
Throughput Maximization of NFV-Enabled
Multicasting in Mobile Edge Cloud Networks

Yu Ma , Weifa Liang , Senior Member, IEEE, Jie Wu , Fellow, IEEE, and Zichuan Xu ,Member, IEEE

Abstract—Mobile Edge Computing (MEC) reforms the cloud paradigm by bringing unprecedented computing capacity to the vicinity of

end users at the mobile network edge. This provides end users with swift and powerful computing and storage capacities, energy

efficiency, and mobility- and context-awareness support. Furthermore, Network Function Virtualization (NFV) is another promising

technique that implements various network functions for many applications as pieces of software in servers or cloudlets in MEC

networks. The provisioning of virtualized network services in MEC can improve user service experiences, simplify network service

deployment, and ease network resource management. However, user requests arrive dynamically and different users demand different

amounts of resources, while the resources in MEC are dynamically occupied or released by different services. It thus poses a

significant challenge to optimize the performance of MEC through efficient computing and communication resource allocations to meet

ever-growing resource demands of users. In this paper, we study NFV-enabled multicasting that is a fundamental routing problem in an

MEC network, subject to resource capacities on both its cloudlets and links. Specifically, we first devise an approximation algorithm for

the cost minimization problem of admitting a single NFV-enabled multicast request. We then develop an efficient algorithm for the

throughput maximization problem for the admissions of a given set of NFV-enabled multicast requests. We third devise an online

algorithm with a provable competitive ratio for the online throughput maximization problem when NFV-enabled multicast requests

arrive one by one without the knowledge of future request arrivals. We finally evaluate the performance of the proposed algorithms

through experimental simulations. Simulation results demonstrate that the proposed algorithms are promising.

Index Terms—Mobile edge-cloud networks (MEC), distributed resource allocation and provisioning, NFV-enabled multicast requests,

virtualized network function (VNF), VNF instance placement and sharing, service function chains (SFCs), throughput maximization,

Steiner tree problems, online algorithms

Ç

1 INTRODUCTION

MOBILE devices, including smart phones and tablets,
gain increasing popularity as communication tools

of users for their business, social networking, and per-
sonal entertainment. However, the computing, storage
and battery capacity of each of them is very limited, due
to their portal size. Leveraging by rich computing and
storage resources in clouds, mobile devices can offload
some of their tasks to clouds for processing and storage,
while the clouds usually are remote located from their
end users. Thus, the response delay to user requests
may not be tolerable for some real-time applications.
Instead, a new network paradigm, Mobile Edge Comput-
ing (MEC) is emerged, which can provide cloud-comput-
ing capability at the edge of core network in the
proximity of mobile users [1]. MEC can significantly
shorten the response delay to user applications, ensure

highly efficient network operation and service delivery,
and improve user experience of using the services, which
is an ideal platform to meet ever-growing resource
demands of mobile users for their applications, by
enhancing mobile device capabilities with a real-time
manner [22]. On the other hand, Network Function Vir-
tualization (NFV) [21], has been envisaged as another
promising technique to the next-generation networking
that enables fast service deployment and cost-effective
yet error-free service provisioning in future communica-
tion networks. It replaces resource demanding service
applications from expensive, dedicated hardware-mid-
dleboxes, by software implementation in generic servers
or cloudlets, where each network function is virtualized
as a virtualized network function instance that runs in a
virtual machine in a cloudlet.

Although implementing network functions as VNF instan-
ces in MEC is a promising technology, admitting NFV-
enabled multicast requests in MEC poses several challenges.
First, both computing and storage resources at cloudlets and
communication resources at links in an MEC are very limited
in comparisonwith its counterpart—the powerful centralized
data center networks (clouds). It is of paramount importance
to optimize the performance of an MEC network through
judicious allocating its limited resources tomeet user resource
demands. Second, each NFV-enabled multicast request has a
service function chain requirement, how to steer the data traf-
fic of the request to go through each network function in its

� Y. Ma and W. Liang are with the Research School of Computer Science,
The Australian National University, Canberra, ACT 2601, Australia.
E-mail: yu.ma@anu.edu.au, wliang@cs.anu.edu.au.

� J. Wu is with the Department of Computer and Information Sciences,
Temple University, 1925N 12th Street, Philadelphia, PA 19122.
E-mail: jiewu@temple.edu.

� Z. Xu is with the School of Software, Dalian University of Technology,
Dalian 116020, China. E-mail: z.xu@dlut.edu.cn.

Manuscript received 16 May 2019; revised 29 July 2019; accepted 19 Aug.
2019. Date of publication 26 Aug. 2019; date of current version 26 Dec. 2019.
(Corresponding author: Weifa Liang.)
Recommended for acceptance by Jianfeng Zhan.
Digital Object Identifier no. 10.1109/TPDS.2019.2937524

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020 393

1045-9219� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4903-8352
https://orcid.org/0000-0003-4903-8352
https://orcid.org/0000-0003-4903-8352
https://orcid.org/0000-0003-4903-8352
https://orcid.org/0000-0003-4903-8352
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0002-3472-1717
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
https://orcid.org/0000-0001-5438-1468
mailto:
mailto:
mailto:
mailto:

service function chain correctly? Third, the service chain
implementation may either share some existing network
function instances with the other requests or instantiate new
VNF instances. How to make such a decision to minimize the
admission cost of the request? Finally, how to maximize the
network throughput by admitting or rejecting each arrived
request immediately if requests arrive one by one without the
knowledge of future request arrivals? In this paper, we will
address the aforementioned challenges.

The novelties of the work in this paper are as follows. We
study NFV-enabled multicast request admissions in MEC,
and formulate three novel optimization problems that
explore VNF instance placement and sharing among differ-
ent multicast requests. We strive for the finest tradeoff
between the usages of computing and bandwidth resources
to maximize the network throughput while minimizing
the accumulative admission cost of admitted requests. We
devise the very first approximation algorithm for a single
NFV-enabled multicast request admission with the objective
to minimize its admission cost, and an efficient heuristic
algorithm for the admissions of a set of NFV-enabled multi-
cast requests. Furthermore, we also consider the dynamic
admissions of NFV-enabled multicast requests by develop-
ing an online algorithm with a provable competitive ratio
for it. The key ingredients in the development of these pro-
posed algorithms lie in (a) dynamically determining the use
of existing VNF instances or instantiating new VNF instan-
ces for each request admission; and (b) determining the
admission order of a given set of requests as admitted
requests will heavily impact the admissions of future
requests, due to the availability of the demanded resources
and whether existing VNF instances can be shared by future
requests.

