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Abstract—In this paper we study data collection in an energy renewable sensor network for scenarios such as traffic monitoring

on busy highways, where sensors are deployed along a predefined path (the highway) and a mobile sink travels along the path to

collect data from one-hop sensors periodically. As sensors are powered by renewable energy sources, time-varying characteristics

of ambient energy sources poses great challenges in the design of efficient routing protocols for data collection in such networks. In

this paper we first formulate a novel data collection maximization problem by adopting multi-rate data transmissions and performing

transmission time slot scheduling, and show that the problem is NP-hard. We then devise an offline algorithm with a provable

approximation ratio for the problem by exploiting the combinatorial property of the problem, assuming that the harvested energy at

each node is given and link communications in the network are reliable. We also extend the proposed algorithm by minor modifications

to a general case of the problem where the harvested energy at each sensor is not known in advance and link communications are

not reliable. We thirdly develop a fast, scalable online distributed algorithm for the problem in realistic sensor networks in which neither

the global knowledge of the network topology nor sensor profiles such as sensor locations and their harvested energy profiles is given.

Furthermore, we also consider a special case of the problem where each node has only a fixed transmission power, for which we

propose an exact solution to the problem. We finally conduct extensive experiments by simulations to evaluate the performance of

the proposed algorithms. Experimental results demonstrate that the proposed algorithms are efficient and the solutions obtained are

fractional of the optimum.

Index Terms—Time-slot scheduling, approximation algorithms, online distributed algorithms, energy renewable sensor networks, mobile

sinks, data collection, generalized assignment problems

Ç

1 INTRODUCTION

WIRELESS sensor network has emerged as a key technol-
ogy for various applications such as environmental

sensing, structural health monitoring, and area surveillance
[10]. However, the limited energy in sensor batteries has
hampered the large-scale deployment of such a network. A
promising solution against the limited energy supplies is to
enable sensor nodes to harvest ambient energy from their
surroundings [18], [26] such as solar energy and wind
energy. In addition to being environmentally friendly,
renewable energy could also enable sensor nodes to operate
perpetually, eliminating the cost for batteries [19].

In this paper, we consider an energy renewable sensor
network deployed along a pre-defined path for surveillance
or monitoring. Such an application can be a highway traffic
surveillance, where sensors are deployed along both sides
of a highway for traffic monitoring to get traffic related
information such as the number of vehicles, types of
vehicles, and individual vehicle speeds, which can later be
used for road usage and maintenance, and driver behavior

analysis. Another potential application scenario is the eco-
system monitoring in a forest, e.g., such a network can be
deployed for monitoring exotic plant growths and/or
endangered animals (e.g., giant panda) existence and
behavior observations, where humans or vehicles can only
access the limited roads rather than everywhere in the for-
est. Also, a vehicle can receive sensing data from a sensor if
the vehicle is within the transmission range of the sensor.
The sensors that can communicate with the vehicle usually
serve as gateways where the other sensors will forward
their sensing data to them through multi-hop relays. There
are many other applications that are also fitted in this appli-
cation scenarios such as oil/gas/water pipeline monitoring
[17], structural health monitoring for bridges [30], etc. We
assume that each sensor in the network is powered by
renewable energy (e.g., solar energy) to avoid its energy
expiration. We will employ a mobile sink (e.g. a vehicle) to
periodically travel along the pre-defined path at a constant
speed to collect data from its one-hop sensors as it has been
demonstrated that sink mobility can significantly improve
various network performance, including reducing the
energy consumption of sensors, balancing the workload
among sensors, reducing data delivery delays, and improv-
ing network coverage [3], [4], [8], [11], [16], [23]. However,
the time-varying characteristics of energy renewable sour-
ces poses a great challenge in the design of routing protocols
for energy renewable sensor networks, that is, how to
design a routing protocol for renewable sensor networks
such that the volume of collected data is maximized, under
the dynamic energy replenishment constraint. Specifically,
the following issues must be addressed when a mobile sink
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is used for data collection in a renewable sensor network. (1)
Due to the time-varying characteristics of energy renewable
sources, the energy replenishment rate of each sensor is
unknown in advance, the sensor thus must have its time-
varying energy budget (amount of available energy) for
transmitting data to avoid its energy expiration. (2) For a
given sensor, it requires using different data transmission
rates to transmit its data when the mobile sink is at different
locations, while different transmission rates will consume
different amounts of its transmission energy. (3) During
each tour of the mobile sink, it is very likely that multiple
sensors can communicate to the mobile sink at the same
time. Simultaneous transmissions of these sensors will
result in a collision at the mobile sink and none of the trans-
missions will succeed. In this paper we will address these
issues by scheduling sensors at which time slots to transmit
their data to the mobile sink so that the accumulative vol-
ume of the data collected by the mobile sink per tour is max-
imized. We achieve this through incorporating the time-
varying sensor energy budget and employing multi-rate
wireless communications.

Our main contributions in this paper are as follows.
We consider data collection in an energy renewable
sensor network, using a path-constrained mobile sink. We
first formulate a novel data collection maximization prob-
lem by incorporating multi-rate transmissions and trans-
mission time slot scheduling, and show the NP-hardness
of the problem. We then devise an offline algorithm with a
provable approximation ratio for the problem, assuming
that the global knowledge of the network and sensor pro-
files (their locations and available energy) are given. We
also extend the proposed algorithm by minor modifica-
tions to solve a generalized case of the problem where the
harvested energy at each sensor is not given and link com-
munications are unreliable. We thirdly develop a fast, scal-
able online distributed algorithm for the problem without
the global knowledge of the network and sensor profiles,
which is more suitable for real distributed sensor net-
works. For a special case of the problem where each sensor
has a fixed transmission power, we propose an exact solu-
tion for it. We finally conduct extensive experiments by
simulations to evaluate the performance of the proposed
algorithms. Experimental results demonstrate that the pro-
posed algorithms are very promising and the solutions
obtained are fractional of the optimum.

To the best of our knowledge, unlike most existing
studies of data collection in renewable sensor networks
that either formulated it as an integer linear program-
ming (ILP) or provided heuristic solutions, the proposed
algorithm is the first approximation algorithm for the
problem, by exploiting the combinatorial property of the
problem. To respond to the time-varying nature of
energy harvesting, traditional ILP methods take too
much time and suffer poor scalability. Worst of all, the
solutions obtained may not be applicable due to their
insensitivities to the dynamic changes of harvesting
energy sources. On the other hand, although the heuristic
solutions can be found quickly, there are no guarantees
of the solutions from the optimal one. In comparison
with its conference version [36], this extended paper
has the following improvements: (1) Since wireless

communication usually is unreliable, we show how to
extend the proposed algorithm for solving this general
case (see Sections 5.3 and 6.3). (2) We make use of a novel
prediction technique to predict the amount of harvested
energy at each sensor (see Section 5.3), and later experi-
mental results show that the prediction is quite accurate
(see Section 8.2). (3) We evaluate the performance of pro-
posed algorithms against an existing algorithm through
extensive experimental simulations, and the experimental
outcomes show that the proposed algorithms outperform
the existing one (see Section 8).

The remainder of the paper is organized as follows. Sec-
tion 2 reviews related work. Section 3 introduces the system
model, notions, problem definition. Section 4 shows the NP-
completeness of the problem. Section 5 devises an offline
approximation algorithm with a provable approximation
ratio for the problem. Sections 6 develops a fast, scalable
online distributed algorithm, and Section 7 devises an exact
solution to the problem when each sensor has only one fixed
transmission power. Section 8 evaluates the performance of
the proposed algorithms through experimental simulations,
and Section 9 concludes the paper.

