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Abstract—In this paper, we analyze the maximum likelihood
decoding performance of Raptor codes with a systematic low-
density generator-matrix code as the pre-code. By investigating
the rank of the product of two random coefficient matrices, we
derive upper and lower bounds on the decoding failure probabil-
ity. The accuracy of our analysis is validated through simulations.
Results of extensive Monte Carlo simulations demonstrate that for
Raptor codes with different degree distributions and pre-codes,
the bounds obtained in this paper are of high accuracy. The
derived bounds can be used to design near-optimum Raptor codes
with short and moderate lengths.

Index Terms—Raptor codes, asymptotic analysis, maximum
likelihood (ML) decoding, decoding failure probability.

I. INTRODUCTION

R ATELESS codes have been increasingly used in many
telecommunication systems [1], [2], [3], [4], including

cellular networks and satellite communication systems. Recent
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work has shown that, by employing rateless codes, wire-
less transmission efficiency and reliability can be dramatically
improved [5], [6].

Rateless codes are a class of forward error correction (FEC)
codes with special properties, which were initially designed
for the binary erasure channel (BEC). Compared with conven-
tional FEC codes with a fixed code rate, rateless codes have
a number of advantages. Firstly, similar as low-density parity-
check (LDPC) codes, rateless codes can be implemented with
far less complex encoding and decoding algorithms, which are
attractive for implementation. Secondly, as suggested by the
name, rateless codes are suitable for any code rate. They can
automatically adapt to instantaneous channel states and do not
require feedback channels [1], [3], [5]. This is because they
can generate a potentially limitless stream of coded symbols,
and all source symbols can be correctly decoded when there
are a sufficient number of successfully received coded sym-
bols. Hence, rateless codes are desirable for certain channels,
such as erasure multicast or broadcast channels, whose real-
time channel erasure probability is very difficult to capture or
estimate. Furthermore, they have the potential to replace the
conventional automatic repeat request (ARQ) mechanism as a
new mechanism of transmission control protocol [7].

Among the well-known rateless codes, two codes stand out.
One is the Luby transform (LT) codes [3], which are the first
class of practical digital fountain codes with an average decod-
ing cost in the order of O(k log(k)) where k is the number
of source symbols. The other is the Raptor codes [1], which
are the first class of fountain codes with linear time encod-
ing and decoding complexities. Raptor codes are concatenated
codes, which combine a traditional FEC code with an LT code
to relax the condition that all input (source) symbols need to
be recovered in an LT decoder. Note that Raptor codes have
already been standardized in the 3rd Generation Partnership
Project (3GPP) [4] to efficiently disseminate data over a broad-
cast/multicast network to provide multimedia broadcast and
multicast services.

Despite the successful application of Raptor codes in 3GPP,
our understanding of Raptor codes is still incomplete due to
a lack of complete theoretical analysis on their decoding error
performance. Without analytical results, the optimization of the
degree distribution and other parameters of Raptor codes would
be extremely difficult.

In this paper, we investigate the performance of Raptor
codes by theoretically analyzing their decoding failure proba-
bility under maximum likelihood (ML) decoding. The decoding
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failure probability is the probability that not all source sym-
bols can be decoded by ML decoding from a given number
of successfully received coded symbols. We consider a Raptor
code ensemble with a systematic (n, k, η) low-density gener-
ator matrix (LDGM) code as the pre-code. In the case of the
erasure channel, ML decoding is equivalent to solving a con-
sistent system of m linear equations in k unknowns by means
of Gaussian elimination (GE). In this paper, we investigate the
decoding failure probability of Raptor codes by theoretically
analyzing the rank of the product of two random coefficient
matrices and deriving tight analytical bounds. The tightness
of the bounds is confirmed by extensive Monte Carlo simu-
lations. More specifically, the contributions of this paper are
summarized in the following:

• Firstly, this paper provides analytical results (i.e. an upper
bound and a lower bound) on the decoding failure perfor-
mance of Raptor codes, using a systematic LDGM code
as the pre-code and assuming ML decoding.

• Furthermore, simulations are conducted to validate the
accuracy of the proposed bounds. That is, Raptor codes
with different degree distributions and pre-codes are eval-
uated to verify the claims on the accuracy of the derived
upper and lower bounds.

The rest of the paper is organized as follows. Section II
reviews the related work. In Section III, a brief review of the
encoding and decoding process of Raptor codes is given. In
Section IV, a performance analysis of Raptor code is conducted
by deriving an upper bound and a lower bound on the probabil-
ity that not all source symbols can be successfully decoded by a
receiver with a given number of successfully received coded
symbols. Section V validates the analytical results through
simulations, followed by concluding remarks in Section VI.

II. RELATED WORK

In this section, we review related work on the analysis of the
performance of Raptor codes.

In general, there are two inter-related metrics to measure the
performance of Raptor codes. One is the bit error probability
and the other is the decoding failure probability. To analyze the
bit error probability of Raptor codes, Rahnavard et al. [7] pro-
posed a method to compute the upper and the lower bounds on
the bit error probability of Raptor codes under ML decoding
over the binary erasure channels (BEC). Despite the advances
in [7], their work can be further improved in the following
aspects. Firstly, the authors in [7] used a stochastic parity-
check codes, i.e. (n, k, η) LDPC code, as the pre-code of Raptor
codes. All entries of the parity check matrix are assumed to be
independent and identically distributed (i.i.d) Bernoulli random
variables [7]. Contrary to this assumption, in 3GPP standard
[4], the pre-code of the standardized Raptor codes is a system-
atic LDGM code. The use of the systematic LDGM code as
the pre-code is to guarantee that the parity check matrix is a
full-rank matrix. Secondly, Rahnavard et al. assumed that the
erasures on intermediate bit level are independent. As explained
in [8, Ch. 6.2.1], this assumption would only hold if a very long
interleaver was used. Using an interleaver in this setup, how-
ever, is not reasonable. In [9], the authors derived the upper and

the lower bounds on the bit error probability of Raptor codes
over Rayleigh fading channels assuming ML decoding.