The main contributions of this paper are summarized as
follows. We study the NFV-enabled multicast request admis-
sions in a mobile edge-cloud network with the aim to either
minimize the request admission cost, or maximize the net-
work throughput for a set of requests or a sequence of
requests arriving one by one without the knowledge of future
arrivals, subject to both computing and bandwidth resource
capacities on cloudlets and links in the network. We first pro-
pose an approximation algorithm for the cost minimization
problem of a single NFV-enabled multicast request admis-
sion. We then develop an efficient heuristic for a set of NFV-
enabled multicast request admissions, by reducing the prob-
lem to the single NFV-enabled multicast request admission.
We third consider dynamic NFV-enabled multicast request
admissions by devising an online algorithm with a provable
competitive ratio. We finally evaluate the performance of the
proposed algorithms through experimental simulations. The
simulation results reveal that the proposed algorithms are
very promising.

The rest of the paper is organized as follows. Section 2
conducts literature review. Section 3 introduces notions,
notations, and problem definitions. Section 4 devises an
approximation algorithm for the cost minimization problem
of a single NFV-enabled multicast request admission.
Section 5 develops an efficient heuristic for the throughput
maximization problem of a group of NFV-enabled multicast
request admissions. Section 6 devises an online algorithm
for dynamic NFV-enabled multicast request admissions.

Section 7 evaluates the proposed algorithms empirically,
and Section 8 concludes the paper.

2 RELATED WORK

As a key-enabling technology of 5G, MEC networks have
gained tremendous attentions by the research community
recently. There are extensive studies of user unicast and
multicast request admissions through resource provisioning
in MEC networks [3], [5], [6], [8], [11], [12], [19]. For exam-
ple, Jia et al. [9] considered the assignment of user requests
to different cloudlets in a Wireless Metropolitan Area Net-
work with the aim to minimize the maximum delay among
offloaded tasks, by developing heuristics for the problem.
Ceselli et al. [3] focused on the design optimization such as
the VM placement and migration, and user request assign-
ment, by formulating a Mixed Integer Linear Programming
(MILP) solution and heuristic algorithms for the problem.
Xia et al. [23] investigated opportunistic task offloading
under link bandwidth, residual energy in mobile devices,
and cloudlet computing capacity constraints.

All the aforementioned studies assumed that each task
will be allocated with dedicated computing resource, and
there is no consideration of utilizing existing VNF instances
to serve new tasks. However, many requests usually demand
the same type of services. If the VNF instance of a specified
service has already been instantiated with sufficient residual
processing capacity, the other tasks that request for the ser-
vice canmake use of the VNF instance. Several recent studies
explored the placement and sharing of VNF instances [8],
[12], [27]. For example, Jia et al. [12], [27] studied a novel task
offloading problem in an MEC network, where each offload-
ing task requests a network function servicewith amaximum
tolerable delay requirement. They aimed at maximizing the
number of requests admitted while minimizing their admis-
sion cost, for which they proposed an efficient online algo-
rithm. He et al. [8] studied the joint service placement and
request scheduling in order to optimally provision edge serv-
ices while taking into account the demands of both sharable
and non-sharable resources. They aim to maximize the net-
work throughput, for which they showed that this joint opti-
mization problem is NP-hard and then developed heuristic
algorithms.

There are several studies of NFV-enabled multicasting in
MEC environments [2], [12], [26]. For example, Zhang
et al. [29] investigated the NFV-enabledmulticasting problem
in SDNs. They assumed that there are sufficient computing
and bandwidth resources to accommodate all multicast
requests, for which they provided a 2-approximation algo-
rithm if only one server is deployed. In reality, it is not uncom-
mon that both computing and bandwidth resources in MEC
are limited, which need to be carefully allocated. Further-
more, they did not consider dynamic admissions of NFV-
enabled multicast requests, which is much complicated com-
pared with the problem of admitting a single or a set of given
requests. Xu et al. [26] studied the cost minimization problem
of admitting a single NFV-enabled multicast request, where
the implementation of the service chain of each request will
be consolidated into a single cloudlet. Xu et al. [28] recently
considered the admissions ofNFV-enabledmulticast requests
with QoS constraints in MEC by proposing approximation

394 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

and heuristic algorithms for the problem. Ma et al. [17], [18]
considered the profit maximization problem in MEC by
dynamically admitting NFV-enabled unicast requests with
QoS requirements, for which they developed an efficient heu-
ristic, and an online algorithm with a provable competitive
ratio if the QoS requirement can be ignored. Although they
considered the sharing of existing VNF instances among dif-
ferent unicast requests, the problem of NFV-enabled unicast
request admissions in [13], [17], [18] is a special case of the
problem of NFV-enabled multicast request admissions where
the destination set contains only one node. The essential dif-
ferences of the study in this paper from thesementioned stud-
ies [12], [26], [27], [29] are (i) the VNF instances of the service
chain of eachNFV-enabledmulticast request in this paper can
be placed to multiple cloudlets, not just one cloudlet in the
previous studies; and (ii) the sharing of existing VNF instan-
ces among different multicast requests has not been explored,
this exploration makes the problem become more challeng-
ing. It is mentioned that this paper is an extended version of a
conference paper in [16].

3 PRELIMINARIES

In this section, we first introduce the system model, notions
and notations, and then define the problems precisely.

3.1 System Model

We consider a mobile edge cloud (computing) network
(MEC) in a metropolitan region that is modelled by an undi-
rected graph G ¼ ðV;EÞ, where V is a set of access points
(APs) located at different locations in a metropolitan region,
e.g., shopping centers, airports, restaurants, bus stations,
and hospitals. A cloudlet is co-located with each AP node
v 2 V via a high-speed optical cable. This implies that the
communication delay between them is negligible due to
plenty of bandwidth on the cable. For simplicity, each AP
node and its co-located cloudlet will be used interchangeably
if no confusion arises. Each cloudlet has computing capacity
Cv for implementing various virtualized network functions
(VNFs).E is the set of links between APs. Each link e 2 E has
a bandwidth capacityBe. We assume that each AP node cov-
ers a certain area, in which each mobile user can access the
MEC service wirelessly through the AP. In case a mobile

user located at an overlapping coverage region of multiple
APs, the mobile user can connect to its nearest AP or the AP
with the strongest signal strength. Fig. 1 is an example of an
MEC network.

