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Efficient Algorithms for Mobile Sink Aided Data
Collection From Dedicated and Virtual

Aggregation Nodes in Energy Harvesting
Wireless Sensor Networks

Lei Tao, Xin Ming Zhang , Senior Member, IEEE, and Weifa Liang , Senior Member, IEEE

Abstract—We study the mobile data collection problem in an
energy harvesting wireless sensor network (EH-WSN), where sen-
sor nodes are densely deployed in a monitoring area and a mobile
sink (MS) travels around the area to collect sensory data from
the sensors. In order to optimize the network performance while
achieving perpetual network operation, we propose efficient algo-
rithms to dynamically schedule the MS for collecting data from
sensors with different data generation rates. Specifically, in this
paper, we propose an optimization framework that consists of
three stages. We first deal with the reliable, stable, and energy
neutral energy assignment for sensors. We then find a closed
trajectory for the MS for sensory data collection that covers as
many as aggregation nodes, and devise a decentralized algorithm
to determine the data generation rate of each sensor and the data
flow rate of each link to optimize the network performance. We
also develop a fast heuristic algorithm for the problem. We finally
evaluate the performance of the proposed algorithms through
numerical experiments. The simulation results demonstrate that
the proposed algorithms are efficient.

Index Terms—Distributed algorithms, energy harvesting wire-
less sensor networks, network utility, mobile data collection, path
planning.

I. INTRODUCTION

S INK mobility [1] has been proven to be an effective
technique that facilitates balancing energy consumption

among sensor nodes and prolongs the lifetime of battery-
operated wireless sensor networks (WSNs). In a mobile data
collection framework, some sensor nodes are identified as
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aggregation nodes to gather sensory data for the other sensors.
A mobile sink (MS) moves to the vicinity of the aggregation
nodes to collect data from them. The aggregation nodes then
distribute data traffic that intended route to a static sink across
the network, to achieve energy balance among sensor nodes
and balanced traffic distribution [2]. On the other hand, energy
harvesting (EH) [3] is another efficient technology that enables
sensor nodes to harvest ambient energy (solar, wind, etc) from
their surrounding environments, which has been paid more
attention recently due to its features of environmental friend-
liness, free replacements for batteries, and potential to achieve
perpetual network operation.

The adoptions of EH technique and sink mobility pose
challenges for mobile data collection. The mobile data col-
lection problem usually involves two issues, including the
data collection path planning for the MS, and the data rout-
ing optimization for sensors, which are together coupled with
the energy harvesting profile of each sensor. For example,
the trajectory of an MS impacts how sensors can efficiently
route their sensory data to the MS. Also, data generation
rates and the data routing path primarily determine the energy
consumption of an individual sensor node, which should be
constrained by the battery level and energy harvesting rate of
the sensor, in order to prolong network lifetime. Handling the
dynamics of harvested energy and energy usages of sensors
need efficient optimization algorithms, and tackling the mobile
data collection problem with various constraints requires novel
optimization frameworks.

Several studies [4]–[8], [12] have investigated the benefits
of sink mobility to data collection in an energy renewable
network. The authors in [4]–[7] assumed that the trajectory
of data collection of an MS is predetermined. However, a
fixed data collection path is not applicable to the time-varying
energy profiles of sensor nodes. To handle this problem,
Guo et al. [8] and Wang et al. [12] proposed algorithms that
first dynamically choose aggregation nodes according to the
predicted energy harvesting rate of each sensor, and then plan
a data collection trajectory for the MS that traverses on these
aggregation nodes. However, the benefit of sink mobility has
not been fully explored. In this paper, we consider that if the
MS is within the transmission range of a sensor node with
data to upload, the MS could directly collect the data from
the sensor node. We use an example in Fig. 1 to explain the
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Fig. 1. (a) Traditional and (b) proposed mobile data collection strategies.

data collection mechanism. We consider a segment of the data
collection trajectory from point A to point B. A dashed cir-
cle indicates the communication range of a node. In Fig. 1(a),
the MS traverses each aggregation node to collect data from
the shown sensors. However, with the proposed transmission
strategy in Fig. 1(b), the MS just needs to go through the
overlapped coverage area of the communication ranges of the
aggregation nodes. As a result, the movement distance from A
to B is reduced compared to Fig. 1(a). Moreover, we let virtual
aggregation nodes transmit data directly to the passing-by MS
instead of via aggregation nodes, where virtual aggregation
nodes are defined as the sensors near the trajectory of the MS
and do not relay data for other sensors. With the help of virtual
aggregation nodes, the load of relayed data for the dedicated
aggregation nodes decreases, in other words, these aggregation
nodes can transmit more data with constrained energy, which
help to yield a better network performance.

In this paper, we investigate the mobile data collection
problem with the aim of maximizing network utility in an
MS aided energy harvesting sensor network, subject to vari-
ous coupled constraints such as the traveling length constraint
on the MS and constraints on link and battery capacity on
sensors. The main contributions of this paper are summarized
as follows.

We mathematically formulate a mobile data collection
problem. We first propose a harvested energy arrangement
policy that dynamically assigns the energy budget to sensors
according to time-varying energy harvesting rates, which can
avoid energy deficit and energy overflow occurring. We then
develop an algorithm that effectively identifies aggregation
nodes and finds a closed data collection trajectory that covers

the elected aggregation nodes, subject to the trajectory length.
Also, we devise a fully distributed algorithm to maximize the
network utility with the given energy budget and constraints on
links, where we allow virtual aggregation nodes near the data
collection trajectory to upload their data directly to the MS
when it passed by. Finally, we conduct numerical evaluation
on the performance of the proposed algorithms. Experimental
results demonstrate that the proposed algorithms are efficient.

The rest of this paper is organized as follows. The related
work is surveyed in Section II. Section III defines the scope of
our problem and outlines our solutions. Section IV proposes
the algorithms of energy budget assignment, mobile data col-
lection trajectory planning, and sensors data rate and link flow
rate optimization. Section V provides the simulation results.
The paper concludes in Section VI.

II. RELATED WORK

There have been serval studies on network performance
optimization of data collection in energy harvesting sensor
networks [13]–[19]. For example, Zhang et al. [13] proposed
a distributed data gathering approach to maximize the network
utility in terms of total amount of data collected by the MS,
while maintaining network fairness. Here, fairness means the
data generation rate of each sensor node should not vary sig-
nificantly. Chen et al. [14] addressed the joint optimization
problem of energy allocation and routing to maximize the total
system utility, without prior knowledge of the replenishment
profile of each sensor. A low-complexity online solution is
also proposed that achieves asymptotic optimality. Focusing
on the purposes of network utility maximization and perpetual
network operation, Liu et al. [15] developed a dual decom-
position and subgradient based algorithm, called QuickFix, to
compute the optimal data sampling rate and route, and a SnapIt
algorithm to adjust the sampling rate. Lin et al. [16] developed
routing algorithms to optimally maximize the throughput and
available energy in the presence of energy constraints with no
statistical information on packet arrivals. Taking into account
the dynamic feature of network topology, Zhang et al. [17]
designed a data gathering optimization algorithm called DoSR
for dynamic sensing and routing. An improved algorithm
to manage the energy allocation in dynamic environments
and a topology control scheme was also proposed to reduce
computational complexity. Aoudia et al. [18] formulated the
packet generation rates (PGR) maximization a convex problem
and adopted a fast version of the ADMM to distributively
compute optimal and fair packet rates in energy harvest-
ing sensor networks. Yang and McCann [19] studied the
optimal lexicographic max-min (LM) rate allocation problem
in solar-powered wireless sensor networks, to achieve both LM
optimality and sustainable operation.

