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Abstract—Traditional networks employ expensive dedicated hardware devices as middleboxes to implement Service Function Chains
of user requests by steering data traffic along middleboxes in the service function chains before reaching their destinations. Network
Function Virtualization (NFV) is a promising virtualization technique that implements network functions as pieces of software in servers
or data centers. The integration of NFV and Software Defined Networking (SDN) further simplifies service function chain provisioning,
making its implementation simpler and cheaper. In this paper, we consider dynamic admissions of delay-aware requests with service
function chain requirements in a distributed cloud with the objective to maximize the profit collected by the service provider, assuming
that the distributed cloud is an SDN that consists of data centers located at different geographical locations and electricity prices at
different data centers are different. We first formulate this novel optimization problem as a dynamic profit maximization problem. We
then show that the offline version of the problem is NP-hard and formulate an integer linear programming solution to it. We third
propose an online heuristic for the problem. We also devise an online algorithm with a provable competitive ratio for a special case of
the problem where the end-to-end delay requirement of each request is negligible. We finally evaluate the performance of the proposed
algorithms through experimental simulations. The simulation results demonstrate that the proposed algorithms are promising.

Index Terms—Network function virtualization, software defined networking, distributed data centers, online algorithms,
service function chain consolidation, profit maximization, request admission scheduling

1 INTRODUCTION

RADITIONAL networks are built upon proprietary soft-

ware platforms tied onto proprietary hardware devices
that evolved slowly [4]. Provisioning network services in
traditional networks takes a great deal of time and effort,
because different network hardware devices need to be
acquired and configured in an appropriate manner. Also,
user requests in traditional networks are implemented
by dedicated hardware such as routers and associated
(vendor-specified) protocols, which lack of flexibility, man-
ageability, and efficiency [28]. Profits thus are being eroded
by escalating operational expenses (OPEX) and capital
expenses (CAPEX), and flat or declining revenue [21]. Net-
work Function Virtualization (NFV) and Software Defined
Networking (SDN) have been envisaged as next-generation
networking paradigms to enable fast service deployment,
inexpensive and flexible service provisioning in future com-
munication networks [4]. Specifically, SDN introduces the
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concept of separation between the data plane and the
control plane, thus provides more flexibility in steering net-
work flow, while NFV enables highly optimized packet-
processing network functions to run on commodity servers.
Typically, each flow goes through a sequence of network func-
tions in a specified order to perform necessary packet proc-
essing, such a sequence is termed as the service function chain
(SFC) of the flow [23]. The integration of SDN and NFV ena-
bles flexible resource allocations to service function chains
and optimizing resource utilization for user request admis-
sions [28]. It thus can reduce network service providers’
operational expenses and increase their profits signifi-
cantly [5], [21], [29].

The adoption of SDN and NFV technologies poses several
important challenges for network service providers. The first
challenge is how to maximize their profits by admitting as
many as requests while reducing their operational costs. This
can be achieved by creating instances of service function
chains in data centers and making use of the instances to
implement NFVs of user requests. However, different user
requests not only have different amounts of resource
demands but also have different service function chains and
end-to-end delay requirements. The second challenge is that,
different data centers may have different energy consumption
rates due to various specifications of servers. Also, the elec-
tricity prices of different geographical data centers may be
quite different. The last challenge is how to dynamically
admit user requests and find routing paths for the requests
that include data centers to process their data traffic, assum-
ing that the requests arrive one by one without the knowledge
of future request arrivals. Tackling the aforementioned
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challenges requires novel frameworks, algorithms, and tech-
nologies, as conventional routing algorithms and protocols
designed for traditional networks are not applicable to NFV-
enabled SDNs.

The novelties of the work in this paper include: a novel
optimization framework for dynamic admissions of NFV-
enabled requests in an SDN that jointly considers comput-
ing and bandwidth resources provisioning at data centers
and links to meet delay requirements of user requests, with
the aim to maximize the profit of the network service pro-
vider; efficient online algorithms for the dynamic profit
maximization problem are developed.

The main contributions of this paper are summarized as
follows. We first formulate a dynamic profit maximization
problem in a distributed cloud, by dynamically admitting
delay-aware requests with service function chain require-
ments, assuming that the admission of each request is based
on as pay-as-you-go, subject to various network resource
capacities. We then show the offline version of the problem is
NP-hard and formulate an integer linear programming (ILP)
solution to it. We third propose an efficient heuristic for the
dynamic profit maximization problem. We also devise an
online algorithm with a provable competitive ratio for a spe-
cial case of the problem where the end-to-end delay require-
ment is negligible. We finally conduct empirical evaluation
on the performance of the proposed algorithms through
experimental simulations. Experimental results demonstrate
that the proposed algorithms are very promising.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 introduces notions, nota-
tions, and the problem definitions. Section 4 formulates an
ILP solution to an offline version of the problem. Section 5
develops a heuristic for the problem, and Section 6 devises
an online algorithm with a provable competitive ratio for a
special case of the problem where the end-to-end delay
requirement of each request can be negligent. Section 7 eval-
uates the performance of the proposed algorithms empiri-
cally, and Section 8 concludes the paper.

2 RELATED WORK

There have been several studies on NFV-enabled user
request routing in various networks [16], [17], [19], [30],
[32], where a user request with a service function chain
requirement is referred to as the NFV-enabled request. For
example, Martins et al. [19] introduced a virtualization plat-
form to improve network performance, by extending exist-
ing virtualization technologies to support the deployment
of modular, virtual middleboxes on lightweight VMs. Wang
et al. [30] investigated the problem of dynamic network
function composition by proposing a distributed algorithm
for the problem. Jia et al. [13] studied the dynamic provi-
sioning of VNF service function chains across different data
centers to minimize the operational cost of network service
providers. They proposed an efficient online algorithm with
a provable competitive ratio for the problem, using regulari-
zation techniques. Li et al. [16] investigated QoS-aware
NFV-enabled user request routing problem by implement-
ing the VNFs of the service function chain of each request in
a single data center. Huang et al. [11] studied network
throughput maximization problem by consolidating all
VNFs in a service chain into a single server. They proposed
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two heuristic algorithms for the problem through striving
for non-trivial tradeoffs between the accuracy of a solution
and the running time to obtain the solution. Jia et al. [12]
considered the operational cost minimization problem by
utilizing pre-installed VNF instances. They also provided a
prediction mechanism to dynamically create and remove
VNF instances in data centers. Xu et al. [32] investigated the
throughput maximization problem by making use of exist-
ing VNF instances, assuming that all requests are given in
advance. Most aforementioned studies focused on develop-
ing either exact solutions for the problems by formulating
Integer Linear Programming (ILP) solutions, or fast, scalable
heuristic solutions.