In [1], Shokrollahi analyzed the decoding failure probability
of Raptor codes with a finite length assuming belief propa-
gation (BP) decoding. The analysis relies on the computation
of the failure probability of the LT codes under BP decoding,
which was derived in [10]. ML decoding, on the other hand, is
more computationally demanding than BP decoding for codes
with a large length. The analysis of the decoding failure prob-
ability assuming ML decoding is however both important and
significant, because it provides a benchmark on the optimum
system performance that can be used to gauge the performance
of other decoding schemes. Furthermore, in [8] a pseudo upper
bound on the performance of Raptor codes under ML decoding
was derived, under the assumption that the number of erasures
correctable by the pre-code is small. This approximation is
accurate only when the rate of the pre-code is sufficiently high.
For the more general case, the decoding failure probability of
Raptor codes still remains an open problem. In [11] it is shown
that the rank profile of the constraint matrix of a Raptor code
depends on the rank profile of the pre-code parity check matrix
and the generator matrix of the LT code. The rank profile of the
Raptor code cannot be determined if the rank profile of an LT
code with a general degree distribution is unknown. In our pre-
vious work [6], we analyzed the rank profile of an LT code with
a general degree distribution.

In this paper, we present theoretical analysis on the decod-
ing failure probability of Raptor codes under ML decoding. We
consider a Raptor code ensemble with a systematic (n, k, η)

LDGM code as the pre-code to guarantee that the parity check
matrix is a full-rank matrix. Furthermore, we take into account
the fact that the residual erasure events after LT decoding are
not independent, thereby deriving tighter bounds.

III. BACKGROUND OF RAPTOR CODES

This section is provided to familiarize the readers with
the basic idea of Raptor codes, their encoding and decoding
algorithms.

The encoding process of a Raptor code [1] is carried out in
two phases: a) encode k source symbols with a (n, k) error cor-
rection code, which is referred to as the pre-code C, to form
n intermediate symbols; b) encode the n intermediate symbols
with an LT code. Each coded symbol is generated by the follow-
ing encoding rules of LT codes [3]. Firstly, a positive integer d
(often referred to as the “degree” of coded symbols) is drawn
from the set of integers {1, . . . , n} according to a probability
distribution � = (�1, . . . , �n), where �d is the probability
that d is selected and

∑n
d=1 �d = 1. Then, d distinct interme-

diate symbols are selected randomly and independently from
the n intermediate symbols to form the coded symbol to be
transmitted using the XOR operation, where each intermedi-
ate symbol is selected with equal probability. A Raptor code
with parameters (k,C,�) is an LT code with distribution � =
(�1, . . . , �n) on n symbols which are the output symbols of
the pre-code C.

An illustration of a Raptor code is given in Fig. 1. In prac-
tice, the parity check matrix of the pre-code of Raptor codes is
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Fig. 1. Two-stage structure of a Raptor code with a systematic pre-code.

a deterministic matrix. For example, in 3GPP standard [4], the
parity check matrix of the pre-code of the standardized Raptor
codes is a systematic deterministic matrix. Using a system-
atic deterministic matrix as the pre-code ensures that the parity
check matrix of the pre-code is a full-rank matrix. However, it
is difficult to obtain tractable analytical results of decoding per-
formance for such Raptor codes. Therefore, in this paper we
adopt a Raptor code ensemble with a semi-random (n, k, η)

LDGM code as the pre-code for analytical tractability while
ensuring that the parity check matrix of the pre-code is a full-
rank matrix. The generator matrix of the pre-code, denoted by
Gpre

n×k , can be written as Gpre
n×k = [Ik |Pk×(n−k)]T , where Ik is

an identity matrix of size k, and Pk×(n−k) is a k by (n − k)

matrix whose entries are i.i.d. Bernoulli random variables with
parameter η. Such a code is denoted as an (n, k, η) LDGM
code. Furthermore, we can obtain the parity check matrix of
this LDGM code as H(n−k)×n = [P(n−k)×k |I(n−k)](n−k)×n .

Let m, (m ≥ k), be the number of coded symbols that have
already been successfully received by a receiver and γ = m

k ,
(γ ≥ 1) be the overhead of reception. When a coded symbol
is received by a receiver, we use a 1 × k binary row vector
gLT

i Gpre to represent the coding information contained in the
coded symbol, where GLT is a kγ × n binary matrix, gLT

i is
the i th row vector of GLT and Gpre is a n × k binary matrix.
Let [G]i, j be the entry in the i th row and the j th column of
the matrix G. Particularly,

[
gLT

i

]
1, j is 1 if the coded sym-

bol is a result of the XOR operation on the j th intermediate
symbol (and other intermediate symbols); otherwise

[
gLT

i

]
1, j

equals 0. For
[
Gpre

]
i, j , it is 1 if the i th intermediate symbol is

a result of the XOR operation on the j th source symbol (and
other source symbols); otherwise

[
Gpre

]
i, j equals 0. Therefore,

a random row vector in this paper refers to the row vector of
a randomly chosen coded symbol where the coded symbol is
generated using the Raptor encoding process described above.
Recall that s = (s1, s2, . . . , sk) represents the k source sym-
bols to be transmitted. The coded symbol can be expressed as:
yi = gLT

i GpresT , where “sT ” is the transpose of s.
Raptor codes can be decoded using a variety of decoding

algorithms. A commonly used decoding algorithm for Raptor

codes is the so-called “LT process” [3], but it is well known that
the LT process is unable to decode all source symbols which
can be possibly recovered from the received coded symbols.
For example, the LT process relies on the existence of at least
one degree-one coded symbol to be received in order to start
the decoding process. For Raptor codes with limited lengths,
ML decoding algorithm [12] has been proposed to replace the
LT process. The performance of ML decoding is the same as
the Gaussian elimination. One way to apply the Gaussian elim-
ination on Raptor codes is to solve a system of linear equations
given in the following.

GLT
kγ×nGpre

n×ksT
k×1 = ykγ×1,

where ykγ×1 = (y1, y2, . . . , ykγ )T . Then we can obtain the
following Lemma.

Lemma 1: A receiver can recover all k source symbols
from the kγ coded symbols under ML decoding if and only
if (GLT

kγ×nGpre
n×k)kγ×k is a full-rank matrix, i.e. its rank equals

k [1].
Note that in this paper, all algebraic operations and the

associated analysis are conducted in a binary field G F(2).

