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Abstract—Cooperative communication effectively enhances the
channel capacity of wireless networks by allowing some single-
antenna nodes to relay data for other nodes. In such a com-
munication scheme, choosing appropriate relay nodes is critical
to maximize the overall network performance. In this paper, we
consider the assignment problem of relay nodes in a coopera-
tive wireless network, where physical relay infrastructures and
relay supporting services (relay assignment) are independently
operated by different selfish entities, each of which is driven by
its own benefit. We first formulate the problem as a repeated
double auction by taking into account the benefits of all entities
in the system. That is, we consider a system consisting of a set
of source-to-destination pairs, relay nodes, group agents, and the
auctioneer, where source nodes are grouped into different groups
and each group is represented by a group agent. The source
nodes and group agents seek opportunities to maximize their own
benefits through untruthful bidding, colluding with each other,
and so on. We then show that these behaviors will jeopardize the
social benefit of all entities in the system. To mitigate the effect of
such behaviors, we devise a truthful repeated double auction that
is able to bound the collusion probability of each entity. We finally
conduct experiments by simulations to evaluate the performance
of the proposed auction mechanism. Empirical results show that
the proposed auction is effective in collusion-resistance with
bounded collusion probabilities. To our best knowledge, this is
the first auction mechanism for relay assignment in wireless
networks that is truthful, collusion-resistant, budget-balance and
individual-rational.

Index Terms—Cooperative wireless communications; relay
assignment; game theory; repeated double auction; collusion
resistance.

I. INTRODUCTION

W IRELESS channels often suffer from time-varying
fading caused by multi-path propagation and Doppler

shifts, resulting in significant performance degradation. Re-
cently, one important technique that exploits spatial diversity
achieved by employing multiple transceiver antennas has been
shown to be very effective in coping with channel fadings.
However, in reality equipping each wireless node with multi-
ple antennas may not be feasible, as the footprints of multiple
antennas may not fit in the wireless node. To enhance spatial
diversities among wireless nodes, cooperative communica-
tions, having each node equipped with a single antenna and
exploiting the spatial diversity via antennas of some relay
nodes, have exhibited great potentials in the improvement of
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both data rates and qualities [9]. Various types of networks
particularly the mobile cellular networks are hungering for
high-rate and quality-guaranteed communication techniques to
cater ever increasing demands of multimedia data services.
However, deploying more communication infrastructures (base
stations) to existing 3G/4G wireless networks has been shown
to be very costly and thus is not be applicable to small
cell phone carriers. In contrast, cooperative communication
technology does not require adding any extra infrastructures
into existing networks but offers great flexibilities. With the
cooperative communication, cell phone carriers can economi-
cally enhance their network coverage and data rates by leasing
their infrastructures from other carriers.

The main obstacle to applying cooperative communications
to wireless cellular networks is the lack of incentives from
wireless nodes to relay data for others. Most existing studies
focused on devising auction mechanisms to incentive wireless
nodes to relay data for other nodes [22], [26]. These mech-
anisms jointly consider the benefits of sellers (relay-holding
carriers) and buyers (relay-requesting carriers) by assuming
that the auctioneers are willing to participate if their budgets
are well balanced (always being non-negative). However, in
realistic cellular networks, the auctioneers usually hope to
maximize their budgets since they are independent entities
that provide marketing and billing services (relay assignment
auctions) for infrastructure carriers. For example, according
to a report by Australian Communications and Media Author-
ity [1], all three major cell phone carriers Telstra, Optus and
Vodafone in Australia have their own Mobile Virtual Network
Operators. They are the independent entities operating mar-
keting and billing services on the behalf of three of them to
maximize their own benefits. These mentioned mechanisms
thus may not always be applicable to the scenarios where
the auctioneer is rational. This raises an important question,
how to give each selfish entity an incentive to encourage it to
participate in the trading while considering the revenue of the
auctioneer. The incentive compatible double auction [2] is an
appropriate mechanism to address this question, as it considers
not only the revenues of buyers and sellers but also the revenue
of the auctioneer, which is referred to as ’the social-welfare’
of the system in this paper.

Since all participating entities in the system are selfish, each
aims to maximize its own benefit through strategically manip-
ulating its own bid or forming collusion groups to manipulate
the auction. The negative effects of such manipulations are that
the benefits of the sellers and the auctioneer will be ruined,
thereby reducing their willingness to participate the auction.
Therefore, designing an auction for relay assignment to resist
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such a revenue-jeopardizing manipulation poses two important
challenges: one is truthfulness, which intuitively means that
reporting true valuation as a bid is a dominant strategy for all
participants. Another is collusion-resistance, which means that
manipulating the auction through forming collusion groups
is prohibited. In this paper we aim to design a truthful and
collusion-resistant auction for relay assignment.

The main contributions of this paper are as follows. We first
propose a two-phase auction model for the relay assignment
problem in cooperative wireless networks. We then devise a
repeated multi-heterogeneous-item double auction by jointly
considering the benefit of each entity in the system. We
analytically show that the proposed auction is truthful, and
has a promising probability lower bound on the number of col-
luding agents. We finally conduct experiments by simulations
to evaluate the performance of the proposed repeated double
auction, and the results demonstrate that the proposed auction
is very promising in terms of social-welfare and network
capacity.

The remainder of the paper is organized as follows. We
first summarize literatures on relay assignment in Section II.
We then introduce the network model, the auction model, and
a motivation example to demonstrate the need of collusion-
resistant auctions in Section III. We thirdly devise a novel,
repeated double auction and analyze its economic properties
in Section IV. We finally present the numerical results and
conclude in Sections V and VI.

II. RELATED WORK

Since the initialization of three-terminal cooperative channel
model in [11], lots of efforts have been taken in the research
of wireless cooperative networks [3], [6], [9], [18], [19],
[27], [29]. A non-negligible portion of these studies focus
on the problem of relay assignment in wireless cooperative
networks. For example, Shi et al. [18] studied the relay
assignment problem by developing an Optimal Relay Assign-
ment algorithm (ORA) through adopting a ‘linear marking’
mechanism. Yang et al. [27] considered maximizing the total
channel capacity of source nodes in a cooperative wireless
network where nodes transmit their data through orthogonal
channels (OFDMA) to mitigate channel interference effects.
They reduced the Relay Assignment Problem (RAP) to the
Maximum Weighted Bipartite Matching (MWBM) problem.
Zhang et al. [29] aim to minimize channel interferences and
maximize average channel capacities in the relay assignment
problem through migrating interferences in transmissions from
relays to destinations. They assume that interference only
occurs in links between relay nodes and destination nodes.

Relay nodes are usually reluctant to relay data for other
nodes, since they need to consume their own energy and
other resources. Therefore, several studies focus on design-
ing methodologies that stimulate nodes to serve as relay
nodes. For example, Shastry et al. [17] addressed the issue
of stimulating cooperative diversity in cooperative wireless
networks by proposing a pricing game that converges to
a Nash Equilibrium. Wang et al. [22] devised a two-level
Stackelberg game by jointly considering the utilities of selfish
buyers and sellers. In the top level, source nodes as the

buyers aim to maximize their utilities, while in the bottom
level, the power allocation of source nodes is determined.
Ren et al. [14] considered a cooperative wireless network
consisting of multiple source-destination pairs and a single
relay node. They designed a compensation framework to
provide incentives to relay nodes to relay data for others.
However, they only considered one relay node which seems
not be applicable to multiple relay nodes. Yang et al. [28]
introduced the ’virtual currency’ concept to encourage relay
nodes to promote the system performance by providing the
incentives, or to punish the relay nodes when they are reducing
the system performance. Huang et al. [8] investigated the
relay assignment problem by incorporating fairness and energy
efficiency. A truthful relay assignment auction, TASC, is
devised in [26]. They successfully applied the McAfee double
auction for relay assignment problem, by incorporating an
optimal pre-allocation method while meeting the truthfulness.