There are several recent studies focusing on the profit
maximization by admitting NFV-enabled requests in SDNs
[7],[9], [24], [33], [34]. For example, Zhang et al. [34] devised
a novel online stochastic auction mechanism for the network
service chain provisioning and pricing for NFV service pro-
viders. They adopted the primal-dual optimization frame-
work with a learning-based strategy for resource prices and
developed an online auction mechanism with a provable
competitive ratio to maximize the expected social welfare of
the NFV ecosystem, including the NFV provider, customers
and resource suppliers. Gu et al. [9] proposed an online auc-
tion mechanism for dynamic VNF service chain provisioning
and pricing in a single data center, through incorporating the
primal-dual approximation technique and Myersons charac-
terization of truthful mechanism together. Racheg et al. [24]
explored service function chain provisioning for distributed
data centers with the aim to maximize the profit of network
service providers. They proposed a heuristic for the profit
maximization problem by enumerating all possible embed-
ding paths for user requests that makes their algorithms
unscalable, thereby restricting the applicability of the algo-
rithm in the real world. Ghribi et al. [7] studied a profit maxi-
mization problem in SDNs by devising an algorithm that
jointly considered VINF placement and traffic steering. Their
algorithm deals with service function chains in multi-stages
and deploys the VNF instances one by one, which leads to a
sub-optimal solution. Yuan et al. [33] proposed a workload-
aware revenue maximization approach by jointly consider-
ing VNF instance deployment and user request routing
paths for each request admission. In addition, the problem of
minimizing energy consumption of distributed cloud net-
works has been extensively explored in literature [2], [22],
[35]. For example, Zhang et al. [35] observed that a large frac-
tion of energy is wasted on maintaining excessive service
capacity during low workload periods of data centers. They
devised an online algorithm for minimizing the power con-
sumption of data centers by dynamically switching on/off
servers, according to resource demands of user requests. On
the other hand, cloud service providers usually deploy their
data centers in geographically different locations to meet
ever-growing service demands of users from different
regions. The electricity prices for data centers at different
geographical locations are different, thus, the costs of energy
consumption of these data centers are different too. Exploit-
ing time-varying electricity prices in different regions has
been shown a promising technique to minimize the opera-
tional costs of data centers, which has been explored in previ-
ous studies [24], [25], [26], [27], [31].
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Unlike the aforementioned studies, in this paper we will
study a dynamic profit maximization problem that admits
NFV-enabled requests in SDNs through VINF instance place-
ment while meeting delay requirements of user requests,
assuming that requests arrive one by one without the knowl-
edge of future request arrivals. We aim to maximize the profit
of the network service provider through reducing its opera-
tional cost. This is achieved by incorporating varying energy
consumption rates and electricity prices among data centers,
and performing smart resource allocations to fully utilizing
the resources in SDNs. This paper is an extended version of
our conference paper [18].

3 PRELIMINARIES

In this section, we first introduce the system model, notions
and notations, and then define the problems precisely.

3.1 System Model

We consider a Software Defined Network (SDN) modelled by
a directed graph G = (SUV,E), where S is a set of SDN-
enabled switch nodes and V' is a set of data centers with rich
computing resources that are geographically co-located with
some of the switch nodes, and FE is a set of links between SDN-
enabled switches and between SDN-enabled switches and
data centers. Denote by @), the set of active homogeneous
servers in each data center v € V, and for each server s € Q,,
let C; be its computing capacity. Thus, the computing capac-
ity C, of data center vis C, = > ., Cs. Notice that different
data centers may deploy different types of servers. Further-
more, the data traffic of each user request consumes link
bandwidth and incurs data transmission delays on links in
the routing path. Denote by B, and d, the bandwidth capacity
and the delay onlink e € E.

3.2 Virtualized Network Functions and Service
Function Chains

In conventional networks, network functions such as Fire-
walls, Intrusion Detection Systems (IDSes) and Load Bal-
ancers (LBs) are implemented by expensive, dedicated
hardware middleboxes installed at network routers and
switches [4]. Network function virtualization (NFV) that
makes use of common x86 architecture to implement net-
work functions as software components in data centers,
has become a promising technology to significantly reduce
the operational expenses (OPEX) and capital expenses
(CAPEX) of network service providers, which introduces a
new dimension for cost savings on dedicated hardware
middleboxes and flexible deployment of network func-
tions. The implementation of virtualized network func-
tions (VNFs) in data centers consumes their computing
resource. Also, different VNFs may have different process-
ing delays depending on the resources that are allocated
to them.

Since different requests may have different types of ser-
vice function chains, establishing a routing path for each of
the requests needs steering its flow to pass through the
specified VNFs in its service function chain in a particular
order. An ordered sequence of VNFs is defined as a service
function chain (SFC). In this paper we assume that the VNFs
of the SFC of each request is consolidated into a single VM

1145

He
VRN

"

E datacenter . request routing "l. SFC instances

a switch

Fig. 1. An illustrative example of the admission of a user request in a
Software Defined Network (SDN), where the request is issued at a
source node s and its data traffic is processed at the data center v that
contains the SFC instances of the request, and the processed data traf-
fic is then routed to the destination ¢.

request generators

in a data center for processing. This assumption has been
adopted in [3], [10], [11].

3.3 User Requests with Service Function Chain
Requirements

Consider a user request 1; = (sj,1;; SFC](k), bj,¢;, D;) that

requires to transfer its data traffic from a source s, to a desti-

nation ¢; with a given packet rate ¢; > 0, and the data traffic

must pass through the instances of VNFs in its service func-

tion chain SFC;"'). We assume that the service function

chains among all requests can be classified into K types. We
also assume that each instance of a VNF can process a basic
packet rate [32], and a request r; with ¢; packet rate implies
it needs ¢; instances of its required type of service function
chain and the amount b; (= ¢ b)) of bandwidth resource,

where b%) is the bandwidth requirement of a basic data

packet rate of a request with SFC™. D; is the end-to-end
delay requirement of request ;. We also assume that the
data traffic of each request will be processed in a single data
center. Denote by SFC*) the service function chain of type k
and C(SFCW) the computing resource consumption of an
instance of the service function chain of type k with
1<k < K. Assume that for each type of service func-
tion chain SFOC®, C(SFC™) > 1. Each instance of service

function chain SFC(¥) in data center v has data processing
rate ,u,(f), which is also measured by the amount of basic
packet rate. Fig. 1 is an illustrative example of a request
admission in G.

3.4 End-to-End Delay Requirements of User
Requests

Each request r; has an end-to-end delay requirement D; that

specifies the maximum duration of per data packet from its

source to its destination, which includes both the processing

and queuing delay in a data center and the transmission

delay along links.

Each data packet of an admitted request r; will be
queued in its service function chain instances in a data cen-
ter before being processed, which will incur both the queu-
ing and processing delays when each of the packets passes
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through the service function chain instances. Each user
request 7; with packet rate ¢; has ¢; instances of its required
type of service function chain, we thus assume there is an
M /M /n queue for ¢; SFC instances of request r;. The aver-
age queuing delay is L

L
i) 9 byl -1)
Considering that the data processing rate of service func—

tion chain SFC is u
data center v 1s - Denote by d; {(SFCP) the processing and

), the processmg delay of SFC(V

queuing delay of a packet at a data center v, i.e.,

d;(SFCM) =

v

+—. (1)

Furthermore, traffic route for request r; along a link
e€ I incurs a data transmission delay d.. Denote by
P(s;,v) the first segment of the routing path for the data
traffic of request r; from node s; to data center v € V. The
data transmission delay along this segment P(s;,v) is
dj(P(s5,v)) = > ep( (sj) e- Similarly, the data transmission

delay along the second segment P(v,t;) of the routing path
is dj(P(v,t;)) = > eep v1) de- The end- to—end delay of data

transmission of request r; along the routing path via data
center v thus is

d(r;) = d;(P(s},v)) + d;(SFC) + dj(P(v,t))). ()

To meet the end-to-end delay requirement of r;, we have
d(Tj) S D/

3.5 Energy Consumption and Profit by Admitted
Requests

Denote by &, the energy consumption of data center v € V,
which is determined by the number of homogeneous serv-
ers |@Q,| in v. We adopt a linear energy consumption model
to capture the energy consumption of each server [24], [27],
[35], that is, for a server s € @, in data center v € V, the
amount of energy £, consumed by s per time unit is

E =& +n,- U, @)

where U, = U,/C; is the utilization of computing resource
in server s while U, is the workload (the amount of comput-
ing resource being occupied at the moment) of server s and
O, is its computing capacity, £ is the amount of energy
consumed per time unit when server s is idle, which usually
is fixed. The energy consumption of a server s is propor-
tional to its workload, and 7, is constant with », > 0, and
the amount of energy £, consumed in data center v per time
unit thus is the sum of the amounts of energy consumed at
all servers in Q,, i.e.,

S S S
SGQU SEQ’!,‘
= |QU| . g;dlt’ + My Z Z/IS, (4)
SEQy
, U,
idle )
= |Qv| "cf‘i: - |Qv‘ '5:7
where U, = ZﬁeQ“ U, is the workload and C, is the comput-
ing capacity of data center v € V.
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A network service provider typically charges its users by
admitting their requests on a pay-as-you-go basis through
adopting a common revenue collection model [24]. The reve-
nue collected RV; by admitting a request r; is proportional
to its computing and bandwidth resource demands, that is

RV; = Ay - ;- C(SFCW) 4 X5 - by, )
where A\; and ), are constant weights for computing and
bandwidth prices, and ¢, is the packet rate of request r;.