IV. PERFORMANCE ANALYSIS OF RAPTOR CODES

Denote by Ak
kγ the event that a receiver can success-

fully decode all k source symbols conditioned on the event
that the receiver has successfully received kγ coded sym-
bols. Obviously the event that (GLT

kγ×nGpre
n×k)kγ×k is a full-rank

matrix is equivalent to the event Ak
kγ . Let Ak

γ k be the com-

plement of event Ak
kγ . The main results of this paper are

summarized in Theorems 2 and 3.
In this section, we shall analyze the probability Pr

[
Ak

γ k

]
.

The analysis of decoding failure probability P DF
k,n,γ = Pr

[
Ak

γ k

]
is conducted by analyzing the probability that the rank of
(GLT

kγ×nGpre
n×k)kγ×k is not k.

A. Upper Bound on the Decoding Failure Probability of Raptor
Codes

In this subsection, we will derive an upper bound on the
decoding failure probability of Raptor codes with a system-
atic (n, k, η) LDGM code as the pre-code. The upper bound
is formally stated in the following theorem.

Theorem 2: When a receiver successfully receives kγ coded
symbols generated using the Raptor code (k,C,�(x)), where
C is an (n, k, η) LDGM code, and the coded symbols received
at the receiver are decoded using ML decoding, the probabil-
ity that not all k source symbols can be successfully decoded
by a receiver with the kγ, (kγ ≥ k) , received coded symbols,
denoted by P DF

k,n,γ , is upper bounded by

P DF
k,n,γ ≤

k∑
i=1

(
k
i

) n−k+i∑
r=i

(J (r))kγ D (i, r) , (1)
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where

J (r) =
n∑

d=1

�d

∑
s=0,2, ..., 2

⌊
d
2

⌋ (r
s

) (n−r
d−s

)
(

n
d

) (2)

and

D(i, r) =
(

n−k
r−i

) [1 + (1 − 2η)i

2

]n−k−r+i

×
[

1 − (1 − 2η)i

2

]r−i

(3)

and �d is the degree distribution of LT codes.

Proof: See Appendix A. �

B. Lower Bound on the Decoding Failure Probability of Raptor
Codes

In addition to the upper bound in the previous subsection,
in the following paragraphs, we derive a lower bound on the
decoding failure probability of Raptor codes which is formally
stated in the following theorem.

Theorem 3: When a receiver successfully receives kγ coded
symbols generated using the Raptor code (k,C,�(x)), where
C is an (n, k, η) LDGM code, and the coded symbols received
at the receiver are decoded using ML decoding, the probabil-
ity that not all k source symbols can be successfully decoded
by a receiver with the kγ, (kγ ≥ k) , received coded symbols,
denoted by P DF

k,n,γ , is lower bounded by:

P DF
k,n,γ

≥
k∑

i=1

(k
i )

n−k+i∑
r=i

(J (r))kγ D(i, r)

− 1

2

k∑
i=1

(k
i )

i∑
w0=0

∑
w1=i−w0

k−i∑
w2=0

1(w0 + w2)1(w1 + w2)

×
(

i
w0

) (
k−i
w2

)⎧⎨
⎩

n−k+w0∑
r0=w0

n−k+w1∑
r1=w1

n−k+w2∑
r0=w2

D(w0, r0)D(w1, r1)

× D(w2, r2)[J (r0)J (r1)J (r2) + J (r0)J (r1)J (r2)]

⎫⎬
⎭

kγ

, (4)

where 1(x) is an indicator function, 1(x) = 0 if x = 0 and
1(x) = 1 otherwise, J (·) = 1 − J (·), D(w0, r0) is defined in
Eq. (3) and J (r0) is defined in Eq. (2).

Proof: See Appendix B. �

C. A Special Case of the Derived Bounds

When we apply a special degree distribution - a binomial

degree distribution [13] with �d = (n
d)

(2n−1)
, 1 ≤ d ≤ n, Eq. (1)

can be further simplified into a much less (computationally)
complex expression, for which Theorem 2 can be restated as
the following Corollary.

Corollary 4: When a receiver successfully receives kγ

coded symbols generated using the Raptor code (k,C,�(x))

where C is an (n, k, η) LDGM code, �(x) = ∑n
d=1

(n
d)xd

(2n−1)
, and

the coded symbols received at the receiver are decoded using
ML decoding, the probability that not all k source symbols can
be successfully decoded by a receiver with the kγ, (kγ ≥ k) ,

received coded symbols, denoted by P DF
k,n,γ , satisfies

P DF
k,n,γ ≤

(
2k − 1

)((2n−1 − 1
)

(2n − 1)

)kγ

. (5)

Proof: See Appendix C. �
For Theorem 3, we can simplify the lower bound into a

less (computationally) complex expression as well. This is
summarized in the following Corollary.

Corollary 5: When a receiver successfully receives kγ

coded symbols generated using the Raptor code (k,C,�(x))

where C is an (n, k, η) LDGM code, �(x) = ∑n
d=1

(n
d)xd

(2n−1)
, and

the coded symbols received at the receiver are decoded using
ML decoding, the probability that not all k source symbols can
be successfully decoded by a receiver with the kγ, (kγ ≥ k) ,

received coded symbols, denoted by P DF
k,n,γ , satisfies

P DF
k,n,γ

≥
(

2k − 1
) [ (2n−1 − 1)

(2n − 1)

]kγ

−
(

2k − 1
) (

2k−1 − 1
)

×
{[

(2n−1 − 1)

(2n − 1)

]3

+
[

1 − (2n−1 − 1)

(2n − 1)

]3}kγ

. (6)

Proof: See Appendix D. �
Compared with the general expressions in Theorems 2 and

3, the simplified expressions in Corollaries 4 and 5 allow us
to easily observe the relationship between the decoding fail-
ure probability and the parameters of the encoding rules, i.e.,
k, n and γ . Additionally, the computation complexity of the
derived upper bound can be reduced from O( 1

2 n2k(n − k)) to
O(1). As for the lower bound, the computation complexity can
be reduced from O( 1

8 n6k3(n − k)3) to O(1).

V. SIMULATION RESULTS

In this section, we shall validate the accuracy of the ana-
lytical results and the tightness of the proposed bounds, using
MATLAB simulations. Each point shown in the figures is the
average result obtained from 106 simulations. For clarity, the
simulation parameters adopted in this section are summarized
in Table I.