Auction-based mechanisms perform very well in wireless
cooperative networks as surveyed by the mentioned stud-
ies [8], [14], [17], [22], [25], [26], [28]. However, to ap-
ply auction-based incentive mechanisms to realistic wireless
cooperative networks, we also need to consider revenues of
auctioneers who are selfish entities and provide relay assign-
ment services for relay nodes. Unfortunately little attention
to this important issue has been addressed, and none of
these mentioned studies jointly considered the revenues of
all participating entities including the auctioneers. In addition,
if collusion-resistance must be enforced, the existing auction
mechanisms may not meet this property. In contrast, in this
paper we consider applying repeated double auctions to the
relay assignment problem. Such auctions guarantee not only
truthfulness but also collusion-resistance.

There are various collusion patterns in double auctions
including buyer-seller collusions, auctioneer-seller collusions,
auctioneer-buyer collusions, auctioneer-auctioneer collusions,
seller-seller collusions, and buyer-buyer collusions. However,
some of these patterns will not occur in relay assignment
auctions for wireless cooperative networks. The reasoning is
as follows. (i) If collusions between buyers (source nodes)
and sellers (relay nodes) do occur, this implies that the
auctioneer fails to fulfill the asks of sellers. Then, the sellers
may conduct the relay assignment auctions among themselves.
As a result, the problem of concern is reduced to the relay
assignment problem in [8], [14], [17], [22], [26], [27], [28].
(ii) If collusions between auctioneers and sellers occur, the
auctioneers and the sellers may form illegal agreements by
raising relay capacity prices, which can happen only when
the buyers cannot evaluate the relay capacity. However, the
channel capacity of relay nodes in wireless cooperative net-
works can be properly evaluated. (iii) If the final trading
prices are determined by the bids of buyers only, collusions
between auctioneers and buyers will happen. In this paper,
such collusions will be considered as trading prices in double
auctions are jointly determined by bids and asks. (iv) If
collusions among sellers occur, such collusions are referred
to as oligopoly in economics, and pricing will be the major
concern, which is out the scope of this paper. (v) As we assume
only a single auctioneer available, there is no need to consider
the collusions among auctioneers.
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In this paper, we focus on buyer-buyer collusions, where
buyers (group agents and source nodes) strategically form
illegal groups to promote their revenues. This pattern of
collusion can be further classified into the bidding ring collu-
sion, the loser collusion, and the sublease collusion [7]. The
bidding ring collusion can be avoided by setting a reserve
price [26]. The pre-condition for the sublease collusion is that
all products should be sub-leasable. That is why the sublease
collusion is prevalent in spectrum auctions [24]. However, in
cooperative communications, relay nodes are not sub-leasable,
because relaying data needs the cooperation of relay nodes
(overhearing) while a relay node can prohibit sub-leasing of its
relaying services by refusing overhearing. We therefore only
consider the loser collusion, where the losers in an auction
seek chances to collude with others to promote their revenues.

III. SYSTEM MODEL AND PROBLEM DEFINITION

A. Network model

We consider cooperative wireless networks consisting of
sets of source nodes S = {si | 1 ≤ i ≤ N}, relay nodes R =
{rj | 1 ≤ j ≤ J}, and destination nodes D = {di | 1 ≤ i ≤
N}. In such networks, relay nodes enhance communications
between source nodes and destinations by overhearing source
nodes and transmitting overheard data to their destinations.
To enhance the overheard data, they may adopt different
modes, Amplify-and-Forward (AF) and Decode-and-Forward
(DF) [11]. A typical cooperative communication (CC) mech-
anism in cooperative wireless networks proceeds in a frame-
by-frame fashion, assuming time is divided into equal time
frames and each time frame t is further divided into two time
slots. That is, a source node transmits its data in the first time
slot of each frame, and a relay node overhears the transmission
due to the broadcast nature of wireless communication. The
relay node then transmits the data to a destination node in
the second time slot of each time frame, as illustrated by
Fig. 1(a). However, such mechanism reduces the throughput of
cooperative wireless networks greatly, since source nodes lose
a lot of transmission opportunities by allowing relay nodes to
transmit right after each transmission of source nodes [16].
Network coding technique (NC) has potential to further en-
hance the network throughput by reducing wasted chances
of source-node transmissions [16]. Specifically, each relay
node temporarily stores overheard data from multiple source
nodes first, and then encodes all the overheard data before
broadcasting them to the destination nodes. An example is
shown in Fig. 1(b), where source nodes s0 and s1 transfer their
data in the first 2 time slots, and then relay node r1 broadcasts
encoded and enhanced data to destination nodes at time slot 3.
Thus, only three time slots are needed. In contrast, if adopting
traditional frame-by-frame fashion without network coding, it
needs four time slots as shown in Fig. 1(a). Motivated by this
scenario, we assume that source nodes are divided into groups,
and each group is assigned with a single relay node. Denote
by G = {gk | 1 ≤ k ≤ K} and |gk| the set of groups and
the number of source nodes in each group gk, respectively.
Clearly, K ≤ N . It must be mentioned that session grouping
of cooperative communications with network coding is out
the scope of this paper, we thus assume grouping information
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Fig. 1. Cooperative communications in cooperative wireless networks.

of source nodes are given a prior, and can be obtained by
applying existing grouping methods in [4], [13], [15].

In the following, we define the channel capacity of coop-
erative communications. Given the transmission power Psi

of source node si, the SNR at destination node di [21] is
SNRsi,di = Psi/(Ndi · ||si, di||α), where Ndi is the white
noise at node di and α is the path loss factor of wireless
channels which is a constant between 2 and 4, and ||si, di|| is
the Euclidean distance between si and di.

We adopt the cooperative communication model with ana-
log network coding [16], where each group of source nodes
is assigned a single relay node. Denote by W the amount of
bandwidth a relay node can utilize. Let Nrj be the white noise
at relay node rj . Given the transmission power Prj of relay
node rj , the channel capacity from source node si ∈ gk to
destination node di through relay node rj can be calculated
by a simplified channel capacity model in [16] as follows.

C(si, rj , di) =
W

|gk|+ 1
log2

(
1 + SNRsi,di+

SNRsi,rj · SNRrj,di

|gk|σ + SNRrj,di + σ
∑

si∈gk
SNRsi,rj

)
,

(1)

where σ = 1 +
(|gk|−1)Nrj

α2
r

Ndi
+ (|gk| − 1)α2

r

with α2
r =

Prj

|gk|Nrj
+
∑

s
i′∈gk

Ps
i′

.