The profit p(A) collected by admitting a set .4 of requests
thus is the difference of the sum of the revenues collected to
the cost of the amount of energy consumed at all data cen-
ters for the services [24], which is defined as follows:

(A) =D RV;=> p,-&, ©)

r;€A veV

where p, is the electricity price per unit energy at the loca-
tion of data center v € V, and RV and &, are defined by
Egs. (5) and (4) respectively. Notice that the electricity prices
at different locations and different time slots may be signifi-
cantly different [31].

3.6 Problem Statements

Given an SDN G = (SUV,FE) and a set of NFV-enabled
requests R, the profit maximization problem is to admit as
many requests in R as possible so that the profit collected
by the network service provider is maximized, subject to
network resource constraints on G.

We now define a dynamic version of the problem.
Given an SDN G = (SUV, E), let r, 79, ...7; be a sequence
of requests that arrive one by one without the knowledge
of future arrivals, the dynamic profit maximization problem in
G is to maximize the total profit collected by admitting as
many as requests in the sequence while meeting the end-
to-end delay requirement of each admitted request, subject
to resource capacity constraints on both data centers and
links.

The profit maximization problem is NP-hard, which can
be shown by a reduction from the knapsack problem. The
detailed reduction is omitted, due to space limitation.

3.7 Approximation and Competitive Ratios of
Algorithms

A y-approximation algorithm for a minimization problem P,

is a polynomial time algorithm A that delivers an approxi-

mate solution for P; whose value is no more than y times

the optimal one for any instance of P, with y > 1, where y

is termed as the approximation ratio of algorithm A.

Let OPI" and S be an optimal solution of the offline ver-
sion of a problem and the solution delivered by an online
algorithm A’ for a maximization problem P of dynamic
request admissions, where requests arrive one by one with-
out the knowledge of future arrivals The competitive ratio of
an online algorithm A’ is & if 577 > ¢ for any instance I of
problem P with0 < £ < 1.

4 ILP FOR THE PROFIT MAXIMIZATION PROBLEM

In this section, we formulate an integer linear programming
(ILP) solution to the profit maximization problem.
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For each request r; € R, a binary constant ! =1 if 7; is
the type k request; a¥ =0 otherwise. A binary variable
x; = 1 if r; is admitted; z; = 0 otherwise. Recall that RV is
the amount of revenue collected if request r; is admitted. A
binary variable y;, is used to determine which data center
will accommodate the instances of the service function
chain of r;, where y;,, = 1 if it is implemented by the service
function chain instances in data center v; y;, = 0 otherwise.
For each request implementation in the network, we treat
the data traffic of the request as a flow in G from its source
to its destination. For clarity, denote by ¥~ (u) and ¢ (u) the
sets of incoming and outgoing edges of a node u € SUYV,
respectively. The proposed ILP is described as follows:

maximize Z RV x;— ZPU - Qul 'Sj;dle

r;€R veV
- : (7)
1y(2er it @ - $,C(SFCH) - ;)
- va : |QL‘ : C )
veV v
subject to:
ny-“ = xj, V’f‘j ER )
veV
> Se- Y -0
ey (u) eyt (u) )
VUES\{SJ}, T]‘GR
> H@- X =0,
ecyt (u) e€y (u) (10)
Yue S\ {t}, r;eR
Z Z}'(e) = zj, Vrye R 1n
ecyt(s;)
> 2le) =, VrjeR (12)
ecy (L))
Z Z(e) — Z z'(e) = yj,YveVir; € R (13)
e€y™(v) eey™(v)
Z zjt(e) — Z ;T/?t(e) =y, VWweVr,eR (14)
ecyt (v) e€y(v)
Z z"(e) =0, Vr; € R (15)
5%61//’(@‘)
Z z;“t(e) = 07 V’f‘j cR (16)
ecyt(t))
> de(z(e) + 2 (e) + Y d(SFCP) -y, < D;
ecF veV (].7)
VT]' ER
> b (5(e) + 2(e) < B, Ye € E (18)
€R
Z Z Cl? . ¢7C(SFC(k>) : yj,v S Cﬂa Vv € Vv (19)
T]'ER 1<k<K
2.2 {01}, VeeE eR QD)
z;,yj0 € {0,1}, YweVr;eR (21)
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Constraints (9) and (10) ensure the flow conservation at
any switch node of a flow except the source and sink nodes
of the flow. Constraints (11) and (12) enforce data traffic flow
entering and leaving the network in accordance with the
admission of r;. Asan edge e € E can be used in both the first
segment P(s;,v) and the second segment P(v, ¢;) of the rout-
ing path of request r; via data center v, two decision variables
z3"(e) and 2! (e) are adopted to distinguish the usage of the
edge in these two segments, respectively, where 25°(e) = 1 if
edge cisin P(s;,v); 2;"(e) = 0 otherwise. Similarly, 2’ (e) = 1
if edge e is in the second segment P(v,t;); 2} (e) = 0 other-
wise. Constraints (13) and (14) specify whether the service
function chain of r; is implemented in a data center v € V.
Constraints (15) and (16) ensure that no any fractional flow
of r; before it is processed by its SFC instance will enter its
source node s; and no any fractional flow of r; processed by
its SFC instance will leave from its destination ¢;. Con-
straint (17) enforces the end-to-end delay requirement. Con-
straints (18) and (19) impose bandwidth and computing
resource capacity constraints for all links and data centers in
the network, respectively.

5 ONLINE ALGORITHM FOR THE DYNAMIC PROFIT
MAXIMIZATION PROBLEM

In this section, we deal with the dynamic profit maximiza-
tion problem. We first investigate the delay-constrained shortest
path problem via a specified node, which will be used as a sub-
routine for the dynamic profit maximization problem. We
then propose an efficient online algorithm for the problem.

5.1 A Delay-Constrained Shortest Path via a
Specified Node
Given a graph G = (SUV, E), a request r; from a source s;
to a destination ¢; with an end-to-end delay constraint D,
and a specified node v € V, the delay-constrained shortest path
via a specified node problem in G is to find a minimum cost
path (or route) from s; to ¢; that passes through the specified
node v, while the end-to-end delay of the route is no greater
than D;. This problem is NP-hard as its special case the
delay-constrained shortest path problem is NP-hard [14].
Assume that the implementation of the service function
chain of arequest r; = (s;,t;; SFCJ(-k), bj,¢;, D;) by instances of
network functions in a data center v, and the processing and
queuing delay for the data traffic of r; at v is d;(SFC¥)). To
meet its end-to-end delay constraint Dj, its routing delay
d;(P(s;,v)) + d;(P(v,t;)) from its source s; to its destination
t; must be no greater than D; — d;(SFC'*)). However, finding
such a minimum cost routing path for request r; from s; to ¢;
via v is challenging, and existing algorithms for the delay-
constrained shortest path problem is not applicable. We
instead develop a novel algorithm for it. That is, for request r;
and data center v € V, we construct an auxiliary graph G/,
from G, we reduce the problem in G to the delay-constrained
shortest path problem in G, = (V', E'), where V' = {u/,u |
Yue SUVY, and E = {(«,v'), (u,w) | V(u,w) € E}. We
then merge the specified data center node v and its copy v/
into a single node v, ie, V' = V' \{V'}, E' = E"\ (U (4 yyepr
L)} U U iyl 00D U (U gyl 00 00} U U e
{{v,u')}) forany u’ € V'. Fig. 2 shows the construction of G’ .
Having the constructed auxiliary graph G, a delay-
constrained shortest path P'(s;, t}) in G’; | from node s; to ¢
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Fig. 2. An example of the construction of an auxiliary graph G;._,,, forfinding a
delay-constrained shortest path via a specified node v for request ;.

with a delay no greater than D; — d;(SFC{¥) can then be
found if it does exist, by applying the approximation algo-
rithm due to Juttner et al. [14]. The pseudo-routing path
(route) P(sj,tj;v) in G for request r; via data center v can
then be derived from P'(s;, t;), where a pseudo path (route) is
a path in which nodes and links can appear multiple times.
The detailed description of the algorithm for finding a
delay-constrained shortest path via a specified node is given
inAlgorithm1.