3.2 NFV-Enabled Multicast Requests with Service
Function Chain Requirements

Consider an NFV-enabled multicast request rj ¼ ðsj;Dj; rj;

SFCjÞ that transmits its data traffic from the source node

sj 2 V to the given set Dj � V of destination nodes with a
specified packet rate rj. Each packet in the data traffic

stream must pass through the sequence of network func-

tions of its service function chain SFCj ¼ hfj;1; . . . ; fj;l; . . . ;
fj;Lj
i before reaching each of the destinations, where Lj is

the length of the service function chain. We assume that a
unit packet rate of rj requires bandwidth resource be in a
link e 2 E, thus, the total amount rj � be of bandwidth
required for request rj in link e.

We assume that resources in cloudlets are virtualized,
using container-based lightweight virtualization technolo-
gies, and thus can be allocated and shared flexibly. Each
instance of a virtualized network function (VNF) is a virtual
machine in a cloudlet. Without loss of generality, we assume
that different types of VNFs among all service function
chains of requests can be classified into K types. Denote by

fðkÞ andCðf ðkÞÞ the VNF of type k and the amount of comput-

ing resource consumed for its implementation in a cloudlet,

respectively, 1 � k � K. Suppose each VNF instance of f ðkÞ

has a maximum processing capacity mðkÞ. Furthermore, if the
residual processing capacity of an existing VNF instance is
sufficient to process the data traffic of a newly admitted
request, this VNF instance can be shared by the request. Oth-
erwise, a new VNF instance for the request needs to be
instantiated in a cloudlet with sufficient residual computing
resource in order to admit the request.

To admit anNFV-enabledmulticast request rj, each packet
of its data traffic is enforced to go through a VNF instance of

each network function in its SFCj prior to reaching each of

the destinations inDj. Denote by T ðjÞ the pseudo-multicast tree

that transmits the data traffic of request rj from the source sj
to the destinations in Dj, where a pseudo-multicast tree [25] in
fact may be a graph, not a tree. A pseudo-multicast tree is a
directed pseudo-steiner tree which starts from a source node
and reaches each node in a destination set. However, due to
the availability of some cloudlets in the MEC (i.e., be able to
accommodate the VNF instances with sufficient resources),
each cloudlet node and physical link of the network may
appear multiple times in the pseudo-multicast tree. Fig. 2 is
an example to illustrate the admission of an NFV-enabled
multicast request, where for each network function fj;l in the
service function chain SFCj, either an existing VNF instance
(with sufficient residual processing capacity) is selected or a
newVNF instance is instantiated in a cloudlet fj;l in each path
from the source node sj to each destination node in Dj, and
these VNF instances can be placed at different cloudlets.

3.3 Admission of an NFV-EnabledMulticast Request

The admission cost of an NFV-enabled multicast request in
an MEC network is the sum of three constituent costs: the
VNF instance processing cost for processing its data packets,

Fig. 1. An illustrative example of an MEC network consisting of 6 APs
with each co-located with a cloudlet.

MA ET AL.: THROUGHPUT MAXIMIZATION OF NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUD NETWORKS 395

the VNF instance instantiation cost for instantiating new
VNF instances in cloudlets, and the bandwidth cost for rout-
ing its data traffic along links in its pseudo-multicast tree.
Instantiating VNF instances at cloudlets consumes both com-
puting and storage resources of the cloudlets, thus incurs the

VNF instantiation cost. Denote by cinsðf ðkÞ; vÞ the instantia-

tion cost of a VNF instance of network function f ðkÞ in a

cloudlet v, and rj � cprocðfðkÞ; vÞ the processing cost of data

traffic of a request rj at a VNF instance of f ðkÞ at cloudlet v,

where cprocðf ðkÞ; vÞ is the cost of processing a packet by a VNF

instance fðkÞ at cloudlet v and rj is the packet rate of rj. Notice

that the processing cost cprocðf ðkÞ; vÞ of a data packet of differ-
ent VNF instances at different cloudlets may be significantly
different, since different VNF instances consume different
amounts of computing resources and different cloudlets
have different amounts of energy consumptions. In addition,
each packet of the data traffic of request rj is routed along a

pseudo-multicast tree T ðjÞ that incurs the communication

cost rj �
P

e2T ðjÞ ce, where ce is the unit transmission cost on

link e 2 E, and
P

e2T ðjÞ ce is the cost of transferring a packet

along the pseudo-multicast tree T ðjÞ.

3.4 Problem Definitions

In this paper, we consider three NFV-enabled multicast
request admission problems in a mobile edge cloud net-
work G, which are defined as follows.

Definition 1. Given an MEC network G ¼ ðV;EÞ with a set V
of cloudlets (or APs), each v 2 V has computing capacity Cv,
let Be be the bandwidth capacity of each link e 2 E, assuming
that the previous j� 1 NFV-enabled multicast requests have
been responded (admitted or rejected), consider an incoming
NFV-enabled multicast request rj ¼ ðsj;Dj; rj; SFCjÞ, the

cost minimization problem of admitting request rj is to find
a pseudo-multicast tree T ðjÞ in G to route its data traffic from
the source node sj to each destination node in Dj while each
packet in the data traffic must pass through each VNF instance
in the service function chain SFCj, such that its admission cost
is minimized, subject to computing and bandwidth capacities
on both cloudlets and links of G.

Definition 2. Given an MEC network G ¼ ðV;EÞ with a set V
of cloudlets, each v 2 V has computing capacity Cv, and each
link e 2 E has bandwidth capacity Be. Let R ¼ frj ¼ ðsj;Dj;

rj; SFCjÞ j 1 � j � jRjg be a given set of NFV-enabled multi-
cast requests, the throughput maximization problem in G is to
maximize the number of requests in R admitted while minimiz-
ing the cost sum of their admissions, subject to computing and
bandwidth capacities on both cloudlets and links of G.

Definition 3. Given an MEC network G ¼ ðV;EÞ with a set V
of cloudlets, each v 2 V has computing capacity Cv, and each
link e 2 E has bandwidth capacity Be. Let r1; r2; . . . ; rj be a
sequence of NFV-enabled multicast requests that arrive one by
one without the knowledge of future request arrivals, the
online throughput maximization problem in G is to maximize
the number of requests admitted, subject to computing and
bandwidth capacities on both cloudlets and links of G.

3.5 NP Hardness of Problems

In the following we show that all the three defined optimi-
zation problems are NP-hard. Since the online version is a
general version of the offline version of a set of request
admissions. If the offline version is NP-hard, its online ver-
sion is NP-hard too. We thus only show the NP-hardness of
the first two problems as follows.

Theorem 1. The cost minimization problem in G is NP-hard.

