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Abstract—Real social networks contain many communities, where members within each community are densely connected with each

other, while they are sparsely connected with the members outside of the community. Since each member can join multiple

communities simultaneously, communities in social networks are usually overlapping with each other. How to efficiently and effectively

identify overlapping communities in a large social network becomes a fundamental problem in the big data era. Most existing studies on

community finding focused on non-overlapping communities based on several well-known community fitness metrics. However, recent

investigations have shown that these fitness metrics may suffer free rider and separation effects where the overlapping region of two

communities always belongs to the denser one, rather to both of them. In this paper, we study the overlapping community detection

problem in social networks that not only takes the quality of the found overlapping communities but also incorporate both free rider and

separation effects on the found communities into consideration. Specifically, in this paper, we first propose a novel community fitness

metric - triangle based fitness metric, for overlapping community detection that can minimize the free rider and separation effects on

found overlapping communities, and show that the problem is NP-hard. We then propose an efficient yet scalable algorithm for the

problem that can deliver a feasible solution. We finally validate the effectiveness of the proposed fitness metric and evaluate the

performance of the proposed algorithm, through conducting extensive experiments on real-world datasets with over 100 million

vertices and edges. Experimental results demonstrate that the proposed algorithm is very promising.

Index Terms—Overlapping community detection, fitness metrics for overlapping communities, social networks, community detection

algorithms
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1 INTRODUCTION

VERTICES in social networks can be clustered into cohe-
sive groups called communities, where the vertices

within a community are densely connected with each other,
while they are sparsely connected to the vertices outside the
community. Recent studies [23], [32], [35] have shown that
some members of a social network can join multiple com-
munities to broker ideas and access resources from other
communities. As a result, communities in social networks
are overlapping, rather than exclusive, with each other. The
detection of overlapping communities from a social net-
work thus becomes a fundamental problem in big data era,
as it has many real applications. For example, for targeted
advertisements in a consumer network, detecting overlap-
ping communities helps to identify groups of members
with similar shopping preferences, and they will become

suitable audiences for an advertisement campaign, as they
usually share several shopping preferences [1]. In WWW,
web pages with high content commonality can be obtained
by detecting overlapping communities of hyperlink net-
works [6]. In author-collaboration networks, communities
reveal research areas and topics that are pursued by differ-
ent researchers [21]. There are many other applications of
overlapping communities, including disease spread con-
trols [25], product recommendations, and mining of struc-
tural hole spanners [23], [34].

The key to identifying high-quality overlapping commu-
nities in large-scale networks is an accurate fitness metric,
which measures the quality of identified communities, in
terms of the density of internal edges within a community
and sparsity of edges leaving the community. Examples of
well-known fitness metrics include Classic Density [24], Rel-
ative Density [18], Conductance [14], Subgraph Modular-
ity [17], and Local Modularity [22]. We here assume that all
fitness metrics measure the strength of communities. Since
some of these fitness metrics (such as conductance) measure
the weakness of a community (a smaller fitness value is pre-
ferred), we here use the inverse value of these fitness met-
rics to maximize the strength of communities. Existing
fitness metrics for overlapping community detection intro-
duce the following two issues.

One issue with the conductance and local modularity fit-
ness metrics is the separation effect that the overlapping
region is assigned to only one of the two communities.
Fig. 1 shows that the conductance value of community
B�A is larger than that of community B. Thus, vertices in
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the overlapping region will be assigned to community A
only, as this will result in a larger conductance value. In
fact, the vertices in the overlapping region should be
assigned to both A and B.

Another issue is the presence of the free rider effect [31].
Bandyopadhyay et al. [2] proposed an algorithm FOCS that
expands neighborhoods of vertices, using the subgraph
modularity fitness metric. Wu et al. [31] however showed
that the modularity metric and other existing metrics suffer
from free rider effect [31] or resolution limit [9] on found com-
munities, where a community that is always merged with
its densest neighboring community will result in a better
community in terms of the adopted fitness metric. Fig. 1
illustrates that the values of classic density, relative density
and subgraph modularity of community A [B are larger
than those of community B, which means that these fitness
metrics can cause free rider effect. We later show that fitness
metrics that rely on only the internal density usually result
in free riders, while fitness metrics that rely on only the
external sparsity usually cause separation effects.

Despite the importance of both free rider and separation
effects on overlapping communities, they have not thor-
oughly been studied yet. The traditional free rider effect [31]
for non-overlapping communities states that the fitness met-
ric value of the resulting community by merging two com-
munities is better than that of either of the communities.
This definition, however, may not apply to overlapping
communities, due to the fact that the overlapping region of
the two communities should belong to both of them.

Although triangle-based approaches entail a strong cohe-
sion among vertices in communities [4], [26], [29], [36], the
aforementioned fitness metrics measure the quality of com-
munities based on the most obvious structure in networks -
the edges, while ignoring more inherent structures within
networks such as triangles. Benson et al. [3] and Tsourakakis
et al. [28] recently extended the conductance metric by intro-
ducing motif concepts, and made use of a given motif as the
building block to identify communities, where the number of
motif instances in a subgraph is the density of the subgraph,
and the number of instances that are partially included in the
subgraph is its external sparsity. Particularly, these studies
show the effectiveness of triangle motifs in the structure of
communities. However, the mentioned conductance metric
relies heavily on the external sparsity of communities. Under
this metric, the overlapping region of two communities is
always assigned to the onewithmore edge connections.

In this paper, we study the free rider effect on overlapping
communities, which has not been studied previously [9],
[13], [31]. We also study the separation effect on overlapping
communities. To the best of our knowledge, this is the first

overlapping community detection work that considers the
quality of overlapping communities, while minimizing both
free rider and separation effects on overlapping communi-
ties. Themain contributions of this paper are as follows.

� We first introduce a new definition of internal den-
sity and external sparsity of communities based on
‘asymmetric triangle cuts’, and propose a new fitness
metric for overlapping community detection that
mitigates both free rider and separation effects on
communities.

� We then formulate a novel overlapping detection
problem based on the proposed fitness metric, and
show the NP-hardness of the problem. We instead
devise an efficient yet scalable algorithm for the
problem.

� We finally conduct experiments to evaluate the per-
formance of the proposed algorithm using real data-
sets. Experimental results demonstrate that the
proposed algorithm outperforms existing methods,
in comparison with the ground-truth communities.

The rest of this paper is organized as follows. We first
introduce the network model, propose a new fitness metric
for overlapping communities, and define the overlapping
community detection problem in Section 2.We then show the
NP-hardness of the defined problem and devise an algorithm
and analyze the time complexity of the algorithm for the
problem in Section 3 and Section 4, respectively.We also eval-
uate the performance of the proposed algorithm in Section 5.
We finally review existing methods for overlapping commu-
nity detection in Section 6, and conclude in Section 7.

2 PRELIMINARIES

In this section, we first introduce the network model and
notations. We then propose a new fitness metric—overlap-
ping triangle connectivity metric, for overlapping communi-
ties. We finally define the overlapping community detection
problemprecisely.

2.1 Network Model

A social network can be modeled as an undirected con-
nected graph G ¼ ðV;EÞ, where V is a set of vertices, and E
is a set of edges representing the relationships between the
vertices. Denote by NðvÞ the set of neighbors of vertex
v 2 V . The volume of a subset of vertices S (� V ) is defined
as volðSÞ ¼P

v2S jNðvÞj.
Let EðS; T Þ be an edge cut between subsets S and T of

vertices and eðS; T Þ the cut size, i.e., eðS; T Þ ¼ jEðS; T Þj. Let
eðSÞ represent the number of edges in the induced subgraph
G½S� ¼ ðS;E½S�Þ of a graph GðV;EÞ by the vertices in S,

Fig. 1. A small network and different fitness values for its communities. While communities A and B share two vertices, fitness metrics CD, RD, and
SM obtain larger fitness values for communities A;A [B (free rider effect), and fitness metrics LM and CN obtain larger values for B;A� B and
A;B� A, respectively (separation effect).
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where E½S� ¼ fðu; vÞ j u 2 S, v 2 S, and ðu; vÞ 2 Eg, i.e.,
eðSÞ ¼ jE½S�j.