Algorithm 1. Finding a Delay-Constrained Shortest Path

in G via Node v for Request r;

Input: An SDN G = (SUV, E), a data center v € V, a request
ri = (sj,15 SFC by, 5, D).

Output: A delay-constrained shortest path via data center v; if
it does not exist, data center v cannot be used for imple-
menting service function chain for r; without violating its
delay constraint.

1: Construct the auxiliary graph G’ , from G;

2: Find an approximate delay-constrained shortest path
P'(s;, 1) in G, from s; to ¢/ subject to the delay constraint
on its routing path such that d;(P(s;,v)) + d;(P(v,t;)) <

Dj — d;(SFC'®), by applying the algorithm due to Juttner

etal. [14];

if P'(s;,t}) in G’} , exists then

4: A routing path P(s;,¢;;v) in G is derived from P'(s;, t}),
by replacing each edge in P'(s;, t}) with its correspond-
ing edge in G;

5: else

Request r; cannot make use of data center v for service

function chain implementation.

@

3

Lemma 1. (i) If there is a directed path in G, from s; to ¢}, it
must pass through node v, i.e., v is an articulation point in
G’ ; (ii) any delay-constrained shortest path P'(s;, t}) in G/,
from s; to t; cannot pass through node v twice; and (iii) each
edge or node in G appears at most twice in the route P(s;,t;;v)
of G which is derived from path P'(s;, t").

Proof. We first show claim (i) by contradiction. Assume that
there is a directed path from s; to ¢ that does not pass

through node v. We remove v and its incident edges from

G, ,, this will not impact the directed path since v is not on

it. However, the removal of v from G’ will lead to the

resulting graph disconnected and nodes s; and ¢; will not
be in the same connected component. Then, there is not any
directed path from s; to t;-, which forms a contradiction.
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We then prove claim (ii). Assume that there is such a
delay-constrained shortest path P'(s;,t}) from s; to
that passes through v twice. Then, '(s;, ) must contain
a directed cycle with v in it. If we break the cycle by
removing some of its edges and nodes except v while
keeping ¢/ reachable from s;. The length of the resulting
path from s; to ¢ thus is shorter than that of P'(s;,t}),
which contradicts the fact that P'(s;,#.) is a shortest
delay-constrained path from s; to /.

We finally show claim (iii). It can be seen that P'(s;, )
is a simple path in G’ . Each edge (u,w) € E is contained
in the route P(sj,tj;v) in G derived from P'(s;,t}) if
(u,w) € P'(s;,t}) or (u',w') € P'(sj,t;). Thus, each edge
or node in G appears at most twice in P(s;, t;;v). O

Theorem 1. Given a graph G = (S UV, E), a request r;, and a
specified node v € V, there is an approximation algorithm with
an approximation ratio of (1+¢€) for the delay-constrained
shortest path problem wvia a specified node, which takes
O(|E|* - log*|E|) time, where € is a constant with 0 < € < 1.

Proof. For a request r; and any specified node veV,
the construction of auxiliary graph G’ from G takes
O(|SUV|+ |E|) time. Finding an approximate delay-

constrained shortest path in G, takes time O( |E‘;.w|2log4|
E’,|), by applying the (1 + ¢)-approximation algorithm
due to Juttner et al. [14], where |E] |(=2|E]) is the
number of edges in G, Thus, the running time of

Algorithm 1is O(|E;, [* log*|E}, | + O(ISU V| +|E]) =

O (B -log"|E]). O

5.2 Online Algorithm
We now propose an online algorithm for the dynamic profit
maximization problem.

We start by introducing a usage weight model to measure
various network resource consumptions. Specifically, given
the dynamics of user requests and networks, there is a need
of a cost model to capture dynamic consumption of various
resources in the network in order to better guide the admis-
sions of future requests and utilize the resources. Intuitively,
overloaded resources usually have higher probabilities of
violating the resource demands of admitted requests due to
the high dynamics of resource consumptions. This will affect
the admissions of future requests eventually. Thus under-
loaded resources should be encouraged to be used while
overloaded resources should be restricted (discouraged) to
be used when conducting resource allocations to meet
resource demands of admitting requests. If a specific
resource has been highly utilized, it should be less used in
the future by assigning it a higher usage weight; otherwise (a
specific resource has rarely been used), it should be encour-
aged to be used by assigning it a lower usage weight. The
usage weight model is given as follows.

When request r; arrives, for each data center node v € V,
the usage weight c,(j) of using the computing resource at
data center v by request r; is defined as

co(j) = p, - Cola'™ Yo eV, (22)
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where « is a tuning parameter with o > 1, C,(j) is the resid-
ual computing resource at data center v when request r;
arrives with C,(j) = C,(j — 1) — ¢; - C(SFCW) if request 7;
admitted and C,(0) = C,, ¢; is the packet rate of request 7,
and p, is the electricity price per unit energy at the location
of data center v.

For each link e € E, the usage weight c.(j) of using the
bandwidth resource at link e in the route for request r; can
be defined similarly, that is

1_Beli)

Be — 1)

ce(j) = Be(B (23)

where g is a tuning parameter with 8 > 1, and B, (j) is the
residual bandwidth at link e when request r; arrives with
B.(j) = B.(j — 1) — b; if r; admitted and B.(0) = B,.

Denote by p,,,, and p,,;, the maximum and minimum
electricity prices among the locations of all data centers, i.e.,
Pmaz = InaX’UGV{pU} and Pmin = IniIerv{,Ov}.

When request r; arrives, the normalized usage weights w,(j)
at each data center v € V and w,(j) at each link e € E of G
for request ; are defined as follows:

Ve € £,

(j a
o) = 2= P @) wew e
] Be(j)
we(j) _eW) _ g B veem 25)

B,

For the admission of a request r;, denote by G; = (SUV,
E;w,(j),w:(j)) a weighted version of a subgraph of G by
removing those nodes and links that do not have enough
residual resources to accommodate r;, in which its data cen-
ter nodes and edges are assigned with the defined normal-
ized usage weights. Then, for each data center v€ V, a
delay-constrained shortest path (route) P(s;,t;;v) in Gj
from s; to ¢; via v is found by applying Algorithm 1. One
delay-constrained shortest path in G via a data center ¢/ is
identified if P(sj,t;;v') = min,ey{P(s;,tj;v)}.

To avoid admitting request r; that demands too much
resources (leading to a higher implementation usage
weight, thereby undermining the performance of the SDN),
we then adopt the following admission control policy: request
r; will be rejected if either (i) w,(j) > o for the chosen data
center v € Vor (ii) ), . Plsjt ) w(j) > o2, where o1 and oy
are admission control thresholds of computing and band-
width resources, respectively, where o, = (n —1)- 0,/
Pmazs 02 =1 — 1, andn =|SUV|.

The detailed algorithm for the dynamic profit maximiza-
tion problem is given in Algorithm 2.

The time complexity of the proposed online algorithm,
Algorithm 2, is stated in the following theorem.

Theorem 2. Given an SDN G = (SUV, E) with a set V of
data centers, there is an online algorithm, Algorithm 2,
for the dynamic profit maximization problem, which delivers
a feasible solution for each request in O(|E|* -log?|E| - [V)
time.