A. Verification of the Derived Bounds

In this subsection, the number of source symbols is set to
be k = 20 and the degree distribution of Raptor codes follows
the widely used ideal soliton degree distribution [3]. Besides,
the pre-code C is assumed to be (21, 20, 0.3) and (21, 20, 0.7)

LDGM codes respectively.
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TABLE I
SIMULATION PARAMETERS

Fig. 2. The decoding failure probabilities of Raptor codes with ideal soliton
degree distribution and (n, k, η) LDGM codes as the pre-code versus overhead
γ . Parameter for Bernoulli random variables η is set as 0.3 and 0.7.

In Fig. 2(a) and 2(b), both analytical and simulation results
are presented on P DF

k,n,γ , the probability that not all k = 20
source symbols can be successfully decoded by a receiver, for
different values of the reception overhead γ = m/k. As shown
in Fig. 2(a) and 2(b), our analytical results, i.e., the upper bound
and the lower bound, match the simulation results very well.
This validates the accuracy of the analysis. However, when
the overhead γ is small, there is still a gap between the upper
(lower) bound and simulation results in Fig. 2(a) and 2(b). The
gap between the exact value and the upper bound is caused by

Fig. 3. The decoding failure probabilities of Raptor codes with (n, k, 0.7)

LDGM codes as the pre-code and different degree distributions versus overhead
γ . The degree distributions of Raptor codes are chosen as ideal soliton degree
distribution [3], the standardized degree distribution in 3GPP [4, Annex B] and
binomial degree distribution [13].

the approximation used in Eq. (1), and the gap between the
exact value and the lower bound is caused by Eq. (4).

B. Investigation of the Impact of Degree Distribution on the
Decoding Failure Probability

In this subsection, we investigate the performance for differ-
ent distributions of LT codes when we fix the pre-code C to be
(21, 20, 0.7). The investigated degree distributions are divided
into three cases.

• Case 1 uses the binomial degree distribution [13].
• Case 2 investigates the widely used ideal soliton degree

distribution [3].
• Case 3 is the standardized degree distribution in 3GPP

[4, Annex B]:

�3G P P (x) = 0.0099x + 0.4663x2 + 0.2144x3

+ 0.1152x4 + 0.1131x10 + 0.0811x11.

As shown in Fig. 3(a) and 3(b), for different degree distribu-
tions, our analytical bounds agree very well with the simulation
results. The performance of Raptor codes with the binomial
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Fig. 4. The decoding failure probabilities of Raptor codes with the binomial
degree distribution and (n, k, 0.7) LDGM codes as the pre-code at different
values of the overhead γ . The number of source symbols k is set to be 20, 40,
70 and 100 respectively.

degree distribution outperforms those obtained with the other
three degree distributions. Furthermore, the decoding failure
probability of Raptor codes with the binomial degree distribu-
tion in Corollaries 4 and 5 are less computationally demanding
compared with those in Theorems 2 and 3. Therefore, we will
use Raptor codes with the binomial degree distribution in the
following simulations.

C. Investigation of the Impact of k on the Decoding Failure
Probability of Raptor Codes

When the number of source symbols k varies from 20 to
100, our analytical results still match the simulation results
very well. As shown in Fig. 4(a) and 4(b), at a larger value
of the source symbols, a less reception overhead γ = m/k
is required to achieve the same performance on the decoding
failure probability.

VI. CONCLUSION

In this paper we studied the performance of finite-length
Raptor codes with a systematic LDGM code as the pre-code,

and derived an upper bound and a lower bound on the decoding
failure probability of Raptor codes under ML decoding. Due
to the concatenated coding structure of Raptor codes, we ana-
lyzed the rank behavior of the product of two random matrices
to obtain the decoding failure probability. Furthermore, by con-
sidering a special degree distribution, i.e. the binomial degree
distribution, we derived the simplified upper and lower bounds.
On the basis of the results presented in the paper, we shall
explore the optimum degree distribution and optimal parame-
ter setting of Raptor codes in different channels as our future
work.

APPENDIX A
PROOF OF THEOREM 2

In this appendix, we prove Theorem 2.
According to the property of the matrix product [14,

Eq. (4.5.1)], we have

rank(GLT
kγ×nGpre

n×k)

= rank(Gpre
n×k) − dim{N (GLT

kγ×n) ∩ R(Gpre
n×k)}, (7)

where N (•) is the right-hand null space of a matrix, R(•) is the
column vector space generated by a matrix and dim{V} repre-
sents the number of vectors in any basis for a vector space V. It
follows from the definition of Gpre

n×k given earlier that the rank
of Gpre

n×k is k. It can then be readily obtained that

P DF
k,n,γ = Pr[rank(GLT

kγ×nGpre
n×k) �= k]

= Pr[dim{N (GLT
kγ×n) ∩ R(Gpre

n×k)} �= 0]. (8)

For convenience, let Wkγ,n,k be the event that dim{N (GLT
kγ×n) ∩

R(Gpre
n×k)} �= 0. Now we need to analyze P DF

k,n,γ = Pr[Wkγ,n,k].

Provided that Gpre
n×k is the generator matrix of a sys-

tematic (n, k, η) LDGM code, the event dim{N (GLT
kγ×n) ∩

R(Gpre
n×k)} �= 0, denoted by Wkγ,n,k , is equivalent to the event

that at least one column vector from R(Gpre
n×k) is in N (GLT

kγ×n),

i.e., ∪x∈R(Gpre
n×k)

GLT
kγ×nx = 0, where x is a column vector of

R(Gpre
n×k). It can be readily shown that

Pr[Wkγ,n,k] = Pr
[
∪x∈R(Gpre

n×k)
GLT

kγ×nx = 0
]

≤
∑

x∈R(Gpre
n×k)

Pr
[
GLT

kγ×nx = 0
]
. (9)

The column vector space R(Gpre
n×k) is partitioned into k sub-

space (V1,V2, . . . , Vk) and Vi is the subspace that contains all
the column vectors which are summation of i column vectors of
Gpre

n×k . We denote �i as the set of indices of the column vectors
in Vi and there are (k

i ) elements in �i . Let xi
a be the ath, a ∈ �i

column vector in Vi . It can be shown that

∑
x∈R(Gpre

n×k)

Pr[GLT
kγ×nx = 0] =

k∑
i=1

∑
a∈�i

Pr[GLT
kγ×nxi

a = 0].