A c-clique Kc is a complete graph of c vertices. A triangle
is a cycle of length three. Denote by Duvw the triangle that
consists of vertices u, v and w, and denote by DG the set of
triangles in G. The support supGðeÞ of any edge e ¼ ðu; vÞ in
G is the number of triangles in which e is contained, which
is equal to the number of common neighbors of the two end-
points of edge e (jNðuÞ \NðvÞj).

Let C ¼ fV1; V2; . . . ; VjC jg be the set of communities in G.
A triangle Duvw is called a community triangle if there is a
community Vi 2 C that includes all its vertices; otherwise it
is called a cut triangle. For a community Vi in C , DGðViÞ rep-
resents the set of triangles formed by the vertices in Vi. The
asymmetric triangle cut DGðVi; VjÞ between two communities
Vi and Vj in C is defined as the set of cut triangles with each
having two vertices in Vi and one vertex in Vj. Note that
DGðVi; VjÞ is not necessarily equal to DGðVj; ViÞ.

2.2 Community Fitness Metrics

The vertices in a graph GðV;EÞ can be allocated to different
communities. Let C ¼ fC1; :::; Cqg be the collection of all
communities in G, where Ci � V is a community,
[qi¼1Ci ¼ V , and Ci \ Cj may and may not be empty (i 6¼ j),
1 � i; j � q. The fitness metric of a community C 2 C ,
denoted by fðCÞ, will determine the degree to which verti-
ces inside C are connected with each other, while separat-
ing from the vertices in V n C. The fitness metric of a
collection of communities C thus is defined as a summa-
tion over the fitness values of all communities in the collec-
tion, i.e., fðC Þ ¼P

C2C fðCÞ. In the following we introduce
several widely-adopted fitness metrics for community
detection [8], [32].

� Classic density dðCÞ of a community C [24] is referred
to as the average degree of verticeswithin the commu-
nityC, i.e., dðCÞ ¼ eðCÞ=jCj, where eðCÞ is the number
of edges in the subgraph induced by vertices inC.

� Relative density rðCÞ of a communityC [18] is referred
to as the ratio eðCÞ of the number of edges in commu-
nity C to the number of edges that have at least one
vertex inC, i.e., rðCÞ ¼ eðCÞ=ðeðCÞ þ eðC; V n CÞÞ.

� Subgraph modularity cðCÞ of a community C [17], [31]
is referred to as the ratio of the number of edges in
community C to the number of edges between verti-
ces in C and the vertices in V n C, i.e., cðCÞ ¼ eðCÞ=e
ðC; V n CÞ. Note that this subgraph modularity [17]
is a variant of the traditional modularity [22].

� Local modularity mðCÞ of a community C [22] is the
ratio of the number of edges in C between boundary
vertices and other vertices inC to the number of edges
between boundary vertices in C and all other vertices
in the network, i.e., mðCÞ ¼ eðBðCÞ; CÞ=ðBðCÞ; V Þ,
whereBðCÞ is the boundary set of vertices inC, which
are adjacent to at least one vertex outsideC.

� Conductance sðCÞ of a community C [14] is referred to
as the ratio of the size of the edge cut to the minimum
of the number of edges that have at least one endpoint
in C and number of edges that have at least one end-
point in V n C, i.e., sðCÞ ¼ eðC; V n CÞ=minfvolðCÞ;
volðV n CÞg. Unlike other fitness metrics, smaller

values of conductance are preferred for a community.
Therefore, we consider the inverse of this value, and
throughout this paper we refer to conductance as
s0ðCÞ ¼ minfvolðCÞ; volðV n CÞg=eðC; V n CÞ.

2.3 Overlapping Community Fitness Metrics

The aforementioned community fitness metrics are appro-
priate for non-overlapping community detection. However,
they may fail to detect overlapping communities as they
may cause free rider effect [31] and separation effect on the
found communities. In other words, these metrics dismiss
the overlapping region between two communities by either
assigning it to only one of them (separation effect) or merg-
ing them into a single community (free rider effect). For
example, if we adopt the conductance metric in the social
network in Fig. 1, it can only detect community B� ðA \BÞ
but exclude A \B that is densely connected to B. This
implies that the fitness value s0ðAÞ þ s0ðB� ðA \BÞÞ is no
less than that of s0ðAÞ þ s0ðBÞ, using the conductance met-
ric. This will result in the separation effect. In the following,
we define free rider and separation effects on overlapping
communities formally.

Definition 1 (Separation Effect). Given a social network
G ¼ ðV;EÞ and a fitness metric fð�Þ, the separation effect hap-
pens when for any two communities A and B,

fðAÞ þ fðBÞ < maxffðAÞ þ fðB�A \BÞ;
fðBÞ þ fðA�A \BÞg: (1)

It is noticed that community fitnessmetrics that rely on the
number of edges between communities tend to assign the
overlapping region of two communities to only one of them,
i.e., to the one with more edges connected. Examples of such
fitness metrics include conductance and local modularity
metrics in Fig. 1. On the other hand, the primary cause of free
rider effects of existing fitness metrics is that the quality of a
community is measured in terms of the density of its edges,
which can be averaged when merging two communities.
That iswhy aftermerging communityBwith the denser com-
munity A in Fig. 1, the fitness value of community A [B
becomes larger than that of community B. However, we
observe that the fitness value of the merged community
A [B is not necessarily greater than that of the dense commu-
nity A since they are weakly connected to each other except
their overlapping region. We use this intuition to extend the
free rider effect on overlapping communities as follows.

Definition 2 (Free Rider Effect). Given a social network
G ¼ ðV;EÞ and a fitness metric fð�Þ, the free rider effect hap-
pens when there are two communities A and B,

fðAÞ � fðA [BÞ ^ fðBÞ < fðA [BÞ: (2)

This definition of the free rider effect implies that if a
community B is merged with A, they will form a new com-
munity A [Bwith a larger fitness value. However, if the fit-
ness value of the resulting community is larger than only
one of them, the free rider will happen. Otherwise, the
merge will become valid, and such a merge will not incur
the free rider effect. Fig. 1 illustrates that fitness metrics
such as classic density and relative density can identify
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community A successfully, but they fail to identify commu-
nity B. They identify community A [B, instead of B, which
means that they cause free rider effect.

2.4 A New Fitness Metric Based on Triangle Cuts for
Overlapping Community Detection

We here propose a new fitness metric, overlapping triangle
connectivity, for overlapping community detection that can
minimize free rider and separation effects on overlapping
communities.

Recent studies [4], [12], [13] have shown that triangles
can guarantee a strong cohesion among vertices in a com-
munity, by which the vertices in the same community are
close to each other (the diameter of a subgraph induced by
a community is small [13]), and the connectivity among the
vertices in the community is robust (vertices in a commu-
nity exhibit a strong edge-connectivity [4], [13]). Therefore,
a good community fitness metric should favor a large num-
ber of triangles within a community. Inversely, the connec-
tivity between communities is not a preferred property,
since a large number of edges between two communities
may not represent strong connections of vertices between
the two communities. We thus make use of the number of
triangles, instead of the number of edges, between different
communities as a proper fitness metric to measure the con-
nectivity among the communities.