B. Auction model

Double auctions have a wide application in economics to
jointly fulfill the needs of buyers and sellers [10]. Each buyer
submits a bid and each seller offers an ask. The auctioneer
in a double auction will clear the market ultimately. Items
for such auctions usually are homogeneous [10]. This type
of auctions have been successfully applied to cooperative
communications by adding the support for heterogeneous
relay services [27]. In such applications, source nodes and
relay nodes are considered as buyers and sellers, respectively.
Source nodes (relay nodes) directly submit their bids (asks)
to an auctioneer. The auctioneer first decides a matching of
source-node bids and relay-node asks, which maximizes the
total capacity achieved. It then decides the winning source
and relay nodes by a similar method used in McAfee double
auctions [10]. However, within our model source nodes are
partitioned into different groups. Each group will be assigned
a single relay node. Due to heterogeneous relaying services
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of relay nodes, source nodes in each group usually have
different preferences in the choice of relay nodes. To model
the differences, we assume that each group is represented by
a group agent that makes decisions in representation of the
source nodes in the group.

With a little abuse of notations, we also use G = {gk | 1 ≤
k ≤ K} to denote the set of group agents. Instead of directly
submitting bids to the auctioneer, each source node si ∈ gk
in our auction model submits its bids for relay nodes to its
group agent gk. Group agent gk then participates in the double
auction to complete relay nodes for its group members by
recalculating and submitting bids to the auctioneer, and it is
allowed to charge a feasible amount from its source nodes
as its return of serving as a representative. In addition, the
relay quality and data transmission requirements of the source
nodes vary over time. Relay nodes are typically allocated to
groups of source nodes dynamically. Therefore, we assume
that double auctions are repeatedly carried out in the beginning
of each time frame t. Transmissions from source nodes to
destination nodes occur in the rest time slots of the time frame.
A similar model assumption like this with a different appli-
cation scenario has also been adopted in [5]. This assumption
is based on the fact that auction mechanisms usually incur
less communication overheads than that of source-node data
transmissions. However, source-node data transmissions after
each auction may be reduced when the number of source
nodes in each group is quite large. To avoid this transmission
reduction, one approach is to restrict the number of source
nodes in each group. In addition, we also assume that the
‘fluctuation’ of the value of each relay node from the current
time frame to the next one can be learned by various prediction
methods [20], [5]. In an auction, each bidder only knows its
own bid but nothing of the bids and the asks. In the end of
each auction, the auctioneer only reveals the winner identities
and payments not their exact bids.

To be specific, we now elaborate on each double auction
carried out at the beginning of each time frame t. In the
beginning of each auction, each source node si calculates a
bid for each relay node based on its valuation on the relay
node, and submits its bids for all relay nodes to its group
agent. Let bi(t) = {bi,j(t) | 1 ≤ j ≤ J} be the bid set
of source node si, where bi,j(t) is the bid of source node
si for relay node rj at time frame t. To calculate bi,j(t),
source nodes usually consider the achieved channel capacity
by rj as an important metric, as a higher channel capacity
implies a larger system throughput and a higher channel
reliability. The true valuation on relay node rj by si thus
is defined as v(si, rj , t) = C(si, rj , di). Then, the bid of si
for rj is calculated by bi,j(t) = βi · v(si, rj , t), where βi

is a private value representing the preference of si on the
channel capacity, which is a constant with βi > 0. Notice
that, in truthful auctions, βi = 1, meaning that the bid of
si equals its real valuation, i.e., bi,j(t) = v(si, rj , t). Let
pi(t) denote the payment by source node si to its group
agent gk for the achieved network capacity at time frame
t. Thus, the utility of source node si can be represented
by u(si) = v(si, rj , t) − pi(t), which is the gross benefit
(valuations on the relay nodes) taken out its payment.

Having received the bids from its members, a group agent

gk then calculates its bid set Bk(t) = {Bk,j(t) | 1 ≤ j ≤ J},
where Bk,j(t) is the bid of gk for relay node rj at time frame
t. We here calculate Bk,j(t) based on all the bids of source
nodes in gk for rj , {bi(t) | si ∈ gk}, by adopting a truthful
group winner selection of [23], which will be described later.
Having been decided by the auctioneer, winning group agents
will pay for the relay service. Let pk(t) denote the payment
by a wining group agent gk to the auctioneer at time frame t,
the budget of gk at time frame t is defined as

Ψgk(t) =
∑

si∈Swin
gk

(t)

pi(t)− pk(t), (2)

where Swin
gk

(t) is the set of winning source nodes in group gk
at time frame t.

Each relay node rj has an ask for its relaying service. Let
Aj(t) be the ask of relay node rj , and p

rj
a (t) the payment

received by rj from its clients at time frame t. The social
welfare that the auctioneer aims to maximize for a time period
starting from the very first time frame and ending at the last
time frame t thus is

V (t) =

t∑
τ=0

(
∑

gk∈Gwin(τ)

pk(t)−
∑

rj∈Rwin(τ)

prja (t)), (3)

where Gwin(τ) ⊆ G and Rwin(τ) ⊆ R denote the sets
of winning group agents and relay nodes at time frame τ ,
respectively. Then, Gwin(τ) = Rwin(τ), as each relay node is
assigned to a single group agent only. Therefore, to maximize
V (t), the auctioneer first needs to maximize the number of
trading pairs of relay nodes and group agents. Assuming that
there are abundant relay nodes in the system, the auctioneer
only needs to guarantee the number of participating group
agents by making their budgets non-negative. Also, a larger
pk(t) of group agent gk can lead to a larger V (t). To increase
pk(t) is to increase the bids of source nodes in group gk, as
pk(t) is related to the bids of the source nodes. As a result,
the expected revenues of source nodes need to be guaranteed,
otherwise less and less source nodes are willing to participate
the auction.

To decide Gwin(t) ⊆ G and Rwin(t) ⊆ R at time frame t,
the auctioneer firstly performs a maximum weight matching
between group agents and relay nodes due to the heterogeneity
of relay services offered by relay nodes [27]. The weight
assigned to an edge between a buyer and a seller is the bid
of the buyer for the seller product. Denote by a bijective
function A(∗) of asks and bids to represent the maximum
matching. For example, if the buyer with bid Bi,j(t) and the
seller with ask Aj(t) is matched, then Aj(t) = A(Bi,j(t)) and
Bi,j(t) = A(Aj(t)). Matching A(∗) here aims to maximize
the total bids of all group agents. It is equivalent to maximizing
the channel capacity since bids of group agents is proportional
to the channel capacity by definition. Then, the auctioneer
decides the winning pairs of matched group agents and relay
nodes in A(∗).

C. Economic properties

The economic properties of an auction determine the auc-
tion efficiency. Collusion-resistance is one of such properties
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that do not allow agents to collude with each other, since in
some scenarios agents can form coalitions with each other
to promote their own revenues through paying the cooperat-
ing agents ‘side payments’ as a return. To make collusion-
resistance tractable, we assume that all buyers (source nodes
and group agents) are ε-greedy [20]. That is, with probability
w · ε, a group agent or a source node seeks to form collusion
groups with others to promote its revenue, where w is the
unfulfilled percentage of the expected revenue of the buyer and
ε is a given threshold. A buyer thus would not collude with
others either passively or actively when its expected revenue
is fully satisfied, i.e., w = 0. The rationale behind is that
each source node needs to find a relay node to relay its data
through a bid for each relay node. Such a bid, in some extent,
represents the expected revenue (channel capacity) that can
be achieved by a relay node. If one of its bids is accepted
by the auctioneer, the source node (the buyer) is assigned the
relay node that it bids for. It thus will not seek to collude
with others. For each group agent, in real implementations
of our model, it can be a source node with the least (or no)
data relaying needs. Such a source node voluntarily serves as
the group agent, expecting to achieve some revenues. We thus
assume that each group agent will not actively manipulate the
auction as long as its expected revenue is fulfilled.

