli-
cations are becoming more and more complicated, by con-
suming not only energy, computing and storage resource
but also requesting advanced network services that are rep-
resented as various VNFs. Offloading tasks from mobile
devices can save both energy and computing resources of
mobile devices while meeting increasing demands on

XU ET AL.: TASK OFFLOADING WITH NETWORK FUNCTION REQUIREMENTS IN A MOBILE EDGE-CLOUD NETWORK 2673

advanced network services of the requests. To this end,
computing resource in each cloudlet is used to instantiate a
certain number of VNFs running in VMs, referred to as
VNF instances. We thus assume that there is a set F of VNFs
in the mobile edge-cloud network G. Denote by fi a type-i
of VNF in F with 1 � i � jFj.

An implementation of a type-i network function fi in a
VM in a cloudlet clj is termed as an instance of fi 2 F . With-
out loss of generality, we assume that the amount of com-
puting resource in clj allocated to a VNF instance of fi is to
guarantee its maximal packet processing rate mij in clj.
Denote by RCunit the amount of resource that is needed to
process a unit packet rate, and the amount of resources
needed by an instance of fi is mij �RCunit. There may and
may not have multiple VNF instances of each fi 2 F in a
cloudlet. We further assume that each cloudlet has instanti-
ated some VNF instances of each fi already. Denote by
nijðtÞ the number of existing VNF instances of network
function fi in cloudlet clj at time slot t. Each VNF instance
can process one or multiple user requests that specify this
type of VNF and the aggregate packet rate in the VNF
instance is no more than its maximum processing rate mij.

Each mobile device can offload its task to some instances
of VNF fi it requested via a nearby AP. Let SðtÞ be the set of
offloading task requests at time slot t. Each user task request
rk 2 SðtÞ is represented by a tuple ðvk; Fk; �k; tk; dkÞ, where
vk is of the user’s closest AP vk 2 V , Fk is the network func-
tion that rk requests, �k is the packet rate of request rk, tk is
the duration of request rk, and dk is the end-to-end delay
requirement of the request. Note that the value of �k can be
derived from historical information of similar types of user
requests. We thus assume that the packet rate of each
request is given as a priori.

3.3 End-to-End Delays of Offloading Requests
The end-to-end delay experienced by each admitted request
rk includes the upload delay of uploading the packet traffic of
a mobile user to its nearby AP, the queuing delay in the cloud-
let clj for the processing of the packet traffic on the
requested VNF instance, the packet processing delay in the
VNF instance, the instantiation delay of creating a VNF
instance if needed, the network latency between the AP and a
cloudlet clj, and the result return delay from the AP to the
user. For the sake of convenience, we assume that the packet
upload delay and the result return delay are equal. These
delays are defined as follows.

Upload Delay. Packets of request rk are uploaded to its
nearby AP of its mobile user. Assuming that �k is the packet
rate of rk and the bandwidth of the AP is Bk, the achieved
data rate Wk (bits per second) via the wireless channel of
the AP for rk is

Wk ¼ Bklog 2

�
1þ pk � hk

s2 þ Ik

�
; (1)

where s2 is the noise power of mobile devices and Ik is the
inter-cell interference power [1], hk is the channel gain
between the user of request rk and the AP, and pk is the
transmission power of the user with request rk.

Let sp be a packet size in bits. The upload delay of rk is

dðk; �kÞ ¼ �k � sp=Wk: (2)

Notice that when sp �Wk < �k, the packet rate of request
rk can be decreased due to the incurred delay of transmit-
ting packets. Such decreased packet rates may affect the
arrival rates of the queues in each cloudlet and their queu-
ing delays. For the sake of simplicity, we assume that there
is a buffer at each AP and a buffering mechanism is avail-
able to allow the decreased packet rate to reach its original
rate. Notice that the impact of the queue in each AP on the
arrival packet rate of the queue in each cloudlet depends on
many factors such as the buffer size at each AP and the
adopted dispatch methods. This is out the scope of this
paper, we thus consider it as our future work.

Queuing Delay and Processing Delay. Each packet of rk with
packet rate �k will be queued in the cloudlet assigned to the
request for a VNF instance of network function Fk prior to its
processing by the instance, which will incur both queuing
delay in the cloudlet and the processing delay in the VNF
instance. Since different requests need different types of net-
work functions, we assume that there is anM=M=n queue at
each cloudlet for each type of network function fi 2 F . The
requests in each queue will be processed by its type of VNF
instances. The average queuing delay dqueueij of the M=M=n
queue for network function fi at cloudlet clj is

dqueueij ðLijÞ ¼ 1=ðnijðtÞ � mij � LijÞ; (3)

where Lij is the sum of packet rates of all requests that
request the VNF instances of fi in cloudlet clj, i.e.,

Lij ¼
X

rj0 2Rij

�j0 þ �k; (4)

The processing delay pij of a packet in a VNF instance of
fi of cloudlet clj is

pij ¼ 1=mij: (5)

Instantiation Delay. Without loss of generality, we assume
that the instantiation delay of a VNF instance in a cloudlet
is a given constant dinsi for a VNF instance of fi.

Network Latency. Assuming that the routing path for the
data traffic inG between the user of a request and the cloud-
let for processing the user’s data traffic is a shortest path
between them, the network latency of a request rk thus is
the accumulative delay incurred in the links of the shortest
path pvk;clj between its closest AP vk and its assigned cloud-
let clj. As AP nodes in G are connected by high-speed opti-
cal cables, there is sufficient bandwidth with each such a
link for data traffic, the queuing delay in each link thus is
negligible. Let dðeÞ be the delay on link e in G. The network

Fig. 1. An example of a mobile edge-cloud network.

2674 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 11, NOVEMBER 2019

latency dnetkj experienced by routing data traffic of rk using a
shortest path pvk;clj can be defined as

dnetkj ¼
X

e2pvk;clj
dðeÞ: (6)

The end-to-end delay Dk experienced by implementing
request rk in a VNF instance of Fk (¼ fi) at cloudlet clj also
depends on whether the VNF instance is existent or newly
created. If the VNF instance is existent, there will be no
instantiation delay for the VNF instance. Otherwise, a new
VNF instance needs to be instantiated, and there will be no
queuing delay in cloudlet clj incurred since the request
implementation is the very first one on it.

Having the equations Eqs. (1) to (6), the value ofDk is

Dk ¼
2dðk; �kÞ þ dqueueij ðLijÞ þ pij þ 2dnetkj if nijðtÞ > 0;

2dðk; �kÞ þ dinsi þ pij þ 2dnetkj otherwise;

�
(7)

where Fk ¼ fi. Request rk is admissible if there is an admis-
sion schedule in whichDk is no greater than dk, i.e.,

Dk � dk: (8)

3.4 Admission Cost
Implementing each request needs to guarantee that its traf-
fic is processed by VNFs and transferred to its destination,
which consumes both computing resource in cloudlets and
network bandwidth resource in links of the edge-cloud net-
work G, thereby incurring the cost of resource consump-
tions. We refer to this cost as the admission cost of each
request in the rest of the paper.

Given a request rk 2 SðtÞ with a specified network func-
tion Fk (¼ fi), its implementation can either make use of an
existing VNF instance of Fk (¼ fi) in cloudlet clj if it joins in
other admitted requests or create a new VNF instance. Spe-
cifically, let Rij be the set of offloaded requests with network
function fi in cloudlet clj when rk is being considered for
admission. If the admission of rk to Rij will not violate the
delay constraint of any admitted request in Rij [frkg, the
cost by admitting rk in cloudlet clj then is the cost sum of its
data packet transmission cost (between its location via its
nearby AP) and cloudlet clj and its processing cost at clj.
Otherwise, we allocate the demanded resources for rk by
creating more VNF instances for Fk (¼ fi) in clj if there are
available computing resources in cloudlet clj. Since VNF
instance creation takes time and consumes a certain amount
of computing resource, we assume that the creation of new
instances incurs a cost, and different VNF instance creations
result in different costs.