Let C ¼ fC1; :::; Cqg be the collection of overlapping com-
munities in GðV;EÞ. The overlapping triangle connectivity of a
community C 2 C is the degree to which the vertices in C
are connected with each other and sparsely connected to the
rest of vertices in G. Thus, all triangles in G can be catego-
rized into two types: community triangles and cut triangles,
where a community triangle is a triangle that has all its three
vertices in the community, while a cut triangle is a triangle
that at least one of its three vertices does not lie in the same
community as the other two vertices. Since the number of
community triangles indicates the strength of cohesion
among the vertices in a community, the number of commu-
nity triangles will be put in the numerator while the number
of asymmetric cut triangles will be put in the denominator
of the fitness metric. To balance the overlapping region
between communities and avoid the free rider effect, the
overlapping size of a community with other communities
will be put in the denominator of the fitness metric. Finally,
the number of vertices contained in a community will be
put in the denominator of the fitness metric to avoid over-
sized communities and balance the fitness values of com-
munities. We thus define the overlapping triangle connec-
tivity tðCÞ, as the ratio of the number of community
triangles in C to the sum of the number of cut triangles, the
number of vertices in C, and the size of overlapping region
with the other communities, i.e.,

tðCÞ ¼ jDGðCÞj=ðjfDuvw : u; v 2 C;w 2 V n C &

6 9C02C s:t: u; v; w 2 C0gj þ
X
C02C
jC \ C0j þ jCjÞ: (3)

Notice that the number of vertices is applied in the
denominator of the fitness metric in Eq. (3) to normalize the
value and the ratio of the number of triangles to the number
of vertices. Without the term of the number of vertices in
the denominator, a larger community would have a larger

fitness value. It can be seen from Fig. 1 that the merge of
two communities A and B does not increase the fitness
value of the resulting community (since the number of verti-
ces increases and the number of triangles per vertex does
not increase), using the proposed overlapping triangle con-
nectivity fitness metric tð�Þ. Fig. 1 also shows that the fitness
value of the resulting community does not necessarily
increase by merging a community B to another denser com-
munity A. Thus, the fitness metric tð�Þ does not result in free
rider effect on overlapping communities in this example.

A fitness metric fð�Þ is said to be monotonically increasing
if for any two subsets V1 � V and V2 � V n V1, fðV1 [ V2Þ �
fðV1Þ always holds. Similarly, fð�Þ is said to be monotonically
decreasing if fðV1 [ V2Þ � fðV1Þ. A fitness function is non-
monotonic if it neither monotonically increases nor monoton-
ically decreases. Monotonicity of a fitness metric fð�Þ has
several implications such as the occurrence of free rider
effect [31] and the existence of an approximation algorithm
for community detection under the fitness metric using hill
climbing algorithms [19]. In the following we show the
defined fitness metric tð�Þ is non-monotonic.

Lemma 1. The defined fitness metric function tð�Þ is a non-
monotonic function.

Proof. We show the non-monotonicity of function tð�Þ, by
proving that for a given community C 2 C , there exist
vertices v; u =2 C such that tðCÞ � tðC [ fvgÞ while
tðCÞ � tðfC [ fuggÞ as follows.

Let C be a community that consists of a clique Kn�1
(n > 4) and there are two vertices v 2 V n C and
u 2 V n C. We first show that there is a vertex v 2 V n C
such that tðCÞ � tðC [ fvgÞ. The fitness value of clique

Kn�1 is tðKn�1Þ ¼ ðn�1Þðn�2Þðn�3Þ6ðn�1Þ . Assume that v is con-

nected to some vertices in C but does not form any trian-

gles with the vertices. Now, if vertex v is added to C, the
fitness value of the resulting community C [ fvg will be

tðKn�1 [ fvgÞ ¼ ðn�1Þðn�2Þðn�3Þ6ðn�1þ1Þ . Clearly, tðKn�1Þ > tðKn�1[
fvgÞ, or, tðCÞ > tðC [ fvgÞ.

We then prove that there is another vertex u 2 V n C
such that tðCÞ � tðC [ fugÞ. Let u be a vertex in clique
Kn�1. Removing u and its incident edges from Kn�1
leaves us with a clique Kn�2 with the fitness value

tðKn�2Þ ¼ ðn�2Þðn�3Þðn�4Þ6ðn�2Þ . Now, if u is added to C, then

tðKn�2 [ fugÞ ¼ ðn�1Þðn�2Þðn�3Þ6ðn�2þ1Þ . Since n > 4, tðKn�2Þ <
tðKn�2 [ fugÞ. Thus, the fitness value increases. tu
Lemma 1 implies that devising an efficient algorithm for

overlapping community detection in G with an objective to
maximize tðC Þ (¼P

C2C tðCÞ) is extremely difficult, due to
the non-monotonicity of function tð�Þ. Instead, we will
develop an efficient heuristic algorithm for the overlapping
community detection problem.

2.5 Problem Definition

Given a social network G ¼ ðV;EÞ and the overlapping tri-
angle connectivity fitness metric tð�Þ, the overlapping commu-
nity detection problem in G is to find a collection of
overlapping communities C ¼ fC1; :::; Cqg such that tðC Þ
(¼P

Ci2C tðCiÞ) is maximized, where Ci is a community

(� V ), [qi¼1Ci ¼ V , Ci \ Cj (i 6¼ j) may or may not be empty

with 1 � i; j � q, and q is the number of communities of G.
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3 NP-HARDNESS

In this section, we show that the overlapping community
detection problem isNP-hard, by a non-trivial reduction from
the relative density community detection problem [27] that has
been shown to be NP-hard. Since the non-overlapping com-
munity detection problem is a special case of the overlapping
community detection problem, the NP-hardness of the non-
overlapping community detection problem implies the NP-
hardness of the overlapping community detection problem.

Let us formally define the decision versions of the rela-
tive density and non-overlapping community detection
problems as follows.

Definition 3. Given a graph G ¼ ðV;EÞ and a positive rational
number r with 0 < r � 1, the decision version of the Relative
Density Community Detection (RDCD) problem is to deter-
mine whether there is a subset of vertices C 	 V such that
eðCÞ=ðeðCÞ þ eðC; V n CÞÞ � r.

Definition 4. Given a graph G ¼ ðV;EÞ and a positive rational
number � > 0, the decision version of the Non-overlapping
Triangle Community Detection (NTCD) problem is to deter-
mine whether there is a subset of vertices C 	 V such that
jDGðCÞj=ðjCj þ jDGðC; V n CÞjÞ � �.

Definition 5. Given a graph G ¼ ðV;EÞ and a positive rational
number �0 > 0, the decision version of the Simplified Non-
overlapping Triangle Community Detection (SNTCD)
problem is to determine whether there is a subset of vertices
C 	 V such that jDGðCÞj=jDGðC; V n CÞj � �0.

Note that the SNTCD problem is similar to the NTCD
problem, in a sense that only jCj is omitted from the denom-
inator of the fitness metric, which makes the SNTCD prob-
lem easier than the NTCD problem. The following lemma
states that the NTCD problem can be reduced to SNTCD
problem in polynomial time.

Lemma 2. The NTCD problem can be reduced to SNTCD prob-
lem in polynomial time.

Proof. One can transform a polynomial time solution to the
decision version of SNTCD into a polynomial time solu-
tion for the optimization version of SNTCD by binary
search on the bound �, and determine the set C of vertices
in the optimal solution in polynomial time. The algorithm
for finding the set C is as follows.