Proof. We analyze the time complexity of Algorithm 2.
The assignment of weights on nodes and edges of G;
takes O(]S U V| + |E|) time. For each request r; and each
data center v, finding a delay-constrained shortest path
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via a node v takes O(| E|’log *| E|) time. Finding one delay-
constrained shortest path which is the minimum one
among all such delay-constrained shortest paths thus
takes O(|E|” - log*|E| - |V|) time. Algorithm 2 therefore
takes time O(|E|” -log*|E|-|V]) to determine whether a
request should be admitted. 0

Algorithm 2. Maximizing the Profit for the Dynamic
Profit Maximization Problem

Input: An SDN G = (SUV, E) with a set V of data centers, a
sequence of requests r; = (sj,1;; SFC;k),bj,q}j, D;) eR,
assuming that requests arrive one by one without the
knowledge of future arrivals.

Output: A solution to maximize the profit. If a request r; is

admitted, a data center v/ to implement its service func-
tion chain and its routing path (route) from s; to ¢; via v/
will be delivered.

1: A0

2: while request r; arrives do

3:  Construct the auxiliary graph G| for request r;

4:  Find a delay-constrained shortest path (route) P(s;, ¢;;v")
via data center ' among all delay-constrained shortest
paths via all different data centers in V, by invoking
Algorithm 1 for r; via each data center v € V such that
the one via node ¢/ is the minimum one; if no such path
exists, reject r;;

5. Determine whether 7; to be accepted or rejected by the
defined admission control policy;

6:  if r;is accepted then

7: A—Au{r;};

8: return A.

In practice, almost all SDNs are planar, and the degree of
each node in such a network is a small constant, i.e.,
|E| = O(|V]). The time complexity of the algorithm thus can

be further reduced to O(|V|* - log !| V).

6 ONLINE ALGORITHM FOR A SPECIAL DYNAMIC
PROFIT MAXIMIZATION PROBLEM

In this section we consider a special case of the dynamic
profit maximization problem where the end-to-end delay
constraint can be neglected, for which we devise an online
algorithm with a provable competitive ratio.

6.1 Online Algorithm with a Provable Competitive
Ratio

The algorithm is to perform a minor modification to Step 4
in Algorithm 2. That is, a shortest path P(s;,¢;;v') instead
of a delay-constrained shortest path, in G; will be found.
The detailed description of Algorithm 3 through the modi-
fication to Algorithm 2 is given as follows.

6.2 The Competitive Ratio and Time Complexity
Analysis of the Online Algorithm

The rest is to analyze the performance of Algorithm 3. We
first show the upper bound on the total usage weight of
admitted requests when request r; arrives in terms of the
defined usage weight model by Eqs. (22) and (23). We then
provide a lower bound on the usage weight of a rejected
request by Algorithm 3 but admitted by an optimal offline
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algorithm. We finally derive the competitive ratio of
Algorithm 3.

Algorithm 3. Maximizing the Profit for a Special
Dynamic Profit Maximization Problem without End-to-
End Delay Constraints

Input: An SDN G =
sequence of requests r; =

(SUV, E) with a set V of data centers, a
(sj,t5 SFCgk),bj,¢j) € R, assuming

that requests arrive one by one without the knowledge of
future arrivals.

Output: A solution to maximize the profit. If a request r; is
admitted, a data center ¢' to implement its service function

chain and its routing path (route) from s; to ¢; via v' will be
delivered.

1. A0

2: while request r; arrives do

3:  Construct the auxiliary graph G/ for request r;;

4:  Find a shortest path (route) P(s;,t;;v') via data center v/
which is the minimum one among all shortest paths via
all different data centers in V, by invoking the modified
version of Algorithm 1 (i.e., set delay requirement D; of
rj as +o0o) for r; via each data center v € V such that the
path length via node ¢’ is the minimum one; if no such
path exists for all data centers, reject r;

5:  Determine whether r; to be accepted or rejected by the
defined admission control policy;

6: if r;is accepted then

7 A—Au{r;};

8: return A.

We start by showing the upper bound on the total usage

weight of all admitted requests on the arrival of request r;
by Algorithm 3 in the following lemma.

Lemma 2. Given an SDN G =

(SUV,E) with computing
capacity C, at each data center v €V and link bandwidth
capacity B, at each link e € E, denote by A(j) the set of
requests admitted by Algorithm 3 prior to the arrival of
request r;. The sum of the usage weights of all data centers and
links in G defined in Eqs. (22) and (23) prior to the arrival of 7;
thus are

ZCL < Pmaz (])(Ul +n— 1)10g0{, (26)
veV
and
> (i) <B()(o2+n—1logp, @7
ecE
respectively, provided that ¢, - C (SFC™)) < w and

by < mineelBel gyith 1< <4, where C(j) (= S ea 97

7 = 10

C(SFC™))) and B(j) (=3, A ) by) are the accumulated
amounts of computing and bandwzdth resources being occu-
pied by the admitted requests in A(j) at the moment,
respectively.

Proof. Consider a request r; € A(j) admitted by the online

algorithm Algorithm 3 and its service function chain is
implemented in data center v € V, the usage weight of
data center v in G by admitting request 7 is
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C'U(jl +1) - Cv(jl)
|Gl Cu)

_Loly 1Ll
=0, Cola G =1)=p, - Cola @ —1)
Cy (7 +1) _Gu(f)
=0, C’ (o{l C, — ()[1 Cy )
1_Gold) | Coli)=Culg'+1)
=Py Cva Co (O{ v - (28)
1G9 S
=p, - Coor G (a0 G -1)
Cur)  eroER,
= b G ey
-G )
<p,ra G ¢y C(SFC™) - loga.

Notice that Inequality (28) holds due to that 2* — 1 <z
for0 <z < 1.

If an edge e € E'is in the routing path P(s;,ty;v) of ry
for request ry admission by Algorithm 3, the usage
weight of edge e in the admission of request r; is

Ce(jl + 1) - Ce(jl)
— B(FFT 1)~ Bu(p

Be(+)  _Be(f)

=B F g )

Be(f))  Be(f)=Be(i'+1)

=BB B (B

(29)

Bf,»(*’) by
o <ﬂB*~ 1),

Be(f)
7 (2—10g/3 1)

- Be,,B1

= B.p'"

< ,81_% by -log B.

We then calculate the sum of the usage weights of all
data centers and all edges in G’ when admitting request
ry. If a data center was not chosen for implementing the
service function chain of ry, its usage weight does not
change after the admission of r;; similarly, if an edge is
not included in P(sy,ty;v), its usage weight remains
unchanged after the admission of r;. The difference of
the sum of the usage weights of data centers before and
after admitting r is

Dol +1) =al)

veV
=c(j +1) = (i)

| Gu)
Spv'a Co (f)]/
/ _Goli)
= py- ¢y - C(SFCWoga((a' 0 —1)+1) B0
=Py Py - C(Sm(k/))logo{(a)v(j/) . Pmaz +1)

Py

C(SFC™)) - loga, by (28)

= ¢j, ’ C(SFC(]J))IOgOl(CUP(j/) " Praz T+ pv)
< Prmaz * ¢j’ '

C(SFC™)) - (o1 + 1)loga

< Prnaz - Py ~C(SFC("J>) (o1 +n —1)loga. (31)

Inequality (30) holds due to the fact that if request r; is
admitted, then Condition (i) of the admission control pol-
icy is satisfied, i.e., w, (') < o71.