Proof. We show the NP-hardness of the cost minimization
problem by a reduction from an NP-hard problem—the
directed Steiner tree problem that is defined as follows.
Given a directed weighted graph G ¼ ðV;AÞ with a set V
of vertices and a set A of arcs, a specified node s 2 V as
the root, and a set of destinations D � V , each arc a 2 A
has a weight wa, the objective is to find a minimum cost
directed tree rooted at s and spanning all the vertices in
D, i.e., there is a directed path from s to every vertex inD.

We show that an instance of the directed Steiner tree
problem can be reduced to an instance of the cost mini-
mization problem. Specifically, the root s 2 V corre-
sponds to the source sj of multicast request rj, and a set
of destinations D � V corresponds to the set of destina-
tion nodes of rj. The multicast request rj has a service
function chain that consists of only one network function.
The VNF instance of the network function is deployed in
the cloudlet co-located with the source AP sj, and
assume that the processing cost of the VNF instance is 0.
The weight wa on each arc a 2 A corresponds to the com-
munication cost on the link. We aim to admit request rj
by routing its data traffic from the source sj to each desti-
nation in D so that the admission cost is minimized. It
can be seen that a solution to this cost minimization prob-
lem is a solution to the directed Steiner tree problem. The
theorem thus holds. tu

Theorem 2. The throughput maximization problem in G is
NP-hard.

Proof. We prove the NP-hardness of the throughput maxi-
mization problem by a reduction from an NP-hard prob-
lem—the knapsack problem that is defined as follows. Given
a bin with capacity B, a set I of items with each item i 2 I
having a specified size sðiÞ and a profit pðiÞ, the problem is

Fig. 2. An example of an NFV-enabled multicast request with a service
function chain that consists of three network functions: Network Address
Translation (NAT), Firewall (FW), and Proxy. Its data packet traffic flows
from the source node Source to a set of seven destination nodes. Each
packet must pass through one VNF instance of each of the three net-
work functions in the service function chain.

396 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

to pack a subset of items into the bin such that the total
profit is maximized, subject to the bin capacityB.

We show that an instance of the knapsack problem
can be reduced to an instance of the throughput maximi-
zation problem. Specifically, the bin B corresponds to a
cloudlet with capacity B, a set I of items corresponds to
a set of multicast requests to be admitted and processed
by their service function chain instances at the cloudlet.
Each multicast request i 2 I has a service function chain
with one virtualized network function. Each network
function instance for a multicast request i demands com-
puting resource sðiÞ, and the profit pðiÞ received is 1 if it
is admitted. We further assume that no VNF instance is
pre-installed in the cloudlet, and each link e 2 E has
unlimited bandwidth. We aim to admit a subset of
requests by creating VNF instances for them so that the
number of multicast requests admitted is maximized,
while the size of the cloudlet is bounded by its capacity
B. It can be seen that a solution to this special throughput
maximization problem is a solution to the knapsack
problem. The theorem thus holds. tu

3.6 Approximation and Competitive Ratios

A g-approximation algorithm for a minimization problem P1

is a polynomial time algorithm A that delivers an approxi-
mate solution for P1 whose value is no more than g times
the optimal one for any instance of P1 with g > 1, where g

is termed as the approximation ratio of algorithm A.
Let OPT and S be an optimal solution of the offline ver-

sion of a maximization problem P2 and the solution deliv-
ered by an online algorithm A0 for the online version of P2.
The competitive ratio of the online algorithm A0 is � if S

OPT � �
for any instance I of problem P2 with 0 < � < 1.

4 AN APPROXIMATION ALGORITHM FOR THE

COST MINIMIZATION PROBLEM

In this section, we deal with the cost minimization problem
of a single NFV-enabled multicast request admission. We
first devise an approximation algorithm for the problem,
and then analyze its performance.

4.1 Algorithm Overview

Given an MEC G ¼ ðV;EÞ and an NFV-enabled multicast
request rj, we aim to minimize the admission cost of the
request by steering its data traffic from the source sj to the
set of destinations in Dj while each packet of the data traffic
must pass through a sequence of network functions in its
specified service function chain SFCj. To tackle the prob-
lem, it poses three challenges. One is the resource availabil-
ity in MEC. Whether request rj should be admitted or not is
determined by the availability of its demanded resources in
G; the other is which cloudlets should be identified to
implement which network functions of its SFCj; and finally,
whether new VNF instances will be instantiated or existing
VNF instances can be shared for the implementation of
SFCj must be made dynamically. It is essential to address
the aforementioned challenges in order to deliver a cost-
efficient solution to the problem.

The basic idea behind the proposed approximation algo-
rithm for the problem is reducing it to the directed multicast

tree problem in an auxiliary, directed acyclic graph. If there
is a multicast tree in the auxiliary graph rooted at the source
sj and spanning all destinations in Dj, then, request rj can
be admitted, otherwise, rj should be rejected due to lack of
sufficient resources to meet its resource demands. This
claim will be shown later in algorithm analysis. A pseudo-
multicast tree T ðjÞ in G [25] finally can be derived from the

multicast tree T 0ðjÞ in the auxiliary graph for the implemen-
tation of request rj.

4.2 Approximation Algorithm

Given an NFV-enabled multicast request rj, we can either
make use of existing network function instances as long as
their residual processing capacities are sufficient to admit
the request. Or if there is sufficient available computing
resource in a cloudlet, a new instance for the requested type
of network function can be instantiated in the cloudlet.
Thus, there are multiple candidate instances for each net-
work function fj;l in its service function chain SFCj in G to
be dynamically determined with 1 � l � Lj.

Denote by �ðj; lÞ ¼ k the type of network function which

is the lth network function fj;l in SFCj of request rj with

1 � k � K and 1 � l � jSFCjj, and denote by F ðkÞv the set of

VNF instances of type k instantiated in cloudlet v. Let mre
i be

the residual processing capacity of VNF instance i 2 F ðkÞv .

Let Cre
v be the residual computing capacity of cloudlet

v 2 V . Denote by Nl;v the set of VNF instances that can be
employed as the lth network function fj;l in SFCj in cloudlet
v, including both existing network function instances with
sufficient residual processing capacities, i.e., mre

i � rj with

i 2 F ð�ðj;lÞÞv , as well as a new VNF instance i0 to be created

providing sufficient computing resource in cloudlet v, i.e,

Cre
v � Cðf ð�ðj;lÞÞÞ. Then, Nl is the set of VNF instances that

can be employed as the lth network function fj;l in SFCj

among all cloudlets in V , i.e., Nl ¼ [v2V Nl;v. We assume that

the number of VNF instances of the same type in each

cloudlet is a small constant. To this end, we construct an

auxiliary, directed acyclic graph G0j ¼ ðV 0j ; E0jÞ for request rj
from G as follows.