The admission cost costðkÞ per packet of the data traffic
of rk thus is the sum of the packet routing cost, the creation
of new instances for rk, and the processing cost in a VNF
instance of fi (¼ Fk) assuming that the VNF instance is
deployed in cloudlet clj, i.e.,

costðkÞ ¼
cinsi þ �ktkðCðfi; cljÞ þ

P
e 2 Pvk;clj cðeÞÞ

if a type�i VNF instance is created for rk

�ktkðCðfi; cljÞ þ
P

e 2 Pvk;clj cðeÞÞ otherwise;

8><
>: (9)

where Pvk;clj is the shortest path between the request user
location vk and cloudlet clj to process the request VNF, cðeÞ
is the cost of transmitting a packet via edge e, Cðfi; cljÞ is
the processing cost of a packet in an instance of fi in clj, and
cinsi is the cost of instantiating a type-i VNF instance.

3.5 Problem Definition
Given a mobile edge-cloud network GðV [C;EÞ, a set F of
network functions provided by the network, a finite time
horizon T , a set of task offloading requests SðtÞ at a time
slot t in which each request rk has a packet rate �k and an
end-to-end delay requirement dk, assuming that some VNF
instances of a network function f 2 F have been instanti-
ated in cloudlets of C, the throughput maximization problem in
G is to find a schedule of request admissions during time
horizon T such that as many as requests are admitted while
the accumulative operational (admission) cost of the admit-
ted requests is minimized, subject to the computing
resource capacity on each cloudlet in C.

In other words, let RðtÞ and SðtÞ be the sets of admitted
requests by an algorithm and all arrived requests at time
slot t, respectively. Clearly, RðtÞ � SðtÞ with 1 � t � T ,
the throughput maximization problem is to maximizePT

t¼1 jRðtÞj while minimizing
PT

t¼1
P

rk2RðtÞ costðkÞ, subject
to computing resource capacity on each cloudlet.

Theorem 1. The throughput maximization problem in GðV[
C;EÞ is NP-hard.

Proof. We consider a special case of the problem where
there are only two cloudlets with identical computational
capacities in the network and the monitoring period is
only one time slot t. We assume that each request in SðtÞ
requests a different network function service without the
end-to-end delay requirement. Our task is to assign the
requests in SðtÞ to the two cloudlets to see whether all the
requests can be admitted. Clearly, for each request
rk 2 SðtÞ, we need to create a VNF instance to implement
its network function that demands cðFkÞ computing
resources, subject to the computing capacities on the two
cloudlets. We reduce the summation problem to this spe-
cial throughput maximization problem as follows.

Given n positive integers a1; a2; . . . ; an, the summation
problem is to partition the n integers into two subsets such
that the sum of integers in each subset is equal, which is
NP-hard. As the special case of the minimum operational
cost problem is equivalent to the summation problem if we
only consider the computing resource demands of the
requests while ignoring the other costs, the throughput
maximization problem thus is NP-hard, too. tu

4 ONLINE ALGORITHM FOR THE THROUGHPUT

MAXIMIZATION PROBLEM

In this section, we first consider request admissions in
the beginning of each time slot t. We then propose an
efficient online algorithm for the throughput maximiza-
tion problem.

4.1 Algorithm for Task Offloading at Time Slot t
Given a set of requests SðtÞ in the beginning of each time
slot t, we aim to admit as many as requests in SðtÞ while
minimizing the accumulative operational cost and meeting
their end-to-end delay requirements. The basic idea behind
the proposed algorithm is to reduce the throughput maxi-
mization problem in G to a series of minimum weight maxi-
mum matching problems on a set of auxiliary bipartite
graphs. The matched edges in the maximummatching in an
auxiliary bipartite graph correspond to an assignment of
task offloading requests to different cloudlets while meeting

XU ET AL.: TASK OFFLOADING WITH NETWORK FUNCTION REQUIREMENTS IN A MOBILE EDGE-CLOUD NETWORK 2675

the end-to-end delay requirement of each admitted request.
The detailed reduction is as follows.

For each cloudlet clj, we construct a bipartite graph
GjðtÞ ¼ ðXj [fx0;jg [Yj; Ej;wÞ. The nodes in GjðtÞ is parti-
tioned into two disjoint sets. The first one is Yj representing
the set of requests that need to be assigned to existing or
new instances of cloudlets. The second one is Xj [fx0;j j
1 � j � jCjg, where Xj is the set of VNF instances in cloud-
let clj with each VNF instance being represented by xij and
node x0;j represents available computing resource for creat-
ing new instances for any VNF in clj.

The edges between nodes in Yj and the ones in
Xj [fx0;j j 1 � j � jCjg in Ej can be constructed as follows.

Let Rij be the admitted requests that are using the VNF
instance xij. There is an edge ðrk; xijÞ 2 Ej between request
node rk 2 Yj and node xij 2 Xj if the following conditions
are met: (i) fi is the VNF of request rk; and (ii) the addition
of rk into the set Rij of admitted requests sharing xij does
not violate the delay constraints of other admitted requests
in Rij. Notice that the addition of rk into Rij can impact the
queuing delay of the executing requests in Rij. To check its
addition does not violate any delay requirements, we only
need to recalculate the queuing delay by Eq. (3), assuming
that rk is admitted to Rij. If neither of the two conditions is
met, a new VNF instance for request rk will be created in clj
if cloudlet clj has sufficient computing resource. Then, an
edge between rk and x0;j is added to Ej if its demanded
computing resource is no greater than capjðtÞ and the end-
to-end delay (including the instantiation delay) is no greater
than dk. The weight wkj assigned to each edge ðrk; xijÞ 2 Ej

is the admission cost of request rk in cloudlet clj for the
duration tk, as defined in Eq. (9).

An auxiliary bipartite graph GðtÞ ¼ S jCj
j¼1GjðtÞ ¼

ðXðtÞ [Y ðtÞ; EðtÞ;wÞ is then derived from GjðtÞ
with 1 � j � jCj, where XðtÞ ¼ [jCjj¼1ðXj [fx0;jgÞ, Y ðtÞ ¼
[jCjj¼1Yj ¼ fr1; r2; . . . ; rng, and EðtÞ ¼ [jCjj¼1Ej.

To admit requests in SðtÞ in the beginning of time slot t,
the proposed algorithm proceeds iteratively. Let G1ðtÞ ¼
GðtÞ. Within iteration l, 1 � l � jCj, a minimumweight max-
imum matching Mt;l in GlðtÞ is found. The demanded
resources of the matched requests in Mt;l are allocated, and
these requests are then removed from SðtÞ. The available
VNF instances and resources at each cloudlet are updated
accordingly, and the next auxiliary bipartite graph Glþ1ðtÞ is
constructed. This procedure continues until there does not
have any matching in Glþ1ðtÞ or l ¼ jCj þ 1.

The union of all found minimum weight maximum
matchings [jCjl¼1Mt;l forms a solution to the problem, i.e.,
each matched edge corresponds to an admission of a
request in SðtÞ. The weighted sum

PL
l¼1 cðMt;lÞ of all edges

in [Ll¼1Mt;l is the accumulative admission cost of admitted
requests in SðtÞ, where L is the number of iterations which
depends on the requests in SðtÞ and L � jCj. Alternatively,
L � max1�l�LfdegðGlðtÞÞg which degðGlðtÞÞ is the maximum
degree of nodes in auxiliary graph GlðtÞ. The detailed algo-
rithm is given in Algorithm 1, which is referred to as
OL_STS in the rest of this paper.

4.2 Online Algorithm
So far we considered the admissions of task offloading
requests at a single time slot t. In reality, request arrives and
departs dynamicallywithout the knowledge of future request
arrivals. The request admissions at the current time slot

impact the admissions of future requests due to resource
occupations by them. In the following we deal with dynamic
request admissions for a given time horizon T . We note that
the VNF instances created for previous request admissions
are still in the system despite that the admitted requests fin-
ished. These existing VNF instances will become idle if they
are utilized by later requests, and their maintenance will be
overwhelming. Meanwhile, newly arrived requests that
demand other types of VNF instances cannot be met due to
lack of sufficient resources. We here propose an effective pre-
diction mechanism to determine various VNF instance crea-
tions and releases for cost savings.

