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Abstract The wireless energy transfer technology based on magnetic resonant cou-
pling has been emerging as a promising technology for lifetime prolongation of
wireless sensor networks, by providing controllable yet perpetual energy to sen-
sors. As a result, we can employ mobile chargers (i.e., charging vehicles) to charge
sensors with wireless energy transfer when the mobile charger approach lifetime-
critical sensors. It is however very costly to dispatch mobile chargers to travel too
long to charge sensors since their mechanical movements are energy-consuming
too. To minimize the operational cost of wireless sensor networks, in this chapter
we study the deployment of multiple mobile chargers to charge sensors in a large-
scale wireless sensor network so that none of the sensors will run out of energy and
aim to minimize the service cost of the mobile chargers. Specifically, we study the
problem of minimizing the total traveling distance of mobile chargers for a given
monitoring period, and the problem of deploying the minimum number of mobile
chargers to replenish a set of lifetime-critical sensors while ensuring that none of
the sensors will run out of energy, respectively. For the former, we propose a novel
approximation algorithm with a guaranteed approximation ratio, assuming that the
energy consumption rate of each sensor does not change for the given monitoring
period. Otherwise, we devise a heuristic algorithm through modifications to the ap-
proximation algorithm. Simulation results show that the proposed algorithms are
very promising. For the latter, we develop an approximation algorithm with a prov-
able performance guarantee, and experimental results demonstrate that the solution
delivered by the proposed approximation algorithm is fractional of the optimal one.

Wenzheng Xu
College of Computer Science, Sichuan University, Chengdu, 610065, P.R. China, e-mail: wen-
zheng.xu3@gmail.com

Weifa Liang
Research School of Computer Science, The Australian National University, Canberra, ACT 0200,
Australia, e-mail: wliang@cs.anu.edu.au

1



2 Wenzheng Xu and Weifa Liang

1 Introduction

The limited battery capacities of sensors obstruct the large-scale deployment of
wireless sensor networks (WSNs). Although there are many energy-aware ap-
proaches developed in the past decade to reduce sensor energy consumptions or
balance energy expenditures among sensors [15, 16, 17, 22, 23, 24, 26, 38], the life-
time of WSNs remains a main performance bottleneck in their real deployments,
since wireless data transmission consumes substantial sensor energy. The wireless
energy transfer technology based on magnetic resonant coupling has been emerging
as a promising technology for wireless sensor networks, by providing controllable
yet perpetual energy to sensors [32]. In this chapter, we employ multiple mobile
chargers (i.e., charging vehicles) to replenish sensor energy in a large-scale WSN
for a given monitoring period T so that none of the sensors will run out of energy,
where each sensor can be charged by a mobile charger in its vicinity with the wire-
less power transfer technique. Since each sensor consumes energy on data sensing,
data transmission, data reception, etc., the sensor may need to be charged multiple
times during the monitoring period of T to avoid its energy depletion. It is how-
ever very costly to dispatch mobile chargers to travel too long to charge sensors
since their mechanical movements are very energy-consuming, or deploy too many
mobile chargers to replenish sensors. To minimize the network operational cost, in
this chapter we study the deployment of multiple mobile chargers to charge sen-
sors in a large-scale wireless sensor network so that none of the sensors will run
out of energy, and aim to minimize the service cost of mobile chargers. Specifically,
we investigate two charging optimization problems: the problem of minimizing the
traveling distance of mobile chargers for a given monitoring period [35, 36]; and the
problem of deploying the minimum number of mobile chargers to replenish a set
of lifetime-critical sensors while ensuring that none of the sensors will run out of
energy, respectively [18, 19].

Most existing studies on sensor charging scheduling employ mobile chargers to
charge all sensors periodically [27, 30, 31], or charge only the sensors that will run
out of energy very soon [9, 18, 19, 25, 28, 33, 37, 41]. One major disadvantage of
these studies is that the total travelling distance of the mobile chargers in the entire
monitoring period can be very long, which may not be necessary, as the energy con-
sumption rates of different sensors usually are significantly different. For example,
the sensors near to the base station have to relay data for other remote sensors, their
energy consumption rates thus are much higher than that of the others [14]. There-
fore, the naive strategy of charging all sensors per charging tour will significantly
increase the total travelling distance of the mobile chargers. Similarly, the charging
strategy that schedules the mobile chargers to charge only the life-critical sensors
also suffers from the same problem as these life-critical sensors may be far away
from each other in the monitoring area.

The long total travelling distance of mobile chargers can result in prohibitively
high energy consumptions of mobile chargers on their mechanical movements. It
is reported that the most fuel-efficient vehicle has an energy consumption of 600
kJ per km (i.e., 27 kWh per 100 miles) [1] while the energy capacity of a regular
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sensor battery is 10.8 kJ [27]. This implies that the amount of energy consumed
by the vehicle travelling for one kilometer is equivalent to the amount of energy
used for charging as many as 55 (≈ 600 kJ

10.8 kJ ) sensors. Since WSNs usually are de-
ployed for long-term environmental sensing, target tracking, and structural health
monitoring [4, 12, 20, 39], the monitoring area of a WSN can be very large (e.g.,
several square kilometers) [2, 12], the mobile chargers by the existing studies con-
sume a large proportion of their energy on travelling, rather than on sensor charging,
thereby leading to a very high cost of network operations.

Unlike existing studies that ignore the energy consumption of mobile chargers
on travelling for charging sensors, in this chapter we develop efficient charging
scheduling algorithms to dispatch multiple mobile chargers for sensor charging in
a large-scale WSN for a long-term monitoring period T , so that not only none of
the sensors runs out of energy but also the total travelling distance of all the mobile
chargers for the monitoring period of T is minimized. As energy consumption rates
of different sensors may significantly vary, different sensors have different charg-
ing frequencies during the period T , this poses great challenges for scheduling the
mobile chargers, which include

(1) when should we activate a charging round to dispatch the mobile chargers to
replenish sensor energy?

(2) which sensors should be included in each charging round?
(3) given a set of to-be-charged sensors, which sensors should be charged by which

mobile charger?
(4) what is the charging order of the sensors assigned to each mobile charger?

In this chapter we will tackle these challenges by first formulating a novel optimiza-
tion problem, and then devising an efficient approximation algorithm with a perfor-
mance guarantee and a heuristic algorithm for the problem, depending on whether
the energy consumption rate of each sensor is fixed or not for the given monitoring
period. On the other hand, most existing studies assumed that one mobile charging
vehicle will have enough energy to charge all sensors in a WSN, and the proposed
algorithms for vehicle charging scheduling thus are only applicable to small-scale
WSNs [27, 29, 30, 41, 34, 36, 35]. However, in a large-scale sensor network, the
amount of energy carried by a single mobile charging vehicle may not be enough
to charge all nearly-expired sensors, as there are a large proportion of life-critical
sensors to be charged. Thus, multiple mobile charging vehicles instead of a single
one are needed to be employed. In this chapter we will study the use of minimum
numbers of mobile charging vehicles to replenish energy to sensors for a large-scale
wireless sensor network such that none of the sensors will run out of energy. We will
adopt a flexible on-demand sensor charging paradigm that decouples sensor energy
charging scheduling from the design of sensing data routing protocols, and dispatch
multiple mobile charging vehicles to charge life-critical sensors in an on-demand
way. Specifically, we assume that each mobile charging vehicle can carry only a
limited, rather than infinite, amount of energy. We will study a fundamental sensor
charging problem. That is, given a set of life-critical sensors to be charged and the
energy capacity constraint on each mobile charging vehicle, what is the minimum
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number of mobile charging vehicles needed to fully charge these sensors in order
to reduce the operational cost of the WSN, while ensuring that none of the sensors
runs out of energy? To address this problem, not only should the number of charging
vehicles be determined but also the charging tour of each mobile charging vehicle
needs to be found so that all life-critical sensors can be charged prior to their expi-
rations, where each vehicle consumes energy on charging sensors in its tour and its
mechanical movement along the tour.

There are two closely related studies on minimizing the number of deployed
charging vehicles [8, 21]. Specifically, Nagarajan and Ravi studied the distance
constrained vehicle routing problem (DVRP), in which given a set of nodes in a
metric graph, a depot, and an integral distance bound D, the problem is to find
the minimum number of tours rooted at the depot to cover all nodes such that
the length of each tour is no more than D [21]. For the DVRP problem, they pre-
sented a (O(log 1

ε
),1+ε)-bicriteria approximation algorithm for any constant ε with

0 < ε < 1, i.e., the algorithm finds a set of tours that the length of each tour is no
more than (1+ε)D, while the number of deployed vehicles is no more than O(log 1

ε
)

times the minimum number of vehicles. On the other hand, Dai et al. investigated
the problem of deploying the minimum number of charging vehicles to fully charge
the sensors, by making use of the approximation algorithm in [21], assuming that
all sensors have identical energy consumption rates [8]. There are however two es-
sential differences between these two mentioned studies and the work in this chap-
ter. First, the cost of each found tour by the algorithms in [21, 8] may violate the
travel distance constraint on the mobile vehicles. In contrast, in this chapter the to-
tal energy consumption of each mobile charging vehicle per tour cannot exceed its
energy capacity IE. Otherwise, the vehicle cannot return to the depot for recharg-
ing itself. Also, a constant approximation algorithm for the minimum number of
mobile chargers deployment problem is devised. Second, the study in [8] assumed
that all sensors have identical energy consumption rates. Contrarily, this chapter
does not require that all sensors have identical energy consumption rates and the
energy consumption rates of different sensors may be significantly different. There-
fore, the proposed algorithms in the two mentioned studies cannot be applicable to
the problem in this chapter. New approximation algorithms need to be devised, and
new algorithm analysis techniques for analyzing the approximation ratio need to be
developed, too.

The main contributions of this chapter can be summarized as follows. We first
formulate a novel service cost minimization problem of finding a series of charg-
ing scheduling of multiple mobile chargers such that the total travelling distance of
the mobile chargers for sensor charging is minimized. We also formulate a mini-
mum number of mobile chargers deployment problem while maintaining the per-
petual operations of sensors for a given monitoring period, subject to the energy
capacity constraint on each mobile charger. We thirdly propose an approximation
algorithm for the service cost minimization problem with a provable approxima-
tion ratio if energy consumption rates of sensors are fixed during the monitoring
period. Otherwise, we devise a heuristic solution through modifications to the ap-
proximate solution. Furthermore, we develop an approximation algorithm with a
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provable performance guarantee for the minimum number of mobile chargers de-
ployment problem. We finally conduct extensive experiments by simulations to eval-
uate the performance of the proposed algorithms. Experimental results demonstrate
that the proposed algorithms are very promising. To the best of our knowledge, they
are the first approximation algorithms for scheduling multiple mobile chargers to
charge sensors within a given monitoring period for the service cost minimization
problem and the minimum number of mobile chargers deployment problem.

The rest of this chapter is organized as follows. Section 2 introduces preliminar-
ies. Sections 3 and 4 propose efficient approximation and heuristic algorithms for
the service cost minimization problem and the minimum number of mobile chargers
deployment problem, respectively. Sections 5 and 6 evaluate the performance of the
proposed algorithms. Section 7 concludes this chapter.

2 Preliminaries

In this section, we first introduce the network and energy consumption models, then
introduce notations and notions, and finally define the problems precisely.

2.1 Network model

We consider a wireless sensor network consisting of n sensors, which are randomly
deployed in a two-dimensional space. Let V be the set of sensors. Each sensor vi ∈V
generates sensing data with a rate of bi(t) (in bps) at time t, and it is powered by a
rechargeable battery with energy capacity Bi. There is one stationary base station in
the network. We assume that there is a routing protocol for sensing data collection
that relays sensing data from sensors to the base station through multihop relays.
For example, each sensor uploads its sensing data to the base station via the path
with the minimum energy consumption. Fig. 1 illustrates such a wireless sensor net-
work. Assume that the entire monitoring period is T (T typically is quite long, e.g.,
several months, even years). Since each sensor consumes energy on data sensing,
processing, transmission and reception, it requires to be charged multiple times for
the period of T to avoid its energy depletion.

We employ q wireless mobile chargers to replenish energy to sensors in the net-
work, where mobile charger l is located at depot rl , 1≤ l ≤ q. Without loss of gen-
erality, let R = {r1,r2, . . . ,rq} be the set of depot locations of the q mobile chargers.
To determine charging trajectories of the q mobile chargers, we define a weighted,
undirected graph G = (V ∪R,E;w), where for any two distinct nodes (sensors or
depots) u and v in V ∪R, there is an edge e = (u,v)∈ E between them with their Eu-
clidean distance being the weight w(e) of edge e. Assume that each mobile charger
has a full energy capacity IE and a charging rate µ for charging a sensor, and the
charger travels at a constant speed s. We further assume that the mechanical move-
ment of the charger is derived from its energy as well. Let η be the energy consump-
tion rate of each charger on travelling per unit-length. Each time mobile charger l
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Fig. 1 A rechargeable wireless sensor network

is dispatched to charge some sensors, it always starts from and ends at its depot rl
for recharging itself or refuelling its petrol. In other words, each charging tour of a
mobile charger l in G is a closed tour including depot rl . For any closed tour C in G,
denote by w(C) the weighted sum of the edges in C, i.e., w(C) = ∑e∈E(C) w(e). We
consider a point-to-point charging, i.e., to efficiently charge a sensor by a mobile
charger, the mobile charger must be in the vicinity of the sensor [13] and the sensor
will be charged to its fully capacity.