Also, several recent studies [4]–[8], [12], [20] considered
both the rechargeable characteristic of sensors and sink mobil-
ity to further improve the network performance. In [4], [5], the
throughput maximization problem was investigated in energy
harvesting sensor networks, where an MS traverses along a
fixed path to collect data from sensors within one-hop dis-
tance. Deng et al. [6] proposed a distributed algorithm to
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jointly optimize the data sampling rates and battery levels to
maximize the network utility with spatiotemporally-coupled
constraints in rechargeable sensor networks. Zhang et al. [7]
extended their work in [13] to an MS aided scenario and
proposed near optimal distributed data gathering schemes
in EH-WSNs. Until now, the aforementioned work assumes
that the trajectory of the MS is pre-determined. To further
adapt the dynamics of energy harvesting sensor networks,
Zhao et al. [20] investigated an optimization framework to
jointly achieve mobile energy replenishment and data gather-
ing in rechargeable sensor networks. Period-wise data collec-
tion and recharging path is calculated on-demand based on the
battery state of sensors. And the authors devised a distributed
algorithm to achieve flow-level network utility maximization.
Guo et al. [8] extended the work in [20] by considering het-
erogeneous energy consumption of sensors and time-varying
charging duration, and proposed distributed cross-layer strat-
egy, which adaptively adjusts the optimal rate, routing paths,
instant energy provisioning status, and charging durations to
maximize the network utility. Wang et al. [12] investigated
the mobile data gathering problem in EH-WSNs by a two-
step approach where data collection trajectory for the MS
and source plus flow rates for the sensors are optimized in
each step, respectively. The influence of shadows on the solar
profiles is emphasized in this work.

In the area of unmanned aerial vehicle (UAV) commu-
nication and trajectory design, Zhan et al. [21] studied
energy-efficient mobile data collection in an UAV aided WSN.
Zeng and Zhang [22] proposed a point-to-point UAV-to-single-
base-station communication and UAV trajectory planning
algorithm. In [21], [22], a novel approximation method based
on Taylor expansion was adopted that relaxs a non-convex
problem into a convex optimization problem. Ho et al. [23]
focused on the energy efficiency problem, and proposed a
Low Energy Adaptive Clustering Hierarchy (LEACH)-based
protocol. A Particle Swarm Optimization (PSO) method was
proposed to find the optimal topology in order to reduce the
energy consumption, bit error rate (BER), and UAV travel
time.

Unlike the aforementioned studies, in this paper we study a
dynamic mobile data collection problem that plans a trajectory
for the MS and optimizes data generation rates for sensors,
where dedicated and virtual aggregation nodes are used to
transmit data to the MS to fully utilize the opportunities of
data uploading.

III. PRELIMINARIES

A. System Model

We consider an EH-WSN with node set N ′ = N ∪ {s},
where N is a set of n homogeneous stationary sensor nodes
that are deployed over a monitoring area and s represents an
MS node. We use the term node to refer either a sensor node or
an MS node. Each sensor is equipped with renewable energy
supply (e.g., solar energy), stores and generates sensory data
to upload. The sensory data rate of a sensor node is called its
data generation rate. The sink node is a vehicle, e.g., a mobile

Fig. 2. The dynamic mobile data collection optimization process.

car or an unmanned aerial vehicle, that moves periodically
through the monitoring area to collect data from sensors.

Time is divided into equal time periods/durations of
length T. Without loss of generality, we assume that an MS
completes a closed mobile data collection trajectory once per
time period. In each period, we aim to optimize the network
performance over the next K periods, as depicted in Fig. 2.
And each time the time period index is increased by one, with
one more period harvested energy prediction information, we
will rerun the optimization algorithms based on the energy
usage at previous time period. Therefore, the mobile data
collection optimization problem is a dynamic problem.

B. Mobile Data Collection

In each data collection trajectory, each sensor node first for-
wards its data to an aggregation node (or several aggregation
nodes) through one-hop or multi-hop transmission, and the MS
stops at some positions called collection centers for a certain
amount of time to gather data from its neighboring aggre-
gation node(s). We use C(t) and A(t) to indicate the set of
collection sites and of aggregation nodes, respectively, and use
σu to represent the stop time of the MS at collection center
u ∈ C(t).

The aggregation nodes and data collection trajectory design
should satisfy that the MS traverses the areas within the com-
munication range of each chosen aggregation node in order to
collect data from it. We let

χu(t) := {i ∈ A(t) | d(pi , pu) ≤ R}, (1)

where pu and pi denote the coordinate of a collection center
u and an aggregation node i, respectively. d(·, ·) denotes the
distance between two coordinates. Then the following should
be satisfied

χu(t) �= ∅, ∀u ∈ C(t). (2)

Constraint (2) means that for each collection center u on the
trajectory, u should be within the transmission range of a cer-
tain aggregation node, so that the MS is able to collect data
from the aggregation nodes.

Also, the length of the data collection trajectory reflects the
total amount of time and energy consumption of the MS to
complete a data collection trajectory, we bound the total length
of all data collection trajectories over all time periods by lb .
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The sum trajectory lengths constraint can be expressed as:
∑

t∈K
l(t) ≤ lb , (3)

where l(t) denotes the length of the mobile data collection
trajectory in time period t.

Once a data collection trajectory is determined at a certain
period t, the sensors near the trajectory can choose to trans-
mit data directly to the MS when the MS passes by without
influencing its traveling speed. We call these wayside sen-
sors virtual aggregation nodes and denote the set of virtual
aggregation nodes by W(t).

C. Energy Model

For the energy supply model, we assume an energy predic-
tor [18] that can provide predictions of harvested energy over
each time period and use hi (t) to represent the average energy
harvesting rate of sensor node i at time period t. And for the
energy cost model, we assume that transmitting, receiving and
sensing data dominate the energy consumption of each sensor.
We use etx , erx and es to indicate the energy costs for trans-
mitting, receiving and sensing one bit of data, respectively. In
period k, assume the data generation rate of sensor i is ri (t),
and the data flow rate at a link l is fl (t). The energy cost of
sensor i at time period t can be expressed as:

ci (t) =
∑

l∈Oi (t)

etx fl (t) +
∑

m∈Ii (t)

erx fm (t) + esri (t), ∀i ∈ N ,

(4)

where Oi (t) and Ii (t) represent outgoing links and incoming
links of sensor i at time period t, respectively. Note that Oi (t)
and Ii (t) are optimization variables.