Algorithm 1. OL_STSðGðtÞÞ
Input: GðtÞ, jCj cloudlets with each having its available

resource capacity capjðtÞ, the number of instances nij of
VNFs of each fi 2 F in cloudlet clj, and a set of requests
SðtÞ at each time slot twith 1 � j � jCj.

Output: maximize the number of requests admitted (i.e., a sub-
set S0ðtÞ � SðtÞ) for each time slot t while minimizing the
total admission cost.

1: Mt ;; costðtÞ 0; /* the assignment of requests in
SðtÞwhile minimizing their implementation cost costðtÞ */

2: Construct the weighted bipartite graph GðtÞ;
3: G1ðtÞ GðtÞ; l 1;
4: while there is a maximummatchingMt;l in GlðtÞ do
5: Find the minimum weight maximummatchingMt;l

in GlðtÞ;
6: ifMt;l 6¼ ; then
7: Mt Mt [Mt;l, cðMt;lÞ

P
e2Mt;l

wðeÞ,
costðtÞ costðtÞ þ cðMt;lÞ;

8: Allocate resources to the matched requests inMt;l;
9: Update the amounts of available resources and VNF

instances of each network function in each cloudlet;
10: SðtÞ SðtÞ n rðMt;lÞ; /* Remove requests inMt;l from

SðtÞ, where rðMt;lÞ is the set of matched requests in
Mt;l */

11: l lþ 1;
12: Construct GlðtÞ;
13: return Mt corresponds to the assignment of requests in

SðtÞ, while costðtÞ is their admission cost.

To respond to changing request patterns over time, the
system will perform resource collection through releasing
the occupied resources by idle VNF instances back to the
system if the maintenance overhead on the idle VNFs is
beyond a given cost threshold after a certain number of
time slots. Specifically, let nijðtÞ be the number of VNF
instances of network function fi in cloudlet clj at time slot t
and the actual usage number of the VNF instances of fi be
n0ijðtÞ (� nijðtÞ), the number of idle VNF instances of fi in
cloudlet clj at time slot t then become

cijðtÞ ¼ nijðtÞ � n0ijðtÞ: (10)

Let fij be a fixed cost for the maintenance of an idle VNF
instance of fi in cloudlet clj per time slot. There is a given
threshold u (� n0 �maxfi2FfCðfiÞg) for the overhead of
maintaining idle VNF instances in cloudlets. The system
will release the resources occupied by the idle VNF instan-
ces at the time slot when their accumulative maintenance
overhead is greater than u. Clearly, at least n0ij VNF instan-
ces of fi should be kept in order to meet the end-to-end

2676 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 11, NOVEMBER 2019

delay requirements of running requests in RijðtÞ, where
n0ijðtÞ can be calculated according to the delay requirements
of requests in RijðtÞ and Eq. (3).

To determine which idle VNF instances should be
released to the system, we make use of historic offloading
request traces (patterns) at each cloudlet to predict the num-
ber of VNF instances of each network function needed in the
cloudlet in future. Specifically, we adopt an auto-regression
method to predict the number of VNF instances n̂ijðtÞ of fi in
cloudlet clj at the next time slot, using the information of the
previous p time slots, assuming that the value of p is given.

n̂ijðtÞ ¼ a1 � nijðt� 1Þ þ a2 � nijðt� 2Þ þ � � �
þ ap � nijðt� pÞ; (11)

where ap0 is a constant with 0 � ap0 � 1,
Pp

l¼1 al ¼ 1, and
ap1 � ap2 if p1 < p2. Thus, the number nijðtÞ of instances of
fi in clj that should be kept after time slot t� 1 is

nijðtÞ ¼ maxfn̂ijðtÞ; n0ijðtÞg: (12)

Similarly, if the number of VNF instances of a network
function fi is growing steadily at each time slot, more com-
puting resources are needed to create its VNF instances, this
will incur an extra cost since the instances are created one
by one. To reduce the creation cost, we may proactively cre-
ate the expected number of its VNF instances at once to
meet its future need. This can be achieved, using the similar
auto-regression method. That is, let mijðtÞ be the number of
new VNF instances of fi in cloudlet clj added at time slot t.
If the number of instances added since the last time slot t0
exceeds a given threshold �, i.e.,

Pt
l¼t0 mijðlÞ � �, then the

predicted number of new instances m̂ij of fi at time slot t is

m̂ijðtÞ ¼ b1 �mijðt� 1Þ þ b2 �mijðt� 2Þ þ � � �
þ bp �mijðt� pÞ; (13)

where bp0 is a constant with 0 � bp0 � 1,
Pp

l¼1 bl ¼ 1, and
bp1 � bp2 if p1 < p2. The number of instances of fi after time
slot t� 1 installed in clj should be m̂ijðtÞ þ nijðtÞ.

In all discussions so far, we assumed that there are suffi-
cient resources at each cloudlet to create the expected number
of VNF instances for each network function. However, if there
are insufficient available resources at each cloudlet tomeet the
resource demands of different types of VNF instances, then
questions arise as to which VNF instances should be created
and howmany of them to create? To fairly allocate the limited
computing resources to VNF instance creations of different
types of network functions, we adopt a strategy by propor-
tionally scaling down the demanded number of VNF instan-
ces of each network function at each cloudlet as follows.

Let RCj and DJj be the residual computing resource and
the total computing resource demanded by different types
of VNF instance creations in cloudlet clj, respectively. If
DIj � RCj, then all demanded VNF instances of different
network functions will be created; otherwise, let xj ¼ RCj

DIj
be

the ratio of available resource to the demanded resource in
clj at time slot t. For each expected number of VNF instances
of fi, e.g., the total computing resource for creating mijðtÞ
VNF instances for fi is mijðtÞCðfiÞ, we actually create
m0ijðtÞ ¼ bmijðtÞ � xjc VNF instances for fi at clj.

The proposed online algorithm for the throughput maxi-
mization problem is given in Algorithm 2, which is
referred to as algorithm OL_MTS.

Algorithm 2. OL_MTS(G)

Input: GðC [V;EÞ, jCj cloudlets with resource capacity capjðtÞ,
a set of network functions in F , a set of requests SðtÞ at
each time slot t with 1 � t � T , each idle VNF instance of fi
has a maintenance cost fij, and the given release and crea-
tion cost thresholds u and �.

Output: The number of requests admitted in the finite time
horizon T .

1: cost 0; M ;; /* the total cost of admitted requests to
the system during a period T , and request assignment M
*/;

2: for all twith 1 � t � T do
3: /* Stage one (a): Release some occupied resources by

idle VNF instances if needed */
4: lij t0; /* The resource release procedure was

performed at the last time slot t0 with t0 < t */
5: for each cloudlet clj do
6: for each network function fi 2 F do
7: if

Pt
l¼t�lij cijðlÞ � fij � u then

8: Predict the number n̂ijðtÞ of instances of fi to
be kept in clj by Eq. (11);

9: Keepmaxfn0ijðtÞ; n̂ijðtÞg VNF instances of fi
in clj;

10: Release the occupied resources
of nijðtÞ �maxfn0ijðtÞ; n̂ijðtÞg VNF instances
of fi in clj;

11: Update the available resources at clj;
12: lij t; /* reset the start time slot of the next

idle VNF instances of fi release in clj */
13: /* Stage one (b): increase the number of VNF

instances of fi */;
14: Iij t0; /* the number of instances of fi was

increased in the last time slot t0 with t0 < t */
15: for each cloudlet clj do
16: for each fi 2 F do
17: if

Pt
l¼t�Iij mijðlÞ � fij � � then

18: Predict the number of instances of fi to be
increased âij by Eq. (13);

19: for each cloudlet clj do
20: Let RCj be the residual computing resource of

cloudlet clj, andDIj be the total computing
resource needed by creating new instances;

21: if RCj < DIj then

22: xj RCj

DIj
;

23: For each network function fi, there will
be bxj � ðnijðtÞ þ m̂ijðtÞÞc VNF instances in clj at
time slot t;

24: else
25: There will be nijðtÞ þ m̂ijðtÞ VNF instances of fi

in clj at time slot t;
26: Update the available resources at cloudlet clj;
27: Iij t; /* reset the start time slot of the next VNF

instance increase of fi in clj*/
28: /* Stage two: perform request admissions*/
29: M ;; cost 0;
30: for each twith 1 � t � T do
31: Mt and costðtÞ delivered by invoking algorithm

OL_STS(GðtÞ);
32: M M [Mt; cost costþ costðtÞ;
33: return M is an assignment of requests, while cost is the

total admission cost to the system during a period T .