2 RELATED WORK

Most existing solutions in such networks assumed that the
collected data is routed to a fixed sink through multi-hop
relays [13], [24], [28], [29], [40], [45]. For example, Liu et al.
[28], [29] formulated the problem as a lexicographic maxmin
rate allocation problem, and provided a centralized algo-
rithm for the problem by solving an integer linear program.
Liang et al. [24] developed a fair rate allocation algorithms
by incorporating temporal-spatial sensing data correlations.
Zhang et al. [45] studied the problem as a utility maximiza-
tion problem by representing the utility gain at each sensor
node as a concave utility function. They proposed an effi-
cient algorithm for finding the accumulative sum of utility
gains in a tree network. Although the data collection para-
digm based on fixed sinks may be applicable to small to
mediate size networks, it is definitely not suitable for large-
scale networks due to long delays on data delivery by multi-
hop relay, limited communication bandwidth, etc. To miti-
gate the deficiencies brought by fixed sinks, a feasible
solution is to introduce mobile sinks.

Sink mobility in conventional sensor networks has been
extensively studied in the past few year and demonstrated
that it can significantly improve various network perfor-
mance including reducing the energy consumption of sen-
sors, balancing the workload among the sensors, reducing
the data delivery delays, and prolonging the network life-
times [5], [8], [11], [16], [23], [25], [39], [42], [43], [44]. Most
existing studies focused on minimizing the energy con-
sumption so as to prolong the network lifetime since sensors
are powered by energy-limited batteries. The use of a path-
constrained mobile sink for data collection in conventional
sensor networks has been well studied. For example, Kansal
et al. [20], [38] addressed a network infrastructure based on
the use of a path-constrained mobile sink for data collection,
where a sensor sends its data to the sink along a minimum
number of hops routing path. They proposed a speed con-
trol algorithm to maximize the volume of data collected.
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Assuming that the mobile sink moves at a constant speed,
Gao et al. [16] addressed the energy minimization problem
by proposing a novel data collection scheme, where sensors
close to the trajectory of the mobile sink are chosen as
‘subsinks’ and other sensors make use of different subsinks
for their data relays. They formulated the subsink choice
problem as a problem of minimizing the number of hops
from each sensor to its subsink by providing a heuristic
solution. They also studied time slot allocations for subsinks
when the mobile sink collect data from the subsinks.
Chakrabarti et al. [8] considered the dependence of trans-
mission setting and packet loss rate of the mobile data col-
lection problem by modeling the process of data collection
as an M/D/1 queue. They then proposed an algorithm that
ensures adequate data collection and minimizes the energy
consumption. Liang et al. [25] considered another data col-
lection problem by assuming the subsinks (the gateways)
are given in advance, they devised several approximation
algorithms for the problem, by formulating the problem as
a minimum cost capacitated forest problem that finds a min-
imum cost capacitated forest consisting of routing trees
rooted at gateways and spanning all sensors. Unlike the
mentioned work in conventional sensor networks that
focused on energy conservation to prolong the network life-
time, maximizing network lifetime is no longer a main issue
for energy renewable sensor networks as the sensors can be
continuously recharged by renewable energies. Thus, in
principle, such networks can be operational perpetually.
Unfortunately, very little attention has been paid to data col-
lection in energy renewable sensor networks, by using
mobile sinks [34], [35]. Ren and Liang [34] considered this
problem by assuming that the mobile sink sojourns at some
strategic locations and the mobile sink only collects the
sensing data from one-hop sensors. Recently they [35] fur-
ther extended their work for quality-data collection by
developing a heuristic and a distributed algorithms, assum-
ing that a mobile sink travels along a pre-defined track for
data collection. Furthermore, Ren and Liang [37] studied
the quality data collection maximization problem in energy
harvesting sensor networks.

3 PRELIMINARIES

3.1 System Model

We consider an energy renewable sensor network
G ¼ ðV [ fsg; EÞ where V is a set of n stationary sensors
that are densely deployed along a pre-defined path, and
a mobile sink s periodically travels along the path at a
constant speed rs without stops to collect data from one-
hop sensors. Each sensor is powered by renewable
energy (e.g., solar energy) and has stored enough sensing
data for collection. There is a link in E between a sensor
v 2 V and the mobile sink s when they are within the
transmission range of each other. Assume that the maxi-
mum transmission range of each sensor is R, and the
length of the pre-defined path is L. The duration per tour
by the mobile sink is determined by its traveling speed
rs, which is referred to as the data latency. That is, the
faster the mobile sink travels, the shorter the duration
per tour is, resulting in a shorter delay on data delivery
from its generation to its collection by the mobile sink.

We here adopt a discrete-time system where the duration
per tour is slotted into equal time slots with each lasting t

time units [27]. Given the mobile sink speed rs, the number

of time slots per tour can be determined, which is T ¼ d L
rs�te,

where L is the length of the pre-defined path. We index the
T time slots by 1; 2; . . . ; T . Let AðvÞ represent the set of con-
secutive time slots in which the data transmitted by sensor
v 2 V can be collected by the mobile sink. Then, AðvÞwill be
determined by the maximum transmission range R of v and
its distance from the pre-defined path. Fig. 1 uses an exam-
ple to illustrate this concept. Given two sensors vi and vj,
then AðviÞ ¼ fis; is þ 1; . . . ; ie � 1; ieg and AðvjÞ ¼ fjs; js þ
1; . . . ; je � 1; jeg are the sets of time slots in which they can
transmit their data to the mobile sink, 1 � is � ie � T and
1 � js � je � T . Notice that if AðviÞ \AðvjÞ 6¼ ;, they share
some time slots at which they both can transmit their data
to the mobile sink. However, following wireless communi-
cation interference model [41], the mobile sink at any given
time slot can receive the data from one sensor only; other-
wise, none of the transmitted data can be received by the
mobile sink due to the channel interference. Thus, we need
to allocate these time slots to the sensors such that each time
slot is allocated to one sensor only with an objective to maxi-
mize the amount of data collected by the mobile sink.

3.2 Energy Model

As sensors are powered by renewable energy, the amount
of energy harvested by a sensor at each different time slot
is different. This implies that a sensor cannot transmit its
data to the mobile sink without any restriction. In princi-
ple, a given sensor v can transmit its data to the mobile
sink in all time slots in AðvÞ if it has sufficient energy to
support it doing so. However, it may not have enough
energy at this moment to achieve that. Following a
widely adopted assumption of renewable energy replen-
ishment, we assume that the energy replenishment rate
of each sensor is much slower than its energy consump-
tion rate, and the amount of energy harvested in a future
time period is uncontrollable but predictable [28]. Denote
by BðvÞ the battery capacity of each sensor v, and denote
by PjðvÞ and REjðvÞ the amounts of available energy of
node v prior to and after tour j, respectively. Thus, sensor
v consumes the amount of energy PjðvÞ �REjðvÞ for
transmitting its data to the mobile sink in tour j. Let
QjðvÞ be the amount of harvested energy of sensor v

between the ðj� 1Þth tour and the jth tour, PjðvÞ thus
can be expressed as minfREj�1ðvÞ þQjðvÞ; BðvÞg, where
0 � PjðvÞ � BðvÞ. Furthermore, to support long-term,

Fig. 1. An illustration of time slots covered by sensors vi and vj.
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continuous monitoring service, we assume that sensors
should not consume more energy than they can collect in
order to achieve ‘perpetual’ operations [19]. Hence, with-
out loss of generality, we refer to PjðvÞ as the energy bud-
get of sensor v at tour j. We also refer to P ðvÞ as the
energy budget of sensor v per tour.