We assume that the duration of the q mobile chargers per charging round that
includes the time for charging sensors and their travelling time is several orders
of magnitude less than the lifetime of a fully-charged sensor. The rationale behind
the assumption is as follows. Once a sensor is fully charged, its lifetime can last
from several weeks to months until its next charging, since the sensor energy can be
well managed through various existing energy conservation techniques, e.g., duty
cycling [5]. On the other hand, the q mobile chargers can collaboratively finish a
charging round within a few hours, since sensor batteries can be made with ultra-
fast charging battery materials [11]. For example, in 2009 scientists from MIT im-
plemented an ultra-fast charging, in which a battery can be fully charged within a
few seconds [11]. We thus envision that ultra-fast charging batteries will be com-
mercialized in the near future and will be widely used for smartphones, sensors,
electric vehicles, etc. Therefore, we ignore the time spent by the q mobile chargers
per charging round. Note that [10, 40] and [41] also adopted the similar assumption.

2.2 Energy consumption models

Each sensor will consume energy on data sensing, data transmission, and data re-
ception, and the energy consumption models for these three components are shown
in Eq. (1), Eq. (2), and Eq. (3), respectively [14].

Psense = λ ×bi, (1)

PT x = (β1 +β2dα
i j)×bT x

i , (2)

PRx = γ×bRx
i , (3)
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where bi (in bps) is the data sensing rate of sensor vi, bT x
i and bRx

i are the data
transmission rate and the reception rate of sensor vi, respectively, di j is the Euclidean
distance between sensors vi and v j, α is a constant that is equal to 2 or 4, and the
values of other parameters are as follows [14].

λ = 60×10−9 J/b,

β1 = 45×10−9 J/b,

β2 = 10×10−12 J/b/m2, when α = 2,

or β2 = 1×10−15 J/b/m4, when α = 4,

γ = 135×10−9 J/b.

The residual lifetime of each sensor vi ∈ V at time t is defined as li(t) =
REi(t)
ρi(t)

,
where REi(t) and ρi(t) are the amounts of residual energy and energy consumption
rate of vi at time t, respectively. The base station keeps a copy of the energy depletion
rate ρi(t) and the residual energy REi(t) of each sensor vi ∈V .

We assume that each sensor is able to monitor its residual energy REi(t) and es-
timate its energy consumption rate ρi(t) in the near future through some prediction
techniques such as linear regressions. We further assume that the energy consump-
tion rate of each sensor does not change within a charging round, or such minor
changes can be neglected as the duration of a charging round usually is short (e.g., a
few hours). But the energy consumption rate of each sensor is allowed to change at
a different charging round. Thus, each sensor can estimate its residual lifetime li(t)
prior to the next charging round. Recall that for each sensor vi ∈V , there is a record
of its energy consumption rate ρi(t) at the base station, and this value is subject to
be updated if the energy consumption profile of the sensor in the future will expe-
rience significantly changes. To accurately measure the energy consumption rate of
each sensor, each sensor adopts a lightweight prediction technique to estimate its
energy consumption rate in the near future, e.g., a sensor can make use of a linear
regression, ρ̂i(t) = ωρi(t−1)+(1−ω)ρ̂i(t−1), where ρ̂i is the estimation and ρi
is the actual value at that moment and ω is a weight between 0 and 1 [7]. Let θ > 0
be a small given threshold. For each sensor vi ∈ V , the updating of its energy con-
sumption rate is as follows. If |ρ̂i(t)− ρ̂i(t−1)| ≤ θ , no updating report from sensor
vi will be forwarded to the base station; otherwise, the updated energy consumption
rate and its residual energy of vi will be sent to the base station through a charging
request is issued by vi. The base station then performs the updating accordingly.

2.3 Notations and notions

A charging scheduling of q mobile chargers is to dispatch each of the q mobile
chargers from its depot to collaboratively visit a set of to-be-charged sensors in the
current round, and each charger will return to its depot after finishing its charging
tour. Assume that at time t j, let closed tours C j,1,C j,2, . . . ,C j,q be the charging tours
of the q mobile chargers, where tour C j,l of mobile charger l contains its depot rl
and 1 ≤ l ≤ q. Let C j = {C j,1,C j,2, . . . ,C j,q} be the set of the q tours at time t j.
Notice that it is likely that some tours C j,ls may contain none of the sensors, and



8 Wenzheng Xu and Weifa Liang

if so, V (C j,l) = {rl} and w(C j,l) = 0. For the sake of simplicity, we represent each
charging scheduling by a 2-tuple (C j, t j), where all sensors in tour C j,l ∈ C j will be
charged to their full energy capacities by mobile charger l, all the q mobile chargers
are dispatched at time t j, and 0 < t j < T . Denote by V (C j,l) and V (C j) the set of
nodes in C j,l and C j, respectively. Then, V (C j) = ∪q

l=1V (C j,l).
The charging cycle of a sensor vi ∈V is the duration between its two consecutive

chargings, and its maximum charging cycle τi is the maximum duration in which
it will not run out of its energy. Since different WSNs adopt different sensing and
routing protocols, different sensors may have different energy consumption rates
and different maximum charging cycles. If the energy consumption rate of each
sensor vi ∈ V does not vary for the period of T , denote by ρi and τi its energy
consumption rate and maximum charging cycle, then τi =

Bi
ρi

, where Bi is the energy
capacity of sensor vi and the energy consumption rate ρi of sensor vi usually is
determined by the data generation rate of the sensor and the sum of data rates from
other sensors that the sensor must forward to the base station [5]. It is obvious that
sensors with shorter maximum charging cycles need to be charged more frequently
than sensors with longer maximum charging cycles. Since each time the q mobile
chargers are dispatched to charge a set of sensors, they will consume their electricity
or petrol, thereby incurring a service cost. We thus define the service cost of the q
mobile chargers as the sum of their travel distances for charging sensors in the
period of T .

2.4 Problem definitions

In this chapter we investigate the problem of minimizing the traveling distance of
mobile chargers for a given monitoring period, and the minimum number of mobile
chargers deployment problem, which are precisely defined as follows.

2.4.1 The Service Cost Minimization Problem

We note that not every sensor must be replenished in each charging round as the
energy consumption rates of different sensors may be significantly different. There-
fore, a naive strategy of charging all sensors per round will increase the service
cost substantially. Also, as some to-be-charged sensors and their nearest depots in a
large-scale sensor network can be far away from each other, it is crucial to schedule
the q mobile chargers, by taking into account both the maximum charging cycles
and the geographical locations of the sensors. We assume that each of the q mobile
chargers has enough energy to charge the sensors assigned to it in each charging
tour [27, 29, 30, 31].

Given a metric complete graph G = (V ∪R,E) with q mobile chargers located
at q depots in R, a distance function w : E 7→ R+, a monitoring period T , and a
maximum charging cycle function τ : V 7→ R+, assume that the location coordi-
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nates (xi,yi) ∈ (X ,Y ) of each sensor vi ∈V are given. The service cost minimization
problem with fixed maximum charging cycles in G is to find a series of charging
schedulings (C1, t1),(C2, t2), . . . ,(Cp, tp) of the q mobile chargers such that the total
length of all closed tours (or the service cost) is minimized, where p is a positive
integer to be determined by the algorithm. Specifically, the problem can be mathe-
matically formulated as follows.

minimize
p

∑
j=1

w(C j) =
p

∑
j=1

q

∑
l=1

w(C j,l), (4)

subject to the following conditions: That is, for each sensor vi ∈V , we have

1. the time gap between its any two consecutive charging schedulings (C j1 , t j1) and
(C j2 , t j2) is no more than its maximum charging cycle τi (assuming that t j1 <
t j2 ), i.e., t j2 − t j1 ≤ τi, where sensor vi is contained in both charging schedulings
C j1 and C j2 and there is no charging scheduling (C j, t j) such that sensor vi is
contained in C j and t j1 ≤ t j ≤ t j2 ;

2. the duration from its last charging to the end of period T is no more than τi,

where C j = {C j,1,C j,2, . . . ,C j,q}, C j,l is the charging tour of mobile charger l located
at depot rl , 1≤ l ≤ q, and 0 < t1 < t2 < · · ·< tp < T .

For this problem, we not only need to determine the number of rounds p to
schedule mobile chargers for sensor charging but also to decide which sensors to
be charged in which rounds and by which chargers. Intuitively, during the period of
T , if more rounds are scheduled, then there are less number of sensors to-be-charged
in each round. On the other hand, if less number of rounds is scheduled, there are
more sensors to-be-charged in each round. Our objective is to minimize the total
traveling distance of the q mobile chargers for the p charging rounds. The challenge
of this optimization problem is to determine both p and the set of to-be-charged
sensors in each round in order to minimize the total traveling distance of q mobile
chargers. The service cost minimization problem is NP-hard, by a reduction from
the well-known NP-hard problem - travelling Salesman Problem (TSP), omitted.

So far, we have assumed that the maximum charging cycle of each sensor vi ∈V
in the entire period T is fixed. However, in reality, it may experience significant
changes over time, since the data rates of different sensors usually depend on the
specific application of a WSN, some sensors may be required to increase their data
rates for better monitoring the area of these sensors at some time while the others
may be required to reduced their data rates for saving their energy. For this general
setting, we define the service cost minimization problem with variable maximum
charging cycles as follows. Given a wireless sensor network G, a period T , q mobile
chargers located at q depots, the maximum charging cycle τi(t) of each sensor vi
that varies with time t, the problem is to find a series of charging schedulings of the
q mobile chargers such that the service cost of them is minimized, subject to that
none of the sensors runs out of energy for the period of T .

We finally define a q-rooted TSP problem, which will be used as a subroutine for
the problems of concern. Assume that there is a set of to-be-charged-sensors V c ⊆V
at some time point. Given a subgraph Gc = (V c ∪R,Ec;w) of G with |R| = q ≥ 1
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and q mobile chargers, the problem is to find q closed tours C1,C2, . . . ,Cq in Gc such
that the total length of the q tours, ∑

q
l=1 w(Cl), is minimized, subject to that these q

tours cover all sensors in V c, i.e., V c ⊆
⋃q

l=1 V (Cl), and each of the q tours contains
a distinct depot in R. The q-rooted TSP problem is NP-hard as the classical TSP
problem is a special case of it when q = 1.

2.4.2 The Minimum Number of Mobile Chargers Deployment Problem

We notice there is no need that every sensor must be charged at each round. Also,
sensor charging tours are not necessarily periodic, instead sensors should be charged
in an on-demand fashion. The rationale behind this is that in some applications
such as event detections, if there are no events happening in a monitoring area,
sensors usually perform duty-cycling to save energy, thus they can run much longer
than keeping in wake-up statuses. When an event does occur, the sensors within
the event region will keep in wake-up statuses to capture the event and report their
sensing results to the base station, while for the sensors not in the event region, they
continue maintaining their wakeup-and-sleep duty-cycling statuses, thus consuming
much less energy. It can be seen from this case that not all sensors in the network
need to be charged in each energy charging round, only the sensors in the regions
where the event happened are needed to be charged.

Let lmax be the longest duration of a mobile vehicle tour for charging all sensors
in the network. Consider that all sensors in the network will be charged by only one
mobile charger. Then, lmax should be no more than the sum of the time spent on
traveling and the time spent on charging sensors on its tour by a mobile charging

vehicle. Thus, the value of lmax is upper bounded as lmax ≤ LT SP
s +

min{IE, ∑vi∈Vs Bi}
µ

,
where LT SP is the length of a TSP tour including all sensors and the depot which
can be approximately found by applying Christofides’ algorithm [6], s is the travel
speed of the charging vehicle, IE is the battery capacity of the vehicle, Bi is the
battery capacity of sensor vi, and µ is the charging rate for sensors. In other words,
to ensure that none of the sensors fail due to its energy expiration, a sensor should
be charged when its residual lifetime is no greater than lmax.

We define the critical time point of a sensor as the time point that the sensor can
survive for the next lmax time units. We say that a sensor vi at time t is in a critical
lifetime interval if lmax ≤ li(t) ≤ α · lmax with a given constant α ≥ 1, where li(t)
is the residual lifetime of sensor vi at time t. Following the definition of the critical
lifetime interval, only the sensors within their critical lifetime intervals need to be
charged to avoid running out of their energy completely. Without loss of generality,
in the rest of this section, we assume that V is the set of sensors within their critical
lifetime intervals, i.e.,Vs = {vi | vi ∈ V, lmax ≤ li(t) ≤ α · lmax}, where li(t) is the
residual lifetime of sensor vi at time t. Clearly, Vs ⊆V .

We propose a flexible on-demand sensor energy charging paradigm as follows.
We assume that there is only one depot r in the monitoring region, where there
are a number of mobile vehicles available to meet sensor charging demands. Each
sensor will send an energy-charging request to the base station for its energy re-
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plenishment when its the residual lifetime is below the critical lifetime lmax. The
energy-charging request contains the identity, the amount of residual energy, and
the energy consumption rate of the sensor. Once the base station receives a set of
such requests from the sensors, it then performs a scheduling to dispatch a number
of mobile charging vehicles to charge the sensors in the set, where a sensor vi at time
t is in its critical lifetime interval if lmax ≤ li(t)≤ α · lmax. Hence, the result of each
scheduling consists of the number of mobile charging vehicles needed, a closed tour
for each of the mobile vehicle, and the charging duration at each to-be-charged sen-
sor node along the tour. Finally, the mobile charging vehicles are dispatched from
the depot to perform charging tasks.