We adopt the harvest-store-use (HSU) model [3]. The recur-
rence expression of the battery level at sensor node i at time
period t can be expressed as

bi (t) = [bi (t − 1) − (ai (t) − hi (t))T ]+, ∀t ∈ K, (5)

where ai (t) represents the energy budget of sensor node i at
time period t. B is the maximum capacity of the battery of a
sensor node. [x ]+ := min(B ,max(0, x )).

D. Link Model

We consider a time division multiple access (TDMA)
system for data transmission. Assume that a node cannot trans-
mit to or receive from multiple nodes simultaneously, and
cannot perform both transmission and reception simultane-
ously [33], we have the following constraint:

∑

l∈Oi (t)

fl (t)
πl

+
∑

m∈Ii (t)

fm(t)
πm

≤ 1, ∀i ∈ N , (6)

where πl is the bandwidth capacity of link l. We classify
the links L into three categories. A link exists between any
two sensor nodes if they are within transmission range of
each other, between each aggregation node and the MS, and
between each virtual aggregation node and the MS if the dis-
tance of the node to the mobile data collection trajectory is
no larger than R. We call the first category a S2S link, which

means a link from a sensor to anther sensor, and call the second
and third categories as V2MS link and as A2MS link, respec-
tively, which mean links from a virtual aggregation node and
an aggregation node to the MS.

The information flow conservation condition is described as
follows:

∑

l∈Oi (t)

fl (t) −
∑

m∈Ii (t)

fm(t) − ri (t) = 0, ∀i ∈ N . (7)

Constraint (7) ensures that the incoming data flows plus the
source flow equals the outgoing data flows to the aggregation
node(s).

E. Problem Formulation

The mobile data collection problem can be described as
planning data collection trajectories for the MS that includes
selecting aggregation nodes, and optimizing data generation
rates of sensors and data flow rates for links over time intervals
with energy neutral constraint, link capacity constraints, bat-
tery constraints and trajectory length constraint. We formulate
the mobile data collection problem as follows.

P : max
r ,f ,A,C ,σ

∑

t∈K

∑

i∈N
log(ri (t)), (8)

subject to Constraints (2), (3), (6), (7)
l(t)
v

+
∑

u∈C(t)

σu ≤ T , ∀t , (9)

bi (t) ≥ 0, ∀i , t , (10)

bi (K ) ≥ bn
i , ∀i , (11)

where r := {ri (t) | i ∈ N , t ∈ K}, f := {fl (t) | l ∈
L′, t ∈ K}, A := {A(t) | t ∈ K}, C := {C(t) | t ∈ K} and
σ := {σu(t) | u ∈ C(t), t ∈ K} are the optimization variables.
Note the unit of data generation rate r and the data flow rate f
are both kbps. The utility function of the network is defined as
the sum of logarithmic function log(·) of sensors’ sensory data
generation rates over time, which achieves proportional fair-
ness [31] among sensor nodes. Constraint (9) ensures that the
duration of a mobile data collection trajectory does not exceed
the monitoring period T. Constraints (10) and (11) guarantee
that a sensor never exhausts its energy and its battery level
should be greater than a given threshold bn

i in the end of the
periods.

IV. OPTIMIZATION ALGORITHMS FOR THE MOBILE

DATA COLLECTION PROBLEM

Tackling problem P is very difficult due to the following
reasons. First, the trajectory planning problem is a decisional
version of the NP-hard Traveling Salesman Problem (TSP),
in which data collection trajectory needs to be found that tra-
verses all collection centers with bounded length. Second, it
is computation-inefficient to enumerate all the possible com-
bination of aggregation nodes from all sensors in the network
at each time period.

We devise an optimization framework for the problem, as
depicted in Fig. 3. The proposed framework consists of three
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Fig. 3. An overview of the optimization framework.

stages. In the top layer, we perform an efficient energy man-
agement strategy to decide a feasible energy budget for each
sensor over time periods with harvested energy under the bat-
tery capacity constraint. In the lower layers, we first adopt a
progressive algorithm to plan a data collection trajectory for
the MS under the trajectory length constraint and traveling
time constraint. We gradually increase the number of collec-
tion centers and plan a closed trajectory that covers these
collection centers, while the length of the trajectory is no
larger than lb(t). Here, lb(t) is the trajectory length bound
in time period t. How to obtain lb(t) will be discussed in the
following. We meanwhile determine the stop time at each col-
lection site for the MS. When we obtain the dedicated and
virtual aggregation node set based on the planned trajectory,
we finally propose a distributed algorithm that optimizes data
generation rates and link flow rates with the provided energy
budget to maximize the network utility.

The motivation behind the proposed optimization frame-
work in Fig. 3 is explained as follows. The overall optimization
problem includes determining data flow rates related to links,
data generation rates of sensors, and data collection trajec-
tory of the MS with energy, link capacity and trajectory
length constraints. As the problem is a complicated joint
optimization problem, we decouple it into several optimization
sub-problems. The decoupling method should satisfy the fol-
lowing principles. First, the trajectory of the MS must be
planned before data flow rates and data generation rates
optimization because only after the trajectory of the MS is
decided, we can determine which nodes are selected as aggre-
gation nodes, and then can flow rates and data generation
rates optimization be conducted. We perform harvested energy
budget allocation at the beginning of the framework for the
purpose of mitigating the impact of spatiotemporal-varying
energy harvesting profile and achieve balanced performance
over time. The network performance relies heavily on the
energy harvesting profile and real-time battery state and
could be unstable without proper energy management strategy.
Therefore, we first decouple the energy constraints to perform
efficient energy management for sensors, after that, we plan
the data collection trajectory for the MS, which could poten-
tially yield better network performance, and finally we conduct
flow rates and data generation rates optimization.

A. Harvested Energy Management

We consider the management of harvested energy for each
sensor node. We assume that the monitoring time window con-
sists of K time periods. We consider an energy management
scheme that is reliable, efficient, energy neutral and stable.
Specifically, reliability means that each node never runs out
of battery under the energy allocation scheme. Efficient energy
management aims to minimize the energy waste, which is the
amount of energy that fails to store into a battery due to its
limited capacity. Maintaining energy neutrality means that, at
the end of the time periods, the battery level should be greater
than the defined battery neutrality level bn

i . Stability repre-
sents that the variance of allocated energy in each period is
minimized, the consideration behind which is that we try to
achieve steady network performance over time from the per-
spective of energy allocation, when the harvested energy could
vary significantly over time, e.g., the solar harvesting rate is
high near noon, however, low at morning and at dusk. The
energy assignment problem for each sensor i is formulated as
follows:

P1 : min
a i

(ai (t) − ai (t))
2, (12)

subject to ai (t) − bi (t − 1) − hi (t) ≤ 0, (13)

bi (t − 1) + hi (t) − ai (t) − B ≤ 0, (14)

bi (K ) − bn
i = 0,

∀t ∈ K, (15)

where ai (t) = 1
K

∑K
t=1 ai (t). Note that in constraint (14), we

determine that the battery level should not exceed B, which
abandons the waste of harvested energy.