3.3 Communication Model

It is known that wireless signal suffers from path loss, fad-
ing, shadowing, interference and other impairments. The
communication reliability of a receiver usually is deter-
mined by its received Signal-to-Noise Ratio (SNR). The
communication reliability of the mobile sink can be maxi-
mized if a sensor uses its maximum transmission power
level to transmit its data to the sink, this however incurs
unnecessarily high energy consumption of the sensor. Moti-
vated by the fact that radio hardware such as CC2500 RF
Transceiver [6] allows not only adjusting its transmission
power levels but also setting multiple data transmission
rates, a multi-rate communication model between each sen-
sor vi and the mobile sink s is adopted. That is, let
P ¼ fPi;1; Pi;2; . . . ; Pi;lig be the set of transmission power lev-

els and Ri ¼ fri;1; ri;2; . . . ; ri;kig the set of data transmission

rates of sensor vi. Given a time slot (i.e., the mobile sink is
located at this moment), sensor vi could adopt a pair of a
transmission power level and a data transmission rate for
its data transfer at the time slot if the Signal-to-Noise Ratio
at the mobile sink is no less than a given threshold. Thus,
there may have many such pairs that sensor vi can adopt at
a given time slot. However, in practice sensor vi only adopts
one specific pair by its PHY/MAC layer protocol that
ensures that data can be received by the receiver reliably
within the distance between the sender and the receiver.
For the sake of simplicity, we assume that the pair of a
transmission power level and a data transmission rate of
each sensor at each time slot is given.

3.4 Approximation Algorithm

We say an algorithm for a maximization optimization prob-
lem is an a-approximation algorithm if the ratio of the
approximate solution to the optimal solution is no less than
a, where a is a constant with 0 < a < 1.

3.5 Problem Definition

Given an energy renewable sensor network G and T time
slots per tour in which the mobile sink travels along with a
pre-defined path to collect data from one-hop sensors, the
data collection maximization problem is to maximize the vol-
ume of the data collected by the mobile sink through allocat-
ing the T time slots to individual sensors, under the
constraints on both the energy replenishment rate and
multi-rate data transmission rate at each time slot.

Intuitively, each sensor should transmit its data to the
mobile sink at all available time slots to it in order to maxi-
mize its share on the collected data, thereby maximizing the
volume of the data collected from the entire network. How-
ever, since the energy replenishment rate of each sensor is
much slower than its energy consumption rate, each sensor
may only make use of some of all available time slots to
transmit its data due to its energy budget. What followed is

which time slots it should choose for its data transmission.
Since the sensor at different time slots will have different
data transmission rates, this results in different amounts of
its transmission energy consumption. Furthermore, it is
very likely that multiple sensors sharing the same time slot
will compete with each other for the time slot to transmit
their own data, as sensors in the network are densely
deployed. Thus, allocating each shared time slot to one of
the competing sensors so as to maximize the accumulative
data volume is a challenging task.

In other words, the data collection maximization prob-
lem in G can be described as follows. Given T time slots
and a pre-defined path, the mobile sink travels along the
path at a given constant speed to collect data from one-hop
sensors. Associated with each sensor vi 2 V , there are
jAðviÞj potentially available time slots for sensor vi to trans-
fer its data to the mobile sink, where ri;j is the average data
transmission rate of vi if it transmits data at time slot
j 2 AðviÞ with the amount of energy consumption Pi;j � t.
We further assume that the number of different transmis-
sion rates of each sensor vi, r

0
i;1; r

0
i;2; . . . ; r

0
i;ki

, is given and

r0i;x < r0i;y if 1 � x < y � ki. Usually, ki is a fixed integer. To

ensure that the transmitted data can be received by the
receiver successfully, the use of a different transmission rate
for data transmission will consume a different amount of
power of sensor vi. For the sake of convenience, in the rest
of the paper we assume that all sensors have the same num-
ber of transmission power levels k, i.e., ki ¼ k for all i with
1 � i � n. Also, it is well known that wireless communica-
tion is unreliable. In this paper we thus assume that the link
reliability of the link between sensor vi and the mobile sink
at time slot j is ri;j with 0 � ri;j � 1 and 1 � j � T . The data

collection maximization problem in G thus is to allocate a
subset of time slots A0ðviÞ (� AðviÞ) to the sensors such that
the volume of data transmitted from all sensors,P

vi2V
P

j2A0ðviÞðri;j � ri;j � tÞ is maximized, subject to (i) each

time slot is allocated to only one sensor if there are multiple
sensors sharing the time slot; (ii) the total energy consump-
tion of each sensor vi per tour is no more than its energy
budget P ðviÞ, i.e.,

P
j2A0ðviÞ Pi;j � t � P ðviÞ, where t is the

duration of each time slot and A0ðviÞ � AðviÞ for all i with
1 � i � n.

4 NP-HARDNESS

We show that the data collection maximization problem is
NP-hard by the following theorem.

Theorem 1. The data collection maximization problem in an
energy renewable sensor network is NP-hard.

Proof.We show the claim by a reduction from a well known
NP-complete problem—the generalized assignment
problem (GAP), which is defined as follows. Given a set
of bins and a set of items that have a different size and
profit for each bin, pack a maximum profit subset of
items into the bins. In other words, let A ¼ fa1; a2; . . . amg
be a set of m items and B ¼ fB1; B2; . . .Bng a set of bins,
where each Bi has a capacity bi for all i with 1 � i � n.
Assigning item aj to bin Bi will consume the amount of
resource bi;j of Bi, and the benefit brought by this assign-
ment is ci;j. The objective is to allocate the items in A to
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the bins in B such that the total profit is maximized, sub-
ject to the total amount of resources consumed of each
bin Bi being no more than its capacity bi for all i with
1 � i � n.

We now show that a special case of the data collection
maximization problem is equivalent to the defined GAP
problem, where the equivalence means that a solution to
one of them is the solution to another as well. The data
collection maximization problem is given as follows: we
assume that the maximum transmission range of each
sensor R is large enough to cover the entire tour path,
wireless communication is most reliable, i.e., the link reli-
ability of each link is 1. We proceed the following
reduction.

Each item in A corresponds a time slot, thus the set of
items corresponds to the set of time slots. Each bin Bi in
B corresponds to a sensor vi 2 V , the capacity bi of Bi

corresponds to the energy budget of sensor vi, P ðviÞ, to
perform its data transmission for a certain number of
time slots in AðviÞ, and Pi;j � t is the amount of transmis-
sion energy consumed by vi if it sends its data to the
mobile sink at time slot aj, i.e., the amount of its resource
consumed. The profit brought by allocating time slot aj
to sensor vi is ci;j (¼ ri;j � t), which is the amount of data
transmitted, where ri;j is the average data transmission
rate of vi at time slot aj, which usually is determined by
the Euclidean distance di;j between vi and the mobile
sink at time slot aj and the transmission power adopted
by vi. This implies that at different time slots, different
data transmission rates will be adopted, thereby leading
to different amounts of data collected by the mobile sink.
Allocating the T time slots to the n sensors such that the
amount of data collected by the mobile sink is maximized
is equivalent to maximizing the profit in the GAP. Hence,
the data collection maximization problem is NP-hard. tu

5 AN OFFLINE APPROXIMATION ALGORITHM

Since the data collection maximization problem is NP-hard,
in this section we devise an approximation algorithm with a
provable approximation ratio for the problem, by exploiting
the combinatorial property of the problem, provided that
the mobile sink has the global knowledge of the network
topology and the profile of each sensor (e.g., the energy
budget of each sensor at the current tour, the location of the
sensor, the starting and ending time slots of the sensor, etc).

For the sake of convenience, in the following we first deal
with the data collection maximization problem under the
assumptions that the amount of available energy at each
sensor for the current mobile sink tour is given and all links
are reliable. We then show how to extend the proposed
solution with minor modifications to the problem without
the specified assumptions.