The algorithm proceeds iteratively. Within each itera-
tion, it removes an edge e 2 E fromG and checks if there is
a subset of vertices C 	 V in the resulting graph such
that jDGðCÞj=ðjCj þ jDGðC;V n CÞjÞ � �þ 1=n2. Having
removed edge e from G, if there is still a subset of vertices
C 	 V such that jDGðCÞj=ðjCj þ jDGðC; V n CÞjÞ � �þ
1=n2 in the resulting graph, then e is a cut edge (one of its
endpoints is in C); otherwise, e is a community edge (both
of its endpoints are in C). If there is no subset C such that
jDGðCÞj=ðjCj þ jDGðC;V n CÞjÞ � �þ 1=n2, but there is a
subset C such that jDGðCÞj=ðjCj þ jDGðC; V n CÞjÞ � �,
then e is neither a community edge nor a cut edge, it
should be removed fromG. This procedure continues until
all edges inG are examined. Therefore, given a polynomial
time algorithm for the NTCD problem, the SNTCD prob-
lem can also be solved in polynomial time. That is, given

an instance of the SNTCD problem and �0 ¼ p=q, the
NTCD problem can be solved, using different values of ‘
with 1 � ‘ � n, i.e., jDGðCÞj=ðjCj þ jDGðC;V n CÞj ¼ p=ð‘þ qÞ,
then determine the setC and check if jCj ¼ ‘. tu
The following theorem shows that the SNTCD problem is

NP-complete by a reduction from the RDCD problem.

Theorem 1. The simplified non-overlapping triangle community
detection problem (SNTCD) is NP-complete.

Proof. We first show that SNTCD belongs to NP. Given a
graph G ¼ ðV;EÞ, a positive rational number �0 and a cer-
tificate C 	 V , we can count the number of triangles
within C, i.e., jDGðCÞj, and the ones that have two vertices

in C, i.e., jDGðC; V n CÞj. We then check if jDGðCÞj=
jDGðC; V n CÞj � �0. Thus, SNTCD is in NP.

We then show that SNTCD is NP-hard, using a poly-
nomial time reduction from the RDCD problem. Given
an instance of the RDCD problem: a graph G ¼ ðV;EÞ
and a positive rational number �0 � 1, we construct an
instance of the SNTCD problem containing a graph
G0 ¼ ðV 0; E0Þ and a positive rational number r ¼ 4�0= ð1�
�0Þ in polynomial time that determines the RDCD prob-
lem in polynomial time.

Given a graph G ¼ ðV;EÞ and �0 > 0, we construct a
graph G0 ¼ ðV 0; E0Þ, where the set V 0 of vertices contains
2nþm vertices that consist of two vertices v0 and v00 for
every vertex v 2 V , and a vertex vvi;vj for every edge
ðvi; vjÞ 2 E (note that the graph is undirected, therefore
ðvi; vjÞ and ðvj; viÞ refer to the same edge and we make no
distinction between them). The set of edges E0 contains
nþ 4m edges that consist of an edge ðv0; v00Þ for every ver-
tex v 2 V , and four edges ðv0i; vvi;vjÞ, ðv00i ; vvi;vjÞ, ðv0j; vvi;vjÞ
and ðv00j ; vvi;vjÞ for every edge ðvi; vjÞ 2 E. From the con-
struction of graph G0, it is implied that for every edge
ðvi; vjÞ 2 E, there is exactly four triangles in G0

(Dðv0
i
;v00
j
;vvi;vj Þ;Dðv00i ;v0j;vvi;vj Þ;Dðv0i;v00i ;vvi;vj Þ, and Dðv0

j
;v00
j
;vvi;vj Þ). Fur-

thermore, the number of triangles inG0 is exactly 4m. Fig. 2

illustrates an example of a reduction from graph G to

graphG0.
Given a graph G ¼ ðV;EÞ and �0 > 0, there is a subset

C 	 V of vertices such that eðCÞ=ðcðCÞ þ eðC;
V n CÞÞ � �0, if and only if, in graph G0 ¼ ðV 0; E0Þ (con-
structed as described), there is a subset C0 	 V 0 of verti-
ces such that jDG0 ðC0Þj=jDG0 ðC0; V 0 n C0Þj � 4�0=ð1� �0Þ.

Fig. 2. G0 is constructed from G in polynomial time. For every vertex
vi 2 V , there are two vertices v0i, v

00
i in V 0 and for every edge ðvi; vjÞ 2 E,

there is one vertex vvi;vj in V 0. Every vertex vvi;vj 2 V 0 is connected to

four vertices v0i; v
00
i ; v
0
j; v
00
j , and every v0i is connected to v00i .
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Assume that in graph G ¼ ðV;EÞ, there exists a subsets of
vertices C such that eðCÞ=ðcðCÞ þ eðC; V n CÞÞ � �0. Con-
sider a subset of vertices C0 	 V 0 that consists of
2jCj þ eðCÞ vertices, including vertices v0; v00 for each ver-
tex v 2 C, and vvi;vj for every edge ðvi; vjÞ 2 EðCÞ. It can
be seen that jDG0 ðC0Þj ¼ 4eðCÞ, we thus have jDG0 ðC0Þj=
jDG0 ðC0; V n C0Þj ¼ 4eðCÞ=jDG0 ðC0; V 0 n C0Þj.

oreover, for every edge ðvi; vjÞ 2 EðC; V n CÞ, there is
only one triangle Dðv0

i
;v00
i
;vvi;vj Þ with two endpoints in C0,

we have

jDG0 ðC0Þj=jDG0 ðC0; V n C0Þj
¼ 4ðeðCÞ=eðC; V n CÞÞ
¼ 1=ðeðC; V n CÞ=eðCÞ þ eðCÞ=eðCÞ � 1Þ:

Since we assumed that eðCÞ=ðeðCÞ þ eðC; V n CÞÞ � �0,

jDG0 ðC0Þj=jDG0 ðC0; V n C0Þj � 4=ð1=�0 � 1Þ ¼ r:

Now, assume that in graph G0 there is a subset C0 	 V 0

of vertices such that jDG0 ðC0Þj=jDG0 ðC0; V n C0Þj � 4�0=
ð1� �0Þ, we show that there is a subset C 	 V of vertices
such that eðCÞ=ðeðCÞþ eðC; V n CÞÞ � �0. First, it is noted
that if a vertex v0 is in C0, then its copy v00 is also in C0. For
every triangle formed by v0 and vertices within C0, there
is at least one triangle formed by vertices in C0 and v00.
Therefore, if v00 is excluded from C0, the number of cut tri-
angles will be larger than the number of triangles formed
by vertex v0 and as a result, removing vertex v0 from C0

will increase the fitness value of C0. Therefore, if v0 is in
C0, then v00 is also in C0. Using a similar reasoning, it is
also implied that if vvi;vj is in C0, then vertices v0i; v

00
i ; v
0
j,

and v00j lie in C0.
We finally show that if there is a subset C0 	 V 0 such

that jDG0 ðC0Þj=jDG0 ðC0; V 0 n C0Þj � 4�0=ð1� �0Þ, then there
is a subset C 	 V of vertices such that eðCÞ=ðeðCÞ þ
eðC; V n CÞÞ � �0. For every vertex vvi;vj 2 C0, add both
vertices vi and vj to C. As a result, the number of edges
in EðCÞ is jDG0 ðC0Þj=4, and the number of cut edges is
equal to the number of cut triangles in C0. Therefore,

eðCÞ=ðeðCÞ þ eðC; V n CÞÞ
¼ 4jDG0 ðC0Þj=ð4jDG0 ðC0Þj þ jDG0 ðC0; V 0 n C0ÞjÞ
¼ ð1þ jDG0 ðC0; V 0 n C0Þj=4jDG0 ðC0ÞjÞ�1;

since jDG0 ðC0Þj=jDG0 ðC0; V 0 n C0Þj � 4�0=ð1� �0Þ,

eðCÞ=ðeðCÞ þ eðC; V n CÞÞ � ð1þ ð1� �0Þ=�0Þ�1 � �0:

Hence, the RDCD problem can be reduced to
the SNTCD problem in polynomial time. As the RDCD
problem is NP-complete, the SNTCD problem is NP-
complete, too. tu

4 ALGORITHM

In this section, we first propose an efficient yet scalable algo-
rithm for the overlapping community detection problem,
which will deliver a feasible solution. We then show the
properties of the overlapping communities delivered by the
proposed algorithm and analyze the time complexity of the
proposed algorithm.