Let bi (0) to represent the initial battery level of sensor node
i, we have

Lemma 1: The battery level of sensor node i can be
expressed by bi (t) = bi (0) +

∑t
k=1 (hi (k) − ai (k)) for any

time period t under constraint (5), (13) and (14).
Proof: We first take off the operator [·]+ by proving

bi (t) = bi (t − 1) − ai (t) + hi (t) for ∀t . For t = 1, bi (1) =

min(B ,max(0, bi (0) − ai (1) + hi (1)))
(a)
= min(B , bi (0) −

ai (1) + hi (1))
(b)
= bi (0) − ai (1) + hi (1), where (a) holds

by equation (13) and (b) holds by equation (14). Then we
can derive bi (t) = bi (t − 1) − ai (t) + hi (t) = bi (t −
2) − [ai (t) + ai (t − 1)] + [hi (t) + hi (t − 1)] = · · · =
· · · bi (0) +

∑t
k=1 (hi (k) − ai (k)).

By Lemma 1 and Eq. (15), we have
∑

t∈K ai (t) =∑
t∈K hi (t). Constitute the conclusion of Lemma 1 into

Equations (13) and (14), we can formulate an equivalent
problem to P1 as:

P2 : min
a i (t)

∑

t∈K
a2
i (t) − 1

K
(
∑

t∈K
hi (t))2, (16)

subject to
t∑

k=1

hi (t) + bi (0) − B ≤
t∑

k=1

ai (t) ≤
t∑

k=1

hi (t)

+ bi (0),∀t ∈ K. (17)
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Since term − 1
K (

∑
t∈K hi (t))2 in Eq. (16) is a constant, we

are in fact solving a quadratic program (QP) in terms of a i

with linear inequality constraint, and there are polynomial-
time interior-point algorithm [25] for it. According to the
experimental results, when K is set to 12, the proposed
algorithm converges averagely within around 5 iterations.
Thus, the computational overhead is acceptable for a sensor
node.

B. Mobile Data Collection Trajectory Planning

With the energy budget assigned to each sensor over time,
the next question is to identify a data collection trajectory for
the MS at each time period. We need to determine aggregation
nodes, data collection trajectory and collection centers simul-
taneously. In order to maximize the data collected at each time
period, the number of qualified aggregation nodes should be
as many as possible. Intuitively, a sensor with more allocated
energy should be assigned a higher weight wi in the selection
of aggregation nodes, e.g.,

wi (t) = ai (t). (18)

Since aggregation nodes generally consume more energy than
non-aggregation nodes, the preference for electing sensors
with less allocated energy as aggregation nodes exacerbates
the unbalance and underutilization of allocated energy and
decreases the network utility. Similar but different from [20]
where the remaining energy of a sensor is regarded as the
weight, we use the allocated energy as weight and achieve
network-wide energy balance at a higher level by maintaining
energy neutral for each sensor.

Nevertheless, the increase on the number of aggregation
nodes result in the increase in length of the data collection tra-
jectory. We set the trajectory length of the MS at time period
t no greater than lb(t). lb(t) should satisfy that the sum of
lb(t) over all time periods cannot exceed the total trajectory
length constraint lb . Since we need to handle joint the MS tra-
jectory optimization and the network resources optimization,
the following method is adopted to tailor the sum trajectory
length constraint into each time period. Given the sum trajec-
tory length constraint lb , the MS trajectory constraint in time
period t is represented by

lb(t) =
∑

i ai (t)∑
i

∑
t ai (t)

lb . (19)

The weighted-average in Eq. (19) implies that when the
network is allocated with more energy budget at a certain
period t, i.e.,

∑
i ai (t) becomes large, then the sum of data

generation rates of sensor nodes is large as well. Therefore,
the MS is allowed to travel longer in order to collect more
data from the sensor nodes.

We propose the following method to identify aggregation
nodes. First, all the sensors are ranked in ascending order
regarding wi (t) and only the first sensor is included into
the aggregation node set A(t). Next, we solve the Traveling
Salesman Problem with Neighborhoods (TSPN) [9] for sensors
in A(t), the trajectory length l(t) and the position of collection
centers are then obtained. We gradually increase the size of the
aggregation nodes set until l(t) approaches lb(t). Moreover,

we adopt binary search to accelerate the election process.
A data collection trajectory with bounded length is finally
obtained.

In order to solve the TSPN with a given aggregation node
candidate set A, a basic mechanism that heuristically tackle
a TSPN is given as follows. First, we search for a set of col-
lection centers to represent the set of aggregation nodes, with
each collection center covering as many as aggregation nodes,
so that the number of collection centers can be significantly
reduced. Next, we apply an approximation algorithm for TSP
to form a trajectory that connects all the collection centers.
We further reduce the length of the trajectory without violat-
ing the constraint that the trajectory should intersect with the
communication disks of virtual aggregation sensors. We adopt
a combination algorithm [10] to calculate the collection cen-
ters, which was originally designed to reduce the length of a
TSPN trajectory for data collection. With identified aggrega-
tion nodes, the algorithm identifies collection centers greedily
that cover the maximum number of aggregation nodes, then
these covered aggregation nodes are removed from the aggre-
gation node set. The algorithm continues until the aggregation
node set is empty.

We then further reduce the trajectory length by adjust-
ing the position of collection centers, where we distinguish
three cases as illustrated in Fig. 4. We use pj−1, pj and
pj+1 to denote three sequential collection center points on
the trajectory, where pj is the collection center to adjust.
In cases 1 and 2, the segment pj−1pj+1 does not inter-
sect with the communication disk(s) of the sensor(s) that
pj covers, and the difference between these two cases is
that whether pj covers one or multiple sensors. In case 3,
pj−1pj+1 intersects with the aforementioned communication
disk(s).

Case 1: as depicted in Fig. 4(a), we aim to minimize the
sum of lengths pi−1p∗i and p∗i pi+1, where p∗i is constrained
within the area formed by circle A. We find out p∗i by the
following lemma.

Lemma 2: We formulate an ellipse C with two focal points
pj−1 and pj+1 that are externally tangent with circle A, then
p∗i is a tangency point.