Let Pr(si, t) and Pr(gk, t) be the probabilities that source
node si and group agent gk collude with other entities in the
system at time frame t. Intuitively, if the expected revenue
of a source node or a group agent can be fulfilled to some
extent by providing some incentives, its collusion probability
can be reduced accordingly even if it is a loser. Let Isi(t)
and Igk(t) denote the amounts of incentives for losing source
node si and group agent gk in the auction at time frame t,
respectively. Suppose relay node rj is matched to group agent
gk by matching A. Then, the collusion probabilities of each
source node si and each group agent gk can be calculated as
follows.

Pr(si, t) = wi · ε = [bi,j(t)− Isi(t)]
+

bi,j(t)
· ε, (4)

and

Pr(gk, t) = wk · ε = [(Bk,j(t)−A(Bk,j(t))) − Igk(t)]
+

Bk,j(t)−A(Bk,j(t))
· ε,
(5)

where [x−y]+ is x−y if it is not negative, and zero otherwise.
By equations (4) and (5), to achieve collusion resistance,

the auctioneer has to fulfil the expected revenue by each
loser. However, by doing so the auctioneer will not have a
balanced budget. Thus, if the collusion is unavoidable, the only
thing that the auctioneer can do is to minimize the collusion
chances. A cost-effective method thus is to limit the number of
colluding agents under a pre-defined threshold. A number that
exceeds this threshold may make relay nodes more reluctant
to relay data for others, and group agents refuse to serve as
the representatives of their group members. Let Nc denote the
pre-defined threshold and κ the percentage that the number of
colluding agents exceeds the threshold, the collusion resistance
is then defined as follows.

Definition 1: An auction is a (Nc, κ, p)-collusion-resistant
auction when the probability that the number of colluding

TABLE I
GROUP BIDS AT TIME FRAME t

r1 r2 r3 r4 r5 r6 r7
B1(t) 10 0 0 3 0 0 0
B2(t) 0 0 2 4 3 0 8
B3(t) 6 0 0 4 0 0 0
B4(t) 0 2 0 10 4 6 0
B5(t) 0 0 8 0 0 9 4

group agents X exceeds a given threshold Nc by κ percentage
is bounded by probability p, i.e., Pr[X ≥ (1 + κ)Nc] ≤ p.
Note that when Nc = 0, κ = 0 and p = 0, the auction becomes
ideal, and no group agents collude with each other.

In addition to collusion-resistance, truthfulness, budget bal-
ance and individual rationality are also important properties
of an auction, as described in the following.

• Truthfulness implies that the dominant strategy of each
agent is to submit truthful valuations of the products. It
can be achieved by unrelated bids of participating agents
to their payments.

• Budget Balance means that the total payment received
from the buyers is no less than the total payment to the
sellers in an auction.

• Individual Rationality means that no winning buyer will
be charged more than its bid, and no winning seller will
be paid less than its ask.

D. An example of collusion resistance

Collusions among entities in a system can cause a great loss
of social welfare of the system. We here use an example to
demonstrate the necessity of collusion resistance in the auction
design for relay assignment. For the sake of clarity, in our
examples we assume that the fluctuation of values of relay
nodes between two consecutive time frames is zero. Consider
a scenario where there are seven relay nodes, R = {rj | 1 ≤
j ≤ 7}, and source nodes are divided into five groups, G =
{gk | 1 ≤ k ≤ 5}. Within each group, the source node with
the lowest bid is sacrificed (considered as a loser), and its bid
equals to the payment of each of the rest source nodes. Then,
given the bid set bi(t) of each source node si in group gk, the
group bid Bk,j is Bk,j = min{bi(t)} · (|bi(t)|−1). We do not
discriminate the payments of source nodes, and all winning
source nodes in each group gk have identical payments.

Given group bids at time frame t, Table I shows the
optimal relay assignment based on the maximum weight
matching [27]. It can be seen that r1 is the best choice for both
g1 and g3, and there may exist some ‘side payments’ exchange
between them in order to maximize their own revenues.

To take a deep insight on this collusion, we first list the
bids of source nodes in group g1 and g3 at time frame t in
Table II, where both g1 and g3 are competing for r1, and g1
succeeds. Let lki be the source node si that loses the auction
in group gk. Following Table I, group agent g3 has not been
assigned relay node r1 at time frame t. Thus, it may send a
side payment to lure the loser l16 in group g1 to lower its bid.
If loser l16 agrees to form a collusion group with g3, it will
consequently leads to the loss of g1 at time frame t + 1. It
must be mentioned that loser l16 has a high probability to form
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TABLE II
THE BIDS OF si ∈ g1 FOR RELAY NODE r1 , AND si ∈ g5 FOR RELAY NODE

r5 AT TIME FRAME t.

b1,1 b2,1 b3,1 b4,1 b5,1 b6,1 b7,1
bi,1, si ∈ g1 3 4 9 7 8 2 0
bi,1, si ∈ g3 5 6 4 2 0 0 0

TABLE III
GROUP BIDS AT TIME FRAME t+ 1

r1 r2 r3 r4 r5 r6 r7
B1(t + 1) 5 0 0 3 0 0 0
B2(t + 1) 0 0 2 4 3 0 8
B3(t + 1) 6 0 0 4 0 0 0
B4(t + 1) 0 2 0 10 4 6 0
B5(t + 1) 0 0 8 0 0 9 4

Aj :

B4,4 :13.5B1,2 :14 B3,3 :6 B6,5 :5B2,1 :8B5,1 :9

Aj:

r1

1

r2

3

r3

4

r4

6

9

7

r r5

8

3g

B1,2 :14 B4,4 :13.5 B5,1 :9 B2,1 :8 B6,5 :5B3,3 :7+e(6)

1g 4g 5g 2g 6g

4 g5 g2 g3 g61g g

r1 r2 r3 r4 r9 r5

1 3 4 6 7 8

4 3g  colludes with g   to bring   r   in4

Fig. 2. An example of collusion among group agents.

such collusion groups when it is unable to increase its bid in
time frame t+ 1.

For example, if the bids of source nodes in g1 for relay
node r1 are changed to bi,1(t+ 1) = {3, 4, 9, 7, 8, 1, 0}, with
i ∈ [1, 7]. The group bid B1,1(t+1) = min{ bi,1(t+1) | si ∈
g1} · (|g1| − 1) = 5. The optimal assignment matrix at time
frame t + 1 is shown in Table III. As a result, though these
colluding source nodes (nodes in g3 and l16) achieved their own
benefits, the sum of bids received by all relay nodes decrease
by 4 (from 37 to 33).