XU ET AL.: TASK OFFLOADING WITH NETWORK FUNCTION REQUIREMENTS IN A MOBILE EDGE-CLOUD NETWORK 2677

4.3 Algorithm Complexity Analysis
We first show that the solutions delivered by the proposed
algorithms, Algorithms 1 and 2, are feasible. We then
analyze the time complexity of the proposed algorithms as
follows.

Theorem 2. Given a mobile edge-cloud networkGðV [C;EÞ, the
number nijðtÞ of VNF instances of each network function fi 2 F
in each cloudlet clj with 1 � i � jFj and 1 � j � m, and a set
SðtÞ of requests at time slot t, there is an algorithm, Algo-
rithm 1, for admitting the requests in SðtÞ such that as many as
requests are admitted while the operational cost is minimized. The
proposed algorithm delivers a feasible solution. The time complex-
ity of the algorithm is OðdmaxðjCj � jF j þ jSðtÞjÞ3Þ, where dmax

is the maximum degree of nodes inGðtÞ, or the maximum number
of cloudlets that any request can be assigned. Usually, the number
of cloudlets in a mobile edge-cloud network is expected to be pro-
portional to the logarithmic of the network size.

Proof. We first show that the solution delivered by Algo-

rithm 1 is feasible, i.e., for each admitted request, (i) its
demanded resources and its end-to-end delay require-
ment are met; and (ii) there is no resource capacity viola-
tion in each cloudlet, as follows.

Following Algorithm 1, in the beginning of time slot
0, there are no requests in the system, the claim is true.
We assume that all admitted requests in the first t� 1
time slots meet conditions (i) and (ii). We now consider
request admissions at time slot t. According to Algo-

rithm 1, the request admissions at time slot t has a num-
ber of iterations.

Within iteration l with 1 � l � L � jCj, all matched
requests inMt;l of graphGlðtÞwill be admitted. Following
the construction ofGlðtÞ, each admitted request inMt;l will
meet conditions (i) and (ii); otherwise, no such an edge
exists inGlðtÞ.While all existing (running) requests sharing
the VNF instances with a matched request inMt;l will still
meet their individual delay requirements when the
matched request is admitted. Then, the resources in each
cloudlet are updated after allocating the demanded resour-
ces for the matched requests in Mt;l. The solution [Ll¼1Ml

thus is a feasible solution to the problem, where L is the
number of iterations of the while loop in the algorithm.

We then analyze the time complexity of Algorithm 1.
It can be seen that the construction of GðtÞ
takes OðjXðtÞj � jCj � jY ðtÞjÞ ¼ OðjF j � jCj � jSðtÞjÞ, while
the dominant time of the algorithm is to find a minimum
weight maximum matching in GlðtÞ per iteration which
takesOððjCj � jF j þ jSðtÞjÞ3Þ time. The number of iterations
within each time slot is OðdmaxÞ, where dmax is the maxi-
mum degree of nodes in GðtÞ, i.e., the number of possible
cloudlets that any request can be admitted while meeting
its end-to-end delay requirement, thus dmax � jCj. tu

Theorem 3. Given a mobile edge-cloud network GðV [C;EÞ in
which cloudlets are co-located with some of the AP nodes, the
number nijðtÞ of existing VNF instances of each network func-
tion fi 2 F in each cloudlet clj with 1 � i � jFj and
1 � j � jCj, a set of requests SðtÞ at each time slot t, and a given
monitoring period T with 1 � t � T , there is an online algo-
rithm, Algorithm 2, for the throughput maximization prob-
lem, which delivers a feasible solution. The time complexity of

the algorithm isOðT � dmaxðjCj � jF jÞ3 þ
PT

t¼1 jSðtÞj3ÞÞ, where
dmax is the maximum degree of nodes in GðtÞ, or the maximum
number of cloudlets to which a request can be assigned.

Proof. Following Algorithm 2, there are T time
slots with each invoking Algorithm 1, it thus takes

OðT � dmaxðjCj � jF jÞ3 þ
PT

t¼1 jSðtÞj3Þ time. And the solu-

tion delivered is feasible, as within each time slot, all
newly admitted requests and existing running requests at
that time slot meet conditions (i) and (ii), by Theorem 2.
The rest is to analyze the time complexity on VNF
instance releases and creations at each cloudlet. It can be
seen that idle VNF instance releases take OðjCj � jF jÞ time
as there are jCj cloudlets and each cloudlet can accommo-
date the VNF instances of jF j different network functions.
The time complexity of Algorithm 2 then follows. tu

5 ONLINE ALGORITHM FOR THE THROUGHPUT

MAXIMIZATION PROBLEM WITHOUT END-TO-END

DELAY REQUIREMENTS

We now consider the throughput maximization problem
without end-to-end delay requirements, by assuming that
requests arrive in the system one by one without the knowl-
edge of their future arrivals. We propose an online algo-
rithm with a competitive ratio.

5.1 Primal-Dual Formulation
The basic idea of the proposed algorithm is to adopt the pri-
mal-dual dynamic updating method [5], [6], where shadow
price variables for cloudlets in G are maintained to abstract
the statuses of resource usages in cloudlets. A threshold is
defined to decide whether a request can be admitted or not,
by comparing the lowest shadow price with the given
threshold. The shadow prices are updated accordingly if
the request is admitted, for the sake of future request admis-
sions. To this end, we formulate this special problem by an
Integer Linear Programming (ILP) as follows.

Let S be the sequence of requests that arrive in the system
one by one. For each arrived request rk 2 S, there is a decision
variable xkj to indicate whether request rk is assigned to
cloudlet clj if it is admitted. Recall that each cloudlet may
have VNF instances instantiated already, or have available
computing resource to create new VNF instances. For the
sake of simplicity, we assume that each cloudlet clj has a
duplicated virtual cloudlet, denoted by c0j, which represents

the amount of computing resource in clj that can be used to
create new VNF instances. Denote by C0 the set of virtual
cloudletsC0 ¼ fcl0j j 8clj 2 Cg. The objective of the ILP thus is

LP : max
XjSj

k¼1
XjC[C0 j

j¼1 xkj: (14)

subject to the following constraints.

XjC[C0 j
j¼1 xkj � 1; 1 � k � jSj (15)

XjSj
k¼1 xkj � �k � nij � mij; 8clj 2 C;81 � i � jFj (16)

XjSj
k¼1 xkj � �k �RCunit � capj; 8clj 2 C0 (17)

XjSj
k¼1

XjC0j
j¼1 xkjc

ins
i þ

XjSj
k¼1

XjCj
j¼1 xkj�k � tk � ðCðfi; cljÞ

þ
X

e2Pvk;clj
ceÞ � B

(18)

xkj 2 f0; 1g 8clj 2 C [C0; rk 2 S; (19)

2678 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 11, NOVEMBER 2019

where B is a pre-defined budget for the cost of imple-
menting all admitted requests, which is a constant. Con-
straints (15) guarantee that each request is assigned to at
most one VNF instance (either an existing or newly cre-
ated one). Constraints (16) indicate that the accumulative
packet rate of the requests assigned to an existing VNF
instance does not exceed its maximum packet (process-
ing) rate, whereas Constraints (17) indicate that the
amount of computing resource allocated to the creation of
new VNF instances for admitted requests at each cloudlet
should not exceed the amount of available computing
resource of the cloudlet. Constraints (18) indicate the total
cost of implementing all requests in S is no greater than a
given budget B. In the proposed online algorithm, budget
B can be set to a large value initially, and then easily
tuned an appropriate value through binary search. Also,
B is used in finding the dual of LP for online algorithm
design. It determines the number of update steps of the
shadow price variable related to the cost and represents
the accuracy in the update of the shadow price. Thus,
budget B affects the competitive ratio of the proposed
online algorithm. This will be elaborated later in this sec-
tion. Constraints (19) impose the integral constraint on
each variable xkj.