Proof: According to the definition of an ellipse, for each
point p on C we have pj−1p + ppj+1 = 2a , where 2a is the
length of long shaft. We gradually increase a until C is right
tangent with A and obtains the tangency point p′i , then any
other points p′′i on A is outside the area formed by C, which
means p′i corresponds to a ellipse with larger long shaft a ′,
e.g., pj−1p′′i + p′′i pj+1 > pj−1p∗i + p∗i pj+1, thus p′i is the
optimal point.

Case 2: as shown in Fig. 4(b), the situation becomes
more complicated owing to the irregular public coverage area
formed by serval communication disks. However, noticing the
fact that p∗i is either a tangent point or one of the intersection
points of the arcs that form the area, the following method
is adopted to work out p∗i . We label the public coverage area
as A′. At first, each arc that makes up A′ is calculated. For
each arc we have a circle it belongs to, for which we apply
the algorithm for case 1 to find out the tangent point. The tan-
gent point is regarded as qualified if it is on the corresponding
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Fig. 4. Shorten the length of a path within the trajectory by adjusting the
position of the collection center pj in different cases.

arc, and if it is, the length of the corresponding path is calcu-
lated and recorded. Finally, we find the minimum-length paths
from the record, and obtain p∗j , which is the associated tangent
point. Otherwise, if no tangent point is qualified, then p∗j must
be one of the intersection points. Then, the length of path in
terms of each intersection point is compared, p∗j is the one
with the minimum path length.

Case 3: a special case where the short shaft length of C is
zero. Since all the feasible positions of p∗j lead to the same
path length, we select one of the position randomly on the
intersection segment l1l2 as p∗j .

The aforementioned optimization is repeatedly adopted until
the position of each collection center is adjusted. Since the
length of the path that constitutes the trajectory is shortened in
each step, the total length of the collection trajectory decreases
in the end.

Similarly, we decide the stop time σu(t) at each collec-
tion site u based on the energy assignment weight w(t). The
remaining time for the MS to stop and collection data at a
collection site is

tr = T − l(t)
v

, ∀t ∈ K. (20)

We let the stop time be

σu(t) = tr

∑
i∈χu

wi (t)∑
j∈A\χu

wj (t)
. (21)

The insight behind is that when more aggregation nodes with
rich energy are covered by the collection site u, more sensory
data can be routed to u. Therefore, the MS should stop at u a
bit longer in order to collect more data.

Discussions: We consider the influence of obstacles in the
network and study its influence on the construction of the
MS trajectory. The obstacles can impact the construction of
a TSP trajectory and the adjustment of the trajectory. For the
construction of a TSP trajectory, existing studies proposed dif-
ferent schemes to deal with the obstacles. The main idea is
to pay penalize of the obstacles in the calculation of distance
between each pair of sites. For example, the original shortest
distance from site i to site j is their Euclidean distance d(i, j).
Now with an obstacle between sites i and j, we use a new
shortest distance d ′(i , j ) that reflects the influence of such an
obstacle is constructed. Then TSP algorithm can be adopted
to calculate a new trajectory. For the adjustment of the tra-
jectory, if the trajectory after adjustment meets an obstacle,
we use the following method to re-calculate the new collec-
tion center. An example is illustrated in Fig. 5 that handles
an obstacle in case 1. With the obstacle, the original trajec-
tory in Fig. 5(a) is not feasible. Then we start from pi−1 and
pj+1, each of which generates two rays that are both tangent
with the obstacle. The four rays form an infeasible region as
shown in Fig. 5(b), in which the new collection center can-
not identify. Then we check if there is any feasible arc in the
communication disk that the optimal new collection center p∗j
can identify. For case 2 and case 3, similar methods can be
adopted.

C. Distributed Data Generation Rate and Link Flow Rate
Optimization

1) Formalization of a Convex Optimization Problem: Given
the energy allocation solution a(t), the aggregation node set
A(t) and the data collection trajectory in time period t, we
propose a distributed algorithm to maximize the network util-
ity, by optimizing the data generation rate of each sensor and
the data flow rate of each link in the network.

As described in the network flow model, a sensor node can
distribute its generated sensory data with relayed data to its
neighbors and determines to which aggregation node(s) the
outgoing data flows. While the MS is moving along its planned
trajectory, the virtual aggregation nodes in W(t) can transmit
their data to the passing by MS directly without influencing
its speed. By adopting this strategy, the network utility can be
potentially improved since these data flows are supposed to be
delivered through multi-hops to aggregation nodes then to the
MS. In other words, the energy cost for intermediate relays
decreases. We use S(t) to indicate path segments formed by
the intersection points of the communication circles with the
traveling path, where each segment is consist of two successive
intersection points.
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Fig. 5. Handling obstacle when planning the trajectory for the MS.

Fig. 6. The straight line with arrow is part of the trajectory.

An example is given in Fig. 6 to illustrate our model, where
W(t) = {i1, i2, i3} and S(t) = {s1, s2, . . . , s6}. To reflect this
in the network model, we treat each path segment as a dummy
node, then expand the network graph by adding a directional
link (i, s) for each i ∈ W(t) and each s ∈ S(t), i.e., we have
Oi2 = {s2, s3, s4, s5} in the figure. Since the MS can receive
data from at most one sensor at one time under the half-duplex
model, as long as the sum of transmission time durations from
each node i ∈ W(t) to each s ∈ S(t), denoted τis(t), does
not exceed the maximum sojourn time of the MS traveling
along path segment s, i.e., the maximum reception duration of
the MS within s, there always exists a feasible non-collision
transmission scheduling for each related node i, which means
the following should be satisfied:

∑

i :s∈Oi

τis(t) ≤ |s|
v

, ∀s ∈ S(t), (22)

where |s| denotes the path length of s and v is the traveling
velocity of the MS. For the sake of consistency, we write

constraint (22) in the form of flow rate. In fact, the equivalent
flow rate for link (i , s)|i∈W(t),s∈S(t) in each time period is

fis(t) := πiτis(t)
T , where πi is the data transmission rate of i.

Then we reformulate inequality (22) as:

∑

i :s∈Oi

fis(t) ≤ |s|
v

· πi

T
, ∀s ∈ S(t), (23)

The optimization problem then determines the source rates
of sensors and the flow rates over links to maximize then
network utility, given the energy budget and data collection
trajectory in time period t. We formulate the problem as

P3 : max
r(t),f (t)

∑

i∈N
log(ri(t)), (24)

subject to Constraints (6), (7)

ci(t) ≤ ai(t)
T

, ∀i ∈ N , (25)

∑

l∈Is (t)

fl(t) ≤ |s|
v

· πu

T
, u = �l , ∀s ∈ S(t),

(26)

rs(t) = 0, ∀s ∈ S(t). (27)

In constraint (26), we define u := �l for a link l := (u, s).
Inequality (25) is the energy budget constraint for each sensor.
For each of sensors, the energy consumption cannot exceed its
allocated energy in each time period in order to keep energy
neutral. Constraint (26) follows inequality (23) which is nec-
essary to achieve collision-free data transmission from virtual
aggregation nodes to the moving sink. And constraint (27)
holds for the reason that an MS does not generate sensory
data by itself.