However, this is not yet the whole story of collusions if
the group agents are also ε-greedy. Fig. 2 is an example of
collusion between two group agents. In this example, the value
above each group agent is its bid, while the value below each
relay node is its ask. The auctioneer first matches relay nodes
and group agents according to the optimal relay assignment
in [27]. The matched bids and asks are then sorted in non-
decreasing and non-increasing orders, respectively. Let x be
the largest index in the sorted sequence satisfying Bx > Ax,
then the relay node with ask Ax and the group agent with bid
Bx will be sacrificed in this round auction. The winners are
these relay nodes whose asks are lower than Ax, while the
winning group agents are those ones whose bids are higher
than Bx according to McAfee double auction [10], [27]. The

payments by the winners are Ax and Bx, respectively. As
illustrated in the top relay assignment of Fig. 2, the sacrificed
ones are g4 and r4 (x = 4). Since g4 does not receive its
expected revenue, it may collude with g3 by luring g3 to bid
7 + e at the next time frame t + 1, where e is a very small
constant. Following the mentioned rule, the revenue received
by the auctioneer at time frame t+1, e · |Gwin(t+1)|, will be
very small. This example indicates that the truthful property of
the auction cannot guarantee its social welfare when collusions
occur. Motivated by these examples, in this paper we aim to
devise an auction for a relay assignment problem that is not
only truthful but also collusion-resistant.

The symbols of this paper are summarized in Table IV.

E. Problem definition

Given a cooperative wireless network with multiple source-
to-destination pairs and a set of relay nodes, assume that
relaying services are leasing to source nodes periodically, the
relay assignment problem is to design an auction such that the
revenues of all the entities in the system are considered, while
meeting individual rationality, budget balance, truthfulness and
collusion resistance.

IV. A REPEATED DOUBLE AUCTION FOR RELAY

ASSIGNMENT

In this section, we devise a repeated double auction for the
relay assignment problem. We start by the process of the pro-
posed auction and the design rationale. We then describe the
detailed design that consists of two collusion-resistant stages:
inter-group and intra-group winners selection. Finally, we
show that the proposed, repeated double auction is collusion-
resistant, truthful, individual-rational, and budget balanced.

A. Overview

Static relay assignment that assigns relay nodes to source
nodes once during an entire of auction period is very effective
in reducing the overhead incurred per time frame, com-
pared with dynamic relay assignment that assigns relay nodes
dynamically at each time frame. However, static resource
assignment ignores the dynamics of relay nodes and may
under-utilize relaying services. Instead, we focus on dynamic
relay assignment by proposing a repeated double auction that
allocates relay nodes to group agents periodically.

Although budget-balanced, truthful auctions for relay as-
signment have been shown to be feasible in general co-
operative communications, the non-collusion-resistant char-
acteristic may not be acceptable to the auctioneer when it
rationally maximizes its own budget through resisting revenue-
jeopardizing behaviors. In contrast, inspired by the negative
effect of collusion on the social-welfare, as illustrated in the
previous section, we here focus on the design of a truthful,
collusion-resistant double auction.

To meet the truthfulness, we adopt the truthful double
auction of [2], where truthfulness is achieved through adopting
a Trade-Reduction method, in which some trade pairs are
sacrificed to guarantee the truthfulness, while the winner
payment is proportional to the bid of sacrificed agents.
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TABLE IV
SYMBOLS

Symbols Meaning
si / di source/destination node i
rj relay node j
gk group agent k
||si, di|| Euclidean distance between si and di
Psi /Prj transmission power of source node si / relay node rj
Ndi /Nrj white ambient noise at destination node di / relay node rj
α path loss factor of wireless channels
C(si, rj , di) channel capacity from si to di through rj
bi,j(t) the bid of si for relay node rj at time frame t
Bk,j(t) the bid of group agent gk for relay node rj at time frame t
Aj(t) ask of relay node rj for its relaying services at time frame t
βi private value of source node si
v(si, rj , t) valuation of rj by si at time frame t
pi(t) / pk(t) payment of si/gk at time frame t
u(si) utility of si
p
rj
a (t) payment that the auctioneer needs to pay to relay node rj

Swin
gk

(t) set of winning source nodes in group gk
Gwin(t) / Rwin(t) set of winning group agents/relay nodes at time frame t
V (t) accumulative social welfare
A(∗) a bijective function that represents the maximum weight matching from bids to asks
ε greedy degree of a group agent
Pr(si, t) / Pr(gk, t) probability that si and gk collude with others
Nc threshold of the number of colluding agents
Igk (t)/Isi (t) incentives for source nodes and group agents
wi / wk unfulfilled percentage of the expected revenue of si and gk
κ percentage of the number of colluding group agents exceeding Nc

p probability of exceeding Nc by κ

Meeting collusion-resistance is to fulfill the expected rev-
enues of losers, and it is reasonable that the auctioneer
provides small incentives to the losers to avoid the huge loss
of its own revenue. The winning source nodes then transmit
their data to the allocated relay nodes in the rest of the time
frame. Also, to prevent the losers using the relay nodes for
transmitting their own data, we assume that the relay nodes
will perform a verification process prior to performing any data
transmission, and will refuse enhancing the data overheard
from the losers in its group.

B. Intra-group winner selection

We decompose the intra-group winner selection stage into
three steps as follows. In the first step, each source node si
submits its bid set bi(t) = {bi,j(t) | 1 ≤ j ≤ J} consisting
of bids for all relay nodes to its group agent gk. Since group
agent gk has not been assigned a single relay node in this step,
it cannot decide the winning source nodes within its group.
However, it can decide candidate winners in its group by
assuming it has been assigned with a relay node. Specifically,
group agent gk determines the candidate winning source nodes
that competing for each relay node rj through sacrificing the
source node with the minimum bid. The rest of source nodes
in group gk are considered as the candidate winners.

The second step is to calculate the payment for each
candidate winner if it is selected as a winner ultimately. To
guarantee truthfulness within each group gk, the payment of
winners in gk is equal to the bid of the loser (the source node
with the minimum bid), i.e., min{bi,j(t) | si ∈ gk}.

In the third step, for each given relay node rj , each group
agent gk decides its bid set Bk,j(t) for rj by calculating a pre
group bid Bpre

k,j that is defined as follows.

Bpre
k,j (t) = (|gk| − 1) ·min{ bi,j(t) | si ∈ gk}. (6)

TABLE V
GROUP BIDS AT TIME FRAME t+ 1

r1 r2 r3 r4 r5 r6 r7
B1(t) 8 0 0 3 0 0 0
B2(t) 0 0 2 4 3 0 8
B3(t) 6 0 0 4 0 0 0
B4(t) 0 2 0 10 4 6 0
B5(t) 0 0 8 0 0 9 4

Note that this is also the payment received by gk from its
source nodes if rj is assigned to group gk. Resisting collusions
of a loser is to provide a monetary incentive that equals its
expected revenue. We thus entitle each group agent gk to
provide a portion from Bpre

k,j (t) as the incentive that will pay
for the losers. The portion is extracted proportionally to the
bids of winning source nodes. Suppose rj is assigned to group
gk, the candidate winners of group gk will be the final winners
in Swin

gk
(t). Then, the incentive can be calculated by

Isi(t) =
∑

si∈Swin
gk

(t)

pi(t) · bi,j(t)∑
si∈Swin

gk
(t) bi,j(t)

. (7)

The final group bid by group gk is then calculated by

Bk,j(t) = Bpre
k,j (t)− Isi(t). (8)

To illustrate the intra-group winner selection, we revisit
the example used in Section III-D. Recall that the collusion
between loser l16 in group g1 and group agent g3 results in
that group agent g1 becomes a loser in time frame t+ 1 (see
Table III). To resist such a collusion, g1 may extract some
incentives from its pre-bid Bpre

1,1 (t) for the loser l16. According
to Table II and Eq. (6), Bpre

1,1 (t) = (|g1| − 1) · b6,1 = 10. By
deducting the amount of the incentive b6,1 (= 2) for the loser
l16, the bid B1,1(t) of g1 becomes 8 (10− 2). From Table V,
we can see that g1 still is a winner at time frame t+ 1.
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The intra-group winner selection stage is detailed in algo-
rithm 1