Let bk, gij, dj and h be the dual variables of constraints
(15), (16), (17), and (18), respectively. The dual DP of LP is
given below, and its objective is to

DP : min h � Bþ
XjSj
k¼1

bk þ
XjCj
j¼1

XjF j
i¼1

gij � nij � mij

þ
Xj2Cj

j¼jCjþ1
dj � capj;

(20)

subject to the following constraint.

XjC[C0 j
j¼1

bk þ
XjCj
j¼1

XjF j
i¼1

gij � �k þ
X2jCj

j¼jCjþ1
dj � �k �RCunit

þ
XjC0j
j¼1

h � cinsi þ
XjCj
j¼1

h � �k � tk � A � 1;

(21)

where A ¼ Cðfi; cljÞ þ
P

e2Pvk;clj ce.
The dual constraint (21) can be rewritten as

XjC[C0 j
j¼1

bk � 1�
XjCj
j¼1

XjF j
i¼1

gij � �k �
X2jCj

j¼jCjþ1
dj � �k � RCunit

�
XjC0 j
j¼1

h � cinsi �
XjCj
j¼1

h � �k � tk �A:
(22)

Notice that RCunit is the amount of resource that is needed
to process a unit packet rate, and mij is the packet process-
ing rate of a VNF instance of fi.

5.2 Online Algorithm
We now describe the proposed online algorithm. Since the
knowledge of future request arrivals is not given in
advance, we need a smart admission policy to regulate the
admission of the request being considered to minimize its

impact on future request admissions. To this end, we define
the shadow price Pj of each cloudlet clj, the maximum
resource usage I� of any request, and a constant D to guide
resource reservation for future requests, where Pj denotes
the marginal increase of strengthening the capacity and
budget constraints (16), (17), and (18), i.e.,

Pj ¼ gij þ dj �RCunit þ h � cinsi

�k
þ h � tk �A: (23)

The maximum resource consumption I� over all cloudlets
for any request with unit packet rate is

I� ¼ maxfRCunit; cinsi þ tk �Ag: (24)

A constant D with an accuracy parameter � to adjust
resource reservation for a request then is

D ¼ I�=�; (25)

where 0 < � < 1.
We then define the admission control policy of the online

algorithm. For each arrived request rk 2 S, we identify a
cloudlet with the minimum shadow price Pj� , i.e., clj� ¼
argminclj2C[C0Pj for the admission of request rk. Request rk
will be accepted if Pj� � 1, or rejected otherwise. If it is admit-
ted at cloudlet clj� , then all dual variables of the constraints of
DPwill be updated, using the following updating rules:

bk ð1� Pj� Þ; (26)

gij� gij� 1þ �k

nij�mij

� �
þ �k

Dnij�mij

; (27)

dj� dj� 1þ �k � RCunit

capj�

� �
þ �k

D � capj� ; (28)

and

h h 1þ cins þ �k � tk � A
B

� �
þ cins þ �k � tk �A

D �B : (29)

The detailed online algorithm, referred to as algorithm
OL_OBO, is described in Algorithm 3.

Algorithm 3. OL_OBO ðGðtÞ; SðtÞÞ
Input: Amobile edge-cloud network GðV [C; EÞ and a set F of
network functions provided by the network, a set S of
requests that arrive one by one.

Output: Admit or reject each arrived request immediately, and
an assignment of admitted requests to VNF instances in the
cloudlets of C.

1: while an arrived request rk do
2: clj� argminclj2CPj;
3: if Pj� � 1 then
4: Reject request rk;
5: else
6: Assign request rk to a VNF instance of type-i instances

at cloudlet clj� ;
7: Update dual variables bk, gij, dj, and h respectively, fol-

lowing rules in (26), (27), (28), and (29).

XU ET AL.: TASK OFFLOADING WITH NETWORK FUNCTION REQUIREMENTS IN A MOBILE EDGE-CLOUD NETWORK 2679

5.3 Algorithm Analysis
The rest is to analyze the competitive ratio of Algorithm 3.
We first analyze the dual feasibility in the following lemma.

Lemma 1. The dual feasibility of the dual variables is preserved,
following the updating rules of (26), (27), (28), and (29).

Proof. We show that all dual variables bk, gij, dj, and h
are nonnegative, and the dual constraint (22) is met.
For the dual variables, the four updating rules always
keep them nonnegative, as they are set at zeros initially,
and their values increase after each update. To show
that constraint (22) is met, we consider whether an
arrived request rk will be admitted or rejected. If it is
rejected, the admission control policy is not met, i.e.,
Pj� > 1, which means that the right hand side of (22) is
non-positive. Since bk is set to 0 initially. Constraint (22)
is met. Otherwise (request rk is admitted), updating the
dual variables makes the right hand side of con-
straint (22) become smaller, preserving the feasibility of
the constraint. tu
We then show an upper bound on the dual objective after

the admission of rk.

Lemma 2. If request rk is admitted, the objective value of the dual
program increases by no more than �k � ð1þ �Þ.

Proof. Whenever request rk is admitted, the dual variables
corresponding to cloudlet clj in which it is admitted will
be updated by rules (26), (27), (28), and (29), respectively.
The objective value of the dual programming thus
increases by

Grk ¼
�k � gij
nij � mij

þ �k

D � nij � mij

� �
� nij � mij

þ
��k � RCunit � dj

capj
þ �k

D � capj
�
� capj

þ
� h � cinsi þ h � �k � tk � A

B
þ cinsi þ �k � tk �A

D �B
�
B

þ �k

�
1� Pj

�

¼ �k þ �k
2þ cinsi =�k þ tk � A

D

¼ �k þ �k � � � 2þ cinsi =�k þ tk �A
I�

< �kð1þ �Þ:

(30)

tu
We finally analyze the constraint violations on the com-

puting capacity of each cloudlet and the budget constraint
in LP after considered the first k requests. Let LijðkÞ be the
total packet rate of the requests admitted by the nij VNF
instances of type-i network function at cloudlet clj, and let
gijðkÞ be the value of the dual variable gij after the admis-
sion of request rk. We then have the following lemma.

Lemma 3. The violation of the computing capacity of each cloud-
let clj in LP is at most by a multiplicative Oð1=�Þ.

Proof. Recall that for an arrived request rk, LijðkÞ ¼ gijðkÞ ¼
0 initially for all cloudlets clj 2 C and all fi 2 F with
1 � i � jFj. If request rk is admitted, the values of LijðkÞ
and gijðkÞwill be updated by

LijðkÞ ¼ Lijðk� 1Þ þ �k; (31)
and

gijðkÞ ¼ gijðk� 1Þ
�
1þ �k

nij � mij

�
þ �k

Dnijmij

: (32)

By induction analysis, we have

gijðkÞ �
exp

Lijðk�1Þ
nij�mij

� 1

D

�
1þ �k

nij � mij

�
þ �k

Dnijmij

¼ 1

D

�
exp

�Lijðk� 1Þ
nij � mij

��
1þ �k

nij � mij

�
� 1

�

	 1

D

�
exp

�Lijðk� 1Þ
nij � mij

�
exp

� �k

nij � mij

�
� 1

�

¼
expðLijðkÞ

nij�mij
Þ � 1

D
:

(33)

Notice that expðxÞ 	 1þ x is used to find an approxima-
tion of the inequality. Similar results can be found for
the available computing resource capj and budget con-
straint B.

Let

1=Z� ¼ minf1; RCunit; cinsi =�k; tk � Ag; (34)

which means that

Z� � 1: (35)

Therefore, if gij > Z�, we have

gij þ dj �RCunit þ h � cinsi

�k
þ h � tk �A > 1; (36)

which means that cloudlet clj will not admit request rk.
Since the proposed online algorithm admits requests

one by one, we have gij < Z� in the last update of gij for
the processing of request rk�1. Furthermore, the value of
gij increases by no more than I� at each update, thus
gij � I� þ Z�. Incorporating Inequality (33), we have

LijðkÞ
nij � mij

� log ððI� þ Z�ÞDþ 1Þ ¼ Oð1=�Þ (37)

That is, the computing capacity violation of cloudlet clj
by admitting request rk is at most by a factor of Oð1=�Þ. tu

Theorem 4. Given a mobile edge-cloud network GðV [C;EÞ in
which cloudlets are co-located with some of the AP nodes, the
number nij of existing VNF instances of network function
fi 2 F in each cloudlet clj with 1 � i � jFj and 1 � j � jCj,
a set of requests S that arrive one by one without the knowledge
of future request arrivals, there is an online algorithm with a
provable competitive ratio of 1

�max
ð1� �Þ, Algorithm 3, for a

special case of the throughput maximization problem without
the end-to-end delay requirement, where �max is the maximum
packet rate among all requests and � is a constant with
0 < � < 1, i.e., �max ¼ argmaxf�k j 1 � k � jSjg. The run-
ning time of the algorithm is OðjSjÞ.