Given a rechargeable sensor network G = (V,E) consisting of sensors, one sta-
tionary base station, and a depot with multiple mobile vehicles, following the on-
demand sensor energy charging paradigm, assume that at a specific time point, the
base station receives charging requests from the sensors within their critical life-
time intervals. The base station then starts a new round scheduling by dispatching
a certain number of mobile charging vehicles to charge these sensors so that none
of sensors will run out of energy. Let Vs be the subset of sensors in G to-be-charged
(within their critical lifetimes) in the next round (Vs ⊆ V ). Assume that for each
sensor vi ∈Vs, its energy consumption rate ρi does not change during each charging
round (or such changes are marginal and can be ignored), and its residual energy
REi is given (at the base station), the minimum number of mobile chargers deploy-
ment problem is to find a scheduling of mobile charging vehicles to fully charge
the sensors in Vs by providing a closed tour for each vehicle, such that the number
of mobile vehicles deployed is minimized, subject to the energy capacity constraint
IE on each mobile vehicle. The minimum number of mobile chargers deployment
problem is NP-hard, through a reduction from the well-known NP-hard Travelling
Salesman Problem (TSP).

The rest is to define the p-optimal closed tour problem, which will serve as a
subroutine of the proposed algorithms for the minimum number of mobile chargers
deployment problem. Given a node and edge weighted complete metric graph Gs =
(Vs,Es;h,w), a root node r ∈ Vs, and an integer p ≥ 1, where h : Vs 7→ R≥0 and
w : Es 7→R>0 (i.e., the node weight h(v) of each sensor node v∈Vs is the amount of
energy to be charged to sensor v, and the edge weight w(u,v) of each edge (u,v)∈Es
represents the amount of energy consumed by a mobile vehicle travelling along the
edge), the p-optimal closed tour problem in Gs is to find p node-disjoint closed tours
covering all nodes in Vs except the root r that appears in each of the tours such that
the maximum total cost among the p closed tours is minimized, where the total cost
of a closed tour is the weighted sum of nodes and edges in it.

3 Algorithms for the Service Cost Minimization Problem

In this section, we devise efficient algorithms for the service cost minimization prob-
lem. We first devises an algorithm for a q-rooted TSP problem in Subsection 3.1,
which will be served as a subroutine of the proposed algorithms. We then propose
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an approximation algorithm in Subsection 3.2 and a heuristic algorithm in Subsec-
tion 3.3 for the problem under fixed and variable sensor energy consumption rates,
respectively.

3.1 Algorithm for the q-rooted TSP problem

We propose a 2-approximation algorithm for the q-rooted TSP problem, which will
serve as a subroutine of the approximation algorithm for the service cost minimiza-
tion problem.

The basic idea of the algorithm for the q-rooted TSP problem is that we first find
q-rooted trees with the minimum total cost, and we then show that the total cost of
the q-rooted trees is a lower bound on the optimal cost of the q-rooted TSP problem.
We finally convert each of the trees into a closed tour with the cost of the tour no
more than twice the cost of the tree.

We start with the q-rooted minimum spanning forest (q-rooted MSF) problem:
given a graph Gc = (V c∪R,Ec;w), q = |R|, and w : Ec 7→R+, the problem is to find
q trees T1,T2, . . . ,Tq spanning all nodes in V c with each tree containing a distinct
depot in R such that the total cost of the q trees, ∑

q
l=1 w(Tl), is minimized.

For the q-rooted MSF problem, an exact algorithm is given as follows. We start
by constructing an auxiliary graph Gr = (V c∪{r},Er;wr) from Gc = (V c∪R,Ec;w)
by contracting the q depots in R into a single root r: (i) remove the q depots in R
and introduce a new node r; (ii) for each rl ∈ R, introduce an edge (v,r) ∈ Er for
each edge (v,rl) ∈ Ec, where v ∈V c; (iii) wr(v,r) = minl{w(v,rl)}. We then find an
MST T of Gr. We finally break T into q disjoint trees T1,T2, . . . ,Tq by un-contracting
the roots in R. This un-contraction means that an edge (v,r) is mapped to an edge
(v,rl), where wr(v,r) = w(v,rl). Note that each tree Tl roots at depot rl . The detailed
algorithm is presented in Algorithm 1.

Algorithm 1: q-rooted MSF
Input: Gc = (V c∪R,Ec;w), w : Ec 7→ R+, and q = |R|.
Output: a solution for the q-rooted MSF problem

1 Construct a graph Gr = (V c∪{r},Er;wr) from Gc by contracting the q depots
in R into a single root r;

2 Find an MST T in Gr;
3 Decompose the MST T into q disjoint rooted trees T1,T2, . . . ,Tq by

un-contracting depots in R;

Lemma 1. There is an algorithm for the q-rooted MSF problem, which delivers an
optimal solution and takes O(n2) time, where n = |V c∪R|.

Proof. Assume that trees T ∗1 ,T
∗

2 , . . . ,T
∗

q form an optimal solution to the q-rooted
MSF problem. We show that the solution consisting of trees T1,T2, . . . ,Tq, delivered
by Algorithm 1, is optimal. On one hand, since the q trees T1,T2, . . . ,Tq form
a feasible solution, then ∑

q
l=1 w(T ∗l ) ≤ ∑

q
l=1 w(Tl). On the other hand, as each tree

T ∗l contains a depot rl ∈ R, we can construct a spanning tree T ′ in graph Gr by
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contracting the q depots into a single root r, and w(T ′) =∑
q
l=1 w(T ∗l ). As the MST T

is the minimum one, we have w(T )≤w(T ′). Since ∑
q
l=1 w(Tl)=w(T ), ∑

q
l=1 w(Tl)=

w(T ) ≤ w(T ′) ≤ ∑
q
l=1 w(T ∗l ). Therefore, ∑

q
l=1 w(Tl) = ∑

q
l=1 w(T ∗l ), i.e., the found

trees T1,T2, . . . ,Tq form an optimal solution to the problem. The time complexity of
Algorithm 1 is analyzed as follows. Constructing graph Gr takes time O(Ec) =
O(n2). Finding the MST T in Gr takes O(n2) time, while un-contracting the MST
T also takes time O(Ec) = O(n2). Algorithm 1 thus runs in O(n2) time. ut

With the help of the exact algorithm for the q-rooted MSF problem, we now de-
vise a 2-approximation algorithm for the q-rooted TSP problem in Algorithm 2.

Algorithm 2: q-rooted TSP
Input: Gc = (V c∪R,Ec;w), w : Ec 7→ R+, and q = |R|.
Output: A solution C for the q-rooted TSP problem

1 Find q optimal trees T1,T2, . . . ,Tq for the q-rooted MSF problem in Gc by
calling Algorithm 1;

2 For each tree Tl , double the edges in Tl , find a Eulerian tour C′l , and obtain a
less cost closed tour Cl by short-cutting repeated nodes in C′l . Let
C = {C1,C2, . . . ,Cq};

We show that Algorithm 2 delivers a 2-approximate solution.

Theorem 1. There is a 2-approximation algorithm for the q-rooted TSP problem,
which takes time O(|V c∪R|2).

Proof. Assume that closed tours C∗1 ,C
∗
2 , . . . ,C

∗
q form an optimal solution to the q-

rooted TSP problem in Gc. For each tour C∗l , we can obtain a tree T ′l by removing
any edge in C∗l . Then, w(T ′l )≤w(C∗l ), 1≤ l ≤ q. It is obvious that trees T ′1 ,T

′
2 , . . . ,T

′
q

form a feasible solution to the q-rooted MSF problem. As trees T1,T2, . . . ,Tq form
the optimal solution by Lemma 1, ∑

q
l=1 w(Tl)≤∑

q
l=1 w(T ′l )≤∑

q
l=1 w(C∗l ). Also, we

can see that the total cost of each found tour Cl is no more than twice the total cost of
tree Tl , i.e., w(Cl) ≤ 2w(Tl). Therefore, ∑

q
l=1 w(Cl) ≤ ∑

q
l=1 2w(Tl) ≤ 2∑

q
l=1 w(C∗l ).

The time complexity analysis is straightforward, omitted. ut

3.2 Approximation algorithm with fixed maximum charging cycles

In this subsection, we devise an approximation algorithm for the service cost mini-
mization problem, assuming that each sensor has a fixed maximum charging cycle.
We start with the basic idea behind the algorithm. We then present the approxi-
mation algorithm, and we finally analyze the approximation ratio of the proposed
approximation algorithm.

3.2.1 Overview of the approximation algorithm

Given a maximum charging cycle function: τ :V 7→R+ and a monitoring period T , if
there is a series of mobile charger schedulings for T such that no sensor depletes its
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energy, then we say that these schedulings form a feasible solution to the service cost
minimization problem, i.e., for each sensor vi ∈V , the maximum duration between
its any two consecutive chargings is no more than τi. A series of feasible charging
schedulings of the q mobile chargers is an optimal solution if the service cost of the
solution is the minimum one.

The basic idea behind the proposed approximation algorithm is to construct an-
other charging cycle function τ ′(·) for the sensors based on the maximum charging
cycle function τ(·), by exploring the combinatorial property of the problem. We
construct a very special charging cycle function τ ′(·) such that charging cycles of
the n sensors will form a geometric sequence as follows.

Let τ1,τ2, . . . ,τn be the maximum charging cycles of sensors v1,v2, . . . ,vn in
the network. Assume that τ1 ≤ τ2 ≤ ·· · ≤ τn. Let τ ′1,τ

′
2, . . . ,τ

′
n be the charging

cycles of the sensors and τ ′i ≤ τ ′j if τi ≤ τ j. We construct τ ′(·) as follows. We
partition the set V of the sensors into K + 1 disjoint subsets V0,V1, . . . ,VK , where
K = blog2

τn
τ1
c, and sensor vi ∈ V with its maximum charging cycle τi is contained

in Vk if 2kτ1 ≤ τi < 2k+1τ1. Then, k = blog2
τi
τ1
c. Let τ ′i = 2kτ1. We assign each sen-

sor in Vk with the identical charging cycle 2kτ ′1 = 2kτ1. Consequently, the charging
cycles of sensors in V0,V1, . . . ,VK are τ1,2τ1, . . . ,2Kτ1, respectively. We can see that
the assigned charging cycle τ ′i of sensor vi is no less than the half its maximum
charging cycle τi, since

τ
′
i = 2blog2

τi
τ1
c
τ1 > 2log2

τi
τ1
−1

τ1 =
τi

2
, ∀vi ∈V . (5)

3.2.2 Approximation algorithm

Given the charging cycle function τ ′(·), we can see that τ ′j is divisible by τ ′i for any
two sensors vi and v j if τi ≤ τ j and 1 ≤ i < j ≤ n. For simplicity, assume that the
monitoring period T is divisible by the maximum assigned charging cycle τ ′n, let
T = 2mτ ′n = 2m2Kτ1, where m is a positive integer. Furthermore, we assume that
each sensor is fully charged at time t = 0. The solution delivered by the proposed
algorithm consists of a series of schedulings of the q mobile chargers. Specifically,
we first find a sequence of schedulings for a period τ ′n. Then, we repeat the found
schedulings for the next time period of τ ′n, and so on. We repeat the scheduling
sequence for period T no more than bT/τ ′nc−1 = 2m−1 times.

In the following, we construct a series of schedulings for a period τ ′n = 2Kτ1. Re-
call that we have partitioned the sensor set V into K+1 disjoint subsets V0,V1, . . . ,VK ,
and the charging cycle of each sensor in Vk is 2kτ1, 0≤ k ≤ K. We further partition
the period τ ′n into 2K equal time intervals with each interval lasting τ1, and label
them from the left to right as the 1st, 2nd, . . ., and the 2K th time interval. Clearly,
all sensors in V0 must be charged at each of these 2K time intervals; all sensors in V1
must be charged at every second time interval; and all sensors in Vk must be charged
at every 2k time interval, 0≤ k ≤ K. That is,
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At time τ1, charge the sensors in V0.
At time 2τ1, charge the sensors in V0∪V1.
At time 3τ1, charge the sensors in V0.
At time 4τ1, charge the sensors in V0∪V1∪V2.
...
At time jτ1, charge the sensors in ∪( j mod 2k)=0Vk where 0 ≤ k ≤ K′, K′ =

blog2 jc, and 1≤ j ≤ 2K .
...
At time 2Kτ1, charge the sensors in ∪K

i=0Vi =V .

There are 2K charging schedulings of the q mobile chargers and one charging
scheduling is dispatched at each time interval. Let C j = {C j,1,C j,2, . . . ,C j,q} be the
set of closed tours of the q mobile chargers at time interval j, where 1 ≤ j ≤ 2K .
Furthermore, it can be seen that in the 2K charging schedulings, there are 2K−1

identical charging schedulings with each only containing the sensors in V0, there
are 2K−2 identical charging schedulings with each containing the sensors only in
V0∪V1. In general, there are 2K−1−k identical charging schedulings with each con-
taining the sensors only in V0 ∪V1 · · · ∪Vk, 0 ≤ k ≤ K − 1. Finally, there is one
charging scheduling containing the sensors in V0 ∪V1 · · · ∪VK = V . Denote by
Dk = {Dk,1,Dk,2, . . . ,Dk,q} the set of q closed tours for the q-rooted TSP problem in
the induced graph G[R∪V0 · · ·∪Vk], which is delivered by Algorithm 2.