Algorithm 1: Intra-group winner selection stage at time
frame t

Input: R,G
Output: Swin

gk
(t)

1 Each source node si in each group submits its bid set
bi(t) = {bi,j(t) | 1 ≤ j ≤ J} for all relay nodes in R;

2 for each relay node rj ∈ R do
3 All source nodes that competing rj except the one with the

minimum bid in group gk are considered as candidate winners;
4 The payment of these candidate winners in group gk is the

minimum bid, i.e., min{bi,j | si ∈ gk};
5 Each group agent gk calculates its pre bid Bpre

k,j (t) by
Bpre

k,j (t) = (|gk| − 1) ·min{ bi,j(t) | si ∈ gk};
6 Each group agent gk calculates the incentive for the loser (source

node with minimum bid) by
Isi(t) =

∑
si∈Swin

gk
(t) pi · bi(t)∑

si∈Swin
gk

(t)
bi(t)

;

7 Each group calculate its bid Bk,j for rj by
Bk,j = (|gk| − 1) ·min{ bi,j(t) − Isi (t) | si ∈ gk};

8 end
9 Group agents submit their bids to the auctioneer;

10 When assigned a relay node, each group agent gk will finally
determine winner set Swin

gk
(t);

11 Only winners in Swin
gk

(t) transfer payment to group agent gk;

C. Inter-group winners selection

In the inter-group winner selection stage, each group agent
first submits its bid calculated by Eq. (8) to the auctioneer.
Assume there is an edge between group agent gk and relay
node rj if gk has a bid for rj , and its bid Bk,j(t) is
the weight of the edge. The auctioneer then calculates a
weighted maximum matching A between group agents and
relay nodes [27]. For simplicity, in the following we omit
the second subscript of Bk,j(t) and let B′

k(t) = Bk,j(t).
Let 〈An1(t), An2 (t), . . . , AnJ (t)〉 be an increasing sequence
of asks and 〈B′

m1
(t), B′

m2
(t), . . . , B′

mK
(t)〉 a decreasing se-

quence of bids in A, and let x and y be the largest indexes in
the two sequences such that B′

mx
(t) ≥ Any (t). The winning

matched pairs in A are the pairs with bids higher than B′
mx

(t)
and asks lower than Any (t). Having the winner set at time
frame t, Gwin(t) and Rwin(t) are then determined.

To resist collusions among the group agents, a similar
method used in intra-group winner selection stage is adopted.
That is, we provide incentives to losers. It can be seen from
Eq. (5) that the probability that a group agent colludes with
others will drop significantly if the percentage of its expected
revenue is promoted. In a series of auctions, if the auctioneer
can adjust the incentives dynamically, then, the number of
collusions can be controlled. To this end, the auctioneer sets
an incentive according to its current budget and the number
of colluding group agents when proceeding the auction at
the next time frame. In other words, the auctioneer should
dynamically promote this incentive to limit the number of
potential colluding group agents under a tolerable threshold
Nc without exceeding its budget. Let Igk(t) and Igk (t − 1)
denote the incentives for the losers at time frames t and t−1,
respectively. Then, we have

Igk(t) = Igk (t− 1) + ϑ · V (t), (9)

where ϑ is a constant with 0 ≤ ϑ ≤ 1 that represents the
percentage that the auctioneer draws part of its revenue for
the incentive, whose value is continuously adjusted by the
auctioneer over time in response to the number of colluding
group agents in each auction. This readjustment procedure is a
process of reinforcement learning [20]. The uniform incentives
at time frame t are provided to these group agents that are not
in Gwin(t) and have bids higher than B′

mx
(t). The detailed

algorithm is presented in Algorithm 2.

Algorithm 2: Inter-group winner selection stage at time
frame t

Input: R,G, {Bk,j | 1 ≤ k ≤ K, 1 ≤ j ≤ J}, Nc, ϑ

Output: Gwin(t), Rwin(t), {pk(t) | gk ∈ Rwin(t)}, {prja (t) | rj ∈
Rwin(t)}, Igk (t)

1 A ← OPRA(R,G, {Bk,j | 1 ≤ k ≤ K,1 ≤ j ≤ J}) by the
algorithm in [27];

2 Gwin(t)← ∅; Rwin(t)← ∅;
3 Sort group bids and asks under A into non-increasing sequence,
〈B′

m1
(t), B′

m2
(t), . . . , B′

mK
(t)〉, and non-decreasing sequence,

〈An1 (t), An2 (t), . . . , AnJ (t)〉;
4 Find the largest x and y s.t. B′

mx
(t) ≥ Any (t);

5 The winning trading pairs in A of group agents in Gwin(t) and relay
nodes in Rwin(t) are the ones with bids higher than B′

mx
(t) and asks

lower than Any (t);
6 pk(t)← B′

mx
(t) ∀gk ∈ Gwin(t);

7 p
rj
a (t)← Any (t), ∀rj ∈ Rwin(t);

8 Let NL be the number of losers whose bids are greater than B′
mx

(t);
9 Igk (t)← Igk (t− 1) + ϑ · V (t), where ϑ is used to tune the incentive

for group agents in the next time frame;
10 if NL = 0 then
11 ϑ← 0;
12 elseif NL ≤ Nc then
13 ϑ← (1− γ)ϑ;
14 else
15 ϑ← γ + (1− γ)ϑ;
16 Assign each group agent whose bid is lower than B′

mx
(t) a uniform

incentive Igk (t);

D. Auction analysis

To analyze the correctness of the proposed auction, we need
to analyze any possible collusions of the auction. Generally,
only losers in the proposed auction seek to collude with others,
as the colluding probability of winners are zero by Eq. (4) and
Eq. (5). In the rest of this subsection, we show the correctness
of the intra-group and inter-group winner selection stages.

We start with the intra-group winner selection stage by
showing that the loser (source node with the minimum bid)
and the winners (other source nodes in the group) will not
collude with others either passively or actively in the proposed
auction by the following lemma.

Lemma 1: The intra-group winner selection stage is
collusion-resistant.

Proof: First notice that winners will not collude with
others either passively or actively, as their expected revenues
are satisfied by Eq. (4). The rest is to show losers in the intra-
group winner selection stage will not collude with others. To
this end, we only need to show the expected revenues of the
losers can be satisfied, since losers will not collude with others
as long as their revenues are satisfied.

The expected revenue of a loser (a source node) in a group
agent gk is its bid, i.e., min{ bi,j(t) | si ∈ gk}, which equals
the payment of each winner, pi(t), by the intra-group winner
selection rule. If no incentive for the loser is provided, the
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total payment that group agent gk received from its winners
will be (|gk|− 1) · pi(t) by Eq. (6). To resist collusions of the
loser, gk needs to extract a portion of its received payments
as the incentive to satisfy the expected revenue of the loser,
min{ bi,j(t) | si ∈ gk}. Since pi(t) = min{ bi,j(t) | si ∈ gk}
and |gk| − 1 ≥ 1, (|gk| − 1) · pi(t) ≥ min{ bi,j(t) | si ∈ gk}.
This means that each group agent will always be able to afford
its loser’s expected revenue. The lemma then follows.