Let G0 be a subgraph graph of G after removing each link
from G if the residual bandwidth of the link is less than
rj � be. The node set V 0j of G0j is the union on sets Nl of VNF

instances with 1 � l � Lj, with the source node sj, the desti-

nation node set Dj of multicast request rj, i.e., V 0j ¼
[Lj

l¼1Nl [fsjg [Dj. To ensure that the network functions of

SFCj ¼ hfj;1; . . . ; fj;l; . . . ; fj;Lj
i are traversed in order, we

add a directed edge from a node x 2 Nl�1 to each node

y 2 Nl with 2 � l � Lj if there is a shortest path in graph G0

between x and y, and the weight wðx; yÞ assigned to the
directed edge is the sum of the communication cost along the
shortest path in G0 between the cloudlets implementing
VNF instances x and y and the processing and VNF instance
instantiation cost of network function y. Notice that if the
VNF instance is an existing one, its instantiation cost is 0;
and if the two network functions x and y reside in the same
cloudlet, their communication cost is 0. We then add a
directed edge from sj to each node y 2 N1 if such a shortest
path in G0 exists, and the weight assigned to the edge is the

MA ET AL.: THROUGHPUT MAXIMIZATION OF NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUD NETWORKS 397

sum of the communication cost along the shortest path and
the processing and VNF instance instantiation cost of net-
work function y. Also, we add a directed edge from each
node x 2 NL to a node y 2 Dj, and set the communication
cost along the shortest path from a cloudlet that implements
network function x to the AP node y as its weight if such a

shortest path in G0 exists. Thus, E0j ¼ [
Lj

l¼2fhx; yi j x 2 Nl�1;

y 2 Nlg [fhsj; yi j y 2 N1g [fhx; yi j x 2 NLj
; y 2 Djg.

To ensure that a multicast request can be admitted with-
out violating computing capacity of any cloudlet, it must be
mentioned that we here adopt a conservative request admis-
sion strategy. That is, only if the residual computing capacity
of a cloudlet is sufficient to accommodate all necessary VNF
instance instantiating (any VNF instances in its SFCj), it can
be allowed to create new VNF instances for request rj. Fig. 3
shows the construction of graph G0j for request rj after the
first j� 1NFV-enabled multicast requests have been consid-
ered. Notice that if there is a shortest path between a VNF
instance hosted in cloudlet u 2 V and another VNF instance
hosted in cloudlet v 2 V , there will be a shortest path
between any pair of VNF instances hosted in these two
cloudlets, respectively. For simplicity, we use an edge in the
graph to represent a set of edges between each pair of VNF
instances residing in the two cloudlets, respectively.

Having constructed graph G0j, the cost minimization

problem of the admission of request rj is reduced to find a

directed multicast tree T 0ðjÞ in G0j rooted at sj and spanning
all nodes in Dj, such that the weighted sum of the edges in
T 0ðjÞ is minimized. Notice that the cost cðT 0ðjÞÞ is the mini-
mum admission cost of request rj in G. This is the classic
directed Steiner tree problem, which is NP-hard. There is an
approximate solution within jDjj� times of the optimal
one [4], where � is a constant with 0 < � � 1. The value
choice of � reflects a tradeoff between the solution accuracy
and the running time to obtain the solution. If the multicast

tree T 0ðjÞ in G0j rooted at sj and spanning all destinations in

Dj does exist, a pseudo-multicast tree T ðjÞ in G rooted at sj

and spanning all nodes in Dj can then be derived. Specifi-
cally, we replace each directed edge in the multicast tree
T 0ðjÞ by a set of edges in its corresponding shortest path inG.
The detailed description of the algorithm for the cost minimi-
zation problem is given in Algorithm 1.

Algorithm 1. Finding a Minimum-Cost Pseudo-Multi-
cast Tree in G for Request rj

Input: An MEC network G ¼ ðV;EÞ with a set V of cloudlets.
Assume that the first j� 1 NFV-enabled multicast
requests have been considered, and some VNF instances
have been instantiated for the admissions of requests.
Now consider an NFV-enabled multicast request rj ¼
ðsj;Dj; rj; SFCjÞ.

Output: Admit or reject request rj, and if rj is admitted, a
pseudo-multicast tree T ðjÞ in Gwill be delivered.

1: A subgraph G0 is obtained by removing all edges from G
whose residual bandwidth is strictly less than rj � be;

2: Compute all pairs shortest paths in G0 between each pair of
AP nodes;

3: Construct the auxiliary directed acyclic graph G0j ¼ ðV 0j ; E0jÞ
from G, and assign a weight on each edge in E0j;

4: Find an approximate multicast tree T 0ðjÞ in G0j rooted at sj
and spanning all nodes in Dj, by applying the approxima-
tion algorithm on G0j due to Charikar et al. [4];

5: if T 0ðjÞ in G0j exists then
6: A pseudo-multicast tree T ðjÞ in G is derived, by replac-

ing each edge in T 0ðjÞ with the edges of its correspond-
ing shortest path in G;

7: If a selected VNF instance is to be instantiated, create a
new VNF instance in its cloudlet;

8: Update residual resource capacities of links, cloudlets,
and VNF instances in G;

9: else
10: Reject request rj.
11: end if

4.3 Algorithm Analysis

In the following, we show the correctness of the proposed
algorithm, Algorithm 1, and analyze its approximation
ratio and time complexity.

Lemma 1. An NFV-enabled multicast request rj is admissible in

G if and only if there is a multicast tree T 0ðjÞ in graph G0j
rooted at sj and spanning all nodes inDj.

Proof. We first show that if there is a multicast tree T 0ðjÞ in
G0 rooted at sj and spanning all nodes inDj, there is a fea-
sible solution to the cost minimization problem for

request rj in G. It can be seen that G0j contains Lj þ 2

layers with source sj in layer 0 and all destination nodes

in Dj in layer Lj þ 1. Thus, for each destination node

d 2 Dj, there is a directed path in G0j from sj to d that goes

through a node in each layer, which implies that each
packet of request rj will be processed by either an existing
VNF or a newly instantiated VNF of the network function
in that layer, and the segment of the routing path in G
that corresponds a directed edge in G0j has sufficient com-
munication bandwidth to meet the requirement of data
traffic of rj in G. Thus, the solution delivered is a feasible
solution.

Fig. 3. The auxiliary directed acyclic graph G0j for NFV-enabled multicast
request rj consists of Lj þ 2 layers from left to right, where layer 0 is the
source node sj and layer Lj þ 1 contains all destination nodes in Dj.
Each layer l with 1 � l � Lj, consists of the VNF instances of type �ðj; lÞ
that can be deployed to process the data traffic of request rj in some of
the cloudlets v 2 V , and if there is sufficient residual computing resource
in a cloudlet, a new VNF instance of that type can be instantiated in
cloudlet v as well.