The series of charging schedulings for a period τ ′n thus is (C1,τ1), . . . ,(C j, jτ1), . . . ,
(C2K ,2Kτ1), where the 2-tuple (C j, jτ1) represents that the q mobile chargers are
dispatched at time jτ1 and the set of to-be-charged sensors is ∪C j,i∈C jV (C j,i) =

∪( j mod 2k)=0Vk, 0 ≤ k ≤ K′, K′ = blog2 jc, and 1 ≤ j ≤ 2K . As a result, there are
p = 2m ·2K−1 charging schedulings found for a period of T = 2mτ ′n as follows.
(C1,τ1), . . . ,(C2K−1,(2

K−1)τ1), (C2K ,2Kτ1),
(C1,τ

′
n + τ1), . . . ,(C2K−1,τ

′
n +(2K−1)τ1),(C2K ,τ ′n +2Kτ1),

...
(C1,(2m−1)τ ′n + τ1), . . . ,(C2K−1,(2m−1)τ ′n +(2K−1)τ1).
Note that we do not perform a charging scheduling at time T = 2mτ ′n as there
is no such need at the end of period T . The proposed algorithm is described in
Algorithm 3.

3.2.3 Algorithm analysis

In the following we dedicate ourselves to analyzing the approximation ratio of the
proposed approximation algorithm. We start by showing that Algorithm 3 deliv-
ers a feasible solution to the service cost minimization problem by Lemma 2. We
then provide a lower bound on the minimum cost of the problem by Lemma 3. We
finally derive the approximation ratio of Algorithm 3 based on the lower bound
in Theorem 2.



16 Wenzheng Xu and Weifa Liang

Algorithm 3: MinDis
Input: G = (V ∪R,E;w), maximum charging cycles τ : V 7→ R+, q chargers,

and a monitoring period T .
Output: A series of charging schedulings C for period T

1 Let τ1,τ2, . . . ,τn be the sorted maximum charging cycles of sensors
v1,v2, . . . ,vn in ascending order;

2 For each sensor vi, let τ ′i = 2blog2
τi
τ1
c;

3 Partition sensors in V into K +1 disjoint subsets V0,V1, . . . ,VK , where sensor

vi ∈Vk if 2kτ1 = 2blog2
τi
τ1
c
τ1, 0≤ k ≤ K, and K = blog2

τn
τ1
c. All sensors in Vk

have the same charging cycle 2kτ ′1;
4 for k← 0 to K do
5 Find q charging tours Dk = {Dk,1,Dk,2, . . . ,C j,q} in the induced subgraph

G[R∪V0 · · ·∪Vk] by applying Algorithm 2;
6 end for
7 C ← /0; /* the solution */
8 /* Construct schedulings (C1,τ1), . . . ,(C2K ,2Kτ1) */
9 for j← 1 to 2K do

10 /* Find the charging scheduling C j of the q mobile chargers at time
t j = jτ1 */;

11 Let C j = Dk, where k is the largest integer so that j mod 2k = 0, where
0≤ k ≤ K′ and K′ = blog2 jc;

12 C ← C ∪{(C j, t j)};
13 end for
14 for m′← 2 to bT/τ ′nc do
15 for j← 1 to 2K do
16 C = C ∪{(C j,m′ · τ ′n + t j)};
17 end for
18 end for
19 return C .

Lemma 2. Algorithm 3 delivers a feasible solution to the service cost minimiza-
tion problem.

Proof. It is obvious that the solution delivered by Algorithm 3 is feasible, as the
charging cycle τ ′i of each sensor vi ∈V in the solution is no more than its maximum
charging cycle τi, i.e., τ ′i ≤ τi. Thus, no sensors will die in the period T . ut

The following lemma provides a lower bound on the optimal service cost, which
bounds the service cost of the solution delivered by Algorithm 3.

Lemma 3. Given the sensor set partitioning V0,V1, . . . ,VK based on the maximum
charging cycles of sensors, each sensor in Vk is assigned with the same charg-
ing cycle 2kτ1, 0 ≤ k ≤ K. Let OPT be the service cost of an optimal solution
to the service cost minimization problem. Denote by D∗k = {D∗k,1,D∗k,2, . . . ,D∗k,q}
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the optimal q closed tours for the q-rooted TSP problem in the induced graph
G[R∪V0 ∪V1 ∪ ·· · ∪Vk], then OPT ≥ m2K−k ·w(D∗k ), assuming that T = 2mτ ′n,
where w(D∗k ) = ∑

q
l=1 w(D∗k,l), K = blog2

τn
τ1
c, and 0≤ k ≤ K.

Proof. To show that OPT ≥ m2K−k ·w(D∗k ), we partition the entire period T =
2mτ ′n = 2m ·2Kτ1 into m ·2K−k time intervals with each lasting time tk = 2k+1τ1. Let
(0, tk], (tk, 2tk], . . . ,(( j−1)tk, jtk], . . . ,((m2K−k−1)tk, m2K−ktk] be these m ·2K−k

intervals, where time interval j is the interval (( j− 1) · tk, j · tk], 1 ≤ j ≤ m · 2K−k.
Note that m2K−ktk = m2K−k2k+1τ1 = T .

In the following, we first show that there is at least one time interval among the
m2K−k time intervals such that (i) the service cost of charging schedulings within
the interval is no more than 1

m2K−k of the service cost OPT in the optimal solution;
(ii) each sensor in

⋃k
i=0 Vi must be charged at least once in this interval; and (iii) the

service cost within this interval in the optimal solution is no less than the cost w(Ck)
of a feasible solution Ck to the q-rooted TSP problem in graph G[R∪V0∪ ·· ·∪Vk].
Since D∗k is the optimal solution to the q-rooted TSP problem, w(D∗k ) ≤ w(Ck) ≤

OPT
m2K−k .

Assume that an optimal solution consists of p charging schedulings (C ∗1 , t
∗
1 ),(C

∗
2 , t
∗
2 ),

. . . ,(C ∗p , t
∗
p) with 0 < t∗1 ≤ ·· · ≤ t∗p < T . Recall that OPT is the sum of lengths of the

p charging schedulings i.e., OPT = ∑
p
s=1 w(C ∗s ) = ∑

p
s=1 ∑

q
l=1 w(C∗s,l). We partition

the p charging schedulings into m2K−k disjoint groups according to their dispatch-
ing times, the charging scheduling C ∗s is in group j if its dispatching time t∗s is
within time interval j, i.e., t∗s ∈ (( j−1)tk, jtk], where 1≤ s≤ p and 1≤ j≤m2K−k.
Denote by G j and w(G j) the set of charging schedulings in group j and the
cost sum of charging schedulings in G j, respectively, i.e., w(G j) = ∑C ∗s ∈G j w(C ∗s ),

1≤ j ≤m2K−k. Then, ∑
m2K−k

j=1 w(G j) = OPT . Among the m2K−k groups, there must
be a group G j whose service cost w(G j) is no more than 1

m2K−k of the optimal cost
OPT , i.e.,

w(G j)≤
OPT

m2K−k . (6)

We then show that each sensor in
⋃k

i=0 Vi must be charged at least once by the
charging schedulings in G j by contradiction. Assume that there is a sensor vi ∈⋃k

i=0 Vi which will not be charged by any charging scheduling in G j. Since vi ∈⋃k
i=0 Vi, its maximum charging cycle τi must be strictly less than 2 · 2kτ1 = 2k+1τ1

by inequality (5), i.e., τi < 2k+1τ1. On the other hand, as vi will not be charged by
any charging scheduling in G j while it is still survived, this implies that its maximum
charging cycle must be no less than the length tk of the time interval, i.e., τi ≥ tk =
2k+1τ1, this results in a contradiction. Thus, vi must be charged by at least one
charging scheduling in G j.

We finally construct a feasible solution Ck = {Ck,1,Ck,2, . . . ,Ck,q} to the q-rooted
TSP problem in graph G[R∪V0∪ ·· ·∪Vk] based on the charging schedulings in G j
such that the service cost w(Ck) is no more than w(G j). Since each closed tour in
G j contains a depot rl ∈ R, we partition the closed tours in G j by the depot that
each tour contains. To this end, we partition tours in G j into q disjoint subgroups



18 Wenzheng Xu and Weifa Liang

G j,1,G j,2, . . . ,G j,q, where subgroup G j,l includes all closed tours in G j that contains
depot rl , 1 ≤ l ≤ q. For each subgroup G j,l , since each tour contains depot rl , the
union of all close tours in G j,l forms a connected Eulerian graph. Then, we can
derive a Eulerian circuit C′k,l from this Eulerian graph and w(C′k,l) = w(G j,l). We
further obtain a closed tour Ck,l including only nodes in R∪V0∪ ·· ·∪Vk once from
C′k,l , by the removal of the nodes not in R∪V0 ∪ ·· · ∪Vk and the nodes with multi-
ple appearances, and performing path short-cutting. Since edge weights satisfy the
triangle inequality, we have

w(Ck,l)≤ w(C′k,l)≤ w(G j,l), 1≤ l ≤ q. (7)

As each sensor in
⋃k

i=0 Vi will be charged at least once by the charging schedul-
ings in G j, and tour Ck,l contains depot rl , we have

⋃k
i=0 Vi ⊆

⋃q
l=1 V (Ck,l). Then,

all tours in Ck form a feasible solution to the q-rooted TSP problem in graph
G[R∪V0∪·· ·∪Vk]. Let D∗k = {D∗k,1,D∗k,2, . . . ,D∗k,q} be the optimal q tours. Then,

q

∑
l=1

w(D∗k,l)≤
q

∑
l=1

w(Ck,l). (8)

By combining inequalities (6), (7), and (8), the lemma then follows. ut

According to Lemmas 2 and 3, we show the approximation ratio of Algorithm 3
by the following theorem.

Theorem 2. There is a 2(K+2)-approximation algorithm for the service cost mini-
mization problem with fixed maximum charging cycles, which takes time O(blog τmax

τmin
cn2

+ T
τmin

n), where τmax = maxn
i=1{τi}, τmin = minn

i=1{τi}, and K = blog2
τn
τ1
c.

Proof. By Lemma 2, Algorithm 3 delivers a feasible solution. The rest is to
analyze its approximation ratio. Recall that the charging schedulings delivered by
Algorithm 3 for period T = 2mτ ′n are: (C1,τ1), . . . ,(C2K ,2Kτ1),(C1,τ

′
n+τ1), . . . ,(C2K ,τ ′n+

2Kτ1), . . . ,(C1,(2m−1)τ ′n + τ1), . . . ,(C2K−1,(2m−1)τ ′n +(2K −1)τ1). The total service cost
during T then is

(2m−1)
2K

∑
j=1

w(C j)+
2K−1

∑
j=1

w(C j)≤ 2m
2K

∑
j=1

w(C j). (9)

Recall that Dk = {Dk,1,Dk,2, . . . ,Dk,q} is the set of q closed tours for the q-rooted
TSP problem in graph G[R∪V0∪·· ·∪Vk] delivered by Algorithm 2. Let C (τ ′n) =
{(C1,τ

′
1),(C2,τ

′
2), . . . ,(C2K ,τ ′n)}.

From the construction of C (τ ′n), we can see that there are 2K−1−k identical charg-
ing schedulings in C (τ ′n) with each only containing the nodes in R∪V0∪V1 · · ·∪Vk.
Denote by w(Dk) the cost of the charging scheduling Dk, where 0≤ k≤K−1. And
there is one charging scheduling in C (τ ′n) containing the nodes in R∪V0∪·· ·∪VK =
R∪V , denote by w(DK) the cost of the charging scheduling DK . We then rewrite
the upper bound on the service cost in Inequality (9) as

2m
2K

∑
j=1

w(C j) = 2m(w(DK)+
K−1

∑
k=0

2K−1−kw(Dk)). (10)
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Denote by D∗k = {D∗k,1,D∗k,2, . . . ,D∗k,q} the set of the optimal q closed tours for
the q-rooted TSP problem in graph G[R∪V0∪·· ·∪Vk]. Since Dk is an approximate
solution by Theorem 1, w(Dk)≤ 2w(D∗k ), 0≤ k≤ K. Also, by Lemma 3, w(D∗k )≤

OPT
m2K−k . We have

2m(w(DK)+
K−1

∑
k=0

2K−1−kw(Dk))

≤ 4m(
OPT

m
+

K−1

∑
k=0

2K−1−k OPT
m2K−k ) = 2(K +2)OPT. (11)

The time complexity analysis is straightforward, omitted. ut

3.3 Heuristic algorithm with variable maximum charging cycles

So far we have developed an approximation algorithm for the service cost minimiza-
tion problem, assuming that the maximum charging cycle of each sensor is fixed for
the given monitoring period. This assumption however sometimes may be restrictive
and unrealistic in some applications. In this subsection we devise a novel heuristic
algorithm by removing this assumption.

3.3.1 Heuristic algorithm

Within the period T , the energy consumption rates of sensors may dynamically
change over time, resulting in the changes of sensor maximum charging cycles
eventually. Recall that the base station maintains the updated energy information
of each sensor, including its residual energy and energy consumption rate. Also, the
sensor sends an updating request of its energy information to the base station if the
variation of its maximum charging cycle is beyond a pre-defined threshold.