5.1 Approximation Algorithm

Cohen et al. [9] proposed a local search algorithm for the
generalized assignment problem. We show how to adopt
their algorithm to the data collection maximization prob-
lem by necessary modifications, as we have already
shown that the data collection maximization problem is
equivalent to GAP.

The technique they adopted is based on a novel combina-
torial translation of any (exact or approximation) algorithm
for the knapsack problem into an approximation algorithm
for GAP. Thus, any b-approximation algorithm for the

knapsack problem can be transformed into a b
1þb-approxi-

mation algorithm for GAP, where b is a constant with
0 < b < 1. The theoretical foundation of their technique is
based a local-ratio theorem [2]. Specifically, the Cohen et al.
[9] algorithm proceeds iteratively. It essentially decomposes
the profit function into two profit functions: one is used for
the current bin packing; and another is used for the rest of
bin packing. The initial profit matrix is defined as follows:

D
ð0Þ
i;j ¼

ri;j � t; if time slot j 2 AðviÞ;
0; otherwise:

�
(1)

Within iteration l, it packs items in AðvlÞ into bin Bl,

using the profit function D
ðlÞ
i;j, i.e., it packs time slots

j 2 AðvlÞ to sensor vl, based on the profit entries of row l

in D
ðlÞ
i;j, subject to the capacity constraint P ðvlÞ of sensor

vl.
Let �Sl be the set of time slots allocated to sensor vl by a

b-approximation algorithm for the knapsack problem,

clearly �Sl � AðvlÞ. Then, the profit function D
ðlÞ
i;j is decom-

posed into two profit functionsD
ðlþ1Þ
i;j and T

ðlþ1Þ
i;j as follows:

D
ðlþ1Þ
i;j ¼ D

ðlÞ
l;j ; if time slot j 2 Sl or i ¼ l;

0; otherwise;

�
(2)

and

T
ðlþ1Þ
i;j ¼ D

ðlÞ
i;j �D

ðlþ1Þ
i;j : (3)

The decomposition of the profit function implies that

D
ðlþ1Þ
i;j is identical to D

ðlÞ
i;j with regard to bin Bl. In addition, if

time slot j 2 Sl, then it is allocated in D
ðlþ1Þ
i;j the same profit

as that in D
ðlÞ
i;j for all bins l

0 if j 2 Aðvl0 Þ. All other entries are

zeros. The new profit function for bin Blþ1, D
ðlþ1Þ
i;j then is

T
ðlþ1Þ
i;j , i.e.,

D
ðlþ1Þ
i;j ¼ T

ðlþ1Þ
i;j : (4)

The procedure continues until the last bin Bn is packed.
Then, an approximate solution to the data collection maxi-
mization problem finally is derived. That is, let Sl be the set

of time slots allocated to sensor vl. If l ¼ n, then Sn ¼ Sn;
otherwise, the set of time slots allocated to sensor vl is

Sl ¼ Sl n [nj¼lþ1Sj for all lwith 1 � l � n� 1.

The offline approximation algorithm for the data collec-
tion maximization problem is thus as follows.

Initially, we sort the sensors in increasing order of indices
of their starting time slots, (i.e., the index of the first time
slot in AðviÞ for sensor vi). If there are multiple sensors with
the same starting time slot, then sort them in increasing
order of indices of their ending time slots. In case the indices
of these ending time slots are also identical, the tie between
the sensors will be broken arbitrarily. Without loss of gener-
alization, assume that v1; v2; . . . vn is the sorted sensor
sequence starting from time slot indexed by 1, and the
mobile sink starts its data collection tour from the first time
slot. The detailed offline approximation algorithm Offli-

ne_Appro is presented in Algorithm 1.
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Algorithm 1. Offline_Appro

Input: The number of time slots T , the set of sensors V ,
the energy budget P ðviÞ and the set of available
time slots AðviÞ, the transmission rate ri;j and the
corresponding energy consumption Pi;j of each

sensor vi 2 V , and the profit matrix D
ð0Þ
i;j for all i

and jwith 1 � i � n and 1 � j � T .
Output: Allocate T time slots to the n sensors.
1: Sort all sensors in increasing order of the indices of

their starting time slots, followed by their ending
time slots. Let v1; v2; . . . ; vn be the sorted sensor
sequence;

2: Profit matrix’s initialization: D
ð1Þ
i;j  D

ð0Þ
i;j for all i and

jwith 1 � i � n and 1 � j � T ;
3: for l 1 to n do
4: /* Assume that AðvlÞ ¼ fls; . . . leg */
5: Apply a b-approximation algorithm for a single bin

packing (knapsack problem) to allocate time slots
in AðvlÞ to sensor vl, subject to the capacity of vl,

P ðvlÞ, using the profit function D
ðlÞ
i;j , i.e., the entries

in row l of the matrix. Let Sl be the result delivered
by the approximation algorithm to sensor vl, where

Sl � AðvlÞ;
/* Decompose the profit function into two profit
functions D

ðlþ1Þ
i;j and T

ðlþ1Þ
i;j */

6: D
ðlþ1Þ
i;j  T

ðlþ1Þ
i;j ;

7: end for;
/* construct a solution to the time slot allocation */

8: Sn  Sn;
9: for l n� 1 downto 1 do

10: Sl  Sl n [nj¼lþ1Sj;
11: end for;
12: return Sl for all lwith 1 � l � n.

5.2 Complexity Analysis

Theorem 2. Given an energy renewable sensor network
G ¼ ðV [ fsg; EÞ with n ¼ jV j, there is an approximation
algorithm for the data collection maximization problem with

an approximation ratio of 1
2þ�. The time complexity of the pro-

posed approximation algorithm is Oðn2Þ.
Proof. Cohen et al. [9] have showed that algorithm Offli-

ne_Appro is a b
1þb-approximation algorithm, where b is

the approximation ratio of an approximation algorithm
for the single knapsack problem with 0 < b < 1. Obvi-
ously, the approximation ratio of the approximation

algorithm is b ¼ 1
1þ� [22], where � is a constant with

0 < � < 1, and it takes OðjAðvlÞjlog 1
� þ 1

�4
Þ ¼ OðtmaxÞ time

to find the subset Sl (� AðvlÞ), where tmax ¼ max

fjAðvÞj j v 2 V g. The updating of profit matrices D
ðlÞ
i;j and

T
ðlÞ
i;j also takes time. However, it is noticed that there is no

need to update all entries, we only need to update the

entries in row l and the related columns j 2 Sl, thus, it

takes OðjAðvlÞj þ
P

j2Sl OðnÞÞ ¼ OðjAðvlÞj þOðn � jSljÞÞ ¼

OðntmaxÞ time. The running time of allocating all time

slots into the n sensors therefore is
P

vl2V O ðtmax þ
ntmaxÞ ¼ Oðntmax þ n2tmaxÞ ¼ OðnGþ n2GÞ ¼ Oðn2Þ since
tmax � 2G and G ¼ b R

rs�tc usually is a constant in practice,

where R is the maximum transmission range of sensors
and rs is the travelling speed of the mobile sink. The
approximation ratio of the proposed algorithm for the

data collection maximization problem thus is b
1þb ¼ 1

2þ�. tu

5.3 Harvesting Energy Estimation and Unreliable
Link Reliability

The proposed approximation algorithm, Algorithm 1, is
proposed, under the assumptions that the energy budget
P ðviÞ of each sensor vi 2 V is given and the link reliability
of each link ri;j between sensor vi and the mobile sink at

each time slot j is reliable (i.e., ri;j ¼ 1) for all vi 2 V and all

j 2 AðviÞ. In reality, the battery energy information P ðviÞ at
each sensor vi is not known, and the wireless communica-
tion between a sensor and the mobile sink is error-prone
and not always noise free, interferences are not avoidable.
Therefore, both harvested energy predictions and unreliable
link reliability must be taken into account when dealing
with the design of real protocols for energy renewable sen-
sor networks. In this section we show how to extend the
proposed algorithm for this general case.