4.1 Algorithm Description

To identify high-quality overlapping communities in G, the
algorithm consists of two stages. It detects non-overlapping
core communities, using the proposed community fitness
metric tð�Þ. Notice that the core communities are exclusive
to each other, they are the bases to form overlapping com-
munities. It then expands the core communities to form
overlapping communities.

In the core community detection, the vertices in G is par-
titioned into core communities so that each core community
is a densely connected subgraph, using the fitness metric
tð�Þ. It is noticed that these core communities are exclusive
to each other. Let C be the set of core communities whose
construction proceeds iteratively. Initially, there is only one
single community including all the vertices in G, i.e.,
C ¼ fV g. Within iteration k (k � 1), some of the edges in G
will be removed if the support of an edge is no more than k.
The edge removal will increase the value of the fitness met-
ric of the resulting connected components. Specifically, for
each community C 2 C in iteration k, let FC

k be the edges in
the induced subgraph G½C� with support no greater than k,
the set FC

k will be examined to check if its removal can
increase the value of the fitness metric of the resulting com-
munities. If yes, the edges in FC

k are removed from G and
community C is replaced by the number of connected com-
ponents derived from it. Notice that the support of each
remaining edge in the resulting graph will be updated
accordingly if the edges in FC

k are removed from G. The
value of k is then incremented by one after each iteration.
This procedure continues until the support of each edge in
the resulting graph is no less than k.

Having found all core communities of G, the core com-
munity expansion then follows, by adding vertices from
other communities to each core community greedily. Specif-
ically, given the set of core communities C ¼ fC1; :::; Cqg, let
tðCiÞ be the overlapping triangle connectivity fitness value
of community Ci for all i with 1 � i � q. The core commu-
nity expansion finds a collection C of overlapping commu-
nities, which are local maxima communities according to
the fitness metric tð�Þ. The core community expansion of
each community C 2 C proceeds iteratively, by adding a
neighbor v 62 C of a vertex in C such that the value of
tðC [ fvgÞ is the maximum one among all the other neigh-
bors. This iteration is repeated until no such a neighbor can
be added to the expanded C. The detailed procedure for
this is as follows. Let NC be the set of neighbors of commu-
nity C that their additions to C can increase the fitness value
of community C. The algorithm finds such a vertex v 2 NC

that its addition to C increases the fitness value of C [ fvg
more than the other vertex v0 2 NC n fvg in NC , and v is
added to community C. Note that only a vertex v is added
to community C each time and the set NC of neighbors then
will be updated accordingly. This iterative procedure is
repeated for every community C 2 C until there is not any
neighbor inNC that can increase the fitness value of C.

It must be mentioned that although the first stage of the
proposed algorithm exhibits some similarities with the tradi-
tional k-truss detection algorithm [4], they are essentially dif-
ferent: the k-truss detection algorithm repeatedly removes
edges with support no larger than k for a given k, while the
proposed algorithm here starts with k ¼ 1 and increments k
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in each iteration until the sum of the fitness values of all
detected communities cannot be further increased. In con-
trast, traditional k-truss algorithms repeatedly remove edges
with support no larger than k, regardless of the sumof the fit-
ness values of the resulting communities [4].

The detailed algorithm for the overlapping community
detection problem is given in Algorithm 1.

Algorithm 1. Overlapping_Community_Detection(G)

Input: G ¼ ðV;EÞ
Output: Overlapping communities C of G
1: /* C is the collection of detected communities */
2: C  fV g;
3: k 0;
4: /* Find core communities */
5: Calculate the support of each edge in E, using triangle

counting algorithm in [16];
6: while 9e 2 E with supGðeÞ � k do
7: for each community C 2 C do
8: FC

k  fe j edge e 2 G½C�with supGðeÞ � kg;
9: C 0  fC0 j C0 is a connected component in G½C� nFC

k g;
10: if tðCÞ � tðC 0Þ then
11: Remove the edges in FC

k from network G;
12: Replace C in C with communities in C 0;
13: /* Increment the value of k by 1 */
14: k kþ 1;
15: /* Expand core communities in C to form overlapping com-

munities */
16: for each core C 2 C do
17: NC  Neighbors of C, whose addition does not decrease

the fitness value of C;
18: whileNC 6¼ ; do
19: v argmaxu2NC

ftðC [ fugÞg;
20: NC  NC n fvg /* remove vertex v from NC */;
21: C  C [ fvg /* add vertex v to C */;
22: for each neighbor u of vertex v do
23: if tðC [ fugÞ � tðCÞ then
24: Add the neighbor u to NC ;
25: return C ;

4.2 An Example of the Algorithm Execution

We use an example to illustrate the execution of the proposed
algorithm, Algorithm 1. Fig. 3 shows the execution results of
Algorithm 1 on an input social network at different stages.

Fig. 3a, 3b, and 3c illustrate the results of core community
detections in stage one, where the edges with low support

(red dashed edges) in Fig. 3a and 3b are removed until no
edge is left, while Fig. 3d, 3e, 3f, 3g, and 3h show the results
of core community expansion in stage two, where commu-
nity B in Fig. 3d is expanded by adding one extra neighbor
(the green vertex) into it, the rest of neighbors of the com-
munity will not be added, since they would not increase the
fitness value of the expanded community. Similarly, in
Fig. 3f, 3g, and 3h community A is expanded by adding
more green neighbors, since adding them to the community
will increase its fitness value.

It can be seen in Fig. 3a that all edges with support no
larger than k ¼ 1 are removed, as their removal results in
the increase in the fitness value of the resulting communi-
ties. Similarly, in Fig. 3b, when k ¼ 2, those edges with sup-
port no larger than two are removed. However, Fig. 3c
shows that the removal of the edges with support no larger
than k ¼ 3 does not increase the fitness value of communi-
ties, therefore, these edges will not be removed in this itera-
tion. It is also noticed that core communities obtained in the
first stage are not k-trusses for k ¼ 3. This demonstrates the
difference between traditional k-truss detection algo-
rithms [4] and this algorithm for core community detec-
tions. Fig. 3d, 3e, 3f, 3g, and 3h depict the expansion of
communities. Fig. 3d, Fig. 3e illustrate that the addition of
one vertex to community B increases the fitness value of B.
Similarly, Fig. 3f, 3g, and 3h show that the addition of two
vertices to community A increases the fitness value of A.

4.3 Algorithm Analysis

The rest is to show the properties of overlapping communi-
ties delivered by Algorithm 1 and analyze the time com-
plexity of the proposed algorithm as follows.

We first prove that the overlapping communities deliv-
ered by Algorithm 1 do not have the separation effect if
certain conditions are met.

Lemma 3. Given a social network G ¼ ðV;EÞ and two core com-
munities C1 � V and C2 � V obtained in the first stage of
Algorithm 1, if there is a set of vertices C02 � C2 in which
every vertex forms at least one triangle with the vertices in C1,
C02 will be assigned to both C1 and C2 in the overlapping com-
munities found after the second stage of Algorithm 1.