We then analyze the collusions initiated by group agents
in the inter-group winner selection stage. By algorithm 2, a
group agent loses the auction is because its bid is lower than
B′

mx
(t), or its matched relay node asks higher than Any (t).

We first analyze that any two losing group agents with bids
lower than B′

mx
(t) will not collude with each other no matter

which one initiates the collusion by Lemma 2.
Lemma 2: It is impossible that there is a collusion among

losing group agents with bids less than B′
mx

(t).
Proof: We show this by contradiction. Suppose that group

agents gk and gc are losers at the auction of time frame t, and
their bids at time frame t are both less than B′

mx
(t). If they

can greatly promote their bids in time frame t + 1, they do
not need to collude with others, as high bids enable them to
win. That is, they want to win in time frame t + 1 in spite
of their low bids. Therefore, their bids at time frame t + 1
are also lower than B′

mx
(t+ 1) at time frame t+ 1. Without

loss of generality, we assume that gk initiates the collusion.
Then, group agent gk has to provide some incentives in terms
of monetary or relay capacity in return. However, incentives
in terms of relay capacity are impossible, since source nodes
that have not been assigned to a relay node can not use the
relaying services of the relay node. Thus, gc will not share
the relay capacity of the relay node who ask A(Bk) with gk.
Also, if gk provides some monetary incentives, it needs to pay
much more than its bid because pk(t + 1) ≥ Bk(t + 1) by
algorithm 2. Group agent gk thus can not persuade gc collude
with it due to fail in providing some incentives. The lemma
holds.

Therefore, collusions only happen between losing group
agents with bids lower than B′

mx
(t) and the ones with bids

higher than B′
mx

(t). To resist such collusions, one naive
method is to provide incentives to fulfill the expected revenues
of all group agents. This simple method however may incur
the budget imbalance of the auctioneer by Lemma 3.

Lemma 3: If the auctioneer provides incentives to all losers
to fulfil their expected revenues, then the budget of the
auctioneer will be imbalanced.

Proof: Let rl be the relay node that matched with gl
in algorithm 2. Suppose B′

l(t) is the bid of a losing group
agent gl. By Lemma 2, B′

l(t) ≥ B′
mx

(t), which means that
gl lose the game because rl asks higher than Any (t). Then,
Al(t) = A(B′

l(t)). To be winners in time frame t+1, gl may
collude with other losers to bring rl into set Rwin(t+ 1).

The utility the auctioneer received at time frame t is
|Gwin(t)| · |B′

mx
(t) − Any (t)|. If gl colludes with others,

the auctioneer can afford its expected revenue only when
|Gwin(t)| · |B′

mx
(t)−Any (t)| ≥ B′

l(t)−A(B′
l(t)). Obviously,

this does not hold, since B′
l(t) ≥ B′

mx
(t) and Any ≤

A(B′
l(t)).

As it is impossible to fulfil the expected revenues of all

losers, a rational way is to setup a uniform incentive Igk(t)
for the losers whose bids are greater than B′

mx
(t) to prevent

these group agents from collusions at time frame t, this type
of incentive schema is referred to as the minimum guaranteed
revenue by the auctioneer in order to attract bidders.

We now show that the inter-group winner selection stage
is (Nc, κ, p)-collusion-resistant by Lemma 4. To this end,
we first give some notations that facilitate the proof. For
collusions among the group agents, we assume that each group
agent gk has a probability Pr(gk) to collude with the other
group agents. According to Eq. (5), there is not any chance
for any group agent in Gwin(t) to collude with others, as
its collusion probability is zero (Pr(gk ∈ Gwin(t)) = 0).
Denote by Xk an i.i.d event of whether group agent gk
colludes or not. Then, Xk = 1 when gk colludes with others,
otherwise Xk = 0. It can be seen that 〈X1, X2, . . . , XK〉 is
a Poisson sequence. Then, Pr(Xk) = Pr(gk). Denote by X
the event representing the number of colluding group agents,
then X =

∑
gk∈{gi|Bi>B′

mx
} Xk. Let μ be the expected

number of colluding group agents, then μ = E[X ] =∑
gk∈{gi|Bi>B′

mx
} E(Xk). Without loss of generality, we as-

sume that Nc ≥ μ, which indicates that the number of
colluding agents is well controlled. We then have

Lemma 4: The number of colluding group agents which
exceeds the given threshold Nc by κ percentage is bounded

by
(

eζ−1

ζζ

)μ

where ζ = (1+κ)·Nc

μ when Nc ≥ μ, or 2−(1+κ)Nc

when Nc ≥ 6μ.
Proof: Let gk be a loser with collusion probability

Pr(gk). Since Nc ≥ μ and δ = ζ − 1 > 0, we have Pr[X ≥
(1+κ) ·Nc] = Pr[X ≥ (1+δ) ·μ]. According to the Chernoff
bound [12], the probability that the number of colluding group
agents exceeding the given threshold Nc by κ percentage is

bounded by Pr[X ≥ (1 + κ) ·Nc] ≤
(

eδ

(1+δ)1+δ

)μ

. Substitute

δ with ζ− 1, we then have Pr[X ≥ (1+κ) ·Nc] ≤
(

eζ−1

ζζ

)μ

.

In a special case where Nc ≥ 6μ, we have (1 + κ)Nc ≥ 6μ
since 0 ≤ κ ≤ 1. Then, Pr[X ≥ (1 + κ) ·Nc] ≤ 2−(1+κ)·Nc .
The lemma follows.
Note that when the uniform incentive is fixed, the colluding
probability of each group agent is fixed, too, which means that
μ must be fixed as well. Thus, μ can be treated as a constant.

In summary, we have shown that the intra-group winner se-
lection stage is collusion-resistant, and the inter-group winner
selection stage is (Nc, κ, p)-collusion-resistant. We thus have
the following theorem.

Theorem 1: The proposed repeated double auction is

(Nc, κ,
(

eζ−1

ζζ

)μ

)-collusion-resistant, individually rational,
budget-balanced, and truthful.

Proof: By Lemma 1 and Definition 1, the intra-
group winner selection stage of algorithm 2 is collusion-
resistant ((1, 0, 1)-collusion-resistant). By Lemma 4, the inter-

group winner selection stage is (Nc, κ,
(

eζ−1

ζζ

)μ

)-collusion-

resistant. Since
(

eζ−1

ζζ

)μ

< 1, the proposed auction thus is

(Nc, κ,
(

eζ−1

ζζ

)μ

)-collusion-resistant. The rest is to show that
proposed auction is individually rational, budget balanced, and
truthful.

We start by showing that the proposed auction is individu-
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ally rational as follows. For each winning source node si, we
have bi,j ≥ min{bi,j(t) | si ∈ gk} = pi(t); for each winning
relay node rj ∈ Rwin, we have Aj(t) ≤ Any = p

rj
a (t); and

for each group agent gk, we have Bk,j(t) ≥ B′
mx

(t) = pk(t).
We then show that the proposed auction is budget balanced.

From the perspective of group agents, their budgets in the
end of the auction period depends on the value of Bk,j(t) −
B′

mx
(t). Since each group agent gk has already extracted the

incentive for the loser from the payments of the winners in
the group according to Eq. (7), and Bk,j(t) − B′

mx
(t) > 0,

this implies that the budget of each group agent is balanced.
Let L be the set of losing group agents. From the perspective
of the auctioneer, the utility is |Gwin|(B′

mx
(t) − Any (t)) −

|L| · Igk (t). Although there is a minimum incentive for losers,
the auctioneer will not pay the incentives to the losers if
|Gwin|(B′

mx
(t) − Any (t)) − |L| · Igk(t) ≤ 0. Therefore, the

budget of the auctioneer in each auction is balanced, too.
Finally, we show the truthfulness of the proposed auction.