Assume that the base station receives the maximum charging cycle updatings
from some sensors at time t, this implies that the charging schedulings based on
the previous maximum charging cycles of these sensors may not be applicable any
more, otherwise these sensors will deplete their energy prior to their next chargings.
For example, assume that a sensor has changed its maximum charging cycle from a
longer one to a shorter one, it might be dead if the sensor is still charged according
to its previous longer charging cycle since the sensor now can last for only a shorter
cycle once it is fully charged.

The basic idea of the heuristic algorithm is as follows. When the base station re-
ceives maximum charging cycle updatings, it checks whether the previous schedul-
ings are still applicable for these updated maximum charging cycles. If so, nothing
needs to be done. Otherwise, it re-computes a new series of schedulings, by first
applying the approximation algorithm based on the updated maximum charging
cycles, followed by modifications to the solution delivered by the approximation
algorithm.
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Assume that the previous maximum charging cycle of sensor vi is τ̂i(t− 1) and
it was charged at a charging cycle τ̂ ′i (t−1) in the previous series of schedulings. At
time t, the base station receives the maximum charging cycle updating of sensor vi,
which changes from τ̂i(t−1) to τ̂i(t). The base station then checks the feasibility of
the previous schedulings as follows. If τ̂ ′i (t− 1) ≤ τ̂i(t) < 2τ̂ ′i (t− 1), the previous
schedulings are still feasible as sensor vi will be charged with a charging cycle
τ̂ ′i (t−1) no more than its current maximum charging cycle τ̂i(t). Otherwise (τ̂i(t)<
τ̂ ′i (t − 1) or τ̂i(t) ≥ 2τ̂ ′i (t − 1)), we re-compute a new series of schedulings based
on the updated maximum charging cycles since the previous schedulings are not
feasible any more (i.e., τ̂i(t)< τ̂ ′i (t−1)), or though the schedulings still are feasible,
they are not optimal in terms of the service cost (i.e., τ̂i(t) ≥ 2τ̂ ′i (t − 1)). In the
following, we re-compute a new series of schedulings.

We first invoke the proposed approximation algorithm based on the updated max-
imum charging cycles. Let τ̂1(t), τ̂2(t), . . . , τ̂n(t) be the updated maximum charg-
ing cycles of the n sensors. Assume that residual lifetimes of the n sensors are
l̂1(t), l̂2(t), . . . , l̂n(t), respectively. We further assume that the solution delivered by
the approximation algorithm based on the updated maximum charging cycles con-
sists of
(C1, t + τ̂1(t)), (C2, t +2τ̂1(t)), . . . ,(C2K , t +2K τ̂1(t)),
(C1, t + τ̂ ′n(t)+ τ̂1(t)),(C2, t + τ̂ ′n(t)+2τ̂1(t)), . . . ,(C2K , t + τ̂ ′n(t)+2K τ̂1(t)),

...
(C1, t + xτ̂ ′n(t)+ τ̂1(t)), . . . ,(Cy, t + xτ̂ ′n(t)+ yτ̂1(t),

where t + xτ̂ ′n(t)+ yτ̂1(t) < T , t + xτ̂ ′n(t)+ (y+ 1)τ̂1(t) ≥ T , and x and y are positive in-
tegers. The most updated charging cycles of the n sensors in the solution are

τ̂ ′1(t), τ̂
′
2(t), . . . , τ̂

′
n(t), where τ̂ ′i (t) = 2

blog2
τ̂i(t)
τ̂1(t)
c
τ̂1(t).

Note that the solution delivered may not be feasible as different sensors may
have different amounts of residual energy. This violates the condition of applying
the approximation algorithm, that is, all sensors must be fully charged initially. The
residual energy in some sensor vi may not support its operation until its next charg-
ing time t+ τ̂ ′i (t), i.e., l̂i(t)< τ̂ ′i (t). Denote by V a the set of sensors with l̂i(t)< τ̂ ′i (t).
We then schedule the mobile chargers to replenish sensors in V a to avoid their
energy depletion, through adding a new charging scheduling (C ′0, t) and modify-
ing the first 2K schedulings from (C1, t + τ̂1(t)),(C2, t + 2τ̂1(t)), . . . ,(C2K , t + 2K τ̂1(t)) to
(C ′1, t + τ̂1(t)),(C ′2, t +2τ̂1(t)), . . . ,(C ′2K , t +2K τ̂1(t)). Also, the charging schedulings deliv-
ered by the heuristic algorithm after the first 2K schedulings are the same as them
delivered by the approximation algorithm. The rest is to construct the first 2K + 1
charging schedulings.

Let V a
t = {vi|vi ∈V a & l̂i(t)< τ̂1(t)}, which implies that the residual lifetime of

each sensor in V a
t is less than τ̂1(t) and V a

t ⊆V a. We construct a scheduling (C0, t),
in which all sensors in V a

t will be charged at time t. We then, like the node set
partition in the approximation algorithm, partition the set V a \V a

t into K+1 disjoint
sets V a

0 ,V
a
1 , . . . ,V

a
K according to their residual lifetimes, where K=blog2

τ̂n(t)
τ̂1(t)
c and

a sensor vi∈V a \V a
t is contained in V a

k if 2kτ̂1(t) ≤ l̂i(t) < 2k+1τ̂1(t). Note that the
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residual lifetime l̂i(t) of each sensor vi in V a
k at time t is no less than 2kτ̂1(t) but no

greater than its charging cycle τ̂ ′i (t), i.e., 2kτ̂1(t)≤ l̂i(t)< τ̂ ′i (t). To avoid the energy
depletion of sensor vi, we can add it into any one of the schedulings: {(C0, t),(C1, t +
τ̂1(t)),(C2, t + 2τ̂1(t)), . . . ,(C2k , t + 2k τ̂1(t))}. However, to minimize the service cost, we
add sensor vi into a nearest scheduling C j, The detailed construction of the 2K + 1
schedulings is as follows.

We construct the 2K + 1 schedulings by iteratively invoking Algorithm 1 for
the q-rooted minimum spanning forest problem. Denote by V (C

(k)
j ) and V (C

(k+1)
j )

the constructed node sets of scheduling C ′j before and after iteration k, respectively,

where 0 ≤ k ≤ K. Note that C
(k)
j = {C(k)

j,1 , . . . ,C
(k)
j,q} and V (C

(k)
j ) =

⋃q
l=1 V (C(k)

j,l ).

After K + 1 iterations, we let V (C ′j) = V (C
(K+1)
j ). We finally obtain scheduling

C ′j by applying Algorithm 2 for the q-rooted TSP problem in the induced graph
G[V (C ′j)]. Consequently, each sensor in V a

t ∪V a
0 ∪ ·· · ∪V a

K = V a will be charged

in time. Initially, let V (C
(0)
0 ) = V a

t ∪R and V (C
(0)
j ) = V (C j), where 1 ≤ j ≤ 2K .

At iteration k (0 ≤ k ≤ K), we first construct an auxiliary graph G(k) = (V a
k ∪

R(k),E(k);w(k)) based on node sets V a
k and V (C

(k)
0 ),V (C

(k)
1 ), . . . ,V (C

(k)
2k ), where

there is a root r(k)j in R(k) representing node set V (C
(k)
j ), 0 ≤ j ≤ 2k, and E(k) =

V a
k ×V a

k ∪V a
k ×R(k). Then, |R(k)|= 2k +1. For each edge (u,v)∈V a

k ×V a
k , w(k)(u,v)

is the Euclidean distance between nodes u and v. For each edge (u,r(k)j )∈V a
k ×R(k),

w(k)(u,r(k)j ) is the smallest Euclidean distance between node u and nodes in V (C
(k)
j ).

We then obtain 2k + 1 minimum cost rooted trees T (k)
0 ,T (k)

1 , . . . ,T (k)
2k , by invoking

Algorithm 1 on G(k), where tree T (k)
j contains root r(k)j and 0 ≤ j ≤ 2k. Note

that each sensor in V a
k is contained in a tree T (k)

j and V a
k = V (T (k)

0 )∪V (T (k)
1 )∪

·· · ∪V (T (k)
2k )− R(k). Then, the sensors in tree T (k)

j will be charged in schedul-

ing (C ′j , t + jτ̂1(t)). To this end, we let V (C
(k+1)
j ) = V (C

(k)
j )∪V (T (k)

j )−{r(k)j }
if 0 ≤ j ≤ 2k, otherwise (2k + 1 ≤ j ≤ 2K), V (C

(k+1)
j ) = V (C

(k)
j ). We refer to this

heuristic algorithm as MinDis-var.

Theorem 3. There is a heuristic algorithm for the service cost minimization prob-
lem with variable maximum charging cycles, which takes O( τmax

τmin
n2 + T

τmin
n+ τ2

max
τ2

min
)

time, where n = |V |, τmax = maxn
i=1{τi}, and τmin = minn

i=1{τi}.

4 Approximation Algorithm for the Minimum Number of
Mobile Chargers Deployment Problem

In this section, we propose a novel approximation algorithm for the minimum num-
ber of mobile chargers deployment problem. We first detail a 5-approximation al-
gorithm for the optimal p-closed tour problem in Subsection 4.1, which serves as a
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subroutine of the proposed algorithm. We then present the approximation algorithm
in Subsection 4.2.

4.1 Algorithm for the p-optimal closed tour problem

In this subsection we devise a 5-approximation algorithm for the p-optimal closed
tour problem in a node and edge weighted metric graph Gs(Vs,Es;h,w). This al-
gorithm will be used as a subroutine for the minimum number of mobile chargers
deployment problem in Subsection 4.2. As a special case of the p-optimal closed
tour problem when p = 1 is the well-known TSP problem which is NP-hard, the
p-optimal closed tour problem is NP-hard, too. In the following, we start by intro-
ducing a popular technique to transform a tree into a closed tour in Gs. We then
introduce a novel tree decomposition. We finally present an approximation algo-
rithm for the problem based on the tree decomposition.

4.1.1 A closed tour derived from a tree

We first introduce the technique that transforms a tree in Gs to a closed tour by the
following lemma.

Lemma 4. Given a node and edge weighted metric graph Gs = (Vs,Es;h,w) with
sets Vs and Es of nodes and edges, h : Vs 7→ R≥0 and w : Es 7→ R>0, and the
edge weight follows the triangle inequality, let T = (Vs,ET ;h,w) be a spanning
tree of Gs rooted at r. Let C be the travelling salesman tour of Gs derived from
T through performing the pre-order traversal on T and pruning, then the total cost
WH(C) of C is no more twice the total cost WH(T ) of T , i.e., WH(C)≤ 2WH(T ) =
2(∑v∈Vs h(v)+∑e∈ET w(e)).

Proof. Let H(X) be the weighted sum of nodes in X and W (Y ) the weighted sum
of edges in Y . As the weighted sum W (C) of the edges in C is no more than
2∑e∈ET w(e), and the weighted sum H(C) of nodes in C is the same as the one
in T . Thus, the total cost of C is WH(C) = W (C) + H(C) ≤ 2W (T ) + H(T ) ≤
2(W (T )+H(T )) = 2WH(T ). ut

4.1.2 Tree decomposition

Given a metric graph Gs = (Vs,Es;h,w), let T = (Vs,ET ;h,w) be a spanning tree in
Gs rooted at node r and δ ≥ maxv∈Vs{h(v),2w(v,r)} a given value, then, both the
node weight h(v) of any node v ∈ Vs and the edge weight w(e) of any edge e ∈ ET
in tree T are no more than δ , i.e., h(v) ≤ δ and w(e) ≤ δ . We decompose the tree
into a set of subtrees such that the total cost of each subtree is no more than 2δ as
follows.

Let (u,v) be a tree edge in T , where u is the parent of v and v is a child of u.
Also, let Tv be a subtree of T rooted at node v. We perform a depth-first search on
T starting from the tree root r until the total cost of the leftover tree rooted at r is
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no less than 2δ , i.e., WH(Tr)< 2δ . Fig. 2 demonstrates an example of the tree de-
composition procedure. Assume that node v is the node that is currently visited, we
distinguish into the following four cases.

(a) A spanning tree T in
Gs

(b) Case 2 (c) Case 3

(d) Case 4 (e) obtained four subtrees

Fig. 2 An illustration of the tree decomposition

Case 1. If WH(Tv)< δ and WH(Tv)+w(u,v)< δ , no action is needed, and the
tree decomposition procedure continues.

Case 2. If WH(Tv) < δ and WH(Tv) + w(u,v) ≥ δ . Then, we must have
WH(Tv) + w(u,v) < 2δ , since the weight w(u,v) of edge (u,v) is no more than
δ . A new tree Tv∪{(v,u′)} is created with a virtual node u′ with h(u′) = 0. Split the
subtree Tv∪{(v,u′)} from the original tree, see Fig. 2(b).

Case 3. If δ ≤WH(Tv) < 2δ , split the subtree Tv from the original tree and
remove edge (u,v) ∈ ET from the original tree, see Fig. 2 (c).