Proof. By Lemma 2, let jSj ¼ k, the objective value of the
dual programming DP increases at most �kð1þ �Þ if the
latest request rk is admitted by a cloudlet. As a result, the
objective value of the LP is at least 1

�kð1þ�Þ �
1
�k
ð1� �Þ �

1
�max
ð1� �Þ. The throughput delivered by the online algo-

rithm is at least 1
�max
ð1� �Þ of the optimal one, where �max

is the maximum packet rate of all requests.
The running time of Algorithm 3 is analyzed as fol-

lows. In Step 2, the minimum value of Pj can be main-
tained in a min-heap, making this step Oð1Þ time. Also,

2680 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 11, NOVEMBER 2019

the updating of the dual variables takes O(1) time. As
there are in total jSj requests to be considered, the run-
ning time of the algorithm thus is OðjSjÞ. tu

6 PERFORMANCE EVALUATION

In this section we evaluate the performance of the proposed
algorithms by experimental simulations.

6.1 Experimental Settings
Weassume thatmobile edge-cloudnetworks are generated by
the tool GT-ITM [7], with various network sizes from 50 to
250. Within each generated mobile edge-cloud network, there
are 20 percent of itsAPs attachedwith cloudlets. Each cloudlet
clj has a computing capacity capj randomly drawn from the
range between 3 GHz and 10 GHz [8]. We assume that there
are 10 different types of network functions, where the com-
puting resource demand by each instance of a network func-
tion varies from 40 MHz to 400 MHz. We further assume that
the link delay between two APs is a value between 2 millisec-
onds (ms) and 5ms [12]. The running time of an algorithm is
based on a machine with a 3.7 GHz Intel i7-8700K CPU and
16 GiB RAM. Unless otherwise stated, these parameters are
considered as the default settings.

The default number of requests per time slot is ran-
domly drawn from the interval ½150; 250
, and each
request has a packet rate between 50 and 100 packets per
second [17], and the tolerable delay requirement dk of
request rk is a value between 0.01 and 0.3 seconds. The
network function requested by each request is randomly
selected from the 10 different types of network functions.
Using the hourly price of a general purpose m3.xlarge
Amazon EC2 instance as a reference, the operating cost is
set to $0.25 per MHz in each time slot, while the cost of
instantiating a new function instance varies between $20
to $50. We assume that the cost of transferring a packet
between two APs is proportional to their distance, thus
the cost of transferring a packet along a network link
varies between $0.002 and $0.005.

We evaluate the proposed algorithms against two
benchmark algorithms. The first one is a greedy baseline
which is described as follows. The greedy algorithm
assigns each request rk to the cloudlet with the highest
rank, where the rank of a cloudlet is the product of its
available numbers of VNF instances and the inverse of the
operational cost of admitting rk in the cloudlet. The ratio-
nale behind this method is to find a cloudlet with high
numbers of available VNF instances and low admission
cost, such that as many requests can be admitted while the
total admission cost is minimized. We refer to this highest-
rank-first baseline heuristic as HRF. The second benchmark

algorithm is based on the basic idea of the algorithm
in [14]. Notice that the problem in [14] is to minimize the
weighted sum of the admission cost and response delay of
admitted requests. Direct comparison between our algo-
rithm with this algorithm may not be fair. Instead, we use
the strategy of this algorithm to guide request admissions
via a weighted function of the admission cost and the
response delay per request, which is referred to as algo-
rithm CD_WT. Also, algorithm OL_OBO will be compared
with benchmark algorithm OL_BK that simply rejects
requests when resources in cloudlets are not adequate to
meet their resource demands.

6.2 Algorithm Performance within a Single
Time Slot

We first investigate the performance of the proposed algo-
rithm OL_STS against that of algorithms HRF and CD_WT

within a single time slot, by varying the number of requests
from 50 to 250 while fixing the network size at 100, the num-
ber of cloudlets at 10, and creating some VNF instances at
each cloudlet randomly as existing VNF instances.

We can see from Figs. 2a and 2b that algorithm OL_STS

admits more requests than algorithms HRF and CD_WT at a
higher operational cost. This is because OL_STS assigns
multiple requests to cloudlets simultaneously, multiple
instances of network functions are placed among the cloud-
lets. Furthermore, since OL_STS admits more requests, it
incurs a higher operational cost of implementing the admit-
ted requests. Not surprisingly, algorithm CD_WT admits
the least number of requests among the three comparison
algorithms, because the metric it adopts only considers
operational costs and delays. However, algorithm CD_WT

does achieve the lowest operational cost and average delay
per request, as shown in Figs. 2b and 2c.

Fig. 2c plots the average delay experienced by each
admitted request. It can be seen that the average delays
delivered by the three algorithms increase at first when the
number of requests varies from 50 to 150, while the average
delays decrease when the maximum number of requests
reaches 250. The rationale behind this is that when the num-
ber of requests increases from 50 to 150, the number of
admitted requests keeps increasing, thereby increasing the
average delay in the waiting queues of cloudlets. However,
when the number of requests increases from 150 to 250, as
the waiting queues at cloudlets are already saturated.
Fig. 2d illustrates the running times of the three algorithms,
from which it can be seen that the running times increase
with the number of requests.

We then evaluate the impact of network size on the per-
formance of the proposed algorithms by varying the net-
work size from 50 to 800 while fixing the ratio of the

Fig. 2. Performance of algorithms OL_STS, HRF, and CD_WT by varying the number of requests from 50 to 250, while the number of cloudlets in the
network is 10.

XU ET AL.: TASK OFFLOADING WITH NETWORK FUNCTION REQUIREMENTS IN A MOBILE EDGE-CLOUD NETWORK 2681

number of cloudlets to the network size at 0.1, and creating
some VNF instances for each type of network function at
each cloudlet randomly. It can be seen from Fig. 3a that the
number of requests admitted by algorithm OL_STS

increases first from 50 to 200 and then decreases when the
network size keeps increasing from 200 to 800. This is
because a larger network means more cloudlets, and thus
can admit more requests with the growth of its size. How-
ever, if the network size keeps increasing, some requests
will reach their assigned cloudlets via longer routing paths,
thereby increasing the probability of violating their delay
requirements. This is evidenced by Fig. 3c, from which we
can see the average delay of an admitted request increases
with the growth of network size. Fig. 3b shows similar
results on the operational cost.

We finally study the impact of the maximum delay
requirement among requests on the performance of the pro-
posed algorithms by varying the maximum delay require-
ment of a request from 0.04 seconds to 0.12 seconds. It can
be seen from Figs. 4a and 4b that more requests can be
admitted if they have longer delay requirements, while the
operational cost will increase due to the fact that more
request admissions cause longer waiting delays in the
queues of cloudlets. More importantly, the average delay
per admitted request is increasing with the growth on
the maximum delay requirement. In addition, algorithm
OL_STS admits more requests with a higher operational
cost than that by algorithms HRF and CD_WT in the long
run, as shown in Figs. 4a, 4b, and 4c.

6.3 Performance Evaluation of the Online Heuristic
In the following we first evaluate the performance of algo-
rithm OL_MTS within a finite time horizon that consists of
100 time slots. We assume that the number of requests at
each time slot follows the Poisson distribution with a mean
of 200, and each admitted request spans from 5 to 10 time
slots randomly. Fig. 5a shows the number of requests admit-
ted by algorithms OL_MTS, OL_STS without applying the
prediction mechanism, HRF and CD_WT during the given
time horizon, from which we can see that algorithm OL_MTS

outperforms both algorithms HRF and CD_WT consistently.