The difference of the sum of the usage weights of all
edges in ¢ before and after admitting 7 is
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Z(Ce(j/ +1) - Cf’(]/))

eck
= Z (ce(f" +1) = celd))
CEP(S]r.in'U)
< > (B ), by (29)
eEP(sj/,t]/;’u)
_Bely)
=by-logh > (BT 1)+
e€P (s tyv)
LB
R D SR IR S
eeP(,sj/7tjr:'z/) eeP(s/ fjr v
=bj -logp Z we(7) + Z
eEP(sj/,tjr:'z;) (EP(S ity 3v)

< by - (o2 +n —1)logB.
(32)

The sum of the usage weights of all data centers prior
to the arrival of request r; thus is

S el) = izw 1) = el

veV =1 veV
= 2 D al+D-al)
ry€A(j) veV
< D" (Puaa by - C(SFC)) (01 +n—1)loga), (33
rj/EA(j)
by (31)
= Pmaz * (01 +n— 1) . loga Z ¢j’ . C’(SF‘C’(]C/>)

T‘j/GA(j)
= Prmaz * C(J) . (01 +n— l)loga,

and the sum of the usage weights of all edges in G prior
to the arrival of request r; is

Yl =2 Yal+1)-al)

ecll j'=1e€E

PEDIACESVETACH

Ty €S(j) eeE

< Y (by-(o2+n—1)logh), by (32)
T‘j/ES(.i)

=(o2+n—1) logp Z by
I716A<})
=B(j) - (o2 +n — 1)log B.

(34)

a

We now provide a lower bound on the usage weight of a
rejected request by Algorithm 3 but admitted by an optimal
offline algorithm OPT. Before we proceed, we choose appro-
priate values for o and g in Eqgs. (22) and (23) prior to the
arrival of any request r; with its SFC'® as follows:

G
2n < a < min {2% C(sre m)}
veV

(35)
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B.
< B < min{2%
2n_ﬂ_rgélﬁr71{2J}. (36)

By Inequality (35), for any v € V, any request r; € R, any
edge ¢’ € E, and any ¥ with 1 < ¥ < K, we have

- G
997 CR™) 5 1hin {200 Y > o 37
veV
2"’ > mln {2” } > B. (38)

Lemma 3. Let 7(j) be the set of requests rejected by
Algorithm 3 but admitted by algorithm OPT prior to the
arrival of request r;. Let Popr(sy,ty;v*) be the routing path in
Gy by algorithm OPT for any request vy € T(j) with
1 < j < j, and assuming that the data center v* is ldentzﬁed for
the implementation of the service function chain SFC*) of
request ry. Then

we(7) + w,(§') > min{oy,09} = a1.  (39)

eEPOpT(sjr ity )

Proof. Consider a request 7, which is rejected by
Algorithm 3 by one of the three cases: (i) there is no suffi-
cient computing resource in any data center for imple-
menting the service function chain of the request; (ii) there
is no sufficient bandwidth in G for routing its data traffic;
and (iii) the normalized usage weight (defined by Eq. (24))
of the selected data center to implement its service func-
tion chain is too high, or the sum of the normalized usage
weights of edges (defined by Eq. (25)) in its routing path is
too high.

Case (i). Let v* be the data center selected to imple-
ment the service function chain of request r’; of type &'.
As the request is rejected by Algorithm 3 due to insuffi-
cient available computmg resource, this implies that
Co(J) < ¢y -C(SFC®)). We thus have

U)@(J/) = Wy* (.7/)

_Cx ()
=P @ E S
Prmax
o, ¢,-C(SFCK))
> min (O[ . _ 1)
Prmax
Prmin o
> Do (B 1), by (37)
Prmax
Pmin &
= Puin (% _1) > 4,
Prmax 2

Case (ii). If request 7 is rejected, then there is an edge
e € P(sy,ty;v") that does not have sufficient residual
bandwidth to accommodate the request. This implies
that B.(j') < by. Therefore, the length of P(sy,t;;v") is
greater than o,

ZLEP( oty v )w( )>w[( )

,3 B(, 1
b
,6 Be —1, since By (j') < by
> BT~ 1, by (38)
B

=——1> .
9 =
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Theorem 3. Given an SDN G =

Case (iii). Although Algorithm 3 is able to deliver a
shortest path P(sy,t;;v) for request ry, it rejects r; due
to the fact that the implementation usage weight of r; is
too expensive, violating condition (i) or (ii) of the
admission control policy, ie., either w,(j) > o7 or
ZFGP(9 Pty ) We (-]/) > 03. ConsequentIY’ ZPEPO[T(97 tysv *)

(7)) + wz,( ") > min{o1, 02}, Lemma 3 thus follows. O

We finally analyze the competitive ratio of Algorithm 3
in the following theorem.

(SUV, E) with computing
capacity C, of each data center v € V and bandwidth capacity
B, for each link e € E, assume that there zs a sequence of
requests with each request r; = (sj,1;; SFC ,bj, @;) arriving
one by one without the knowledge of future arrwals, there is an
online algorithm, Algorithm 3, with a competitive ratio of
O(logn) for the special case of the dynamic profit maximization
problem without the end-to-end delay constraint, and the algo-
rithm takes O(|S U V|* - |V|) time to admit each request when
o =2nand B = 2n, wheren = [SUV|.

Proof. Let Copr(j) and Bopr(j) be the total amounts of com-
puting and bandwidth resources being occupied by the
admitted requests by the optimal offline algorithm OFPT
prior to the arrival of request r;, and let Popr(sy,t;;v") be
the optimal routing path for request 7y € 7 (j) and v* € V
the data center to implement the service function chain of
ry. Recall that B(j) = >, JEAG) by and C(j) = >, A Xz
C(SFC™) are the accumulated bandwidth and comput—
ing resources being occupied by admitted requests in
A(j) at the moment, respectively. Then

(n —1)(Bopr(j) — B(j)) < (n—1) Z by
7‘!€T
Z by (n—1)

7‘ 7 ET
< Z b o pmz%w <w1:* (]/) + Z we (Jl))
i €T(j Pmin eePOpT(.sjr ity %)

pmam Ce(jl) Cy (,],)
2 br ( > S
. ' "EPOPT( oty t) Be Pmaz Cv*

ryer)  Pmin

Prmaz Ce (]) Cy (])
<o gy s el
man 7“7‘/67’(]‘) GEPOPT(S iy t 75U ) ¢ max v

(40)

pma'v Ce(j) : bj' + ( ) b/'
Pmin 7 /ET eEPOpT st v B. Prmaz * CL*

pmuw y ZT]I’GT( ) b
= — Ce (]) T
Pmin e€Popr (5], tJ, v*) ¢
renld) 2ryer( by
o pmazCU
< Pmazx Z Ce(j) + VCL(]) let y = maxj:’:l{b]'/}’

Pmin EEP()PT(SJ" vtj’ %) min

(41)
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S pmux

Z cv(j) Y
pmin veV (42)
<2(n—1)-212 (. C(j)log o + B(j)log ).

min

ce(d) +
Prmin eEZE ‘

Inequality (40) holds since the utilization ratio of both
computing and bandwidth resources do not decrease
and thus the usage weight of each node or edge in
G; does not decrease with more and more request
admissions.

Let y be the maximum bandwidth demanded by all
requests, i.e., y = max{b; | 1 < j < j}, and let § be the
maximum computing resource demanded by any request,
ie, § = max{¢; -C(SFC™)) |1 < f < j}. Inequality (41)
holds since the accumulated bandwidth consumption of
all admitted requests whose service function chains are
implemented in any data center v € V' is no greater than
C, - y by the assumption that C(SFC¥)) > 1 for any type
k of service function chain, and data center v is able to

admit at most C, requests, i.e., ZweT(j) D Popr(sytyt)

by <y-Cy. Meanwhile, all algorithms for the problem,
including the optimal offline algorithm O PT’, the accumu-
lated usage of bandwidth in any link is no greater than the
link bandwidth capacity, i.e., ZW €T () >
bj/ < B..

By Inequality (42), we have

(EPOIJZ-(S7/ tav )

Borr(j) — B(j) < 272 (v - C(j)loga + B(jlog ). (43)
The following inequality can be shown by adopting a
similar method as above

Corr(j) —C(j) < 222 (C(jloga +8 - B(j)log ). (44)

Recall that A(j) is the set of requests admitted by the
online algorithm, Algorithm 3, and 7 (j) is the set of
requests rejected by Algorithm 3 but admitted by algo-
rithm OPT prior to the arrival of request r;.