Since we adopt the common truthful method that a portion
of the participants are sacrifices, the proof of truthfulness
is straightforward and can be found in [23], [26], [30]. In
the intra-group winner selection stage, it is obvious that the
payments of the winners are independent of their bids. While
in the inter-group winner selection stage, the selection process
is truthful, because the winner determination is bid-monotonic
and ask-monotonic [2], which mean if a group agent wins, it
will also win by bidding higher, and if a relay node wins, it
will also win by asking lower. Furthermore, the calculation of
payments is both bid-independent for group agents and ask-
independent for relay nodes. Therefore, the proposed auction
is truthful.

V. NUMERICAL RESULTS

In this section we evaluate the performance of the proposed
repeated double auction and investigate the impact of several
parameters on the performance. We first study the impact of
collusions of the proposed auction for the following three
scenarios: (i) both source nodes and group agents do not
seek to collude with the others; (ii) only the source nodes
seek to collude with the other source nodes; and (iii) only
group agents seek to collude with the other group agents.
For the sake of convenience, we denote the repeated auction
without collusion resistance under these three scenarios as
RDA-WOC, RDA-SC and RDA-GC, respectively. We then
examine the positive effect of the proposed collusion-resistant
double auction (RDA-CR) by comparing it with RDA-SC and
RDA-GC. Finally, we study the performances of auction RDA-
CR through varying parameters ε and ϑ.

A. Simulation environment

We consider a cooperative wireless network with 200 source
nodes that are randomly deployed in a 100 m × 100 m
square region. The bandwidth of all channels is 22 MHz. The
transmission range and transmission power for each node are
20 meters and 1 Watt, respectively. The path loss exponent is
4 and the noise at each destination node is 10−10dBs. Source
nodes are geographically grouped into 25 distinct groups.
Accordingly, the number of group agents is set to 25. Source

nodes intending to transmit their data at each time frame
are chosen randomly. The network capacity achieved by each
source node is calculated by Eq. (1). Parameters ε and ϑ of
the auctioneer will vary in most of our experiments.

There are 25 relay nodes that are selected based on the
generated network. Specifically, we assume that there is an
edge between two source nodes if they are within the trans-
mission range of each other. Intuitively, relay nodes should
be scattered in the whole network and cover as many source
nodes as possible. We thus use a maximal independent set of
nodes in the network as the candidate relay nodes. Notice that
the cardinality of the maximal independent set may be smaller
than 25. If this happens, we add other relay nodes into the set
iteratively until its size reaches 25.

B. Impact of collusions

To confirm the negative impact of collusions on the social
welfare, we first consider a case where there are 25 group
agents with 0-greedy (ε = 0) and 200 source nodes with 0-
greedy (ε = 0) for RDA-WOC, we then study a case where
there are 25 group agents with 0-greedy and 200 source nodes
with 0.3-greedy for RDA-SC, and we finally deal with a case
where there are 25 group agents with 0.3-greedy and 200
source nodes with 0-greedy for RDA-GC. For each of these
cases, we evaluate the performance of auctions RDA-WOC,
RDA-SC and RDA-GC as follows.

Fig. 3(a) plots the social welfare curves when auctions
RDA-WOC and RDA-SC are applied. It can be seen that
auction RDA-SC reduces the social welfare of the auctioneer,
due to source node collusions, a loser in one group submits
a very low bid for a specific relay node, which consequently
reduces the bid of its corresponding group agent for that relay
node, according to our intra-group winner selection algorithm.
Consequently, the social welfare will decrease accordingly.

The variation curves of social welfare are plotted in
Fig. 3(b) when group agents are allowed to collude with each
other. It can be seen that the collusions among the group agents
will reduce the social welfare as time goes, as such collusions
can reduce either the number of trading pairs between group
agents and relay nodes or the net-income of the auctioneer
from each trading pair, i.e., pk(t) − p

rj
a (t), thereby reducing

the social welfare by Eq. (3). Fig. 3(c) shows the average
network capacity achieved by all source nodes over 100 time
frames, from which it can be seen that collusion behaviors of
group agents and source agents all cause serious degradations
in network capacity, compared with the scenario no agents
collude with others (RDA-WOC).

C. Comparison with non-collusion-resistant algorithms

To examine the positive effect of auction RDA-CR against
auctions RDA-SC and RDA-GC by fixing the number of
source nodes to 200, the number of group agents to 25, and
ε to 0.3. For auction RDA-CR, the incentive parameter ϑ and
the learning parameter γ are set to 0.1 and 0.2, respectively.
Fig. 4(a) plots the social welfare curves delivered by auctions
RDA-CR, RDA-SC and RDA-GC, respectively. It can be seen
that RDA-CR outperforms both RDA-SC and RDA-GC over
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Fig. 3. Impact of collusions on the social welfare and network capacity.
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Fig. 4. The performance enhancement of collusion-resistant algorithms.
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(a) ϑ = 0.1
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(b) ϑ = 0.2
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(c) ϑ = 0.3

Fig. 5. Impact of ϑ on the number of colluding group agents.

time, as the colluding probabilities of group agents in RDA-
CR are reduced by providing all the losers with a uniform
incentive. Therefore, the social welfare increases as less group
agents choose to collude with each other. Fig. 4(b) plots the
average network capacity curves by all source nodes over 100
time slots, and it can be seen that the network capacity can
be improved if collusion-resistance is imposed.

D. Impact of parameters ϑ and ε

In order to investigate the performance of auction RDA-
CR under different sets of group agents with various ε, the
number of source nodes and group agents are fixed at 200 and
25, respectively. The threshold of colluding number of group
agents, Nc, is set to 2. The value of ϑ varies from 0.1 to 0.3,
and the value of ε varies from 0.2 to 0.6. Fig. 5(a) indicates
that there are a largest number of time frames in which the
number of colluding group agents exceeds NC when ϑ is small
in comparison with Figures 5 (b) and (c), because a lower ϑ
implies a lower incentive Igk (t), which results in more losers
to collude with the others.

The impact of parameter ε on the social welfare is plotted
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Fig. 6. Impact of parameter ε on the social welfare.

in Fig. 6, from which it can be seen that the greater the value
of ε, the higher the probability of that group agents collude
with others. Consequently, a lower the social welfare will be
the result, which can be observed from Fig. 6 where the curve
with ε = 0.2 has the highest social welfare while the one with
ε = 0.6 has the lowest social welfare.
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VI. CONCLUSION

In this paper we dealt with the relay assignment problem in
a wireless cooperative network to prompt the social welfare
among source nodes, relay nodes, group agents and the
auctioneer, by mitigating negative effects on the collusions
among the entities, for which we first devised a truthful
and collusion-resistant repeated double auction, RDA-CR,
which can guarantee that the number of colluding group
agents is controlled under a tolerable threshold, by providing
uniform incentives and dynamically adjusting the incentives
over time. We then showed that RDA-CR not only controls
the collusion probability of each group agent but also meets
several important economic properties of auctions including
the individual rationality, budget balanced, and truthfulness.
We finally conducted extensive experiments by simulations to
validate the analytical results of the proposed auction.
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