(10)
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Observe that xi
a = Ga

n×i 1i where Ga
n×i is the matrix formed

by i column vectors selected from k column vectors of Gpre
n×k

and 1i represent a i × 1 all one column vector. Let
∣∣xi

a

∣∣ be the
weight of column vector xi

a , using the law of total probability,
we have

Pr[GLT
kγ×nxi

a = 0]

=
n∑

r=0

Pr
[
GLT

kγ×nxi
a = 0

∣∣∣ ∣∣∣xi
a

∣∣∣ = r
]

Pr
[∣∣∣xi

a

∣∣∣ = r
]
. (11)

Firstly, we need to calculate Pr
[∣∣xi

a

∣∣ = r
]
. Provided Gpre

n×k =
[Ik |Pk×(n−k)]T , in the first k entries of Ga

n×i 1i there are i ones.
If
∣∣xi

a

∣∣ = r , then there are r − i ones in the last n − k entries of
Ga

n×i 1i , .i.e, Pa
(n−k)×i 1i . Hence we can obtain that

Pr
[∣∣∣xi

a

∣∣∣ = r
]

= Pr
[∣∣∣Pa

(n−k)×i 1i

∣∣∣ = (r − i)
]
, (12)

and i ≤ r ≤ n − k + i . The rows of Pa
(n−k)×i , i.e., p j , 1 ≤

j ≤ (n − k), are random binary row vectors, which are gen-
erated independently. Each entry of Pa

(n−k)×i is i.i.d. Bernoulli
random variable with parameter η. Therefore, Pr[p j 1i = 0] =
Pr[pk,k �= j 1i = 0]. The event that the j th entry in xi

a is zero is
equivalent to the event that there are even number of ones in
row vector p j . Thus we have

Pr[p j 1i = 0] = Pr
[∣∣p j

∣∣ is even
]

=
∑

s=0,2, ..., 2
⌊

i
2

⌋(
i
s)η

s(1 − η)(i−s)

= [(η + (1 − η))i + (−η + (1 − η))i ]

2

= 1 + (1 − 2η)i

2
. (13)

There are (n−k
r−i ) possible combinations for r − i ones in the last

n − k entries. It follows that

Pr
[∣∣∣Pa

(n−k)×i 1i

∣∣∣ = (r − i)
]

= (n−k
r−i ){Pr[p j 1i = 0]}n−k−r+i

× {1 − Pr[p j 1i = 0]}r−i . (14)

Combining Eq. (12), (13) and (14), we can obtain that

D(i, r) = Pr
[∣∣∣xi

a

∣∣∣ = r
]

=
(

n−k
r−i

) [1 + (1 − 2η)i

2

]n−k−r+i

×
[

1 − (1 − 2η)i

2

]r−i

. (15)

For xi
a, xi

b,b �=a ∈ Vi , Pa
(n−k)×i and Pb

(n−k)×i have the same prob-
ability to form the same matrix formation. So we can obtain that

Pr
[∣∣∣Pa

(n−k)×i 1i

∣∣∣ = (r − i)
]

= Pr
[∣∣∣Pb

(n−k)×i 1i

∣∣∣ = (r − i)
]
,

which in turn leads to the conclusion that Pr
[∣∣xi

a

∣∣ = r
] =

Pr
[∣∣xi

b

∣∣ = r
]
. Now, we calculate Pr

[
GLT

kγ×nxi
a = 0| ∣∣xi

a

∣∣ = r
]
.

The rows of GLT
γ k×n , i.e., gLT

j , 1 ≤ j ≤ kγ , are random binary
row vectors, which are generated independently. We have

Pr
[
GLT

kγ×nxi
a = 0

∣∣∣ ∣∣∣xi
a

∣∣∣ = r
]

=
{

Pr
[
gLT

j xi
a = 0

∣∣∣ ∣∣∣xi
a

∣∣∣ = r
]}kγ

. (16)

The degree of gLT
j , i.e. the number of non-zero elements of

gLT
j , is chosen according to the pre-defined degree distribution

� = (�1, . . . , �n) and each non-zero element is then placed
randomly and uniformly into gLT

j . It can be readily obtain that

Pr
[
gLT

j xi
a = 0

∣∣∣ ∣∣∣xi
a

∣∣∣ = r
]

=
n∑

d=1

�d Pr
[
gLT

j xi
a = 0

∣∣∣ ∣∣∣xi
a

∣∣∣ = r,
∣∣∣gLT

j

∣∣∣ = d
]
. (17)

Let ri
j = (gLT

j1 xi
a1, gLT

j2 xi
a2, . . . , gLT

jn xi
an), where gLT

jk is
[
gLT

j

]
1,k

and xi
ak is

[
xi

a

]
k,1. Then, we can obtain that

Pr
[
gLT

j xi
a = 0

∣∣∣ ∣∣∣xi
a

∣∣∣ = r,
∣∣∣gLT

j

∣∣∣ = d
]

= Pr
[∣∣∣ri

j

∣∣∣ is even
∣∣∣ ∣∣∣xi

a

∣∣∣ = r,
∣∣∣gLT

j

∣∣∣ = d
]

=
∑

s=0,2, ..., 2
⌊

d
2

⌋(r
s)(

n−r
d−s)

(n
d)

. (18)

Combining Eq. (17) and (18), we can obtain that

J (r) = Pr
[
gLT

j xi
a = 0

∣∣∣ ∣∣∣xi
a

∣∣∣ = r
]

=
n∑

d=1

�d

∑
s=0,2, ..., 2

⌊
d
2

⌋(r
s)(

n−r
d−s)

(n
d)

. (19)

Incorporating Eq. (16) into (19), it can be established that

Pr
[
GLT

kγ×nxi
a = 0

∣∣∣ ∣∣∣xi
a

∣∣∣ = r
]

= [J (r)]kγ . (20)

We can obtain that Pr[GLT
kγ×nxi

a = 0| ∣∣xi
a

∣∣ = r ] is only deter-

mined by the weight of xi
a rather than which i column vectors is

chosen from Gpre
n×k to obtain the summation xi

a . So we can con-
clude that Pr[GLT

kγ×nxi
a = 0] = Pr[GLT

kγ×nxi
b = 0]. Recall that

there are (k
i ) indices in �i . Combining Eq. (15), (20), (11) and

Eq. (10), yields the following results

P DF
k,n,γ = Pr[Wkγ,n,k]