To predict the harvested energy of each sensor node,
Kansal et al. proposed the very first algorithm, referred to
as the Exponentially Weighted Moving-Average (EWMA),
which applies weighting factors to previously harvested
sampling energy values that are constantly decreasing. At
the same time, the prediction takes into account every single
harvesting energy sample with different relevance [19]. A
similar prediction strategy has also been adopted by Noh
et al. [33]. Specifically, let Qðd; tÞ be the base prediction of
the amount of harvested energy of sensor vi between the
ðt� 1Þth tour and the tth tour on day d as follows:

Qðd; tÞ ¼ w �Qðd� 1; tÞ þ ð1� wÞ �Qðd� 1; tÞ; (5)

where 0 < w < 1 is a weight factor and Qðd� 1; tÞ is its real
amount of harvested energy between the ðt� 1Þth tour and
the tth tour on day d� 1. The final prediction on the amount
of harvested energy can be calculated by adjusting the base
prediction with the current environmental conditions (e.g.,
a sunny day or a cloudy day), as follows:

Q̂ðd; tÞ ¼ Qðd; tÞ �Qðd; t� 1Þ
Qðd; t� 1Þ : (6)

We refer to this energy prediction as the Variance Exponen-
tially Weighted Moving-Average algorithm, or algorithm
VEWMA for short.

Assume that REðd; t� 1Þ is the amount of residual
energy of sensor vi after the ðt� 1Þth tour on day d, then the

predicted amount of available energy P̂jðviÞ for its tth tour is

P̂tðviÞ ¼ minfREðd; t� 1Þ þ Q̂ðd; tÞ; BðviÞg; (7)

where BðviÞ is the energy capacity of sensor vi.
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Assume that the mobile sink starts its tour t. We take the

predicted energy budget P̂tðviÞ and link reliability ri;j of

each sensor into consideration when the mobile sink per-
forms its next tour t, i.e., when the mobile sink performs
packing time slots in AðviÞ to bin vi with the estimated

energy budget constraint P̂tðviÞ and the link reliability ri;j
for all j 2 AðviÞ, the b-approximation algorithm for the
knapsack problem with reliable link reliability can still be
applied to this general setting through a minor modification.
That is, the profit brought by allocating time slot j to sensor

vi isD
ð0Þ
i;j ¼ ri;j � ri;j � t, not the original ri;j � t, when sensor vi

consumes the amount of energy Pi;j to transmit data at time
slot j with link reliability ri;j. The rest is almost identical to

the proposed algorithm, Algorithm 1, omitted.

6 ONLINE DISTRIBUTED ALGORITHM

In the previous sectionwe provided an offline approximation
algorithm with a provable approximation ratio for the data
collection maximization problem. However, the solution
obtained is based the assumptions that the global knowledge
of the network topology and the profiles of sensors including
their physical locations, energy budgets, starting and ending
time slots are available. In reality, there is no way for the
mobile sink to know the profile of each sensor unless it is
within the transmission range of the sensor. Also, even if the
mobile sink is able to collect the topological information of
the entire network and the profiles of sensors at its previous
tours, using the piggybacking strategy or linear regression
prediction, it then performs time slot scheduling based on the
collected information, the solution obtained however may
not be applicable due to the fact that both the energy harvest-
ing and the link reliability profiles of some sensors may have
experienced drastic changes over the period of the mobile
sink tour. In this sectionwewill develop a fast, scalable online
distributed algorithm for the problemwithout thementioned
assumptions. For the sake of discussion convenience, we first
assume that all links are reliable, i.e., the link reliability of
each link is one. We then extend the distributed solution to
the unreliable link case throughminormodifications.

6.1 Overview of the Distributed Algorithm

The overview of the proposed online distributed algorithm
proceeds as follows. The mobile sink periodically broad-
casts a ‘Probe’ message with a ‘Registration’ timer,
announcing its presence once per time interval when it trav-
els along the pre-defined path, where each time interval con-
sists of G ¼ b R

t�rsc time slots. The ‘Probe’ message is
broadcast in the beginning of each interval, which will be
used to detect whether the mobile sink and the sensors are
within the transmission range of each other. Each sensor
receiving the ‘Probe’ message will send the mobile sink
back an ‘Ack’ message which contains its current power
level, the indices of its starting and ending time slots, its
location coordinate, its link reliability, etc. The sensor
then enters the waiting status to get the reply from the
mobile sink when performing its next action. Once the
‘Registration’ timer expires, the mobile sink starts schedul-
ing the G time slots to the registered sensors, using a time-
slot scheduling algorithm A which will be detailed later. It

finally broadcasts the time-slot allocation results to the reg-
istered sensors. Each registered sensor (in the waiting sta-
tus) then sets its own scheduling, i.e., in which time slots it
will transmits its data to the mobile sink.

Within the rest of the current time interval, each regis-
tered sensor transmits its data to the mobile sink at its allo-
cated time slots. For the sake of simplicity, we here assume
that the time spent by the mobile sink in probing and time
slot scheduling is negligible in comparison with the time at
each time slot for data transmission.

Algorithm 2. Distributed_Algorithm (the mobile

sink)

1: continue ‘true0;/*the current tour finishes or not*/
2: j 0; /* the number of time intervals per tour */
3: while continue do
4: j jþ 1; /* The current time interval j*/
5: Mobile sink broadcasts a ‘Probe’ message with a

‘Registration’ timer to one-hop sensors;
6: if the timer expires then
7: if the mobile sink received ‘Ack’ messages from

sensors then
8: Call a time-slot scheduling algorithm,

Algorithm A, in the mobile sink to allocate
the time slots in time interval t to the regis-
tered sensors, subject to the power constraint
on each registered sensor;

9: The mobile sink broadcasts the scheduled
results to sensors in the network;
/*Each registered sensor performs data
transmissions in its allocated time-slots; */

10: The mobile sink broadcasts a ‘Finish’ message
to sensors when it finished the data collection
from the last time slot in time interval j;
/* The registered sensors update their energy
profiles when they received the ’Finish’
messages. That is, each registered sensor
vi updates its power: PjðviÞ  PjðviÞ�P

j02Si � Pi;j0 � t, where Si is the set of time

slots assigned to vi by algorithm A in the cur-
rent time interval j and Si � AðviÞ; */

11: else
12: continue ‘false0; /* finish the tour */
13: end if
14: else
15: Waiting for the replies from one-hop sensors;
16: end if
17: end while

When the mobile sink received the data from the sensor
at the last time slot in the current time interval, it sends a
‘Finish’ message to all the registered sensors. The registered
sensors then update their own energy profiles after having
received the ‘Finish’ message and wait for their scheduling
in the next time interval. This procedure continues until
there is no response from any sensor to the ‘Probe’ message
sent by the mobile sink in some time interval, which means
that the mobile sink finishes the tour already, as we
assumed that the sensors are densely deployed along the
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pre-defined path and there is at least one sensor at each time
interval. The detailed online distributed algorithm is given
in Algorithm 2 and Algorithm 3.