2) ADMM-Based Distributed Algorithm: The rest it to
tackle problem P3, we adopt a distributed version of
ADMM [26], [28], which can outperform the dual decom-
position (DD) based methods in the convergence speed and
suitable for large-scale optimization problems.

The difficulty to tackle problem P3 in a distributed manner
lies in the two-sidedness of the flow rate to optimize over
each link, which belongs to an outgoing link and an incoming
link for two sensor nodes. To decompose P3 with appropriately
handling this coupling, we introduce a local copy of the global
flow rate for each sensor i, which reflects the global flow rates
over i’s neighboring links in node i’s view. Specifically, we
introduce local variables f̂ i

l to represent the flow rate fl in
sensor i’s view, where l is a link associated with node i. For a
link l := (i, j), we define i := �l and j :=�l . Note that we omit
the suffix (t) in the expressions for the sake of simplicity,
e.g., we use fl to represent fl (t). We define local link flow
rate vectors for each sensor i as f̃ i := {f̂ i

l | l ∈ Li}. Let
Li := Oi ∪ Ii . Then, we reformulate the relaxed version of
P3 as follows.

P4 : min
r ,f ,̂f

−
∑

i∈N
log(ri ), (28)

subject to
(
ri , ~f i

)
∈ Vi , ∀i ∈ N ∪ S, (29)

f̂ i
l = fl , ∀i ∈ N ∪ S,∀l ∈ Li , (30)
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where Vi is the convex set of feasible solutions defined by:

Vi :=

⎧
⎨

⎩(ri , ~f i ) |
∑

l∈Oi

f̂l −
∑

m∈Ii

f̂m = ri ,

∑

l∈Oi

etx f̂l +
∑

m∈Ii

erx f̂m + esri ≤ a∗i /T ,

∑

l∈Li

f̂l
πl

≤ 1,
(
ri , ~f i

)
	 0.

⎫
⎬

⎭, ∀i ∈ N (31)

and

Vi :=

⎧
⎨

⎩(ri , ~f i ) |
∑

l∈Oi

f̂l =
∑

m∈Ii

f̂m ,

∑

l∈Ii

f̂l ≤
|i |
v

· πi

T
, ri = 0, ~f i 	 0.

⎫
⎬

⎭, ∀i ∈ S,

(32)

In order to make problem P4 suitable for the ADMM, we
define the indicator function of Vi denoted by Ii :

Ii

(
ri , ~f i

)
:=

{
0, if

(
ri , ~f i

)
∈ Vi

+∞, otherwise.
(33)

Then, an equivalent formulation of P4 is defined as follows.

P5 : min
r ,f ,̂f

∑

i∈N

(
− log(ri ) + Ii

(
ri , ~f i

))
,

subject to constraint (30). (34)

To solve problem P5, we first form an augmented Lagrangian
for the objective function as:

L
(
r , f ,̂f , λ

)
=
∑

i∈N

(
− log(ri ) + Ii (ri ,~f i )

)

+
∑

i∈N

⎛

⎝
∑

l∈Li

λi
l

(
f̂ i
l − fl

)
+

ρ

2

∑

l∈Li

(
f̂ i
l − fl

)2

⎞

⎠

(35)

where λ := {λi
l | i ∈ N , l ∈ Li} are the introduced Lagrange

multipliers for each sensor node and ρ > 0 is a penalty param-
eter for adjusting the convergence speed of the algorithm of
ADMM.

The proposed algorithm proceeds iteratively to update the
optimization value and lagrange variables as follows.

(
ri [m],~f i [m]

)
= arg min

(ri ,~f i )

⎧
⎨

⎩ − log(ri ) + Ii

(
ri ,~f i

)

+
∑

l∈Li

λi
l

(
f̂ i
l − fl [m − 1]

)

+
ρ

2

∑

l∈Li

(f̂ i
l − fl [m − 1])2

⎫
⎬

⎭, ∀i ∈ N ,

(36)

f [m] = arg min
f

⎧
⎨

⎩
∑

i∈N

⎛

⎝
∑

l∈Li

λi
l

(
f̂ i
l [m] − fl

)

+
ρ

2

∑

l∈Li

(
f̂ i
l [m] − fl

)2

⎞

⎠

⎫
⎬

⎭,

(37)

λi
l [m] = λi

l [m] + ρ
(
f̂ i
l [m] − f i

l [m]
)
,

∀i ∈ N ,∀l ∈ Li , (38)

where the suffix [m] denotes the iteration index.
In the first step, with given global flow rates f, we aim

to optimize the local flow rates ̂fi and source rate ri for
each node i ∈ N′, while in the second step we keep
̂f fixed to optimize the global flow rate f. The associated
lagrange multipliers λ are updated in the third step. This
iterative method enables the decomposition of the ADMM
while guaranteing its convergence property [28].

The first step (36) solves the following equivalent problem:

min
(ri ,~f i)

⎧
⎨

⎩− log(ri ) +

⎛

⎝
∑

l∈Li

λi
l f̂

i
l +

ρ

2

∑

l∈Li

(
f̂ i
l − fl [m − 1]

)2

⎞

⎠

⎫
⎬

⎭

subject to
(
ri ,~f i

)
∈ Vi , (39)

for each sensor i, which is a convex optimization problem and
can be solved efficiently by existing interior-point methods.

Since the second step involves a global optimization, we
focus on its decomposition. The key idea is to transform the
node-specific constraint to the link-specific constraint, based
on which, we rewrite the summation notation

∑
i∈N

∑
l∈Li

as
∑

l∈E
∑

i∈ �l∪�l
, which separates (37) into the following

subproblems for each link l:

f l [m + 1] = arg min
f l

(
−λ

�l
l [m]fl +

ρ

2

(
f̂

�l
l [m] − fl

)2

− λ
�l
l [m]fl

+
ρ

2

(
f̂
�l
l [m] − fl

)2
)

, ∀l ∈ E . (40)

Note that the objective function f l [m + 1] defined in (40) is
strictly convex due to the added augmented lagrangians. Thus,
there exists a unique optimal solution for f l , where we let the
derivatives of (40) to be zero and obtain:

fl [m + 1] =
1

2

(
f̂

�l
l [m] + f̂

�l
l [m]

)
+

1

2ρ

(
λ

�l
l [m] + λ

�l
l [m]

)
, ∀l ∈ E .