Let p(A(j)) and p(7(j)) be the total profit for the
admissions of requests in A(j) and 7 (j), respectively.
We here abuse the notation OFI" to denote it as both
the optimal offline algorithm and the solution deliv-
ered by the optimal algorithm. It is clear that the
profit collected by admitting a request is always non-
negative as this is guaranteed by the admission con-
trol policy. Without loss of generality, for any server s
at a data center v, we assume that the amount of its
energy consumption when it is in idle status to its

total energy consumption is no greater than a constant
idle

& with 0 < £ < 1, ie, guﬂf'ﬁ < ¢ Thus, for each

data center v € V, we have

idle
2 &
idle
ZSEQU glu ‘+ ZSGQ,, My - Us

The competitive ratio of Algorithm 3 then is

where x—ggg, a=pB=2n, a; =max,y{ 2"

<& (45)

|Q"7L}

7

and as = 1%16 Notice that a1, as, and £ are constants.
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p(AG)) o p(A()) _ 1
OPT ~— p(A(y T(5) »T0)
PCAG) +pT0) 2T
1
= 7 , by Eq. (6
*1‘2”,67(]') ¢7-C(SFCH)) + )‘2‘er,67(;) b = D ey oo 41 y Ba. (6)
MCG) + MBG) = >y oule
1
= M(Copr()=CG)) + Ao (Bopr(j) — BG)) = D oy Pobo
+1
MCG) + XBU) = Yy ouo
1
zﬂrmu. M (C(j)loga + 8B(j)log B) + 2- /’rmu )\Z(V C(j)loga + B(j)log B) — Z,,EV ouEo N . ) by IneQS. (43) and (44)
MC() + wm D ey oo
1
2 (Come + IR0 8P 2oz + B~ e e by Ea. (4)
MCU) + AB(G) = D ol QuIERE =57 1 0] Qulny Uy
. 1
T 20mee )\ (C(j)loga + 8 B(j)log B) + 251452 (yC(j)log @ + B(j)log ) i1 (46)
MCG) + AB(G) = D0 p,,\Qb\S“ﬂf =D vev 2ol Qulny Us
1 Py - |QU| "My
2 2,/0)7’27’}’ AL(C(j)loga + SB(j)log B) + 2/’177,,’17 Ao (yC(j)log o + B(5)log B) N 17 bY Ineq. (45) and let a; = maXUEV{ 701) }
MC() + AoB() — (72 7+ 1-a1C(j)
_ 1
2 f,z’l’"’(kl( (( gloga +d8logB) + )\2(}/]}%8 loga + log B)) 41
Mgt + %~ 1)
1 ax
= j - 5 let as =
4/;7;’;;"’(>\1(%10ga +8logB) + Ao (y(];@loga +log B)) 1 — f
RSO +1
B() T 2T “B()
1 CG)
= when = 8= 2n and let v = —F%
Pmar A1+ ov)e 4 Ay + M8 ’ B(j
2log2n Pmin (M —a2)T + Ay +1 ()
_ 1
- . Pmaz (Aay + a9)z + N8 ’
2 IOg 2n Pmin (1 + (A1 —a2)z + A2 ) + 1
Since the profit collected is always non-negative, the ‘ L if e M5
term (A — as)z + Ao in Inequality (46) is always non- P(AG)) o ] Hoetn 5l 45=a) e
negative too. The rest is to estimate the upper bound on OPI' — L otherwise.
(Ngy+ag)z+A8 . . 2log 2n e (14507 +1
term 2 log 2n - Zmee (] 4 227282040 4 ] in the denomina-
Pmin (A —ag)z+Xrg (48)
tor of Inequality (46). Let f(x) = %W x € (0, +00).
The first derivative of f(x) is Notice that A1, A2, a3, Prazs Ppins 6, and y are con-
\ \ \ s stants. Thus, p(A(j)) > %, where 0; and 6, are
1) — Aoy +a2)do = (A — a2) s non-negative constants, when a = 8 = 2n.
(@) : 7 g

(A1 — @)z + Ao)?

and the term L 5 in f'(z) always is non-negative.

((A1=az)z+X2)
In the following we show that function f(z) is upper
bounded. We distinguish our discussion into the follow-
ing three cases. Case 1. If ’\2”‘12 A‘j > 0, then f'(z) > 0

and lim, .~ f'(z) = 0. Funct1on f(x) thus is an increas-

ing function and lim, ., f(z)= % Case 2. If
ke 28 <, then f'(x) < 0 and lim, 4o f'(z) = 0.
Thus, f ( ) is a decreasing function and lim, ., f(z) = %‘3

Case 3. If ’\2”"2 A1‘370 then f'(z)=0 and f(z)=

N —as

>\2y+u2 — m

e 2 iq doytay s
In summary, the upper bound of f(z) is oo if

doytay A8 ), Al‘s otherwise. Therefore, we have

Ap—ag A2

The time complexity analysis of Algorithm 3 is omit-
ted, due to space limitation. O

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms through experimental simulations. We also
investigate the impact of important parameters on the per-
formance of the proposed algorithms.

7.1 Experiment Settings

We consider an SDN G = (SUV, E) consisting of from 10
to 250 nodes. We adopt a commonly used tool GT-ITM [8]
to generate network topologies. The number of data cen-
ters in each network is set at 10 percent of network size.
The computing capacity of each data center varies from
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Fig. 3. Performance of different algorithms with 3 data centers and with
delay constraints.

4,000 to 8,000 GHz [32]. The number of servers in each data
center is randomly drawn between 1,000 and 2,000. The
energy consumption of an idle server per second is drawn
between 100 and 200 watt [26] which is a constant; other-
wise, its energy consumption is determined by its energy
consumption rate n that is drawn within [0.5, 1.5] [20]. For
each data center, the unit energy price per hour in its loca-
tion is drawn from [15,50] per MWh [25], [31]. The band-
width capacity of each link varies between 2,000 and
20,000 Mbps [15], and the transmission delay on a link
varies from 2 to 5 ms [15]. The revenue accumulation
weights A; and A, are two constants randomly drawn
within [0.05,0.12] and [0.15,0.22] respectively, following
typical charges in Amazon EC2 [1]. The number of differ-
ent types of service function chains K is set at 10. The
bandwidth requirement of each type of service function
chain instance is set between 10 and 20 Mbps [6], and their
computing demand is set from 2 to 4 GHz [6], [19]. The
processing rate of each service function chain instance is
randomly drawn from 2 to 20 basic data packets per milli-
second [19]. For each generated request r;, two switch
nodes in S are randomly selected as its source s; and desti-
nation t;. The packet rate ¢; of each request r; is randomly
drawn from 1 to 10 packets/second [16]. Its end-to-end
packet delay constraint D; varies from 10 to 100 ms [19],
and its type of service function chain SFC*) is randomly
chosen from the K types. The value in each figure is the
mean of the results out of 50 SDN instances of the same
size. The running time of an algorithm is obtained on a
machine with 3.4 GHz Intel i7 Quad-core CPU and 16 GB
RAM. Unless otherwise specified, these parameters will be
adopted in the default setting.

7.2 Performance Evaluation of Online Algorithms

We refer to online algorithms Algorithms 2 and 3 for the
problem with and without end-to-end delays as algorithms
OLPM_Delay and OLPM_NDelay, respectively. We first
evaluate the performance of these two algorithms against
the optimal ILP solutions with and without delay con-
straints that are termed as algorithms ILP_Delay and
ILP_NDelay, respectively. We then evaluate the online
algorithms against two baseline heuristics: Linear_Delay
and Linear_NDelay which represent with and without
the end-to-end delay constraints, where for each request
rj, algorithms Linear_Delay and Linear_NDelay first
remove all nodes and links from G that do not have enough
residual resources to admit r;, and then assign each data
center node and each link in the resulting subgraph with a
weight of one. They finally find a (delay-constrained) short-
est path in the resulting subgraph from s; to ¢; via a data

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.30, NO.5, MAY 2019

£ 2

g 9e+03 Elet07

3 £1e+06 <ILP_NDelay ||
= 8e+03 1405 0ocOLPM_NDelay] |
E =aILP_NDeclay E

§ 7e+03 oOLPM_NDelay| { 51604 W

1e+03
800 1200 1600 2000 2400 800
number of requests

1200 1600 2000 2400
number of requests

(a) The accumulated profit (b) The running time
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out delay constraints.

center v € V without (with) the end-to-end delay constraint
on the request.