398 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

We then show that if there does not exist a multicast
tree T 0ðjÞ in G0j rooted at sj and spanning all nodes in Dj,
then request rj is inadmissible and should be rejected,
i.e., there is not sufficient resources in G to admit the
request. Assume that a destination node d 2 Dj is not
reachable from sj (or d is not contained in T 0ðjÞ). Assume
that node vl in layer l is the smallest layer from which d is

reachable in G0j with 1 � l � Lj, this implies that there is

not any directed edge from any node in layer l� 1 to

node vl in layer l. Following the construction of G0j, there

are three possibilities for absence of any such an edge: (1)
among all cloudlets in G, either none of them has suffi-
cient computing resource to instantiate a new VNF for
fj;l 2 SFCj; or (2) all existing VNF instances of fl;j in

these cloudlets have less residual processing capacities

for fj;l; or (3) there is not any path in G0 from any node in

layer l� 1 to a node (cloudlet) in layer l due to the lack
of communication bandwidth to meet the bandwidth
requirement of rj. In other words, it is lack of sufficient
resources in G to meet the resource demands of rj, thus,
it will be rejected. tu

Theorem 3. Given an MEC network G ¼ ðV;EÞ with a set V of
APs that each is attached a cloudlet, and an NFV-enabled multi-
cast request rj ¼ ðsj;Dj; rj; SFCjÞ, there is an approximation
algorithm, Algorithm 1, for the cost minimization problem
with an approximation ratio of jDjj�. The algorithm takes

OððLj � jV jÞ
1
�jDjj

2
� þ jV j3Þ time, where Lj (¼ jSFCjj) is the

length of SFCj of request rj, and � is a constant with 0 < � � 1.

Proof. The solution obtained by the proposed algorithm
Algorithm 1 is feasible, which has been shown by
Lemma 1. In the following, we analyze the approximation
ratio of the proposed algorithm. The admission cost of
multicast request rj is the sum of (i) the VNF instance
processing cost; (ii) the VNF instance instantiation cost,
and (iii) the communication bandwidth usage cost. Each
packet of the data traffic of request rj is transferred from
the source node sj to each destination node in Dj while
passing through each VNF instance in its service function
chain SFCj. The sum of these three costs is assigned to
each directed edge in E0j. Thus, the cost of the minimum
Steiner tree T 0ðjÞ found in G0j rooted at sj and spanning
all nodes in Dj, is the minimum admission cost of rj in G.
Following [4], the approximation ratio of the proposed
algorithm for the cost minimization problem for a single
multicast request admission is jDjj�, where � is a constant
with 0 < � � 1.

We finally analyze the time complexity ofAlgorithm 1
as follows. Finding all pairs shortest paths in G0 between
each pair of AP nodes takes OðjV j3Þ time, by invoking the

well-known Floyd-Warshall algorithm. The construction

of the auxiliary directed acyclic graph G0j for each request

rj takesOðLj � jV jÞ time, since there are Lj þ 2 layers inG0j
and each each layer contains OðjV jÞ nodes, assuming

that the number of VNF instances of the same type in
each cloudlet is a small constant, i.e., Oð1Þ. Recall that

Lj ¼ jSFCjj. Finding an approximate multicast tree in G0j
for request rj takes time OðjV 0j j

1
�jDjj

2
�Þ, by applying the

ðjDjj�Þ-approximation algorithm due to Charikar et al. [4].

Thus, the running time of Algorithm 1 is OððLj � jV jÞ
1
� j

Djj
2
� þ jV j3Þwhere � is a constant with 0 < � � 1. tu

5 AN EFFICIENT ALGORITHM FOR THE

THROUGHPUT MAXIMIZATION PROBLEM

In this section, we deal with the throughput maximization
problem, by reducing the problem to the cost minimization
problem in the previous section.

5.1 Algorithm

The proposed algorithm proceeds iteratively. Within each
iteration, a request is admitted if its admission cost is the
minimum one among non-admitted requests. This proce-
dure continues until not any request can be admitted due to
the lack of resources to accommodate any of them.

Specifically, denote by U the set of non-admitted requests,
and costðrjÞ the admission cost of request rj 2 U which is the
cost of the multicast tree T 0ðjÞ constructed in the previous
section. Notice that if an NFV-enabled multicast request is
rejected by Algorithm 1 due to the violation of either all
computing capacities of cloudlets or bandwidth capacities of
links, its admission cost costðrjÞ is set as þ1. The request
then will be removed from the non-admitted request set U
for good. This claim can be proven easily. With more and
more request admissions, the resource utilization ratio in G
increases. If a request cannot be admitted at the current itera-
tion, there must be no sufficient resources to meet its
demands, and it cannot be admitted in any iteration in
future. The detailed algorithm for the throughput maximiza-
tion problem is described in Algorithm 2.

5.2 Time Complexity of the Proposed Algorithm

We now analyze the time complexity of Algorithm 2 for
the throughput maximization problem as follows.

Theorem 4. Given an MEC network G ¼ ðV;EÞ with a set V of
APs inwhich eachAP v is attached a cloudlet of computing capac-
ity Cv, and a set of NFV-enabled multicast requests R ¼ frj ¼
ðsj;Dj; rj; SFCjÞg, there is an algorithm, Algorithm 2, for
the throughput maximization problem, which takes OðjRj2�
ðLmax � jV jÞ

1
� jDmaxj

2
� þ jV j3Þ time, where Lmax is the maximum

length of all service function chains SFCj of any request rj with

1 � j � jRj, jDmaxj ¼ max1�j�jRjfjDjjg, and � is a constant

with 0 < � � 1.

Proof. The time complexity of Algorithm 2 is analyzed as
follows. Within each iteration, each multicast request in
the non-admitted request set U (¼ OðjRjÞ) is examined by
invoking Algorithm 1. There are at most OðjRjÞ itera-
tions, thus the running time of Algorithm 2 is OðjRj2�
ðLmax � jV jÞ

1
� jDmaxj

2
� þ jV j3Þ. Notice that all pairs shortest

paths in G between each pair of AP nodes is calculated

only once. tu

6 AN ONLINE ALGORITHM FOR THE ONLINE

THROUGHPUT MAXIMIZATION PROBLEM

In this section, we study the online throughput maximiza-
tion problem, where NFV-enabled multicast requests arrive
one by one without the knowledge of future request

MA ET AL.: THROUGHPUT MAXIMIZATION OF NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUD NETWORKS 399

arrivals. We first propose an online algorithm for the prob-
lem, through building a novel costmodel to capture dynamic
resource consumptions inG and performing resource alloca-
tions for request admissions based on the built cost model.
We then analyze the competitive ratio and time complexity
of the proposed online algorithm.