Case 4. Let vc
1,v

c
2, . . . ,v

c
k be the k children of v. Let l be the maximum children

index so that δ ≤∑
l
j=1(WH(Tvc

j
)+w(vc

j,v))< 2δ with 1≤ l≤ k, then, a new subtree

∪l
j=1(Tvc

j
∪{(vc

j,v
′)}) rooted at the virtual node v′ is created, which consists of these

subtrees with h(v′) = 0. Split off this subtree from the original tree, see Fig. 2 (d).
As a result, a set of subtrees is obtained by the tree decomposition on T , see

Fig. 2 (e). The number of subtrees is bounded by the following lemma.

Lemma 5. Given a spanning tree T = (Vs,ET ;h,w) of a graph Gs = (Vs,Es;h,w)
with the total cost WH(T ) and a value δ ≥maxv∈Vs{2w(r,v),h(v)}, the tree T can
be decomposed into p subtrees T1,T2, . . . ,Tp with WH(Ti) < 2δ by the proposed
tree-decomposition procedure, 1≤ i≤ p. Then, p≤ bWH(T )

δ
c.
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Proof. Following the tree decomposition on T , subtrees with the total cost in [δ ,2δ )
are split away from T until the total cost of the leftover tree including root r is less
than 2δ . Suppose that T1,T2, . . . ,Tp are the split trees with p ≥ 2. From the subtree
construction, we know that δ ≤WH(Ti) < 2δ for each i with 1 ≤ i ≤ p− 1. The
only subtree with the total cost less than δ is Tp. Note that prior to splitting Tp−1,
the total cost of the remaining tree is at least 2δ . Therefore, the average total cost
of Tp−1 and Tp is no less than δ . That is, the average total cost of all Ti is at least δ .
Thus, p ·δ ≤WH(T ), i.e., p≤ WH(T )

δ
. Since p is an integer, p≤ bWH(T )

δ
c. ut

4.1.3 Algorithm for finding p-optimal closed tours

Given a metric graph Gs = (Vs,Es;h,w) with root r and a positive integer p, we now
devise an approximation algorithm for the p-optimal closed tour problem in Gs as
follows.

Let T be a minimum spanning tree (MST) of Gs rooted at r. The basic idea
of the proposed algorithm is that we first perform a tree decomposition on T with
δ = maxv∈Vs{WH(T )/p, 2w(v,r)+h(v)} and we later show that δ is a lower bound
on the optimal cost of the p-optimal closed tour problem. As a result, p′ subtrees are
derived from such a decomposition, and p′ closed tours are then derived from the p′

subtrees. We finally show that p′ ≤ p and the maximum total cost of any closed tour
among the p′ closed tours is no more than 5δ .

Specifically, T is decomposed into no more than p′ edge-disjoint subtrees, ex-
cepting the root node r which appears in one of these subtrees. Let T1,T2, . . . ,Tp′ be
the p′ trees obtained by decomposing T . It can be observed that each Ti contains
at least one real node and at most one virtual node, where a node v is a real node
if h(v) 6= 0; otherwise, it is a virtual node. As a result, a forest F consisting of all
the trees is found through the tree decomposition, and the number of trees in F is
p′ ≤ bWH(T )/δc and the total cost of each subtree is no more than 2δ by Lemma 5.

For each Ti ∈F , if it does not contain the root r, then, a tree T ′i = Ti ∪{(vi,r)}
rooted at r is obtained by including node r and a tree edge (vi,r) into Ti, where node
vi is a node in Ti and w(vi,r) = minv∈Ti{w(v,r)}. The total cost WH(T ′i ) of T ′i is

WH(T ′i ) = WH(Ti)+w(vi,r) ≤ 2δ +w(vi,r) ≤ 2.5δ , as w(vi,r)≤ δ/2.

Otherwise (Ti contains node r), T ′i = Ti and WH(T ′i )=WH(Ti)≤ 2δ . We thus obtain
a forest F ′ = {T ′1 ,T ′2 , . . . ,T ′p′}. From the trees in F ′, p′ edge-disjoint closed tours
with each containing the root r can be derived. Let C ′ = {C′1,C′2, . . . ,C′p′} be the set
of p′ closed tours obtained, by transforming each tree in F ′ into a closed tour. For
each C′i , we have that WH(C′i)≤ 2 ·WH(T ′i )≤ 5δ by Lemma 4. As there are some
C′is containing virtual nodes that are not part of a feasible solution to the problem, a
feasible solution can be derived through a minor modification to the closed tours in
C ′. That is, for each C′i , if it contains a virtual node (as each C′i contains at most one
virtual node), a closed tour Ci with a less total cost than that of C′i is obtained, by
removing the virtual node and the two edges incident to the node from C′i through
short cutting, then WH(Ci) ≤WH(C′i) as the edge weight follows the triangle in-
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equality. Otherwise, Ci =C′i . Clearly, each of the p′ closed tours C1,C2, . . . ,Cp′ roots
at r. The detailed algorithm is described in Algorithm 4.

Algorithm 4: finding closed tours rooted at r with each having the bounded
total cost

Input: A metric graph Gs = (Vs,Es;h,w), a root r ∈Vs, and a given value
δ ≥maxv∈Vs{h(v),2w(v,r)}.

Output: a set of node-disjoint closed tours covering all nodes in Vs with the
shared root r so that the total cost of each tour is no more than 5δ .

1 Let T be an MST of Gs and WH(T ) be the total cost of T ;
2 Let F = {T1,T2, . . . ,Tp′} be the forest obtained by performing the tree

decomposition on T with the given value δ ;
3 Let F ′ = {T ′1 ,T ′2 , . . . ,T ′p′} be a forest, where T ′i = Ti∪{(r,vi)} is derived by

adding root r and an edge with the minimum edge weight between a node vi in
Ti and r if r is not in Ti; otherwise T ′i = Ti, where 1≤ i≤ p′;

4 Let C ′ = {C′1,C′2, . . . ,C′p′}, where closed tour C′i is derived from T ′i ;
5 Let C = {C1,C2, . . . ,Cp′} be a set of closed tours, where Ci is derived by

removing the virtual node from C′i ∈ C ′ if it does contain a virtual node.
Otherwise, Ci =C′i ;

6 return C .

4.1.4 Algorithm analysis

In the following, We show that Algorithm 4 delivers a 5-approximate solution.
Specifically, we first show that Algorithm 4 delivers a feasible solution to the p-
optimal closed tour problem. We then show that the total cost of each closed tour in
the solution is no more than 5δ . We thirdly show that δ (=maxv∈Vs{WH(T )/p, 2w(v,r)+
h(v)}) is a lower bound on the optimal cost of the problem. Then, the total cost
of each closed tour in the solution delivered by Algorithm 4 is no more than
5δ ≤ 5OPT . We finally analyze the time complexity of Algorithm 4.

Theorem 4. Given a metric graph Gs = (Vs,Es;h,w) and an integer p≥ 1, there is a
5-approximation algorithm for finding p-optimal closed tours. The time complexity
of the proposed algorithm is O(|Vs|2).

Proof. We first show that Algorithm 4 delivers a feasible solution to the p-
optimal closed tour problem. Recall that T is an MST of Gs. Since δ =maxv∈Vs{WH(T )/p,
2w(v,r) + h(v)}, δ ≥ maxv∈Vs{2w(v,r),h(v)}. A solution C which consists of p′

closed tours rooted at r can be obtained, by applying Algorithm 4 on T , and

p′ ≤ bWH(T )/δc ≤ WH(T )/δ

=
WH(T )

maxv∈Vs{WH(T )/p, 2w(v,r)+h(v)}
≤ WH(T )

WH(T )/p
= p, (12)

by Lemma 5. Thus, C is a feasible solution.
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We then show that the total cost of each closed tour in C is no more than 5δ . As
each Ci ∈ C is derived from a C′i ∈ C ′, we have WH(Ci)≤WH(C′i)≤ 2 WH(T ′i )≤
2 ·2.5δ = 5δ by Lemma 4.

We thirdly prove that δ is a lower bound on the optimal cost of the problem.
Given a node and edge weighted metric graph Gs = (Vs,Es;h,w) with root r, an
integer p ≥ 1, partition the nodes in Vs into p disjoint subsets X1,X2, . . . ,Xp, and
let C j be the closed tour containing all nodes in X j and the root r. The optimal
partitioning is a partitioning such that the maximum value max1≤ j≤p{WH(C j)} is
minimized. Let OPT be the total cost of the maximum closed tour in the optimal
solution. We show that δ ≤ OPT as follows.

Let C∗1 ,C
∗
2 , . . . ,C

∗
p be the p closed tours in the optimal solution with the shared

root r. Then, WH(C∗i )≤ OPT . Let ei be the maximum weighted edge in C∗i . Then,
a tree T ′ = ∪p

i=1C∗i \∪
p
i=1{ei} rooted at r can be obtained by removing ei from each

tour C∗i . We then have

WH(T ′) =
p

∑
i=1

(WH(C∗i )−w(ei)) ≤
p

∑
i=1

WH(C∗i ) ≤ p ·OPT. (13)

It can be seen that T ′ is a spanning tree in Gs. Since T is an MST of Gs, WH(T )≤
WH(T ′). We thus have

WH(T )
p

≤ WH(T ′)
p

≤ OPT. (14)

On the other hand, each node v ∈Vs must be contained by one closed tour C∗i in
the optimal solution. Since tour C∗i contains node v and the depot r, then the total
cost of C∗i , WH(C∗i ), is at least 2w(v,r)+h(v), Thus,

2w(v,r)+h(v)≤WH(C∗i )≤ OPT, ∀v ∈Vs. (15)

Combing inequalities (14) and (15), we have

δ = max
v∈Vs
{WH(T )

p
, 2w(v,r)+h(v)} ≤ OPT. (16)

The time complexity analysis of Algorithm 4 is straightforward, omitted. ut

4.2 Approximation algorithm for the minimum number of mobile
chargers deployment problem

In this subsection we provide an approximation algorithm for the minimum number
of mobile chargers deployment problem. As each mobile charger consumes energy
on travelling and charging sensors per tour, the total amount of energy consumed by
the mobile vehicle is bounded by its energy capacity IE.
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4.2.1 Algorithm

The basic idea of the proposed approximation algorithm is to reduce the minimum
number of mobile chargers deployment problem into a p-closed tour problem, by
bounding the total cost of each closed tour. A solution to the latter in turn returns a
solution to the former as follows.

Recall that we assume that the base station knows both the residual energy REi
and the energy consumption rate ρi of each sensor vi ∈ Vs, and µ is the wireless
charging rate of a mobile vehicle. Assume that there are sufficient numbers of fully
charged mobile vehicles available at the depot. Then, a mobile vehicle takes τi =
Bi−REi

µ
time to charge sensor vi to its full capacity Bi when it approaches the sensor.

We thus construct a node and edge weighted metric graph Gs = (Vs,Es;h,w), where
Vs is the set of sensors to be charged in this round. There is an edge in Es between any
two to-be-charged sensor nodes. For each edge (u,v) ∈ Es, its weight is w(u,v) =
η · d(u,v) which is the amount of energy consumed by a mobile vehicle travelling
along the edge, where η is the energy consumption rate of a mobile vehicle for
travelling per unit length and d(u,v) is the Euclidean distance between sensor nodes
u and v.

For each node vi ∈ Vs, its weight h(vi) (= Bi−REi = µ · τi) is the amount of
energy needed to charge sensor vi to reach its full capacity Bi. We assume that
IE ≥ maxv∈Vs{2w(v,r) + h(v)}; otherwise, there are no feasible solutions to the
problem, which will be shown by Lemma 6 later. The detailed algorithm is de-
scribed in Algorithm 5. We refer to this algorithm as NMV without Eloss.

4.2.2 Algorithm analysis

We analyze the approximation ratio of the proposed algorithm, Algorithm 5, and
its time complexity as follows. We start by Lemma 6, which says that there must
be a feasible solution to the problem if and only if IE ≥ maxv∈Vs{2w(v,r)+h(v)};
otherwise, there are no solutions to the problem. Thus, in the rest of our discussions,
we assume that IE ≥maxv∈Vs{2w(v,r)+h(v)}.

Lemma 6. Given a metric graph Gs = (Vs,Es;h,w) and an energy capacity IE of
each mobile charging vehicle, there is a feasible solution to the minimum number of
mobile chargers deployment problem in Gs if and only if IE ≥ maxv∈Vs{2w(v,r)+
h(v)}, where r is the depot of charging vehicles.

Proof. If IE ≥ maxv∈Vs{2w(v,r)+ h(v)}, we can derive a feasible solution to the
problem, by dispatching one charging vehicle to charge only one of the n = |Vs|
sensors. Thus, n charging vehicles are deployed. On the other hand, assume that
there is a feasible solution C = {C1,C2, . . . ,Cp} to the problem, where p charging
vehicles are deployed to fully charge the n sensors and C j is the charging tour of
the j-th charging vehicle with 1 ≤ j ≤ p. It is obvious that WH(C j) ≤ IE for 1 ≤
j ≤ p. Consider a sensor vi ∈ Vs such that vi = argmaxv∈Vs{2w(v,r)+ h(v)}. Let
C j be the charging tour containing sensor vi in the solution. Since tour C j must
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Algorithm 5: finding the optimal number of mobile vehicles and their closed
tours (NMV without Eloss)

Input: A metric graph Gs = (Vs,Es;h,w), a root r, and IE with
IE ≥maxv∈Vs{2w(r,v)+h(v)}.

Output: p-node-disjoint closed r-rooted tours C1,C2, . . . ,Cp covering all
nodes in Vs such that WH(Ci)≤ IE.