≤
k∑

i=1

∑
a∈�i

Pr
[
GLT

kγ×nxi
a = 0

]

=
k∑

i=1

(
k
i

) n−k+i∑
r=i

(
n−k
r−i

)⎡⎢⎣ n∑
d=1

�d

∑
s=0,2, ..., 2

⌊
d
2

⌋ (r
s

) (n−r
d−s

)
(

n
d

)
⎤
⎥⎦

kγ

×
[

1 + (1 − 2η)i

2

]n−k−r+i [
1 − (1 − 2η)i

2

]r−i

, (21)

which proves the theorem.
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APPENDIX B
PROOF OF THEOREM 3

Similar as that in [7, Lemma 10], by using the Bonferroni
inequality [15], we can obtain a lower bound of Pr[Wkγ,n,k] as

P DF
k,n,γ = Pr[Wkγ,n,k]

= Pr[∪x∈R(Gpre
n×k)

GLT
kγ×nx = 0]

(a)≥
∑

x∈R(Gpre
n×k)

Pr[GLT
kγ×nx = 0]

− 1

2

∑
x,y∈R(Gpre

n×k),x �=y

Pr[GLT
kγ×nx = 0 ∩ GLT

kγ×ny = 0],

(22)

where x=Gpre
n×ka, a∈G F(2)k and y = Gpre

n×kb, b ∈ G F(2)k\a.
The first term can be calculated by using Theorem 2. Recall that
Vi is a subspace that contain all the column vectors which are
summation of i column vectors of Gpre

n×k , �i is the set of indices
of the column vectors in Vi and xi

a represents the ath, a ∈ �i

column vectors in Vi . It can be readily shown that∑
x,y∈R(Gpre

n×k),x �=y

Pr[GLT
kγ×nx = 0 ∩ GLT

kγ×ny = 0]

=
∑

x∈R(Gpre
n×k)

∑
y∈R(Gpre

n×k)\x

Pr[GLT
kγ×nx = 0 ∩ GLT

kγ×ny = 0]

=
k∑

i=1

∑
a∈�i

∑
y∈R(Gpre

n×k)\xi
a

Pr[GLT
kγ×nxi

a = 0 ∩ GLT
kγ×ny = 0],

(23)

where xi
a = Gpre

n×ka, |a| = i . Recall that y = Gpre
n×kb, b ∈

G F(2)k . We define three binary vectors z0, z1, and z2 ∈
G F(2)k such that for t = 1, . . . , k, z0(t) = 1 if and only if
a(t) = 1 and b(t) = 1, z1(t) = 1 if and only if a(t) = 1 and
b(t) = 0, and z2(t) = 1 if and only if a(t) = 0 and b(t) = 1.
Let w0, w1 and w2 be the weights of vectors z0, z1, and z2,
respectively. For xi

a , we have z0 + z1 = a and z0 + z2 = b.
Hence we can obtain

Pr
[
GLT

kγ×nxi
a = 0 ∩ GLT

kγ×ny = 0
]

= Pr
[
GLT

kγ×nGpre
n×kz0 = GLT

kγ×nGpre
n×kz1

∩ GLT
kγ×nGpre

n×kz1 = GLT
kγ×nGpre

n×kz2∣∣∣ |z0| = w0 ∩ |z1| = w1 ∩ |z2| = w2

]
. (24)

Let Iz = {iz1, iz2, . . . , izτ } be the set of indices such that t ∈ Iz
for z(t) = 1, we can obtain the sets of indices of vectors z0,
z1, and z2 as Iz0 , Iz1 and Iz2 . Corresponding to the three sets
Iz0 , Iz1 and Iz2 , each column of the matrix Gpre

n×k , gpre
i , can

be divided into four mutually exclusive parts, gz0 , gz1 , gz2 and
∪1≤i≤kgpre

i \(gz0 ∪ gz1 ∪ gz2), i.e., gz0 ∩ gz1 = {0}. Let gz0 be
the subset of ∪1≤i≤kgpre

i such that all the elements of this sub-
set are selected from ∪1≤i≤kgpre

i according to the indices in set

Iz0 and Gpre
z0 be the matrix whose columns are elements of gz0 .

The length of gz0 is w0. The same operation is applied to the
formation of gz1 and gz2 , in which the elements are selected
according to the indices in set Iz1 and Iz2 , and have lengths w1
and w2, respectively. Let xw0 = Gpre

z0 1w0 , xw1 = Gpre
z1 1w1 and

xw2 = Gpre
z2 1w2 . Equivalently, Eq. (30) can be rewritten as,

Pr
[
GLT

kγ×nGpre
n×kz0 = GLT

kγ×nGpre
n×kz1

∩ GLT
kγ×nGpre

n×kz1 = GLT
kγ×nGpre

n×kz2∣∣∣ |z0| = w0 ∩ |z1| = w1 ∩ |z2| = w2

]
= Pr

[
GLT

kγ×nxw0 = GLT
kγ×nxw1

∩GLT
kγ×nxw1 = GLT

kγ×nxw2
]
. (25)

Recall that the rows of GLT
kγ×n , i.e., gLT

j , 1 ≤ j ≤ kγ , are ran-
dom binary row vectors, which are generated independently.
We have

Pr
[
GLT

kγ×nxw0 = GLT
kγ×nxw1

∩GLT
kγ×nxw1 = GLT

kγ×nxw2
]

=
{

Pr
[
gLT

j xw0 = gLT
j xw1

∩gLT
j xw1 = gLT

j xw2
]}kγ

. (26)

According to the law of total probability, we have

Pr
[
gLT

j xw0 = gLT
j xw1

∩gLT
j xw1 = gLT

j xw2
]

=
n−k+w0∑
r0=w0

n−k+w1∑
r1=w1

n−k+w2∑
r0=w2

Pr[
∣∣xw0

∣∣ = r0]

× Pr[
∣∣xw1

∣∣ = r1] Pr[
∣∣xw2

∣∣ = r2]