Algorithm 3. Distributed_Algorithm (sensor

node vi)

1: At each time slot, sensor node vi 2 V performs its data
collection based on its duty-cycling

2: When it receives a ‘Probe’ message from the mobile
sink, it responds by sending back of an ‘Ack’ message
that includes its current energy P ðviÞ and link reli-
ability in the last tour ri;j, and waiting for the reply

from the mobile sink;
3: When it receives the time-slot allocation information

from the mobile sink, set its time-slot scheduling, and
perform data transmission in its allocated time slots.

4: When it receives a ‘Finish’ message from the mobile
sink, it updates its energy budget for next time interval.

6.2 GAP-Based Time Slot Scheduling

In the rest we devise a GAP-based time-slot scheduling algo-
rithm as Algorithm A in algorithm 2. Recall that the start-
ing and ending time slots of sensor vi 2 V are the isth and
the ieth time slots, denote by ½is; ie� the time slot interval in
which sensor vi can transmit its data to the mobile sink.
Given the current time interval j, ½aj; bj� where aj and bj are
the starting and ending time slots in the current time inter-

val, then jbj � ajj ¼ b R
rs�tc. If ½is; ie� \ ½aj; bj� 6¼ ;, then sensor

vi can transmit its data to the mobile sink in time interval j
within time slot interval ½i0s; i0e� ¼ ½is; ie� \ ½aj; bj� with is � i0s
and i0e � ie. Let PjðviÞ be the amount of power of sensor vi in
the beginning of time interval j, then it consumes the
amount of energy Pi;j0 � t when sensor vi transmits its data

in a time slot j0 2 ½i0s; i0e�. It may transmit its data within mul-
tiple time slots as long as its residual energy enables itself to
do so. The mobile sink schedules the current G time slots to
these registered sensors in the current time interval, using
the offline approximation algorithm. This GAP-based algo-
rithm is described in Algorithm 4.

Algorithm 4. GAP-based_Time-slot_Scheduling at
time interval j

1: Let aj and bj be the starting and ending indices of time
slots in time interval j, let TSj be the set of sensor
nodes responded to the ‘Probe’ request message
issued by the mobile sink.

2: Let vi 2 TSj and is and ie be the starting and ending
indices of time slots of vi in ½aj; bj�. That is, let
A0ðviÞ ¼ fis; is þ 1; . . . ; ieg � AðviÞ be the subset of
time slots of vi in time interval j.

3: for each vi 2 TSj do
4: Apply an b-approximation algorithm for bin

packing to pack time slots in A0ðviÞ to sensor vi
with the bin capacity PjðviÞ

5: Let Si be the set of allocated time slots to sensor vi,
i.e., Si � A0ðviÞ � AðviÞ.

6: end for

We then have the following lemma and theorem.

Lemma 1. Given the sensor network G ¼ ðV [ fsg; EÞ, follow-
ing the proposed online distributed algorithm, Algorithm 2
and Algorithm 3, we claim that each sensor is within at
most two consecutive broadcasting regions (or two consecutive
time intervals).

Proof. We show the claim by contradiction. Considering
Fig. 2, assume that a sensor v1 is within three consecutive
‘Probe’ message broadcasting regions, i.e., when the
mobile sink broadcasts its probing messages at s1, s2, and
s3 locations, sensor v1 is able to receive the message three
times. Following this assumption, we have dðv1; s1Þ � R,
dðv1; s2Þ � R, and dðv1; s3Þ � R. We now show that this is
impossible by the following three cases:

Case one. Sensor v1 is in the left side of s2, then

dðv1; s3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ ðwþRÞ2

q
>

ffiffiffiffiffiffi
R2
p

¼ R, which contra-

dicts the fact that dðv1; s3Þ � R.
Case two. Sensor v1 is in the right side of s2, the proof is

similar to Case one, omitted.
Case three. Sensor v1 (i.e., sensor v2) is just above s2,

then dðv2; s1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h02 þR2
p

>
ffiffiffiffiffiffi
R2
p

¼ R and dðv2; s3Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h02 þR2
p

>
ffiffiffiffiffiffi
R2
p

¼ R. This contradicts that v2 is in the
transmission ranges of s1 and s3. tu

Theorem 3. Given an energy renewable sensor network
G ¼ ðV [ fsg; EÞ with jV j ¼ n, there is an online distributed
algorithm for the data collection maximization problem in G,
which takes OðnÞ time and OðnÞ messages.

Proof. Following Lemma 1, we notice that each sensor can
receive the probing message and the finish message
from the mobile sink at most twice per tour, and these
messages are issued in two consecutive time intervals.
Thus, the total number of probing and finish messages
and the time slot allocation messages received by each
sensor are four, respectively per tour of the mobile
sink, while the number of acknowledgement messages
by each sensor is two as well. Thus, the total number
of messages transmitted per tour is OðPv2V dvÞ ¼ OðnÞ
as each sensor v has OðdvÞ ¼ Oð1Þ messages to be
received and/or sent out. Clearly, the time for time-
slot scheduling by the mobile sink in each interval j isPNj

l¼1 OðtmaxlogtmaxÞ ¼ OðNj � tmaxlogtmaxÞ as sorting by

the mobile sink for bin packing at each sensor in this
interval takes OðtmaxlogtmaxÞ time, and the rest opera-
tions takes constant time, where Nj is the number of

Fig. 2. A sensor v1 (or v2) cannot be in three consecutive time intervals.
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registered sensors in interval j and tmax ¼ maxv2V
fjAðvÞjg. Thus, the time complexity of the online dis-
tributed algorithm is proportional to the number of
time intervals per tour. As we assume that sensors are
densely deployed, this implies that there is at least one
sensor responded to each probing request in the begin-
ning of each time interval, while each sensor is
included in at most two consecutive time intervals by
Lemma 1. Assume that there are K intervals of each

tour, then
PK

j¼1 Nj � 2n. Thus, the time complexity

of the online distributed algorithm is
PK

j¼1 OðNj�
tmaxlogtmaxÞ ¼ OðntmaxlogtmaxÞ ¼ OðnGlogGÞ ¼ OðnÞ as

tmax � 2G and G ¼ b R
rs�tc usually is a constant in practice,

where R is the maximum transmission range of sensors
and rs is the travelling speed of the mobile sink. tu

6.3 Unreliable Wireless Communication

The proposed online distributed algorithm is built upon the
assumption that communications between sensors and the
mobile sink are reliable. We now remove this assumption
by dealing with a general case where wireless communica-
tions are not reliable, for which we will adopt the similar
strategy as we did for the offline approximation algorithm.
That is, within each time interval, when the mobile sink
broadcasts a ‘Probe’ message, a responding sensor vi receiv-
ing the ‘Probe’ message will respond by sending an ‘Ack’
message back to the mobile sink, the Ack message contains
not only the current harvested energy P ðviÞ of vi but also its
link reliability ri;j0 in the previous tour for each time slot

j0 2 AðviÞ. The mobile sink then proceeds a time-slot sched-
uling in this time interval, based on sensor energy budget
and the estimation of link reliability. In terms of time slot
allocation to a responded sensor, the energy consumption
of the sensor by transmitting its data at any given time slot
should incorporate its re-transmission energy consumptions
(the link reliability). The rest operations are identical to the
case for the perfect channel condition, omitted.

7 A SPECIAL DATA COLLECTION MAXIMIZATION

PROBLEM

In this section we deal with a special case of the data collec-
tion maximization problem where each sensor vi 2 V has
only one fixed transmission power level with power P 0i . For
this special case, we devise a fast, scalable online distributed
algorithm for the problem as follows.