1 Let T be an MST of Gs. Denote by W (T ) and H(T ) the total costs of the edges
and nodes in T , respectively;

2 if IE ≥ 2 ·W (T )+H(T ) then
3 One mobile vehicle suffices by Lemma 4; EXIT;;
4 end if
5 A←maxv∈Vs{2w(v,r)};
6 if IE/5≥ A then
7 δ ← IE/5; /*δ is the average subtree cost after tree decomposition*/;
8 else
9 δ ← IE−A

4 ;
10 end if
11 Perform the tree decomposition using δ . If there is a node v with h(v)> δ ,

then the node itself forms a tree;
12 Let C = {C1,C2, . . . ,Cp} be the solution by applying Algorithm 4 for the

tree decomposition on T with the given δ ;
13 return C as a solution of the problem and p = |C |.

contain sensor vi and depot r, the total cost of the tour, WH(C j), must be no less than
2w(vi,r)+ h(vi), i.e., WH(C j) ≥ 2w(vi,r)+ h(vi). Then, IE ≥ 2w(vi,r)+ h(vi) =
maxv∈Vs{2w(v,r)+h(v)}. ut

Theorem 5. Given a metric graph Gs = (Vs,Es;h,w) and the energy capacity IE
of each mobile charging vehicle with IE ≥ maxv∈Vs{2w(v,r) + h(v)}, there is an
approximation algorithm, Algorithm 5, with an approximation ratio of 8 for
the minimum number of mobile chargers deployment problem in Gs if IE ≥ 2A;
otherwise, the approximation ratio of the algorithm is 4(1 + A

hmin
) = O(1). The

algorithm takes O(|Vs|2) time, where r is the depot of charging vehicles, A =
maxv∈Vs{2w(r,v)}, and hmin = minv∈Vs{h(v)}.

Proof. We first show that Algorithm 5 can deliver a feasible solution C =
{C1,C2, . . . ,Cp}. Recall that A = maxv∈Vs{2w(v,r)}, which is the maximum energy
consumption of a charging vehicle on one round trip between a sensor v and the
depot r in the sensor network. We distinguish it into three cases.

Case 1. If IE ≥ 2 ·W (T )+H(T ), then there is a closed tour C including all nodes
in Vs derived from T and the total cost of C, WH(C) (≤ 2 ·W (T )+H(T ) ≤ IE by
Lemma 4), is no more than the energy capacity of a mobile vehicle IE. Hence, one
mobile charging vehicle suffices for charging all nodes in Vs.

Case 2. If IE/5≥ A, then δ = IE/5, and the total cost of each closed tour in the
solution is no more than 5δ = IE by Theorem 4.
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Case 3 (IE/5 < A ≤ IE). Following Algorithm 5, we set δ = IE−A
4 . Clearly,

w(v,r)≤ A/2 for any node v ∈Vs since A = maxv∈Vs{2w(r,v)}. Then, the total cost
of each closed tour C in the solution is analyzed as follows. (i) C contains only one
sensor node v ∈ Vs. The total cost of C thus is WH(C) = 2w(r,v)+ h(v) ≤ IE by
Lemma 6 and the input condition of the algorithm. (ii) C consists of multiple sensor
nodes and is derived from a tree Ti. Then, the total cost of tour C in the solution
is WH(C) ≤ 2 · (2δ +w(v0,r)) ≤ 4 · IE−A

4 + 2w(v0,r) ≤ IE −A+A = IE, where
w(v0,r) = minv∈Ti{w(v,r)} and Ti is the tree from which C is derived. Thus, the
solution is a feasible solution of the problem.

We then analyze the approximation ratio of the proposed algorithm. Assume that
the minimum vehicles needed is pmin. With a similar discussion in Theorem 4, a
lower bound on the value of pmin is

pmin ≥ d
WH(T )

IE
e. (17)

Let p be the number of vehicles delivered by the proposed algorithm. We show
the approximation ratio by the following four cases.

Case 1. If IE ≥ 2 ·W (T )+H(T ), only one mobile vehicle suffices, and this is an
optimal solution.

Case 2. If IE/5≥ A, we have δ = IE/5. Then, p
pmin
≤ bWH(T )/δc
dWH(T )/IEe ≤

WH(T )/δ

WH(T )/IE =

IE/δ = 5 by Lemma 5.
Case 3 (IE/5 < A ≤ IE/2). We have δ = IE−A

4 . Then, p
pmin
≤ bWH(T )/δc
dWH(T )/IEe =

WH(T )/δ

WH(T )/IE = IE
δ
= 4·IE

IE−A = 4
1−A/IE ≤

4
1−A/2A = 8, by Lemma 5, Eq. (17), and IE ≥ 2A.

Case 4 (IE/2 < A < IE). We have δ = IE−A
4 . Let hmin = minv∈Vs{h(v)}, which

is the minimum amount of energy for fully charging an energy-critical sensor v
in the sensor network. Then, IE ≥ maxv∈Vs{2w(r,v)+ h(v)} ≥ 2w(r,vi)+ h(vi) =
A+ h(vi) ≥ A+ hmin, where vi = argmaxv∈Vs{2w(r,v)}. The approximation ratio
for Case 4 then is p

pmin
≤ bWH(T )/δc
dWH(T )/IEe ≤

WH(T )/δ

WH(T )/IE = IE
δ

= 4·IE
IE−A = 4(1+ A

IE−A ) ≤
4(1 + A

A+hmin−A ) = 4(1 + A
hmin

) = O(1), as each of the to-be-charged sensors has
consumed a large portion of its energy already and hmin thus is proportional to the
battery capacity of each sensor, the ratio A

hmin
is usually a constant, where A is the

maximum energy consumption of a charging vehicle on one round trip between a
sensor and the depot r and hmin is the minimum amount of energy for fully charging
an energy-critical sensor. Therefore, the approximation ratio for Case 4 is a constant.
Notice that Case 4 in practice rarely happens, since the energy capacity of a charging
vehicle cannot be used just for its travel without charging sensors, or its energy is
only enough to charge one or two sensors per tour.

In summary, the approximation ratio of Algorithm 5 is no more than 8 when
IE ≥ 2A; otherwise (maxv∈Vs{2w(w,r)+ h(v)} ≤ IE < 2A), its approximation ra-
tio is 4(1+ A

hmin
) = O(1). The dominant time of Algorithm 5 is the invoking of

Algorithm 4, which takes O(|Vs|2) time by Theorem 4. ut
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5 Performance Evaluation of the Algorithms for the Service Cost
Minimization Problem

In this section, we evaluate the performance of the proposed algorithms for the ser-
vice cost minimization problem through experimental simulations. We also study
the impact of important parameters on the algorithm performance, including net-
work size, data aggregation, and the ratio of the maximum data generation rate to
the minimum data generation rate.

5.1 Simulation environment

We consider a WSN consisting of from 100 to 500 sensors in a 1,000m× 1,000m
square area, in which sensors are randomly deployed. The base station is located at
the center of the square. The battery capacity Bi of each sensor vi is 10.8 kJ [27].
The data sensing rate bi of each sensor vi is randomly chosen from an interval
[bmin,bmax], where bmin =1 kbps and bmax =10 kbps [27]. The coefficient α in
Eq. (2) is 2. Furthermore, we assume that each sensor vi performs data aggrega-
tions on both pass-by traffic and self-sensed data with a data aggregation factor θ ,
i.e., the data transmission rate bT x

i of sensor vi is bT x
i = θ · (bRx

i +bi), where bRx
i and

bi are the data reception rate and data sensing rate of sensor vi, respectively, and θ

is constant with 0 < θ ≤ 1 [14]. The default value of θ is 1.
There are 5 depots in the WSN (i.e., q = 5) and there is a mobile charger at each

depot. To reduce the total travelling distance of the q mobile chargers, one depot is
co-located with the base station, as the most energy-consuming sensors in a WSN
usually are close to the base station for relaying data from other remote sensors.
The rest of q−1 depots are randomly distributed in the area. The entire monitoring
period T is one year, which is partitioned into equal time slots with each lasting ∆T
(∆T typically is much shorter than T , e.g., ∆T is one month). We assume that the
data sensing rate bi of each sensor vi ∈V does not change within each time slot ∆T .
Even if it does change within the time slot, the difference can be neglected.

To evaluate the performance of the proposed algorithms MinDis and
MinDis-var against the state-of-the-art algorithms, we implement three bench-
mark algorithms of sensor charging Periodic [27, 30, 31, 29], OnDemand, and
Partition of [28, 41], which are described as follows. In algorithm Periodic,
the base station periodically dispatches the q mobile chargers to charge every sensor
in the network with charging period being τmin. The charging tours of the q chargers
will be found by applying Algorithm 2. In algorithm OnDemand, each sensor
sends a charging request to the base station when its residual energy is below a
given energy threshold. Having received a set of such requests, the base station then
dispatches the q mobile chargers to charge the sensors whose estimated residual life-
times are less than a given threshold ∆ l with ∆ l = τmin. The charging tours of the
q mobile chargers are finally obtained by applying Algorithm 2 for the q-rooted
TSP problem in the induced graph of the to-be-charged sensors. Finally, in algorithm
Partition, the monitoring region is divided into q subregions, in other words, the
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sensors in the network are first partitioned into q disjoint sets V1,V2, . . . ,Vq with each
set corresponding to the sensors in its subregion, where a sensor vi is contained in
set Vj if depot r j is its nearest depot among the q depots. Then, the sensors in Vj will
be charged by only the mobile charger located at depot r j, where 1 ≤ j ≤ q. Each
sensor vi ∈Vj sends a charging request to the base station when it will deplete its en-
ergy soon. Once receiving the request, the base station dispatches the mobile charger
at depot r j to charge a subset V ′j of sensors of Vj with the residual lifetime of each
sensor in V ′j being less than a given threshold ∆ l j, i.e., V ′j = {vi | vi ∈Vj, li < ∆ l j},
and the charging tour of the charger is a shortest closed tour visiting the sensors in
V ′j and depot r j, where ∆ l j=τ

j
min and τ

j
min is the shortest maximum charging cycle

of sensors in set Vj, i.e., τ
j

min=minvi∈V j{τi}.
It must be mentioned that each value in all figures is the average of the results

by applying each mentioned algorithm to 100 different network topologies with the
same network size.

5.2 Performance with fixed maximum charging cycles

We first evaluate the performance of the proposed approximation algorithm MinDis
against algorithms OnDemand, Partition, and Periodic by varying network
size n, assuming that maximum charging cycles within T are fixed. Fig. 3 shows that
the service costs delivered by algorithms MinDis, OnDemand, and Partition
are much less than that by algorithm Periodic. For example, Fig. 3 demon-
strates that the service cost by algorithm MinDis only about from 15% to 25%
of the cost by algorithm Periodic, and the costs by algorithms OnDemand and
Partition are from 19% to 28% of that by algorithm Periodic. Also, it can
be seen from Fig. 3 that the proposed algorithm MinDis delivers a solution with
the least service cost of mobile chargers, while the service costs delivered by algo-
rithms OnDemand and Partition are almost identical and the one by algorithm
OnDemand is only marginal better than that by algorithm Partition, ranging
from 0.3% to 1.5% improvement. In the following, we only compare the perfor-
mance of algorithms MinDis, OnDemand, and Partition, and omit the perfor-
mance of algorithm Periodic, since the service cost delivered by the algorithm is
much higher than that by the three algorithms.

We then examine the impact of the data aggregation factor θ on the performance
of the three algorithms, by decreasing θ from 1.0 to 0.1. Fig. 4 clearly presents that
the service costs by algorithms MinDis, OnDemand, and Partition decrease
when θ becomes smaller and the service costs by the three algorithms are almost
identical when θ = 0.1. The rationale behind the phenomenon is that the data trans-
mission rates of sensors can be greatly reduced by a small data aggregation factor θ

while the sensor energy consumption on data transmission is usually the dominant
one [14]. As a result, the maximum charging cycles of sensors becomes longer with
a smaller value of θ and the service cost of mobile chargers thus is significantly
reduced.



32 Wenzheng Xu and Weifa Liang

100 200 300 400 500
Network Size  n

0 0

1000 1000

2000 2000

3000 3000

4000 4000

5000 5000

6000 6000

7000 7000

8000 8000

S
e
rv

ic
e
 C

o
st

 (
k

m
)

MinDis
OnDemand
Partition
Periodic

Fig. 3 Performance of algorithms MinDis,
OnDemand, Partition, and Periodic by
varying the network size from 100 to 500 sen-
sors.

Fig. 4 Performance of algorithms MinDis,
OnDemand, and Partition by decreasing
the data aggregation factor θ from 1.0 to 0.1
when n = 500.
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Fig. 5 Performance of algorithms MinDis,
OnDemand, and Partition by varying the
maximum data rate bmax from 1 kbps to 10 kbps
when bmin = 1 kbps and n = 500.
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Fig. 6 Performance of algorithms
MinDis-var and OnDemand by vary-
ing the network size when ∆T is one month.

We finally study the impact of the maximum data rate bmax on the algorithm
performance, by varying bmax from 1 kbps to 10 kbps when bmin = 1 kbps. Fig. 5
demonstrates that the service cost by algorithm MinDis is only from 79% to 82%
of the service cost by algorithm OnDemand and their performance gap increases
when bmax becomes larger. Furthermore, Fig. 5 clearly shows that the service costs
by the three algorithms increase with the increase of bmax. This is because that the
energy consumption rates of sensors becomes higher when the maximum data rates
of sensors bmax increases. As a result, sensors must be charged more frequently,
which incurs more service cost of the mobile chargers.