We now evaluate the performance of algorithms OLPM_
Delay and OLPM_NDelay against the optimal solutions of
algorithms ILP_Delay and ILP_NDelay, by varying the
number of requests from 800 to 2,400 while fixing the num-
ber of data centers at 3. Fig. 3 depicts the total profits and
running times of different algorithms.

We can see from Fig. 3a that algorithm OLPM_Delay
achieves a near optimal profit, i.e., it achieves at least
88.3 percent of the performance compared with the optimal
solution delivered by algorithm ILP_Delay. For example,
algorithm OLPM_Delay can achieve 93.1 percent of the opti-
mal profit delivered by algorithm ILP_Delay when the
number of requests is no more than 1,200; and it achieves
88.3 percent of the optimal profit for 2,400 requests. It can
be seen from Fig. 3b that algorithm ILP_Delay takes a pro-
hibitively long time, while algorithm OLPM_Delay only
takes a small fraction of the running time of algorithm
ILP_Delay. Notice that with the increase on the number of
requests, algorithm ILP_Delay fails to deliver a solution
within a reasonable amount of time when the number of
requests reaches 2,400. The similar performance behaviors
can be observed between algorithms OLPM_NDelay and
ILP_NDelay too, which are illustrated in Figs. 4a and 4b,
respectively.

The rest is to evaluate the performance of algorithms
OLPM_Delay and OLPM_NDelay against their correspond-
ing benchmark heuristics Linear_Delay and Linear_
NDelay, respectively, for a set of 10,000 requests, by
varying the number of nodes from 10 to 250 while keeping
the other parameters fixed, ie., « = f=2n, oy = (n —1)-
pmin/lomax/ andoy =n— 1.

Fig. 5 demonstrates the performance behaviors of the
mentioned algorithms. From Figs. 5a and 6a, we can see that
both algorithms OLPM_Delay and OLPM_NDelay outper-
form their benchmark counterparts: algorithms Linear_
Delay and Linear_NDelay. Specifically, algorithm
OLPM_Delay outperforms algorithm Linear_Delay, and

= ccOLPM_Delay @ oeOLPM_Delay|
§4e+04 soLinear_Delay 536+05 soLinear_Delay
[}

g derte 296405
= 2e+04 o
E 2 1e+05
3 le+04 E
g =

0 0

10 50 100 150 200 250 10 50 100 150 200 250

network size n
(b) The running time

network size n
(a) The accumulated profit

Fig. 5. Performance of different online algorithms by varying network
size from 10 to 250 and with delay constraints.
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Fig. 6. Performance of different online algorithms by varying network
size from 10 to 250 without delay constraints.

the performance gap between them becomes larger and
larger with the increase in network size. As shown in Fig. 5a,
algorithm OLPM_Delay delivers 48.2 percent more profits
than that by algorithm Linear_Delay when the network
size is set at 250. The similar performance can be observed by
algorithm OLPM_NDelay against algorithm Linear_NDe-
lay too. In particular, as shown in Fig. 6a, the accumulated
profit delivered by algorithm OLPM_NDelay is 45.4 percent
more than that by algorithm Linear_ NDelay when
n = 250.

The rationale is that both algorithms OLPM_Delay and
OLPM_NDelay assign higher usage weights to over-utilized
resources while assigning lower usage weights to under-
utilized resources, thus the resources in the network can be
fully utilized to meet the demands of user requests, thereby
achieving higher profits. In contrast, both algorithms
Linear_Delay and Linear_NDelay do not take into
account the utilization of resources, thus the resource usage
on some data centers and links are overloaded. Fig. 5b depicts
the running time curves of algorithms OLPM_Delay and
Linear_Delay, where algorithm Linear_Delay takes less
time than algorithm OLPM_Delay in all network sizes. The
similar results on the running time of algorithms OLPM_
NDelay and Linear_NDelay can also be seen in Fig. 6b.

7.3 Parameter Impact on the Algorithm Performance
In the following, we first evaluate the impact of the admis-
sion control threshold parameters o, and o, on the perfor-
mance of algorithms OLPM_Delay and OLPM_NDelay.
Fig. 7 plots their performance curves with and without the
admission control thresholds, from which it can be seen that
both of them deliver less profits if no admission control pol-
icy is applied. With the increase in network size n, the per-
formance gap of algorithm OLPM_Delay with and without
the admission control thresholds becomes larger as shown
in Fig. 7a. For instance, the ratio of the profit delivered by
algorithm OLPM_Delay with and without the admission
control grows from 1.18 to 1.59 when n =10 and 250

- 01 = -1 /| =4e+04 [ o, =(n-1
2 sev04 o220 PP g e LT
& 060, =G, = o / S.3e+04 000, =G, =00
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Fig. 7. The accumulated profit delivered by OL.PM_Delay and OLPM_N-
Delay with thresholds o1 = (n — 1) - i/ Pimass 02 = n — 1, and without
the thresholds oy = 0y = co whena = 8 = 2n.

1155
g ool T = 16 £ 8406 [T max = 16
sa = sa =

£ 60406 oo T max = & g e man = 8
= +T.max =4 = 6e+06 HT.max =4
£ 4e+06 T.max =2 2 max =2
< <
é ?E¢4 e+06
5 2e+06 3 2e+06
] ]
< <

0 0

50 100 150 200
timeslot

50 100 150 200
timeslot

(b) The accumulated profit by
algorithm OLPM_NDelay

(a) The accumulated profit by
algorithm OLPM_Delay

Fig. 8. The accumulated profit of online algorithms OLPM_Delay, and
OLPM_NDelay with different maximum durations of requests when the
network size is 200.

respectively. This is due to that the distance between the
source and the destination of a request can be very long in a
large network, thus consuming much more bandwidth
resource for routing its data traffic. Under the admission
control policy, algorithm OLPM_Delay is able to reject those
requests beyond the given threshold, thereby enabling to
admit future requests and achieving higher profits. The per-
formance gap of algorithm OLPM_NDelay with and without
the admission control is similar to the one of algorithm
OLPM_Delay with and without the admission control, as
shown in Fig. 7b.

We then evaluate the impact of the maximum duration
Tonax of request implementation on the performance of algo-
rithms OLPM_Delay and OLPM_NDelay in a network with
200 nodes, by varying T}, from 2 to 32. Assume that the
finite time horizon is slotted into equal time slots. The
request admissions and resource releases are performed in
the beginning of each time slot. The duration of each request
implementation is randomly drawn in [1,7,,,,]. The profit
collected by admitting a request r; is the duration of request
implementation in a data center times its profit p(r;) in a
single time slot. We consider a time horizon consisting of
200 time slots with up to 1,000 requests per time slot. From
Fig. 8a, it can be seen that the longer the maximum duration,
the more profits delivered by algorithm OLPM_Delay. The
similar performance of algorithm OLPM_NDelay can be
observed in Fig. 8b.

8 CONCLUSION

In this paper, we investigated the dynamic profit maximiza-
tion problem in distributed clouds by dynamically admit-
ting delay-aware requests with network function service
requirements, assuming that each request is admitted on a
pay-as-you-go basis, subject to various network resource
capacity constraints. We first proposed an ILP solution for
the offline version of the problem. We then developed an
online heuristic for the problem. We also devised an online
algorithm with a provable competitive ratio for a special
case of the problem where the end-to-end delay constraint
of each request can be negligible. We finally evaluated the
performance of the proposed algorithms through experi-
mental simulations. Experimental results demonstrate that
the proposed algorithms are promising.
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