Proof. Consider two core communities C1 and C2 of G. Let
C02 be a subset of C2 in which each vertex v 2 C02 forms
at least one triangle with the other two vertices in C1, as
illustrated by Fig. 4. The vertices in C02 then will be

Fig. 3. A running example of the proposed algorithm. In the core community detection phase, the network is partitioned into core communities and
these communities are expanded in the core community expansion phase, where the overlapping region between two communities is detected.
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assigned to C1 by the fitness metric tð�Þ, i.e., tðC1 [
C02Þ � tðC1Þ, where C02 is a subset of community C2 such
that each vertex in C02 forms at least one triangle with
the vertices in C1.

Let t be the number of triangles formed by the vertices
in C02 and C1, and let t0 be the number of triangles formed
by the vertices in C1 and the vertices in V n C1. We show
that the vertices in C02 will be assigned to C1 in the second
stage of Algorithm 1 by contradiction. Assume that ver-
tices in C02 will not be assigned to C1, i.e., tðC1 [ C02Þ <
tðC1Þ, then,

tðC1 [ C02Þ < tðC1Þ ) jDGðC1 [ C02Þj
jC1 [ C02j þ t0

<
jDGðC1Þj
jC1j þ tþ t0

: (4)

Since every vertex in C02 forms at least one triangle
with the vertices in C1, we have t > jC02j,

jDGðC1 [ C02Þj
jC1 [ C02j þ t0

<
jDGðC1Þj

jC1j þ jC02j þ t0
: (5)

Since the vertices in two communities C1 and C2 are
vertex-disjoint, we have

C1 \ C02 ¼ ; ) jC1 [ C02j ¼ jC1j þ jC02j:
Thus,

jDGðC1 [ C02Þj
jC1j þ jC02j þ t0

<
jDGðC1Þj

jC1j þ jC02j þ t0

) jDGðC1 [ C02Þj < jDGðC1Þj:
(6)

Inequality (6) does not hold, otherwise this leads to a
contradiction that jDGðC1 [ C02Þj � jDGðC1Þj þ t. There-
fore, the vertices in C02 will be assigned to C1 in the sec-
ond stage of Algorithm 1, since tðC1 [ C02Þ � tðC1Þ. tu
We then show that the community fitness metric tð�Þ

avoids free rider effect if a certain condition meets by the
following lemma.

Lemma 4. Given a social network G ¼ ðV;EÞ and two core com-
munities C1 � V and C2 � V found in the end of the first stage
of Algorithm 1, if there is a set of vertices C02 � C2 in which
every vertex forms at least one triangle with the vertices in C1,
community C1 and C2 will not be merged in the second stage of
Algorithm 1 unless tðC1Þ � tðC1 [ C2Þ and tðC2Þ �
tðC1 [ C2Þ.

Proof. We show that the community fitness metric tð�Þ
avoids free rider effect if a certain condition is met by con-
tradiction. Considering the proof for Lemma 3, we need
to show that tðC02Þ � tðC1 [ C02Þ to avoid the free rider
effect on the overlapping communities found in the

second stage of Algorithm 1. Without loss of generality,
we assume that DGðC1Þ=jC1j > DGðC02Þ=jC02Þj. Assume
that tðC02Þ > tðC1 [ C02Þ,

tðC1 [ C02Þ < tðC02Þ )
jDGðC1 [ C02Þj
jC1j þ jC02j þ t0

<
jDGðC02Þj
jC02j þ t0 þ t00

where t00 is the number of triangles that have two vertices
in C02 and one vertex outside C02,

jDGðC1Þj þ jDGðC02Þj þ t

jC1j þ jC02j þ t0
<

jDGðC02Þj
jC02j þ t0 þ t00

ðjDGðC1Þj þ jDGðC02Þj þ tÞðjC02j þ t0 þ t00Þ
< ðjDGðC02ÞjÞðjC1j þ jC02j þ t0Þ

Since t00 > t,

ðjDGðC1Þj þ tÞðjC02j þ t0 þ t00Þ þ DGðC02Þt00
< ðjDGðC02ÞjÞjC1j;

ðjDGðC1Þj þ tÞðjC02j þ t0 þ t00Þ < ðjDGðC02ÞjÞðjC1j � t00Þ;
jDGðC1Þj þ t

jC1j � t00
<

jDGðC02Þj
jC02j þ t0 þ t00

;

which is a contradiction to the initial hypothesis that
DGðC1Þ=jC1j > DGðC02Þ=jC02Þj. The lemma thus holds. tu
In summary, we have the following theorem.

Theorem 2. Given a social network G ¼ ðV;EÞ, Algorithm 1
for the overlapping community detection problem will deliver a
feasible solution in time OðjV j � jEjÞ, if the support of each edge
is constant.

Proof. Following Algorithm 1, the core community detec-
tion in G starts with calculating the support of each edge
of G in time OðjEj3=2Þ, using the algorithm in [16], and it
proceeds iteratively. Within each iteration, the set
Fk ¼

S
Ci2CF

C
k of edges with support no larger than k is

found, using the values calculated at its step 4. It then cal-
culates the fitness scores of the resulting connected com-
ponents in G½C� nFC

k in linear time. Each iteration of the
while-loop of Algorithm 1 takes OðjEjÞ time. Since the
maximum support among edges in a real social network
usually is constant, the number of iterations k is constant.
The time spent on core community detection by Algo-

rithm 1 is OðjEj3=2Þ.
In the core community expansion stage of Algo-

rithm 1, each vertex v is added to set C at most once. Ini-
tially, neighbors of community C are added to set NC ,
then a vertex u 2 NC with the maximum value tðC [ fugÞ
is added to C. When a vertex v is added to NC , the value
of tðNC [ fvgÞ is calculated, by finding the number of tri-
angles formed by every edge in E½C� connected to v in
OðjE½C�jÞ time, assuming that a heap data structure is
adopted for keeping track of vertices in NC . Then, the
insertion and extraction of vertices in NC (represented by
the heap data structure) takes OðjV j � log jV jÞ time. Thus,
overlapping community identification derived from the
found core communities takesOðq � jEjÞ time if there are q
core communities. While q � jV j, the time complexity

of Algorithm 1 thus is OðjEj3=2 þ q � jEjÞ ¼ OðjEj3=2 þ
jV j � jEjÞ ¼ OðjV j � jEjÞ. tu

Fig. 4. Given two communities C1 and C2, a subset C02 	 C2 forms many
triangles with the vertices in C1.
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It must be mentioned that the analytical time complexity
of Algorithm 1 is very conservative. Its actual running
time on real social networks is much faster, which is almost
linear to the problem size jV j þ Ej, due to the sparsity of
social networks. This can be witnessed from later empirical
evaluation results (see Fig. 6).

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
algorithm against several benchmark algorithms using sev-
eral real-world datasets. We also study separation and free
rider effect on the overlapping communities delivered by
different algorithms under different fitness metrics includ-
ing the one proposed in this paper.

5.1 Experimental Environment Settings

We start with the experimental environment settings and
descriptions of different data sets, evaluation metrics, and
benchmark algorithms.

Benchmark Algorithms. To evaluate the performance of the
proposed algorithm, Algorithm 1, denoted by CoreExp,
for the overlapping community detection problem, the fol-
lowing state-of-the-arts will be adopted for the benchmark
purpose.

� FOCS [2]—A local expansion algorithm, which finds
communities starting from neighborhoods of verti-
ces. This algorithm expands the initial communities
by adding vertices using the local modularity fitness
metric.

� Demon [5]—An agent-based algorithm, in which,
every vertex v receives a label l, where l is the label
appeared in majority of neighbors of v. The labels
are propagated iteratively until every vertex has the
label of most of its neighbors. Finally, communities
that have more than a certain overlap are merged.