Algorithm 2. An Algorithm for the Throughput Maximi-
zation Problem

Input: Given an MEC network G ¼ ðV;EÞ, each cloudlet v 2 V
has computing capacity Cv and each link e 2 E has band-
width capacity Be, and a set of NFV-enabled multicast
requests R ¼ frj ¼ ðsj; Dj; rj; SFCjÞg.

Output: Maximize the network throughput while minimizing
the total admission cost of admitted requests, by deploy-
ing VNF instances in cloudlets and routing data traffic
along its pseudo-multicast tree in G for each admitted
request.

1: flag true;
2: admissionCost 0; /* the cost of all multicast request

admissions */
3: A ;; /* the set of admitted multicast requests */
4: U R; /* the set of non-admitted requests in R */
5: while flag do
6: cost þ1; /* record the minimum admission cost */
7: rmin ;; /* record the multicast request with the mini-

mum admission cost */
8: for request rj 2 U do
9: Calculate the admission cost costðrjÞ of request rj, by

invoking Algorithm 1;
10: if rj is rejected then
11: costðrjÞ þ1; /* reject request rj and its admission

cost is þ1 */
12: U U n frjg;
13: end if
14: if costðrjÞ < cost then
15: cost costðrjÞ; /* update local variable cost */
16: rmin rj; /* update local variable rmin */
17: end if
18: end for
19: if cost 6¼ þ1 then
20: admissionCost admissionCostþ cost;
21: A A [frjg;
22: Create new VNF instances if required by checking the

pseudo-multicast tree T ðjÞ of rj;
23: Update residual resource capacities of all involving

VNF instances, cloudlets, and links in G;
24: else
25: flag false;
26: end if
27: if flag then
28: U U n frming;
29: end if
30: end while
31: return admissionCost, A;

6.1 The Usage Cost Model of Resources

The basic idea behind the proposed online algorithm is to reg-
ulate an online admission control policy to respond to each
arrived NFV-enabled multicast request by either admitting
or rejecting it, depending on the availability of its demanded

resources and a given admission control policy. We still
make use of the auxiliary directed acyclic graph G0j as an
important data structure for the online throughput maximi-
zation problem. The weight assigned to each edge in G0j here
however is different from its weight in the previous section
that is defined as follows.

We here introduce a resource usage cost model to mea-
sure all different types of resource consumptions of each
VNF instance (processing capacity), each cloudlet (com-
puting resource), and each link (bandwidth resource)
when admitting requests. Given the dynamics of resource
demands of user requests and occupied resource releasing
in the network, there is a need of a cost model to capture
the dynamic consumptions of various resources in the net-
work in order to assist the admissions of future requests
and better utilize the resources. Intuitively, overloaded
resources usually have higher probabilities to be violated
by the resource demands of currently admitted requests,
due to the high dynamics of resource consumptions. This
eventually will affect the admissions of future requests.
Therefore, if a specific type of resource has been highly uti-
lized, it should be assigned a higher usage cost to reduce
its usage in future; otherwise, it should be assigned a
lower usage cost to encourage its usage in future.

The proposed online algorithm examines each incoming
NFV-enabled multicast request one by one. When request rj
arrives, the resource availabilities of the VNF instances of
network functions in its service chain, computing resources
in cloudlets, and bandwidth resources in links will deter-
mine whether it is admissible. Recall that F ðkÞv is the set of
existing VNF instances of type k in cloudlet v. If there is suf-
ficient computing resource in cloudlet v, a new VNF
instance of type k can be instantiated at it. For the sake of
convenience, assume that set F ðkÞv contains the newly instan-
tiated VNF instance of type k as well.

Denote by m
ðkÞ
v;i ðjÞ the residual processing capacity of the

VNF instance i 2 F ðkÞv of type k in cloudlet vwhen request rj

arrives with m
ðkÞ
v;i ð0Þ ¼ mðkÞ initially. If request rj is admitted

and its packets is processed by the VNF instance i, then

m
ðkÞ
v;i ðjÞ ¼ m

ðkÞ
v;i ðj� 1Þ � rj, otherwise, its residual computing

capacity does not change.
As for each network function in service function chain

SFCj of rj, a new VNF instance of it can be instantiated or
an existing VNF instance of it can be shared, a binary vari-

able xð�ðj;lÞÞv is introduced for each network function fj;l in

SFCj with 1 � l � jSFCjj ¼ Lj, where xð�ðj;lÞÞv is 1 if the lth

VNF instance is newly instantiated in cloudlet v; otherwise
0. Then, denote by CvðjÞ the residual computing capacity at

cloudlet v 2 V when request rj arrives with Cvð0Þ ¼ Cv

initially. If request rj is admitted and some VNF instances

are instantiated in cloudlet v, then CvðjÞ ¼ Cvðj� 1Þ�PLj

l¼1 Cðf ð�ðj;lÞÞÞ � xð�ðj;lÞÞv . Similarly, denote by BeðjÞ the resid-
ual bandwidth in link e 2 E when request rj arrives with

BeðjÞ ¼ Beðj� 1Þ � rj � be if request rj is admitted and

Beð0Þ ¼ Be.

To capture the resource usage of request rj, we use an

exponential function to model the cost W
ðkÞ
v;i ðjÞ of processing

packets of rj by the VNF instance i 2 F ðkÞv as follows,

400 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

W
ðkÞ
v;i ðjÞ ¼ mðkÞ a

1�
m
ðkÞ
v;i
ðjÞ

mðkÞ � 1

0
@

1
A; (1)

where a ð> 1Þ is a tuning parameter to be decided later,

and 1�
m
ðkÞ
v;i
ðjÞ

mðkÞ
is the processing capacity utilization ratio in

the VNF instance i when request rj is considered. Similarly,

the cost WvðjÞ of instantiating new VNF instances for

request rj at cloudlet v 2 V and the cost WeðjÞ of using

bandwidth resource at link e 2 B are defined, respectively,

WvðjÞ ¼ Cv b
1�CvðjÞ

Cv � 1

� �
; (2)

WeðjÞ ¼ Be g
1�BeðjÞ

Be � 1

� �
; (3)

where b ð> 1Þ and g ð> 1Þ are tuning parameters to be

decided later, and 1� CvðjÞ
Cv

and 1� BeðjÞ
Be

are the resource uti-

lization ratios in cloudlet v and link e, respectively, when

request rj is considered. In order to encourage the sharing

of VNF instances among multicast requests, we assume that

the cost of creating a new VNF instance is much higher than

the cost of processing capacity usage, i.e., b� a.