(41)

We require each node i ∈ N to calculate Eq. (41) distribut-
edly, while exchanging necessary local variables with their
neighbors to update global flow rates. Since nodes in S are
virtualized , we adopt a work-around by using a connected set
of sensor nodes to simulate each virtual node s ∈ S, which
satisfies the following conditions. First, each node connecting
s should be connected to the set. Also, the values of asso-
ciated variables among the nodes in the connected set should
keep consistent with each other, in order to make optimization
variables local. And third, the size of the set should be small
to keep the low communication overhead. A simple scheme
is adopted here to obtain a feasible set for each s. For each
pair of nodes that are connected to s, find the shortest path
between them and record the nodes along the path, and we
make a union-operation to all recorded nodes to obtain an
equivalent set for s.

Finally, in the third step (41), the dual variables associ-
ated with each sensor are updated. ρ represents the step size
and influences convergence speed and precision of ADMM,
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Algorithm 1 The Distributed Utility Maximization Algorithm
1: ri = 0 for any i ∈ N
2: fl [0] = 0 for any l ∈ L
3: for each sensor node i ∈ N ∪ S do
4: Iteration index m = 1
5: Solve the convex problem (39), obtain data generation

rate ri and local link flow rate vector ~f i
6: for each link l associated with i do
7: Update the global link flow rate fl [m] according to

Eq. (41)
8: m = m + 1
9: end for

10: end for

the optimal value of which is chosen by practical simula-
tions. The pseudo-code of the distributed algorithm is given
in Algorithm 1.

3) A Heuristic Algorithm: The computational overhead of
Algorithm 1 can sometimes be heavy for resource constrained
sensor nodes. The reason is that the data collection trajec-
tory may intersects frequently with the communication disks
of sensor nodes, especially when the network is dense. As a
result, the number of V2MS links can significantly increases,
which causes much overheads for sensors to execute the
iterative algorithms for all their associated links. Therefore,
we develop a fast heuristic algorithm to optimize data gener-
ation and link rates. We first maximize the utility in terms
of data flow rates of V2MS links, then optimize the data
flow rates of all the other links and data generation rates
of sensors. Since these coupled links and the corresponding
constraints are separately optimized, the computing overhead
can be reduced and the convergence speed can be accelerated.
Based on the experimental results, we find that the commu-
nication time window for the virtual aggregation nodes to
the moving sink is limited compared to the stop time of the
MS at collection sites in each time period. Thus, the bene-
fit of enabling data transfer from virtual aggregation nodes to
the moving sink is controllable, and this does not strongly
influence the optimization of data flow rates of S2S and
V2MS links.

D. Time Complexity Analysis

We analyze the complexity performance of the proposed
algorithms as follows. The proposed MDG-EH algorithm is
composed of three sub-algorithms: a harvested energy budget
allocation sub-algorithm, an MS trajectory planning sub-
algorithm and a data flow optimization sub-algorithm. For
the first sub-algorithm, which contains a quadratic program
P2 with linear constraints. The worst-case time complexity
is O(X 3) for each sensor node i, where X represents the
sum of the number of variables in the standard formula. And
since X is linear with the sum of the number of variables
in P2, which is K, the time complexity of the algorithm
for P2 is O(K 3). For the second sub-algorithm, it contains
finding a series of TSPs and trajectory adjustment steps. In
each TSP and adjustment step, as the TSP is NP-Complete

Fig. 7. Network topology with 49 sensor nodes, where the star labels the
starting position of the MS.

TABLE I
PARTIAL PARAMETER VALUES

problem, it is unlikely to have an optimization algorithm which
can solve this particular problem in polynomial time in the
worst case. Instead, a polynomial-time approximation algo-
rithm is adopted. And all adjustment steps can be done in
polynomial time. The time complexity of solving the second
sub-problem is O(P(1)) + O(P(2)) + + O(P(u)), where
P(·) is a polynomial function, u is the total number of itera-
tions of the second sub-problem. For the third sub-algorithm,
Algorithm 1 contains a convex optimization problem (39) and
a loop. For the convex optimization problem (39), the worst-
case time complexity is O(Y 3) for each sensor node i, where
Y = |Li | + 1. And the loop contains |Li | steps in total.
Therefore, the time complexity of the third sub-algorithm is
O(Y 3) + O(|Li |) = O(Y 3).

V. PERFORMANCE EVALUATION

In this section, numerical results are demonstrated through
extensive simulations in MATLAB to provide readers details
and insights of our proposed schemes for mobile data col-
lection with energy harvesting sensors. We adopt a ran-
domly generated network topology of |N | = 49 nodes in
a 180m × 180m squared area, where sensors are deployed
uniformly in the area, as depicted in Fig. 7. The maximum
communication range of each sensor R is set to 30m, and
the lines between sensor nodes in the topology represents the
links in the static network. Each sensor is equipped with a
half-duplex transceiver like CC2500 [29] and a solar collec-
tor, the values of detailed network parameters are provided
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Fig. 8. Experiment solar profile from 6:00 to 18:00 in Jan. 15th, 2017.

Fig. 9. Network utility achieved at each time period.

Fig. 10. Number of aggregation nodes selected at each time period.

in Table I. Asp represents the solar panel area and η is the
energy transform efficiency. Fig. 8 presents a 1-day solar pro-
file obtained from the baseline measurement system (BMS)
of NREL solar radiation research laboratory [32]. The solar
profile for analysis is tailored from 6:00 am to 6:00 pm.
Since we set T = 1h, the whole period we study on con-
sists of 12 intervals. The following algorithms are examined
and compared in the simulation:

• MDG-EH: proposed mobile data gathering algorithm for
EH-WSNs, including three dynamic sub-programs.

• MDG-EH-h: a heuristic version of proposed mobile
data gathering algorithm, where the rate optimization of
sensors to the moving MS is simplified in the third sub-
program, in order to reduce iteration and communication
overhead.

• Wang’s method: an optimization framework proposed by
Wang et al. [12], where the MS must traverse each
of the aggregation nodes in order to collect data from
them. We add the proposed balanced energy budget pre-
allocation scheme to Wang’s method in order to make a
fair comparison against our proposed algorithms.

Fig. 11. Normalized data collection trajectory time of the MS within each
time period.

Fig. 12. Average energy allocation and energy usage for sensors at each
time period. (a)Average energy allocation. (b)Average energy usage.

Fig. 13. Average battery level at the start of each time period.