� Bigclam [35]—A matrix factorization-based algo-
rithm, which assigns each vertex-community a value
that represents the membership in the community. It
then models the probability of an edge as a function
of the shared community affiliations and identifies
network communities by fitting the model to the
given network, and estimating the latent factors.

� SeedExp [30]—A local expansion algorithm, which
consists of four phases: filtering, seeding, seed
expansions, and propagations. The filtering phase
removes weakly connected subgraphs. The seeding
phase finds seed vertices, which are expanded in the

seed expansion phase. The propagation attaches the
weak components to communities.

� Bayes [11]—A Bayesian model-based algorithm,
which posits a probabilistic model of networks
where each vertex can belong to many communities.
It finds the conditional distribution of the hidden
communities given the observed network. It then
approximates the conditional distribution with vari-
ous methods in combination with stochastic optimi-
zation by iteratively subsampling the network and
estimation of the hidden communities.

Real Datasets. We make use of seven real datasets, which
have been widely adopted in literature [32] and are publicly
available1. Specifically, dataset Amazon is based on the
Amazon products, where there is an edge between products
i and j if product i is frequently co-purchased with product
j, and each product category provided by Amazon is a
ground-truth community. Dataset DBLP is a collaboration
network, where ground-truth communities are defined as
publication venues, e.g., journals or conferences. Dataset
Orkut is the friendship network of Orkut members, in
which communities are the groups that users create and
other users join in. Dataset LiveJournal is the friendship
network of users in LiveJournal blogging web site. Users
can define groups and join multiple groups. These groups
are considered as the ground-truth communities. Dataset
Facebook consists of ego networks of Facebook users,
which has been collected from survey participants. The
groups provided by users are the ground-truth communi-
ties. Dataset Twitter consists of ‘lists’ from Twitter. The
social communities are the ground-truth communities in
Twitter. Dataset Google Plus is a social network in Google
+. The groups that are defined by users represent ground-
truth communities. Notice that each of the datasets Face-

book, Twitter and Google Plus in fact is a combined
network consisting of ego networks from SNAP. Table 1
details the mentioned datasets in our experiments.

Evaluation Measures. quantitatively measuring the quality
of detected overlapping communities in a social network is
challenging, as different measures lead to different quality
of overlapping communities. We here employ two widely-
adopted measures [10], [11], [30], [32], [35] for analyzing the
accuracy of the detected communities by different algo-
rithms, i.e., F1 and F2-measures [32].

Let C 
 be the set of ground-truth communities and C the
detected communities by any mentioned algorithm. The F-
measure is based on the precision and recall of each com-
munity C compared to C
 defined as follows.

pðC;C
Þ ¼ jC \ C

j

jCj ; rðC;C
Þ ¼ jC \ C

j

jC
j :

F1-measure [32] is the harmonic mean of the precision and
recall, while F2-measure [32] magnifies the impact of recall
in the results, as follows.

F1 ¼ 1

jC j
X
C2C

max
C
2C 


2 � pðC;C
Þ � rðC;C
Þ
pðC;C
Þ þ rðC;C
Þ

� �
; (7)

TABLE 1
Details of Real Datasets, where C 
 Represents the
Set of Ground-Truth Communities and supmax is

the Largest Support of Edges

Dataset jV j jEj jC 
j supmax

Facebook 4,039 88,234 193 293
Twitter 81,306 2,420,766 4,065 9,016
Google Plus 107,614 30,494,866 468 11,488
Amazon 334,863 925,872 253,345 161
DBLP 317,080 1,049,866 13,477 213
Orkut 3,072,441 117,185,083 15,301,901 9,145
LiveJournal 3,997,962 34,681,189 658,401 1,393

1. http://snap.stanford.edu/data/index.html
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F2 ¼ 1

jC j
X
C2C

max
C
2C 


5 � pðC;C
Þ � rðC;C
Þ
4 � pðC;C
Þ þ rðC;C
Þ

� �
: (8)

Note that all the experiments are conducted on a desktop
with a 3.06 GHz CPU and 16 GB memory.

5.2 Performance Evaluation of Different Algorithms

We first study the performance of the proposed algorithm
CoreExp against the benchmark algorithms, by evaluating
the quality of the found communities under two measures:
F1-measure and F2-measure. We also compare the running
times of different algorithms and the number of communities
delivered by each of them. Fig. 5 plots the quality bars of the
communities delivered by different algorithms, using differ-
ent datasets and community fitnessmetrics. Notice that algo-
rithm Demon did not terminate after 48 hours for datasets
LiveJournal and Orkut. The results on those datasets are
not available, and thus cannot be shown in the bar chart.

Fig. 5 shows that algorithm CoreExp delivers the most
accurate communities for most datasets (6 out of the 7 data-
sets). Specifically, it can be seen from Fig. 5a that for dataset
Facebook, algorithm CoreExp outperforms all other algo-
rithms at least by 10 percent in both F1 and F2-measures.
Similarly, Fig. 5b demonstrates that algorithm CoreExp out-
performs all other algorithms by at least 12 percent in the ego
network of dataset Twitter. Fig. 5c indicates that algorithm
CoreExp outperforms all other algorithms by at least
15 percent for dataset Google Plus. For the dataset Ama-
zon, Fig. 5d shows that algorithm CoreExp is superior to

other mentioned algorithms by at least 10 percent under
both F1-measure and F2-measure. It can also be seen from
Fig. 5e that for the dataset DBLP, algorithm CoreExp outper-
forms the other algorithms by at least 11 percent based on
both F1 and F2 measures. It is noticed that for dataset Live-
Journal Fig. 5f indicates that both algorithm Bigclam and
algorithm FOCS beat algorithm CoreExp. This may partially
contribute to the specific topological structure of the Live-
Journal network. However, the better quality solution deliv-
ered by algorithm Bigclam is at the expense of prohibitive
running time that is several orders of magnitudes of that of
algorithm CoreExp. On the other hand, despite that algo-
rithm FOCS has a less running time compared with algo-
rithm CoreExp, the communities delivered by algorithms
Bigclam and FOCS will cause separation and free rider
effects that can be seen from Table 2, while the communities
delivered by algorithm CoreExp can avoid such effects.

Fig. 6. The running times of different algorithms. The bars with parallel lines represent algorithms that did not terminate.

Fig. 5. The quality of overlapping communities found by different algorithms compared with the quality of the ground-truth communities under differ-
ent community fitness metrics. Note that algorithm Demon did not terminate for datasets LiveJournal and Orkut after 48 hours, thus its results
thus are not available in the plots.

TABLE 2
Separation and Free Rider Effects Caused by Different
Algorithms, Where “–” Means that Algorithm does not

Terminate after 48 Hours

Algorithm Separation effect Free rider effect

CoreExp 0% 0%
Bayes 7.60% 2.036%
FOCS 65.320% 0%
Bigclam 64.24% 18.55%
Demon 4.150% 2.330%
SeedExp – –
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Fig. 5g demonstrates that algorithm CoreExp is the best one
among all comparison algorithms which has the highest
accuracy of communities found for dataset Orkut. The rea-
son behind is that dataset Orkut containsmore than 100mil-
lion edges and identifying communities from such a large-
scale network is challenging. Algorithm CoreExp demon-
strates that even for such a massive dataset, it outperforms
the other algorithms significantly in terms of both the quality
of the solution and the running time (see Fig. 6).