× Pr
[
gLT

j xw0 = gLT
j xw1

∩ gLT
j xw1 = gLT

j xw2∣∣∣ ∣∣xw0
∣∣ = r0 ∩ ∣∣xw1

∣∣ = r1 ∩ ∣∣xw2
∣∣ = r2

]
. (27)

For Pr[|xw0 | = r0], this can be calculated by using Eq. (15).
Because all algebraic operations are conducted in a binary field,
gLT

j xw0 can only be 1 or 0. Eq. (27) can be further written as :

Pr
[
gLT

j xw0 = gLT
j xw1 ∩ gLT

j xw1 = gLT
j xw2∣∣∣ ∣∣xw0

∣∣ = r0 ∩ ∣∣xw1
∣∣ = r1 ∩ ∣∣xw2

∣∣ = r2

]
= Pr

[
gLT

j xw0 = 0 ∩ gLT
j xw1 = 0 ∩ gLT

j xw2 = 0∣∣∣ ∣∣xw0
∣∣ = r0 ∩ ∣∣xw1

∣∣ = r1 ∩ ∣∣xw2
∣∣ = r2

]
+ Pr

[
gLT

j xw0 = 1 ∩ gLT
j xw1 = 1 ∩ gLT

j xw2 = 1∣∣∣ ∣∣xw0
∣∣ = r0 ∩ ∣∣xw1

∣∣ = r1 ∩ ∣∣xw2
∣∣ = r2

]
. (28)
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Recall that xw0 = Gpre
z0 1w0 , xw1 = Gpre

z1 1w1 , xw2 = Gpre
z2 1w2 and

the columns of Gpre
z0 , Gpre

z1 , Gpre
z2 are mutually exclusive to each

other. So event that |xw0 | = r0 is independent of event that
|xw1 | = r1 or |xw2 | = r2 and the event that gLT

j xw0 = 1 is inde-

pendent of event that gLT
j xw1 = 1 or gLT

j xw2 = 1. Conditioned
on |xw0 | = r0, |xw1 | = r1, |xw2 | = r2, the first part in Eq. (28)
can be expressed as:

Pr
[
gLT

j xw0 = 0 ∩ gLT
j xw1 = 0 ∩ gLT

j xw2 = 0

∣∣∣ ∣∣xw0
∣∣ = r0 ∩ ∣∣xw1

∣∣ = r1 ∩ ∣∣xw2
∣∣ = r2

]

= Pr
[
gLT

j xw0 = 0
∣∣∣ ∣∣xw0

∣∣ = r0

]

× Pr
[
gLT

j xw1 = 0
∣∣∣ ∣∣xw1

∣∣ = r1

]

× Pr
[
gLT

j xw2 = 0
∣∣∣ ∣∣xw2

∣∣ = r2

]
. (29)

Based on the previous analysis, we know that Pr[gLT
j xw0 =

0
∣∣∣ |xw0 | = r0] only relates to parameter r0. Let D(w0, r0) =

Pr[|xw0 | = r0] and J (r0) = Pr[gLT
j xw0 = 0| |xw0 | = r0]. For

J (r0), it can be calculated by using Eq. (17) and (18). Based
on the previous analysis„ we know that J (r0) only relates to
parameter r0 and D(w0, r0) is affected by parameter r0 and w0.
Hence for the same parameters w0, w1 and w2, Eq. (25) has the
same result. Because xi

a �= y, we can obtain that w1 + w2 �= 0
and w0 + w2 �= 0. For xi

a , when |z0| = w0, we have w1 = i −
w0 and there are (i

w0
) possible combinations of z0. For z2, there

are (k−i
w2

) possible combination of z2 when |z2| = w2. Inserting
Eq. (25), (27), (27), (28) and (29) into (24), we can obtain:

∑
y∈R(Gpre

n×k)\xi
a

Pr[GLT
kγ×nxi

a = 0 ∩ GLT
kγ×ny = 0]

=
i∑

w0=0

∑
w1=i−w0

k−i∑
w2=0

1(w0 + w2)1(w1 + w2)(
i
w0

)(k−i
w2

)

× {
n−k+w0∑
r0=w0

n−k+w1∑
r1=w1

n−k+w2∑
r0=w2

D(w0, r0)D(w1, r1)D(w2, r2)

[J (r0)J (r1)J (r2) + J (r0)J (r1)J (r2)]}γ k, (30)

where 1(x) :=
{

0 if x = 0

1 otherwise
.

For xi
a, xi

b,b �=a ∈ Vi , the probability∑
xi

a �=y Pr
[
GLT

kγ×nxi
a = 0 ∩ GLT

kγ×ny = 0
]

is affected by

parameter i . So we can obtain that
∑

xi
a �=y Pr[GLT

kγ×nxi
a =

0 ∩ GLT
kγ×ny = 0] = ∑

xi
b �=y Pr[GLT

kγ×nxi
b = 0 ∩ GLT

kγ×ny = 0].

Recall that there are (k
i ) indices in �i . We can get that

∑
x,y∈R(Gpre

n×k),x �=y

Pr[GLT
kγ×nx = 0 ∩ GLT

kγ×ny = 0 ]

=
k∑

i=1

∑
a∈�i

∑
y∈R(Gpre

n×k)\xi
a

Pr[GLT
kγ×nxi

a = 0 ∩ GLT
kγ×ny = 0]

=
k∑

i=1

(k
i )

i∑
w0=0

∑
w1=i−w0

k−i∑
w2=0

1(w0 + w2)1(w1 + w2)

× (i
w0

)(k−i
w2

){
n−k+w0∑
r0=w0

n−k+w1∑
r1=w1

n−k+w2∑
r0=w2

D(w0, r0)D(w1, r1)

× D(w2, r2)[J (r0)J (r1)J (r2) + J (r0)J (r1)J (r2)]}kγ .

(31)

This completes the proof of Theorem 3.

APPENDIX C
PROOF OF COROLLARY 4

When the binomial degree distribution (the expurgated stan-

dard random ensemble) [8], [13], i.e., �d = (n
d)

(2n−1)
, 1 ≤ d ≤ n,

is inserted into Eq. (17), we can obtain that

Pr[gLT
j xi

a = 0|
∣∣∣xi

a

∣∣∣ = r ]

= (2n − 1)−1
n∑

d=1

∑
s=0,2, ..., 2

⌊
d
2

⌋(
r
s)(

n−r
d−s). (32)

Similar to [13, Lemma 2], when the upper limit of the inner
summation is changed from 2

⌊ d
2

⌋
to 2

⌊ n
2

⌋
, it will not affect

the result of Eq. (32). This is because (n−r
d−s) with s > 2

⌊ d
2

⌋
equals 0.