We reduce this special data collectionmaximization prob-
lem to the maximum weight matching problem in another
auxiliary, bipartite graph G ¼ ðX [ Y;EXY Þ, where X is the
set of sensors which acknowledged the probing message by
the mobile sink in the beginning of time interval j, Y is the
set of G time slots to be allocated to the registered sensors in
X. There is an edge between a sensor node vi that corre-
sponds to a node xi 2 X and a time slot node yj 2 Y if
yj 2 ½i0s; i0e�, i.e., yj is a time slot in interval ½i0s; i0e�. There are
mi ¼ ji0s � i0ej þ 1 edges incident to node xi in G. The weight
associated with edge ðxi; yjÞ 2 EXY is the average amount of
data received by the mobile sink from sensor vi at time slot

yj, D
ð0Þ
i;j ¼ ri;j � ri;j � t, where the average data transmission

rate ri;j of sensor vi at time slot yj is determined by the dis-
tance between sensor vi and the mobile sink at time slot yj.
Our objective thus is to maximize the data collected by the
mobile sink in the current time interval through the time slot
allocation. In terms of time slot allocation, we notice that
each registered sensor vi in the current time interval can
make use of upto ni ¼ jAðviÞj time slots to transmit its data.
Meanwhile, it is very likely that there are multiple sensors to
compete with each other for each shared time slot to trans-
mit their own data. The challenge thus is how to allocate
these time slots to the registered sensors such that the sum
of amounts of data transmitted is maximized. In the follow-
ing we propose a solution to this special data collection max-
imization problem by reducing it to a maximum weight

matching problem in another bipartite graph G0 ¼ ðfxðkÞi j
xi 2 X; 1 � k � n0ig [ Y;E0Þ, where G0 is derived from the
bipartite graphG as follows.

For each node xi 2 X in G, there are n0i corresponding

node copies, x
ð1Þ
i ; x

ð2Þ
i ; . . . ; x

ðn0
i
Þ

i in G0, where n0i ¼ minfb R
rs�tc;

ji0s � i0ej þ 1; bP ðviÞ=ðP 0i � tÞcg, where P 0i is the fixed transmis-
sion power of sensor vi, and P 0i � t is the amount of energy
needed by sensor vi to transmit a message in a time slot. For
each an edge ðxi; yjÞ 2 EXY in G, there are n0i corresponding

edge copies ðxð1Þi ; yjÞ; ðxð2Þi ; yjÞ; . . . ; ðxðn
0
i
Þ

i ; yjÞ in E0, and each

of them has a weight D
ð0Þ
i;j . Then, finding a solution of allo-

cating the G time slots to the registered sensors such that the
amount of data collected by the mobile sink in this time
interval is maximized is equivalent to finding a maximum
weight matching in G0 such that the weighted sum of
matched edges is maximized.

Let M be such a maximum weight matching in G0. Then,
M corresponds to a time-slot allocation. That is, each edge

ðxðkÞi ; yjÞ in M implies that time slot yj is allocated to sensor
vi, and sensor vi will successfully transmit its data with the
data transmission rate ri;j to the mobile sink. We refer to
this online distributed algorithm as Online_MaxMatch,
and have the following theorem.

Theorem 4. Given an energy renewable unreliable sensor net-
work G ¼ ðV [ fsg; EÞ with jV j ¼ n, there is an online maxi-
mum weight matching-based distributed algorithm for a
special data collection maximization problem in G where there
is only one fixed transmission power for each sensor. The pro-

posed distributed algorithm takes Oðn1:5Þ time and OðnÞ
messages.

Proof. The analysis of time complexity and message com-
plexity of the proposed online distributed algorithm are
almost identical to the ones in Theorem 3. The rest will
focus on the analysis of time complexity of the operations
in each time interval. Let Nj be the number of registered
sensors in time interval j. Then, the bipartite graph G0

contains OðNj � tmax þ GÞ nodes and OððNj � tmaxÞ � GÞ
edges, while it takes Oð ffiffiffiffiffiffiffijV jp � jEjÞ time to find a maxi-
mum weight matching in a bipartite graph G ¼ ðV;EÞ
[31]. Thus, it takes OðN1:5

j � G2:5Þ ¼ OðN1:5
j Þ time in G0 to

find the maximum weight matching M, since tmax � 2G

and G ¼ b R
rs�tc usually is a constant in practice, where R is

the maximum transmission range of sensors and rs is the
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travelling speed of the mobile sink. Notice that this maxi-
mum weight matching-based time-slot scheduling algo-
rithm is performed by the mobile sink. Assuming that
there are K intervals, following Lemma 1, each sensor
appears at most twice in two consecutive time intervals,

thus,
PK

j¼1 Nj � 2n. The total amount of time spent for

findingmaximumweight matchings in all intervals there-

fore is
PK

j¼1 OðN1:5
j Þ ¼ Oðn1:5Þ. Considering the fact that

Nj usually is bounded by a constant in practice, then the
proposed online distributed algorithm takes only OðnÞ
time, and the message complexity is stillOðnÞ. tu
Notice that if the global knowledge of the entire network

and the residual energy and location profiles of all sensors
are given, an offline algorithm for the special data collection
maximization problem based on the maximum weight
matching can also be obtained, and delivers an exact solu-
tion in polynomial time. We refer to this offline algorithm as
algorithm Offline_MaxMatch.

8 PERFORMANCE EVALUATION

In this section we first evaluate the accuracy of the energy
prediction model. We then study the performance of the
proposed algorithms through experimental simulation. We
finally investigate the impact of parameters: the network
size n, the mobile sink speed rs, and the duration t of each
time slot on the performance of proposed algorithms.

8.1 Experimental Environment Setting

We consider an energy renewable sensor network consist-
ing of 100 to 400 sensor nodes randomly deployed along
two sides of a pre-defined path, and a mobile sink s travels
along the path at constant speed rs. We further assume that
the length of the pre-defined path is 10;000m and the path
is a straight line, and the maximum distance between the
location of any sensor and the path is 180m. Each sensor
has an identical maximum transmission range of 200 meters
and is powered by a 10mm� 10mm square solar panel
with the battery capacity of 10; 000 Joules. The solar power
harvesting profile is built upon real solar radiation measure-
ments [29], in which the total amount of energy collected
from a 37mm� 37mm solar panel over a 48-hour period is

655:15mWh in a sunny day and 313:70mWh in a partly
cloudy day, respectively. We here adopt the communication
parameters of a real radio CC2591 by TI [7], where its trans-
mission and corresponding distance parameters are listed
in Table 1. In the default setting the duration of each time
slot t is 1 second. Each value in figures is the mean of the
results obtained by applying each mentioned algorithm to
50 different network topologies of the same network size.
Since the deviations of the 50 replication results are minor,
for the sake of clarity, we do not provide error bars to indi-
cate their standard deviations. We will adopt an existing off-
line algorithm C_Schedule [35] for a similar data
gathering problem as the benchmark, which proceeds to
allocate time slots iteratively, starting from time slot 1 and
ending at time slot T . Within iteration j, time slot j will be
allocated to the sensor with the maximum amount of its
data to be transmitted.

8.2 Harvesting Energy Prediction

Wefirst investigate the accuracy of the harvested energy pre-
diction approach VEWMA in comparison with the one of a
basic prediction approach EWMA, using the real solar data
profiles obtained from The National Solar Radiation Data
Base (NSRDB) in the States [32] which contains the most
comprehensive collection of solar data and is freely available.