A. Performance Analysis Across the Whole Period

To reflect the dynamics on the conditions and our proposed
strategies, we first demonstrate the performance over the whole
period. We are interested in the following indicators of the
network over time: the allocation of harvested energy for sen-
sors, the battery level of sensors, the achieved utility of the
network, etc. Fig. 9 depicts the results of utilities achieved
by the three mentioned algorithms at each time period. It
can be seen that with proposed variance-minimal energy
allocation strategy, all the three algorithms achieve the bal-
anced network performance under the nonuniform solar power
provided. MDG-EH achieves the highest utility over time
while MDG-EH-h achieves comparable performance, both of
which outperform Wang’s method. The reason can be found
from Fig. 10, which depicts the number of aggregation nodes
selected by each algorithm at each time period, sharing the
same trend with the utility changes in Fig. 9. With neighbor-
hood traveling adopted, MDG-EH and MDG-EH-h are able
to select more aggregation nodes under given the trajectory
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Fig. 14. Convergence of normalized flow conservation violation, of network utility and of flow rates for MDG-EH and MDG-EH-h, respectively. (a), (b)
and (c) are for MDG-EH-h, (d), (e) and (f) are for MDG-EH-h.

length bound, and since the increase on the number of aggre-
gation nodes leads to the decrease in the total energy cost to
deliver per unit of data to the MS, as a result, the network
performance can be improved.

Fig. 11 depicts the normalized trajectory time of the MS
verses time period index, where the normalized trajectory time
is defined as the sum of the moving time and the sojourn time
of the MS divided by the length of one time period. The white
bars in the figure indicates the moving time of the MS for each
algorithm at the associated intervals. We can conclude that,
first, the time spent on gathering data is much longer than
that spent on moving for an MS. Second, MDG-EH-h cost
less time than MDG-EH, which means that it achieves lower
delay in mobile data gathering. And third, the distribution of
the trajectory time verifies the necessariness of the proposed
balanced energy allocation strategy. Otherwise, for example,
a harvest-then-exhaust energy strategy is adopted, almost cer-
tainly the trajectory time of the MS exceeds the time duration
length.

Fig. 12 shows the average energy allocation and average
energy consumption for sensors during each time period by
different algorithms. We can find that the amount of energy
used by sensors is not necessarily related to the amount of
energy allocated to sensors, since the allocated energy may
not be fully utilized by the sensors. And there exists a ris-
ing stage in the energy allocation for the three comparison
algorithms, which means that the unutilized energy in one
period is added up to the allocatable energy for the subse-
quent intervals. It also can be found that the average energy
usage, to some extent, reflect the utility that can be achieved.

Clearly, MDG-EH and MDG-EH-h achieve both higher energy
usage and energy usage ratio than that of Wang’s method.

To examine whether energy neutral is maintained in the
network, we record the average battery level (ABL) of sensors
in the beginning of each time period, as illustrated in Fig. 13.
Two indicators are investigated: first, we check whether the
average battery level returns the initial battery level at the end
of K periods. Second, we average the values of ABL over
the K intervals and compare with bn to check how close we
are to the energy neutral level in the whole period. From the
result, it can be observed that MDG-EH basically achieves
battery neutralization without violating battery capacity con-
straint, and MDG-EH-h is close to the neutral line. Both of
them outperform Wang’s method.

B. Performance Analysis Within One Period

We analyze the convergence behavior of the proposed algo-
rithms within one time period. We select the first period, for
demonstration purpose, to make a comparison between MDG-
EH and MDG-EH-h. Fig. 14(a)∼(c) illustrates the conver-
gence of normalized flow conservation violation, of network
utility and flow rates for MDG-EH, respectively. Similarly,
Fig. 14(e)∼(f) demonstrate the corresponding convergence
behaviors of MDG-EH-h. As can be seen in Fig. 14, both
of the algorithms converge to the defined stopping criterion
within dozens of iterations, making them feasible algorithms.
With similar network utility achieved and similar total amount
of data gathered, MDG-EH-h converges faster than MDG-EH
by 62%. The reason is that in MDG-EH-h, the flow rates to
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Fig. 15. The data collection trajectory of the MS generated by (a)MDG-EH.
(b)Wang’s method.

the moving MS is determined beforehand, the decrease in the
number of optimization variables accelerates the optimization
process. Considering the number of virtual nodes generated
by MDG-EH (57), the overall computational overhead of
MDG-EH-h is even less compared to MDG-EH.

In Fig. 14(c) and (f), the iterative behavior of flow rates
within sensors (S2S flows), and of sensors to the moving MS
(S2MS flows) for two algorithms are represented. As can be
observed, the S2MS flow rates is much lower compared with
the S2S flow rates, since the capacity of each virtual node
(related to the length of each trajectory segment) is limited.
Compared with Fig. 11, it can be concluded that the proposed
data transmission strategy can reduce the data collection delay
significantly.

The data collection trajectories of the MS delivered by the
proposed algorithm MDG-EH and the benchmark algorithm
are plotted in Fig. 15. Note that the algorithms MDG-EH
and MDG-EH-h share the same trajectory but differentiate
themselves in network data flow rate optimization schemes,
therefore, we plot one trajectory for the proposed two algo-
rithms for comparison purpose. In Fig. 15, black nodes
represent dedicated aggregation nodes. Triangles in Fig. 15(a)
represent collection centers where the MS stops to collect
data from these dedicated aggregation nodes. In Fig. 15(b),
however, the MS has to traverse the exact position of each
aggregation node. As a result, with the same trajectory length

Fig. 16. Influence of harvested energy prediction error over time periods.

constraint, the proposed trajectory planning algorithm can
deliver more aggregation nodes, therefore, can achieve bet-
ter network performance with the limited energy budget and
given trajectory length constraint.

C. Impact of Prediction Error

The rest is to investigate the impact of prediction errors on
the energy harvesting rate. First, from the aspect of mitigat-
ing such prediction errors, we could adopt a more accurate
prediction model. Specifically for solar and wind energy
prediction, recent studies proposed several enhanced mod-
els such as a combined short-term and long-term prediction
model [24] that can achieve more reliable estimation results.
Second, since an overestimation could cause the decline on
the network performance, we focus mainly on the overestima-
tion of harvested energy. We pre-allocate the energy budget
for each sensor, which is overestimated, then energy short-
age occurs and only harvested energy is not enough for each
node to relay/transmit all data to the mobile sink. As a result,
network performance will decrease since some data cannot be
delivered to the sink and is dropped. We evaluate the impact of
average prediction error (PE) of overestimation in Fig. 16. As
can be observed, compared to the case that PE=0, the average
network performance decrease is 8.1% and 15.3%, respectively
when PE=10% and PE=20%.

VI. CONCLUSION

In this paper, we first proposed an optimization framework
for data collection in EH-WSNs via an MS, then developed
a dynamic optimization algorithm to find the data collection
trajectory for the MS, and determine data flow rates among
sensors to achieve long-term network utility maximization and
energy neutrality. The proposed algorithms include a balanced
energy budget management for sensors, an efficient mecha-
nism to identify aggregation nodes, a method to progressively
reduce the length of the data collection trajectory, and a dis-
tributed algorithm that enables each sensor to determine its
optimal data generation rate and associated link flow rates
with the planned mobile collection trajectory. Finally we con-
ducted numerical experiments to evaluate the performance of
the proposed algorithms, which show the effectiveness of the
proposed algorithms.
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