Pr[gLT
j xi

a = 0|
∣∣∣xi

a

∣∣∣ = r ]

= (2n − 1)−1
n∑

d=1

∑
s=0,2, ..., 2� n

2 	
(r
s)(

n−r
d−s)

a= (2n − 1)−1
∑

s=0,2, ..., 2� n
2 	

(r
s)

n∑
d=1

(n−r
d−s). (33)

The reason why the order of the two summations in Eq. (33)
can be exchanged is because the inner summation variable s is
now independent of the outer summation variable d. Note that
1 ≤ d ≤ n. Now we want to change the lower limit of the inner
summation of Eq. (33) from 1 to 0 without affecting its result.

Pr
[
gLT

j xi
a = 0|

∣∣∣xi
a

∣∣∣ = r
]

= (2n − 1)−1{
∑

s=0,2, ..., 2� n
2 	

(r
s)[

n∑
d=0

(n−r
d−s) − (n−r

d−s)d=0]}

b= (2n − 1)−1[
∑

s=0,2, ..., 2� n
2 	

(r
s)

n∑
d=0

(n−r
d−s) − (r

s)(
n−r
d−s)s=d=0].

(34)
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Step (b) is because the term (n−r
d−s)d=0 equals 0 for s �= 0. Hence,

only the case s = 0 needs to be considered. The terms (n−r
d−s)

restricts d to s ≤ d ≤ n − r + s, such that

n∑
d=0

(n−r
d−s) =

n−r+s∑
d=s

(n−r
d−s) =

n−r∑
d=0

(n−r
d ) = 2n−r . (35)

Combining this term with the last expression for Pr[gLT
j xi

a =
0| ∣∣xi

a

∣∣ = r ] yields

[
gLT

j xi
a = 0|

∣∣∣xi
a

∣∣∣ = r
]

= (2n − 1)−1

⎛
⎝2n−r

∑
s=0,2, ..., 2� n

2 	
(r
s) − 1

⎞
⎠

= (2n − 1)−1(2n−r 2r−1 − 1) (36)

= (2n−1 − 1)

(2n − 1)
, (37)

where we have used identity
∑

s even(
r
s) = 2r−1. We can

observe that Pr[gLT
j xi

a = 0| ∣∣xi
a

∣∣ = r ] is independent from

the weight of xi
a , hence Pr[GLT

kγ×nxi
a = 0| ∣∣xi

a

∣∣ = r ] =
Pr[GLT

kγ×nxi
a = 0]. Combining Eq. (16), (37), (10) and (8), we

can obtain that

P DF
k,n,γ = Pr[Wkγ,n,k]

= Pr
[
∪x∈R(Gpre

n×k)
GLT

kγ×nx = 0
]

≤
∑

x∈R(Gpre
n×k)

Pr
[
GLT

kγ×nx = 0
]

= (2k − 1) Pr
[
GLT

kγ×nx = 0| |x| = r
]

= (2k − 1)(
(2n−1 − 1)

(2n − 1)
)kγ . (38)

The proof of Corollary 4 is completed.

APPENDIX D
PROOF OF COROLLARY 5

When the binomial degree distribution is inserted into
Eq. (13), by using the result of Eq. (37), we can obtain that

J (r0) = Pr[gLT
j xw0 = 0| ∣∣xw0

∣∣ = r0]

= (2n−1 − 1)

(2n − 1)
. (39)

Insert Eq. (39) into Eq. (25), we can obtain that

Pr
[
GLT

kγ×nGpre
n×kz0 = GLT

kγ×nGpre
n×kz1

∩ GLT
kγ×nGpre

n×kz1 = GLT
kγ×nGpre

n×kz2

| |z0| = w0 ∩ |z1| = w1 ∩ |z2| = w2]

=
n−k+w0∑
r0=w0

n−k+w1∑
r1=w1

n−k+w2∑
r0=w2

D(w0, r0)D(w1, r1)D(w2, r2)

× {[ (2
n−1 − 1)

(2n − 1)
]3 + [1 − (2n−1 − 1)

(2n − 1)
]3}kγ

= {[ (2
n−1 − 1)

(2n − 1)
]3 + [1 − (2n−1 − 1)

(2n − 1)
]3}kγ . (40)

Incorporating Eq. (40) into Eq. (30), we can obtain that∑
xi

a �=y

Pr[GLT
kγ×nxi

a = 0 ∩ GLT
kγ×ny = 0]

=
i∑

w0=0

∑
w1=i−w0

k−i∑
w2=0

1(w0 + w2)1(w1 + w2)(
i
w0

)(k−i
w2

)

× {[ (2
n−1 − 1)

(2n − 1)
]3 + [1 − (2n−1 − 1)

(2n − 1)
]3}kγ

= (2k − 2){[ (2
n−1 − 1)

(2n − 1)
]3 + [1 − (2n−1 − 1)

(2n − 1)
]3}kγ . (41)

Combining Eq. (41), (23) and (22), we can obtain that

P DF
k,n,γ = Pr[Wkγ,n,k]

≥
∑

x∈R(Gpre
n×k)

Pr[GLT
kγ×nx = 0]

− 1

2

∑
x,y∈R(Gpre

n×k),x �=y

Pr[GLT
kγ×nx = 0 ∩ GLT

kγ×ny = 0]

= (2k − 1)(
(2n−1 − 1)

(2n − 1)
)kγ − 1

2

k∑
i=1

(k
i )(2

k − 2)

× {[ (2
n−1 − 1)

(2n − 1)
]3 + [1 − (2n−1 − 1)

(2n − 1)
]3}kγ

= (2k − 1)

[
(2n−1 − 1)

(2n − 1)

]kγ

− (2k − 1)(2k−1 − 1)

×
{[

(2n−1 − 1)

(2n − 1)

]3

+
[

1 − (2n−1 − 1)

(2n − 1)

]3}kγ

. (42)

The proof of Corollary 5 is completed.
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