Fig. 6 plots the running times of different algorithms. It is
noticed that algorithm CoreExp takes a few hours for the
massive dataset such as Orkut with more than 100 million
edges and less than one hour for dataset LiveJournal

with more than 34 million edges. It can be observed from
Fig. 6 that the running time of algorithm CoreExp is at least
10 percent less than that of all other algorithms except that
of algorithms Bayes and FOCS. However, the quality of the
solutions delivered by algorithms Bayes and FOCS is not as
good as that by algorithm CoreExp. colorblue Similarly, for
dataset Orkut, the running time of algorithm SeedExp is
the smallest, while the communities obtained by SeedExp

have the poor quality for this dataset.
Fig. 7 depicts the number of communities delivered by

each mentioned algorithm, from which, it can be seen that
algorithm CoreExp delivers more communities than that of
any other mentioned algorithm except algorithms Bayes

and FOCS. However, the quality of the solution delivered
by algorithm CoreExp is better than either by algorithms
Bayes and FOCS in most cases.

5.3 Separation and Free Rider Effects on the
Communities Found by Different Algorithms

We then evaluate separation and free rider effects on the
communities found by different algorithms, using a syn-
thetic dataset, as there is not any available information
of these two effects on real datasets. To examine whether
the communities delivered by different algorithms cause
separation and free rider effects, we generate a synthetic
dataset based on SSCA2 synthetic networks. We first gen-
erate SSCA networks with network size from 210 to 220,
where each SSCA network consists of a set of cliques.
We then place a vertex vij, if there is an edge between
two cliques Ci and Cj, and connect vertex vij to each ver-
tex in cliques Ci and Cj with a probability 0.5. Vertex vij
is then treated as an overlapping vertex between com-
munities Ci and Cj, i.e, it will belong to both overlap-
ping communities derived from Ci and Cj, respectively.
Note that the synthetic networks randomly generated

may not be connected, and algorithm SeedExp thus is
inapplicable in this case.

Table 2 lists the experimental results of free rider and
separation effects of the communities delivered by different
algorithms, using the constructed synthetic datasets. For
each benchmark algorithm, the percent of vertices in the
overlap that were assigned to only one community repre-
sents the separation effect, and the percent of detected com-
munities spanning more than one community in the
ground-truth communities represents the free rider effect.
The values reported in Table 2 are averaged across all syn-
thetic networks.

Table 2 indicates that algorithm CoreExp can avoid both
free rider and separation effects in these synthetic datasets. It
can be observed from Table 2 that the percent for separation
effect by algorithm FOCS is 65.320 percent, which means that
a large number of vertices in the overlap were assigned to
only one community. The reason is that algorithm FOCS uses
the modularity fitness metric, which is prone to separation
effect. Similarly, the percent of separation effect in algorithm
Bigclam is 64.24 percent, which means that algorithm Big-

clam also causes separation effect. Table 2 also shows that
the percent of free rider effect caused by algorithm Bigclam

is 18.55 percent, which is considerably larger than the other
community detection algorithms. This number is followed
by the percent of free rider effect by algorithms Demon and
Bayes. While algorithm CoreExp can avoid both free rider
and separation effects on these datasets, none of the bench-
mark algorithms can avoid both the effects.

6 RELATED WORK

In recent years, considerable efforts have been taken in build-
ing efficient metrics and models that can accurately capture
the properties of overlapping communities in real social net-
works. In their comprehensive survey, Xie et al. [32] surveyed
state-of-the-art algorithms for overlapping community detec-
tion and categorized the algorithms into five categories: link
partitioning, fuzzy community detection, agent-based algo-
rithms, local expansion and triangle-based approaches. In the
following, we survey existing algorithms for overlapping
community detection.

Fuzzy community detection algorithms employ a soft
clustering technique for identifying communities [32]. For
example algorithm Bigclam [35] exploits a non-negative
matrix factorization framework for finding overlapping
communities. Nepusz et al. [20] modeled the overlapping
community detection as a nonlinear constrained optimiza-
tion problem and solved the problem using simulated
annealing. One noticeable drawback of such algorithms is

Fig. 7. The number of detected communities by different algorithms. Algorithm Demon did not terminate for datasets LiveJournal and Orkut, thus
their results on those datasets thus will not be available from the bar chart.

2. http://www.cse.psu.edu/�kxm85/software/GTgraph/
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the need to determine the dimensionality of the community
membership vector [7].

In agent-based methods, each vertex is considered as an
agent that transmits messages to other vertices. For instance,
each vertex in algorithm SLPA [33] can be a listener or a
speaker. It spreads vertex labels across the network, and the
probability of observing a vertex label in another vertex’s
memory determines the community membership. Algo-
rithm Demon [5] is another agent-based method that
extracts the ego network of each vertex and applies a label
propagation algorithm on this structure, ignoring the pres-
ence of the ego itself, then each vertex acquires a label that
appears most frequently among its neighbors to extract the
communities [5]. However, agent-based algorithms are very
time-consuming in real-world networks.

Local expansionmethods are based on growing a commu-
nity, using a community fitnessmetric tomeasure the quality
of the community.Whang et al. [30] used a personalized Pag-
eRank algorithm for finding cuts between communities,
where a randomwalk in a network can start from seeds only.
Since the vertices close by seed are more likely to be visited,
thereby receive higher ranks and join the same communities.
Among the methods, Algorithm LFM [15] chooses random
seeds and then expands the seeds until the value of fitness
function based on the number of edges in the community is
locally maximal. While the fitness metric used in the local
expansion methods can capture the community density, it
suffers from free rider [31] or separation effect. The proposed
method in this paper falls into this category but aims tomini-
mize free-rider and separation effects on the found commu-
nities. Bandyopadhyay et al. devised an algorithm called
FOCS [2], where initially communities are the neighbor-
hoods of all vertices in the network and these communities
are then refined by adding and removing vertices from com-
munities, using local modularity. However, it has been
shown that both subgraph and local modularities suffer
from free rider and separation effects [31].

Triangle-based approaches are particularly important in
community detection [3], [4]. For instance, in triangle k-core
motif [36], DN-Graph [29] and k-truss [4], the number of tri-
angles formed by an edge is used as an indicator of its
strength, where edges with fewer triangles can be removed
to isolate cohesive communities. Although these approaches
provide accurate non-overlapping communities, they are
not capable of finding overlapping communities. Sariyuce
et al. [26] attempted to extend k-trusses by proposing the
k-ðr; sÞ nucleus (r < s), which is a union of s-cliques, where
each r-clique is included in at least k s-cliques and every pair
of r-cliques are connected via a sequence of r-cliques. How-
ever, the experimental results in thementionedwork are lim-
ited to values s � 4, since the state-of-the-art algorithms for
finding s-cliques are inefficient. Recently, Benson et al. [3]
and Tsourakakis et al. [28] both extended the existing fitness
metric conductance using triangle motifs. In their definition,
conductance of a community is defined based on a given
motif M � G, where the number of motif instances in a sub-
graph G0 of a social network G is considered as the density,
and the cut betweenG0 and other subgraphs is defined as the
number of instances of motif M that include some vertices
from G0 and some from G nG0. One of the major differences
between our work in this paper and the works of Benson

et al. and Tsourakakis et al. is that they consider symmetric
motif cuts while we consider asymmetric motif cuts.

7 CONCLUSION

In this paper, we investigated the problem of finding
high quality overlapping communities from a large social
network by taking both separation and free rider effects
on found overlapping communities into consideration.
To this end, we first proposed a novel community fitness
metric - the overlapping triangle connectivity fitness met-
ric for overlapping community detection. We then
devised an efficient yet scalable algorithm for the prob-
lem. We finally validated the effectiveness of the pro-
posed fitness metric and evaluated the performance of
the proposed algorithm, by conducting extensive experi-
ments on seven real-world datasets. Experimental results
show that the proposed algorithm is very promising and
outperforms state-of-the-arts.
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