Fig. 5b plots the accumulative operational cost curves of the
aforementioned algorithms. We can see that algorithm
OL_MTS admits more requests than algorithms HRF and
CD_WT at a higher operational cost compared to the other
two algorithms. In particular, algorithm OL_MTS admits
more requests than algorithm OL_STSwithout applying the
proposed prediction mechanism. The reason is that algo-
rithm OL_MTS pre-instantiates VNF instances if necessary
and such pre-instantiation increases the admission probabil-
ity of requests as it saves time and reduces delay through
creating new instances, thereby meeting the delay require-
ments of admitted requests.

We then investigate the impact of important parameters
ai and bj for controlling the prediction mechanism of algo-
rithm OL_MTS, where ai and bj are the weights for the his-
torical trace of existing VNF instances and newly created
VNF instances in the last r time slots, respectively. We
assume that the sequences for ai and bj are geometric
sequences with a common ratio 1=2r with r � 1, i.e.,

aiþ1 ¼ ai
2r and bjþ1 ¼ bj

2r, and we vary the length of the histori-

cal trace r from 2 to 15. Fig. 6 shows the result. From
Figs. 6a and 6b, we can see that there is no clear impact of r
for the number of admitted requests; instead, the average
operational cost of a request initially decreases when r

increases from 1 to 2 first, but then increases with a longer
historical trace from 2 to 16. The reason is that the length of
the historical trace only affects the number of VNF instances

Fig. 3. Performance of algorithms OL_STS, HRF, and CD_WT by varying
the network size from 50 to 800.

Fig. 4. Performance of algorithms OL_STS, HRF, and CD_WT when the
maximum delay requirement of requests varies from 0.04 to 0.12.

Fig. 5. Performance of algorithms OL_MTS, OL_STS, HRF, and CD_WT in
a time horizon of 100 time slots.

2682 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 11, NOVEMBER 2019

that should be created, and has no direct impact on the total
amount of available resources that greatly affects the num-
ber of admitted requests. Furthermore, a larger value of p
means larger values for the terms with lower indexes in
each of the geometric sequences, implying that the recent
historical data will have higher impact on the predicted
number of VNF instances. This makes the prediction model
accurately predict resource dynamics of cloudlets, thereby
avoiding unnecessary creations of new VNF instances and
reducing the VNF instantiation cost. However, with the
increase of historical trace length of r, more weight is placed
on older and less relevant data points. It can be seem that
the best average operational cost per request is achieved
when r ¼ 2. Similar results can be found for bj in Figs. 6c
and 6d, respectively.

We thirdly evaluate the impact of the end-to-end delay
requirement dk of each request rk on the performance of
algorithms OL_MTS and HRF in a network with 100 APs and
10 cloudlets, by varying dk from 0.04 seconds to 0.12 sec-
onds. It can be seen from Fig. 7a that the longer the maxi-
mum delay per request is, the more requests the network
can admit, while the operational cost is also increasing as
shown in Fig. 7b.

We finally address the impact of the idle cost threshold u
of VNF instances and the creation cost threshold � on the
performance of algorithm OL_MTS for a time horizon con-
sisting of 100 time slots.

Figs. 8a, 8b, 8c illustrate the outcomes, by varying the idle
cost threshold u from 100 to 10,000 while fixing � at 1,000.
Specifically, a small idle cost threshold u will result in fre-
quent invoking of the prediction mechanism. This means
that idle VNF instances can be released back to the system
more frequently, and therefore more requests can be admit-
ted by utilizing the released cloudlet resources as shown in
Fig. 8a when the idle cost threshold u is set at 100. However,
this usually incurs a higher operational cost due to the large
number of requests admitted and the creation cost of new
VNF instances for admitted requests by the released

cloudlet resources. Furthermore, as shown in Fig. 8b, when
the threshold increases from 5,000 to 10,000, the operational
cost experiences a slight increase due to the increase on the
maintenance cost of idle VNF instances.

Figs. 8d, 8e, 8f show the results by varying the creation
cost threshold � from 100 to 10,000 while fixing u at 1,000.
We can see from Fig. 8d that the number of admitted
requests increases from 100 to 5,000 steadily when � varies
from 100 to 10,000, and then decreases when � reaches
10,000. The reason is that more new VNF instances can be
created with a larger threshold �. However, when � is large
enough (= 10,000 as shown in the figures), the prediction
mechanism on the number of new VNF instances will be
invoked rarely. This means that newly arrived requests
may be frequently allocated to new VNF instances, and
many such newly created VNF instances will became idle
over time, thereby occupying resources and limiting the
number of requests that can be admitted. In addition, as
shown in Figs. 8e and 8f, the curves of the operational cost
and average delay exhibit similar patterns to the curve of
the number of admitted requests by the proposed algo-
rithm. That is, more admitted requests implies a higher
operational cost, as new VNF instances created for admitted
requests may be placed into cloudlets far away from the
locations of the admitted requests.

Fig. 6. Impact of ai and bj on the performance of algorithms OL_MTS,
HRF, and CD_WT in a time horizon of 100 time slots, by varying p from 1
to 16.

Fig. 7. Performance of different algorithms, by varying dk of each request
rk from 0.04 to 0.12 for a time horizon of 100 time slots.

Fig. 8. Performance of different algorithms for a time horizon of 100 time
slots, by varying the idle cost threshold and the creation cost threshold
from 100 to 10,000.

XU ET AL.: TASK OFFLOADING WITH NETWORK FUNCTION REQUIREMENTS IN A MOBILE EDGE-CLOUD NETWORK 2683

6.4 Performance Evaluation of the Proposed Online
Algorithm for the Problem without Delay
Constraints

The rest is to evaluate the performance of the proposed
online algorithm OL_OBO, by varying the number of requests
from 50 to 200 while fixing the network size at 100 and the
number of cloudlets at 10. It can be seen from Fig. 9a that
algorithm OL_OBO outperforms the benchmark algorithm
OL_BK, since a well-designed admission control policy is
adopted. However, algorithm OL_BK performs simple
admissions, only rejecting requests when insufficient resour-
ces are available in cloudlets, which could affect the admis-
sion of future requests. Also, we can see that the
accumulated admitted requests increases first and then
keeps steady afterwards. This is because the network is satu-
rated when more requests are admitted. The operational
costs delivered by different algorithms are shown in Fig. 9b.
What follows is to investigate the impact of the network size
on the performance of the proposed online algorithm, by
varying it from 50 to 800 while fixing the ratio of the number
of cloudlets to the network size at 0.1. From Fig. 10a, we can
see that the number of requests admitted increases with the
increase of the network size from 50 to 400, and stabilizes
afterwards. The reason is that a large-size network has more
cloudlets with more computing resource to admit more
requests. However, the probability of routing user data traf-
fic along longer routing paths increases too, which results in
more user request rejections due to longer delays.

7 CONCLUSIONS

In this paper, we studied a novel task offloading problem in a
mobile edge-cloud network, where each offloading task
requests a specified network function service with a maxi-
mum tolerable delay, and different requests have different
network function services from cloudlets in the network. We
focused on maximizing the number of admissions of

offloading tasks while minimizing the admission cost of
admitted requests within a given time horizon. To this end,
we devised an efficient online algorithm for the problem by
opportunistically exploring existing VNF instances sharing
among different requests or new VNF instance creations. We
also developed an effective prediction mechanism to predict
idle VNF instance releases and newVNF instance creations at
different cloudlets for further cost savings. In addition, we
also considered a special case of the problem without end-to-
end delay requirements of requests, for which we devised an
online algorithmwith a provable competitive ratio.We finally
evaluated the performance of the proposed algorithms
through experimental simulations. Experimental results indi-
cate that the proposed algorithms are promising.

ACKNOWLEDGMENTS

The authorswould like to thank the four anonymous referees
and the associate editor for their expertise comments and
constructive suggestions, which helped them improve the
quality and presentation of the paper greatly. The work of
Zichuan Xu is supported by the National Natural Science
Foundation of China (Grant No. 61802048), the Fundamental
Research Funds for the Central Universities in China (Grant
No. DUT17RC(3)061), and the Xinghai Scholar Program in
the DalianUniversity of Technology, China.