In the following, we omit the performance of algorithm Partition, since
the service costs by algorithms OnDemand and Partition are almost identical,
which have already been shown in figures 3, 4, and 5.
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5.3 Performance with variable maximum charging cycles

We first investigate the performance of the proposed heuristic algorithm
MinDis-var against algorithm OnDemand with variable maximum charging cy-
cles. Fig. 6 and Fig. 7 illustrate the performance of both algorithms, by varying
network size n and the data aggregation factor θ , respectively. It can be seen that
algorithm MinDis-var is still very competitive as it did under fixed maximum
charging cycles.

Fig. 7 Performance of algorithms
MinDis-var and OnDemand by de-
creasing the data aggregation factor θ from 1.0
to 0.1 when ∆T is one month and n = 500.

Fig. 8 Performance of algorithms
MinDis-var and OnDemand by vary-
ing ∆T from 1 week to 10 weeks when
bmin = 1 kbps, bmax = 2 kbps, and n = 500.

We finally study the impact of the dynamics of maximum charging cycles on
the algorithm performance, by varying parameter ∆T from 1 week (i.e., extremely
dynamic) to 10 weeks (i.e., rather stable). Fig. 8 shows that the service cost by
algorithm MinDis-var decreases with the increase of the stability of the sen-
sor maximum charging cycles (a larger ∆T ), while the service cost by algorithm
OnDemand almost does not change with the increase of ∆T . We also note that al-
gorithm MinDis-var significantly outperforms algorithm OnDemand even when
the maximum charging cycles are stable only in a short time slot ∆T (e.g., ∆T =
one week), which indicates that algorithm MinDis-var can quickly adapt to the
changes of maximum charging cycles.

6 Performance Evaluation of the Algorithm for the Minimum
Number of Mobile Chargers Deployment Problem

In this section, we evaluate the performance of the proposed algorithm for the min-
imum number of mobile chargers deployment problem through experimental simu-
lations. We also investigate the impact of several important parameters on the algo-
rithm performance including the network size n, the variance of energy consumption
rates, the energy capacity IE of mobile charging vehicles, and the critical lifetime
interval parameter α .
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6.1 Simulation environment

We consider a wireless rechargeable sensor network consisting of from 100 to 500
sensors that are randomly deployed in a 500m×500m square. The battery capacity
Bi of each sensor vi ∈ Vs is set to be 10.8 kiloJoules (kJ), by referring to a regular
NiMH battery [27]. A base station is located at the center of the square, and a depot
of mobile vehicles is co-located with the base station. The energy capacity of each
mobile charging vehicle IE ranges from 1,000 kJ to 5,000 kJ. We assume that
each of them travels at a constant speed of s = 5 m/s with energy consumption
rate of η = 0.6 kJ/m [30]. The energy charging rate of each charging vehicle is
µ = 5 Watts [13]. The default value of α is 5.

We consider two different distributions of energy consumption rates of sensors:
the linear distribution and the random distribution. In the linear distribution, the en-
ergy consumption rate ρi of sensor vi is proportional to its distance to the base sta-
tion. The nearest and farthest sensors to the base station have the maximum energy
consumption rates ρmax and the minimum energy consumption rates ρmin, respec-
tively, where ρmin = 1 mJ/s and ρmax = 10 mJ/s. The linear distribution models
the energy consumptions of sensors in WSNs where the main energy consumption
of sensors is on the data transmission and relays. Sensors close to the base station
must relay the sensing data for other remote sensors, thus consuming much more
energy than the others. Furthermore, by adjusting the energy consumption ratio of
each sensor from ρmax to ρmin, this model can be used to model data aggregations
at relay sensor nodes, i.e., a smaller ratio ρmax

ρmin
implies a higher data aggregation. On

the other hand, in the random distribution, the energy consumption rate ρi of each
sensor vi ∈ Vs is randomly chosen from a value interval [ρmin,ρmax]. The random
distribution captures the energy consumption of heterogeneous sensors. For exam-
ple, video camera sensors in multimedia sensor networks typically consume plenty
of energy on image processing [3]. Thus, the energy consumption rates of sensors in
such sensor networks do not closely correlated with the distances between the sen-
sors and the base station. We further assume that the energy charging rate µ of each
mobile vehicle is several orders of magnitude of the energy depletion rate of sen-
sors, i.e., µ >> maxvi∈V{ρi}. A fully charged sensor can survive from 10 days up
to 4 months. We put one year as our monitoring period of the sensor network. Each
value in figures is the mean of the results by applying each mentioned algorithm to
50 different network topologies with the same network size.

To evaluate the performance of the proposed algorithms, we have also imple-
mented three benchmarks LB optimal, algorithm Heuristic, and algorithm
minMCP [8, 21], in which LB optimal is a lower bound on the minimum number
of mobile chargers which is an approximate estimation of the optimal solution,i.e.,
LB optimal = dWH(T )/IEe by Eq. (17), where WH(T ) is the total cost of the
MST T of the metric graph Gs induced by the to-be-charged sensors, and IE is
the energy capacity of each mobile charging vehicle. Algorithm Heuristic is
described as follows. Given n to-be-charged sensors v1,v2, . . . ,vn indexed by their
appearance in the area, we assume that the depot is the origin, and index the sensors
in anti-clockwise order. Algorithm Heuristic assigns the vehicles to the sensors
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one by one until all sensors are charged. Specifically, assume that the first K−1 mo-
bile vehicles have been assigned to sensors v1,v2, . . . ,vi−1 already. We now assign
the Kth mobile vehicle to charge the sensors in the sequence vi,vi+1, . . . ,vn. Initially,
K = 1 and i = 1. The set of sensors charged by vehicle K will be vi,vi+1, . . . ,v j if the
total cost of a shortest closed tour CK including depot r and sensors vi,vi+1, . . . ,v j
is no more than the energy capacity IE while the total cost of a shortest closed
tour C′K including depot r and sensors vi,vi+1, . . . ,v j,v j+1 is larger than IE, i.e.,
WH(CK)≤ IE and WH(C′K)> IE, where i≤ j ≤ n. This procedure continues until
all n sensors are charged.

To compare our work with the two closely related works [21, 8], we adopt a
variant of algorithm minMCP in [21, 8] since the total energy consumption of some
of the closed tours delivered by their algorithms may violate the energy capacity
constraint IE, and the amount of energy consumed on each such a tour can be up
to IE(1+ ε) with ε > 0 being a constant. To ensure that the energy consumption of
any charging tour is no greater than the energy capacity IE of each mobile vehicle
when applying algorithm minMCP, we set the energy capacity of mobile vehicles as

IE
1+ε

when invoking the algorithm. Thus, the total energy consumption of a charging
vehicle per tour will be no more than IE

1+ε
· (1+ ε) = IE, and we set ε = 0.1 in all

our experiments in the default setting.

6.2 Performance evaluation of algorithms

We evaluate the performance of algorithms NMV without Eloss,
NMV with Eloss, Heuristic and minMCP as follows, where algorithm
NMV without Eloss does not take into account the sensor energy consumption
during each charging tour, while algorithm NMV with Eloss does take such sen-
sor energy consumption into consideration.

We first evaluate the performance of algorithms NMV without Eloss,
Heuristic, and minMCP under the assumption that sensor energy consumption
rates follow linear and random distributions, by varying the network size from 100
to 500 sensors. Fig. 9(a) plots their performance curves, from which it can be seen
that the solution delivered by algorithm NMV without Eloss is fractional of the
optimal one. Specifically, the number of mobile vehicles delivered by it is around
35% more than the lower bound LP optimal, while the number of mobile vehicles
by it is about 20% and 45% less than that by algorithms Heuristic and minMCP,
respectively. The rationale behind is as follows. Given a set of to-be-charged sen-
sors, algorithm Heuristic first sorts the sensors in anti-clockwise order, where
the depot is the origin. The algorithm then assigns the mobile vehicles to sensors
one by one until all sensors are charged. There may be some cases that some sensors
charged by a mobile charging vehicle are far away from each other. Then, the charg-
ing vehicle consumes more energy on traveling, rather than on charging the sensors.
As a result, more charging vehicles are needed. In contrast, the proposed algorithm
NMV without Eloss will schedule a mobile charging vehicle to replenish a set
of sensors whose locations are close to each other. Therefore, less charging vehicles
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are required. Fig. 9(b) indicates that the four algorithms have the similar behaviors
under both linear and random distributions of energy consumption rates.
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(a) The linear distribution
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(b) The random distribution

Fig. 9 Performance of algorithms NMV without Eloss, Heuristic, and minMCP by vary-
ing network size under two different distributions of energy consumption rates when IE =
1,000 kJ, ρmin = 1 mJ/s, and ρmax = 10 mJ/s.

We then study the impact of the energy capacity of mobile charging vehicle
IE on the performance of algorithms NMV without Eloss, Heuristic, and
minMCP by varying IE from 1,000 kJ to 5,000 kJ. Fig. 10 shows that with
the growth of the energy capacity IE, the number of mobile charging vehicles
delivered by algorithm NMV without Eloss decreases, and the gap between
the solution and the lower bound of the optimal solution becomes smaller and
smaller, which implies that the performance of algorithm NMV without Eloss
is near-optimal. On the other hand, the number of vehicles delivered by algorithm
NMV without Eloss is up to 50% less than that by algorithm Heuristic.

We finally investigate the impact of the variance among energy consumption rates
of sensors on the performance of algorithms NMV without Eloss, Heuristic,
and minMCP, by varying ρmax from 1 mJ/s to 10 mJ/s while fixing ρmin at 1 mJ/s.
Fig. 11 indicates that the number of mobile vehicles needed by each of the three
algorithms NMV without Eloss, Heuristic, and minMCP decreases, fol-
lowed by slowly growing. The rationale behind is that when the variance is quite
small (i.e., the gap between ρmax and ρmin is small), the solution delivered by al-
gorithm NMV without Eloss will include almost all sensors in each charging
round, thus, a large number of mobile vehicles are required. With the increase
on the variance, the number of to-be-charged sensors in each charging round sig-
nificantly decreases. On the other hand, when the maximum energy consumption
rate ρmax becomes large, the average energy depletion rate of the sensors will be
faster, the solution by algorithm NMV without Eloss will include more sen-
sors to be charged per charging round as more sensors are within their critical life-
times. In the following, we do not compare the performance of algorithm minMCP,
since its performance is the worst one among the four algorithms LB optimal,



Title Suppressed Due to Excessive Length 37

NMV without Eloss, Heuristic, and minMCP, which has been shown in
Fig. 9–Fig. 11.
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Fig. 10 Performance of algorithms
NMV without Eloss, Heuristic,
and minMCP by varying the energy capacity
of each mobile vehicle IE when n = 200,
ρmin = 1 mJ/s, and ρmax = 10 mJ/s.

Fig. 11 Performance of algorithms
NMV without Eloss, Heuristic,
and minMCP by varying the maximum
energy consumption rate ρmax from 1 mJ/s to
10 mJ/s when n = 200, IE = 1,000 kJ, and
ρmin = 1 mJ/s.

6.3 The impact of α on algorithmic performance

Fig. 12 Performance of algorithms NMV without Eloss and Heuristic by varying α when
n = 200, IE = 1,000 kJ, ρmin = 50 mJ/s, and ρmax = 100 mJ/s.

We now evaluate the impact of critical lifetime interval parameter α on the per-
formance of the proposed algorithms by varying the value of α from 1 to 7. A
smaller α implies that more frequent schedulings are needed, and less numbers
of mobile vehicles are employed per charging round. With the growth of α , more
and more sensors will be included in Vs, and more sensors will be charged by mo-
bile charging vehicles per charging round. Fig. 12 implies that with the growth of
α , more charging vehicles are needed by algorithms NMV without Eloss and
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Heuristic in each charging round, as more sensor nodes fall in the defined crit-
ical lifetime interval. However, it is interesting to see that no more mobile vehicles
are required when the value of α is greater than 6, since all sensors will be charged
in each charging round.

7 Conclusions

In this chapter we studied the use of multiple mobile chargers to charge sensors in
a wireless sensor network so that none of the sensors will run out of energy for a
given monitoring period, for which we first formulated the novel service cost mini-
mization problem of finding a series of charging schedulings of mobile chargers so
that the total travelling distance of the mobile chargers for the monitoring period is
minimized, and the problem of using the minimum number of mobile chargers to
charge sensors such that none of the sensors will run out of energy, subject to the
energy capacity constraint imposed on each mobile charger, while maintaining the
perpetual operations of sensors. As these optimization problems are NP-hard, we
then devised an approximation algorithm for the service cost minimization problem
with a provable approximation ratio if the maximum charging cycle of each sensor
is fixed in the given monitoring period. Otherwise, we developed a novel heuristic
solution through modifications to the approximate solution. We further devised an
approximation algorithm for the minimum number of mobile chargers deployment
problem with a provable performance guarantee. We finally evaluated the perfor-
mance of the proposed algorithms through extensive experimental simulations, and
experimental results showed that the proposed algorithms are very promising, and
the solutions obtained are fractional of the optimal ones.
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