Fig. 3 shows the actual solar data measurements within
10 consecutive days under different weather conditions and
the predicted values by algorithms EWMA and VEWMA,
respectively, from which it can be seen that the accumula-
tive error between the estimated ones and the real ones is
given by the following equation:

Error ¼ 1

M

XM
i¼1

1� Real

Estimated

����
����; (8)

where M is the number of predictions made in the past.
By setting the weight w to be 0.5, both algorithms EWMA

and VEWMA will deliver small accumulative errors. Specif-
ically, the error by algorithm VEWMA is 9:1 percent, com-
pared with 12:6 percent by algorithm EWMA. Given three
different independent datasets, Fig. 4 implies that with
the increase of w from 0.1 to 0.9, the errors by both algo-
rithms VEWMA and EWMA decrease slightly. However,
when the value of w is greater than 0.9, the errors by
both algorithms VEWMA and EWMA increase significantly
and can reach upto from 66 to 300 percent. In order to

TABLE 1
List of Experimental Setting Parameters

Parameter Values

Number of sensors 100 – 400
Sensor transmission
rates ri;j and energy
consumption Pi;j

250 Kbps between 0 m–20 m
at 170 mW
19.2 Kbps between 20 m–50 m
at 220 mW
9.6 Kbps between 50 m–120 m
at 300 mW
4.8 Kbps between 120 m–200 m
at 330 mW

Link reliability ri;j [0, 1]
Sensor energy capacity
BðvÞ

10,000 Joules

Sink travelling speed rs 5 m/s – 30 m/s
Duration of time slot t 1 sec.–10 sec.

Fig. 3. The accuracy performance of prediction algorithms VEWMA and
EWMA with weight w ¼ 0:5:
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obtain better harvesting energy prediction performance,
the value of w should be adjusted, following the histori-
cal harvesting energy profiles.

8.3 Performance Evaluation of Different Algorithms

We then evaluate the performance of algorithms Offli-

ne_Appro and Online_Appro by varying the network
size n from 100 to 400 and setting the mobile sink speed rs
at 5m=s, and 10m=s, while the duration of time slot t is fixed
at 1s, 4s, and 8s, respectively.

Fig. 5 demonstrates that algorithm Offline_Appro

always outperforms algorithm Online_Appro slightly.
However, they both outperform the benchmark algorithm
C_Schedule significantly. For example, when rs ¼ 5m=s
and t ¼ 1s, the network throughput of algorithm Onli-

ne_Appro is no less than 93 percent of that of algorithm
Offline_Appro, while their throughputs are no less than
from 115 to 400 percent that of algorithm C_Schedule. The
reason behind is that algorithm Online_Appro only has
the local, rather global knowledge of the entire network. It
can be also noticed that when the network size is fixed, the
longer duration of time slot and the higher mobile sink
speed will lead to a lower network throughput of each men-
tioned algorithm. In other words, to maximize the network
throughput, a shorter duration of time slot should be chosen
when the mobile sink travels at a faster speed.

Fig. 6 shows that the network throughputs of the three
mentioned algorithms Offline_Appro, Online_Appro

and C_Schedule drop down significantly when varying

the link reliability between 0 and 1 randomly in comparison
with their counterparts in the link reliability case in Fig. 5.

8.4 Performance of Different Algorithms for the
Special Data Collection Maximization Problem

When the transmission power of each sensor is fixed at
300mW, we now investigate both the performance of algo-
rithms Offline_MaxMatch, Online_MaxMatch, Offli-

ne_Appro, and Online_Appro against algorithm
C_Schedule and the impacts of the network size n and the
mobile sink speed rs on the performance, by varying n from
100 to 400 and setting rs at 5m=s, 10m=s, and 30m=s while
the duration of time slot t is fixed at 1s.

When the mobile sink speed is fixed at 5m=s, Fig. 7a
clearly indicates that algorithm Offline_MaxMatch outper-
forms the other four algorithms, and algorithm C_Sched-

ule is the worst one among them. Moreover, it is observed
that algorithm Online_MaxMatch is inferior to algorithm
Offline_MaxMatch, as algorithm Online_MaxMatch only
has the local knowledge of the network. However, the per-
formance gap between them is only marginal. It is also
noticed that algorithm Online_MaxMatch outperforms the
other three algorithms, and the performance gaps among
them increase with the growth of network size. Specifically,
when n ¼ 100, the performance of algorithms Online_-

MaxMatch, Offline_Appro, and Online_Appro are
almost the same. When n ¼ 400, the performance of algo-
rithm Online_MaxMatch is 18 and 23 percent better than
that of algorithms Offline_Appro and Online_Appro.

When the mobile sink speed is fixed at 10 or 30m=s
respectively, Figs. 7b and 7c exhibit the similar perfor-
mance behaviors as Fig. 7a, omitted. In summary, Fig. 7
implies that when the network size is fixed, the network
throughput delivered by each mentioned algorithm
decreases, with the increase of the mobile sink speed.
Specifically, the network throughput delivered by algo-
rithm Offline_MaxMatch when rs ¼ 5m=s is at least 105
and 617 percent higher than that by itself when rs ¼ 10
and 30m=s, respectively. This is because when the mobile
sink travels at a faster speed, the duration of the mobile
sink travels the entire path will be shortened, while the
data transmission rate is still keeping unchanged, thus,
the amount of uploading data from sensors will be
reduced. Although a faster speed leads to a shorter delay
on data delivery, it will result in a less amount of data
collected per tour.

Fig. 4. Accumulative errors of prediction accuracy by algorithms VEWMA

and EWMA with different weights w:

Fig. 5. Network throughput by algorithms Offline_Appro, Online_Appro, and C_Schedule by varying the sink speed rs and the network size n
when all links are reliable.
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We finally study the impact of the duration of time slot t
and the network size n on the performance of algorithms
Online_MaxMatch and Online_Appro, by varying n
from 100 to 400 and setting t as 1s, 2s, 4s, 6s, 8s, and 10s
respectively, while keeping the mobile sink speed rs at
5m=s.

Figs. 8a and 8b illustrate that for both algorithms Onli-
ne_MaxMatch and Online_Appro, the network through-
put decreases with the increase of the duration of each time
slot. Their performance gap becomes larger and larger, with
the growth of the network size. Specifically, in Fig. 8a, the
network throughput of algorithm Online_MaxMatch

with t ¼ 1s is at least 3, 9, 21, 28, and 61 percent higher
than that by itself when t ¼ 2s, 4s, 6s, 8s, and 10s, respec-
tively. In Fig. 8b, the network throughput of algorithm

Online_Appro with t ¼ 1s is at least 2, 7, 18, 24 and 56
percent higher than that by itself when t ¼ 2s, 4s, 6s, 8s, and
10s, respectively. The reason behind is that with a shorter
time slot, the registered sensors can utilize their energy
more efficiently.

9 CONCLUSIONS

In this paper we studied data collection in an energy renew-
able sensor network using a mobile sink that travels along a
pre-defined path, by adopting multi-rate data transmission
mechanisms and time-slot scheduling. We first formulated
a novel data collection maximization problem and showed
its NP-hardness. We then provided an offline approxi-
mation algorithm with a provable approximation ratio, by

Fig. 8. Impact of network size n and the time slot duration t on the network throughput delivered by algorithms Online_MaxMatch and Onli-

ne_Appro when all links are reliable.

Fig. 7. Network throughput delivered by different algorithms for a special case through varying the mobile sink speed rs and the network size n when
all links are reliable.

Fig. 6. Network throughput delivered by algorithms Offline_Appro, Online_Appro, and C_Schedule through varying the sink speed rs and the
network size n when the link reliability is between 0 and 1.
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exploiting the combinatorial property of the problem,
assuming that the global knowledge of the network is avail-
able. We also proposed a fast, scalable online distributed
algorithm for realistic sensor networks without the global
knowledge assumption. In addition, for a special case of the
data collection maximization problem where each sensor
has only one fixed transmission power, we proposed an
exact solution to the problem. Finally, we conducted experi-
ments by simulations to evaluate the performance of the
proposed algorithms. Experimental results demonstrate
that the proposed algorithms are efficient and scalable, and
the solutions delivered are fractional of the optimum.
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