REFERENCES

[1] M. Chen and Y. Hao, “Task offloading for mobile edge computing
in software defined ultra-dense network,” IEEE J. Select. Areas
Commun., vol. 36, no. 3, pp. 587–597, Mar. 2018.

[2] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computa-
tion offloading for mobile-edge cloud computing,” IEEE/ACM
Trans. Netw., vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[3] Q. Fan and N. Ansari, “Workload allocation in hierarchical cloud-
let networks,” IEEE Commun. Lett., vol. 22, no. 4, pp. 820–823,
Apr. 2018.

[4] Q. Fan and N. Ansari, “Application aware workload allocation for
edge computing-based IoT,” IEEE Internet Things J., vol. 5, no. 3,
pp. 2146–2153, Jun. 2018.

[5] M. X. Goemans and D. P. Williamson, “The primal-dual method
for approximation algorithms and its application to network
design problems,” Book Chapter of Approximation Algorithms for
NP-Hard Problems. PWS Publishing Company, Boston, 1997,
pp. 144–191.

[6] L. Guo, J. Pang, and A. Walid, “Dynamic service function chaining
in SDN-enabled networks with middleboxes,” IEEE 24th Int. Conf.
Netw. Protocols, 2016, pp. 1–10.

[7] (2018). [Online]. Available: http://www.cc.gatech.edu/projects/
gtitm/

[8] Hewlett-packard company - enterprise computer server systems
and network solutions, 2017. [Online]. Available: https://www.
hpe.com/au/en/servers.html/, Accessed on: Apr. 25, 2017.

[9] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and
user to cloudlet allocation in wireless metropolitan area
networks,” IEEE Trans. Cloud Comput., vol 5, no 3, pp. 725–737,
Oct.-Dec. 2017.

[10] M. Jia, W. Liang, and Z. Xu, “QoS-aware task offloading in distrib-
uted cloudlets with virtual network function services,” Proc. 20th
ACM Int. Conf. Modelling Anal. Simul. Wireless Mobile Syst., 2017,
pp. 109–116.

[11] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing
in wireless metropolitan area networks,” Proc. INFOCOM, 2016,
pp. 1–9.

[12] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, andM. Roughan,
“The internet topology zoo,” J. Select. Areas Commun., vol. 29,
no. 9, pp. 1765–1775, Oct. 2011.

[13] J. Kuo, S. Shen, H. Kang, D. Yang, M. Tsai, and W. Chen, “Service
chain embedding with maximum flow in software defined net-
work and application to the next-generation cellular network
architecture,” Proc. INFOCOM, 2017, pp. 1–9.

Fig. 9. Performance of online algorithms OL OBO and OL BK, by varying
the number of requests from 50 to 200.

Fig. 10. Performance of online algorithms Online and Online B, by
varying the network size from 50 to 800.

2684 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 11, NOVEMBER 2019

http://www.cc.gatech.edu/projects/gtitm/
http://www.cc.gatech.edu/projects/gtitm/
https://www.hpe.com/au/en/servers.html/
https://www.hpe.com/au/en/servers.html/

[14] Y. Li, Y. Chen, T. Lan, and G. Venkataramani, “MobiQoR: Pushing
the envelope of mobile edge computing via quality-of-result opti-
mization,” Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017,
pp. 1261–1270.

[15] Y. Mao, C. You, J. Zhang, K, Huang, and K. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE
Commun. Surv. Tuts., vol. 19, no. 4, pp. 2322–2358, Oct.-Dec. 2017.

[16] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and
resource optimization with network function virtualization,”
IEEE Trans. Commun., vol. 64, pp. 3746–3758, Sep. 2016.

[17] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case
for vm-based cloudlets in mobile computing,” IEEE Pervasive
Comput., vol. 8, no. 4, pp. 14–23, Oct.-Dec. 2009.

[18] Y. Song, S. S. Yau, R. Yu, X. Zhang, and G. Xue, “An approach
to QoS-based task distribution in edge computing networks for
IoT applications,” in Proc. IEEE Int. Conf. Edge Comput., 2017,
pp. 32–39.

[19] Q. Xia, W. Liang, and W. Xu, “Throughput maximization for
online request admissions in mobile cloudlets,” in Proc 38th Conf.
Local Comput. Netw., 2013, pp. 589–596.

[20] Q. Xia, W. Liang, Z. Xu, and B. Zhou, “Online algorithms for loca-
tion-aware task offloading in two-tiered mobile cloud environ-
ments,” in Proc 7th Int. Conf Utility Cloud Comput., 2014, pp. 109–
116.

[21] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Capacitated cloudlet
placements in wireless metropolitan area networks,” Proc. 40th
Conf. Local Comput. Netw., 2015, pp. 570–578.

[22] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Efficient algorithms
for capacitated cloudlet placements,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 10, pp. 2866–2880, Oct. 2016.

[23] B. Yang, W. K. Cai, Z. Xu, K. V. Katsaros, and G. Pavlou, “Cost-
efficient NFV-enabled mobile edge-cloud for low latency mobile
applications,” IEEE Trans. Netw. Serv. Manage., vol. 15, no. 1,
pp. 475–488, Mar. 2018.

[24] T. Zhang, “Data offloading in mobile edge computing: A coalition
and pricing based approach,” IEEE Access, vol. 6, pp. 2760–2767,
2018.

Zichuan Xu (M’17) received the BSc and ME
degrees from the Dalian University of Technology,
China, in 2008 and 2011, respectively, and the
PhD degree from the Australian National Univer-
sity, in 2016, all in computer science. He was a
research associate with the Department of Elec-
tronic and Electrical Engineering, University Col-
lege London, United Kingdom. He currently is an
associate professor with the School of Software,
Dalian University of Technology, China. His
research interests include cloud computing, soft-

ware-defined networking, network function virtualization, wireless sensor
networks, algorithmic game theory, and optimization problems. He is a
member of the IEEE.

Weifa Liang (M’99-SM’01) received the BSc
degree from Wuhan University, China, in 1984,
the ME degree from the University of Science and
Technology of China, in 1989, and the PhD
degree from the Australian National University, in
1998, all in computer science. He is currently a
professor with the Research School of Computer
Science, Australian National University. His
research interests include design and analysis of
energy efficient routing protocols for wireless ad
hoc and sensor networks, mobile edge computing

(MEC), network function virtualization (NFV), software-defined network-
ing (SDN), design and analysis of parallel and distributed algorithms,
approximation algorithms, combinatorial optimization, and graph theory.
He is a senior member of the IEEE and amember of the ACM.

Mike Jia received the BSc degree in mathematics
and computer science from Imperial College
London, United Kingdom, in 2013, and the honors
degree with the first class honors in computer sci-
ence from the Australian National University, in
2015. He is currently working toward the PhD
degree in the Research School of Computer Sci-
ence, Australian National University. His research
interests include mobile cloud computing and soft-
ware defined networks.

Meitian Huang received the BSc degree with the
first class honors in computer science from the
Australian National University, in 2015. He is cur-
rently working toward the PhD degree in the
Research School of Computer Science, Australian
National University. His research interests include
software-defined networking, virtualized network
function services, algorithm design and analysis,
and cloud computing.

Guoqiang Mao received the PhD degree in tele-
communications engineering from Edith Cowan
University, in 2002. He currently is a professor of
wireless networking, the director of the Center for
Real-time Information Networks with the Univer-
sity of Technology, Sydney. He has published
more than 100 papers in international conferen-
ces and journals, with more than 2,000 citations.
His research interests include intelligent transport
systems, applied graph theory and its applica-
tions in networking, wireless multihop networks,

wireless localization techniques, and network performance analysis. He
is a fellow of the IEEE, an editor of the IEEE Transactions on Vehicular
Technology and a cochair of IEEE Intelligent Transport Systems Society
Technical Committee on Communication Networks.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

XU ET AL.: TASK OFFLOADING WITH NETWORK FUNCTION REQUIREMENTS IN A MOBILE EDGE-CLOUD NETWORK 2685

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