We then define the normalized usage cost v
ðkÞ
v;i ðjÞ of each

VNF instance i 2 F ðkÞv in cloudlet v for request rj as follows,

v
ðkÞ
v;i ðjÞ ¼W

ðjÞ
v;i ðjÞ=mðkÞ ¼ a

1�
m
ðkÞ
v;i
ðjÞ

mðkÞ � 1: (4)

Similarly, the normalized usage costsvvðjÞ at each cloudlet
v 2 V andveðjÞ at each link e 2 E for request rj are defined as
follows,

vvðjÞ ¼WvðjÞ=Cv ¼ b
1�CvðjÞ

Cv � 1; (5)

veðjÞ ¼WeðjÞ=Be ¼ g
1�BeðjÞ

Be � 1: (6)

Having defined the usage costs of different resources inG,
now consider the current incoming NFV-enabled multicast
request rj, we construct an auxiliary graph G0j ¼ ðV 0j ; E0jÞ
which is almost identical to the one for the cost minimization
problem. The difference lies in the weight assignment of
edges in G0j. Specifically, here the weight assigned to each
directed edge in E0j is the sum of the three normalized con-
stituent usage costs defined in (4), (5), and (6), respectively.
That is, each edge ðx; yÞ 2 E0j has a weight

wðx; yÞ ¼ vð�ðj;lÞÞv;y ðjÞ þ vvðjÞ þ
X

e2P ðu;vÞ
veðjÞ; (7)

assuming that x is a VNF instance in level l� 1 deployed in
cloudlet u, y is a VNF instance in level l deployed in cloudlet
v, P ðu; vÞ is a shortest path in G between cloudlets u and v.

To avoid admitting requests that consume too much
resources, thereby undermining the performance of the MEC,
we adopt the following admission control policy. If (i) the sum
of normalized usage costs of the VNF instances in its service
function chain is greater than a given threshold s1, i.e.,

P
v2VPLj

l¼1
P

i2F ð�ðj;lÞÞv
v
ð�ðj;lÞÞ
v;i ðjÞ > s1, where Lj ¼ jSFCjj; or (ii) the

sum of normalized usage costs of its VNF instantiations is

greater than another given threshold s2,
P

v2V vvðjÞ > s2; or
(iii) the sum of normalized usage costs of its bandwidth in
links is greater than the third threshold s3,

P
e2E veðjÞ > s3,

request rj will be rejected, where s1 ¼ s2 ¼ s3 ¼ n, and
n ¼ jV j. The detailed algorithm for the online throughput
maximization problem is given inAlgorithm 3.

Algorithm 3. Online Algorithm for the Online Through-
put Maximization Problem

Input: An MEC network G ¼ ðV;EÞ with a set V of APs, each
v 2 V is attached a cloudlet with computing capacity Cv, a
sequence of NFV-enabled multicast requests rj ¼ ðsj; Dj; rj;
SFCjÞ arriving one by one without the knowledge of future
arrivals.

Output: Maximize the network throughput by admitting or
rejecting each arrived request rj immediately. If rj admit-
ted, a pseudo-multicast tree T ðjÞ for rj in G from source
node sj to a set of destination nodes inDj will be delivered.

1: while request rj arrives do

2: A subgraph G0 of G is constructed by removing each
edge with residual bandwidth capacity less than rj � be;

3: Construct the auxiliary graph G0j ¼ ðV 0j ; E0jÞ for request rj,
assign a weight to each edge in E0j according to Eq. (7);

4: Find an approximate multicast tree T 0ðjÞ in G0j rooted at
sj and spanning all nodes inDj, by applying the approxi-
mation algorithm on G0j due to Charikar et al. [4];

5: if T 0ðjÞ does not exist then
6: Reject request rj;
7: else
8: Determine whether rj will be accepted by the admis-

sion control policy;
9: if rj is admissible then
10: A pseudo-multicast tree T ðjÞ in G is derived from

T 0ðjÞ, by replacing each edge in T 0ðjÞ by the edges in
its corresponding shortest path in G;

11: If a VNF instance in a cloudlet is to be instantiated,
create the new VNF instance;

12: Update residual resource capacities of VNF instances,
links and cloudlets inG;

13: end if
14: end if
15: end while

6.2 Algorithm Analysis

We now analyze the competitive ratio and time complexity
of the proposed online algorithm, Algorithm 3. We first
show the upper bound on the total cost of admitted requests.
We then provide a lower bound on the cost of a rejected
request by Algorithm 3 but admitted by an optimal offline
algorithm. We finally derive the competitive ratio of
Algorithm 3.

Lemma 2. Given an MEC network G ¼ ðV;EÞ, with each cloud-
let v 2 V has computing capacity Cv and a set E of links that
each link e 2 E has bandwidth capacity Be, denote by AðjÞ the
set of NFV-enabled multicast requests admitted by the algo-
rithm, Algorithm 3, until the arrival of request rj. Then, the
cost sums of VNF instances, cloudlets, and links when multi-
cast request rj arrives are

MA ET AL.: THROUGHPUT MAXIMIZATION OF NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUD NETWORKS 401

X
v2V

XLj

l¼1

X
i2F ð�ðj;lÞÞv

W
ð�ðj;lÞÞ
v;i ðjÞ � 2n loga � BðjÞ; (8)

X
v2V

WvðjÞ � 2nLmax logb � jAðjÞj � CðfmaxÞ; (9)

X
e2E

WeðjÞ � 2n log g � BðjÞ; (10)

respectively, provided that the maximum length Lmax of any
service function chain is no greater than n, i.e., Lmax ¼

max1�j0�jfjSFCj0 jg � n, and rj0 �
min1�l�Lj0

fmð�ðj0 ;lÞÞg
loga ,

PLj0
l¼1 C

ðfð�ðj0;lÞÞÞ � xð�ðj0;lÞÞv � minv2V Cv
logb , rj0 � be �

mine2EBe
log g with 1 � j0

� j, where
PLj0

l¼1 Cðf ð�ðj
0;lÞÞÞ � xð�ðj0;lÞÞv is the computing

resource being occupied by newly instantiated VNF instances
in cloudlet v for request rj0 , BðjÞ is the accumulative band-
width resource being occupied by the admitted requests, i.e.,
BðjÞ ¼

P
rj0 2AðjÞ

rj0 � be, and CðfmaxÞ is the maximum com-
puting resource required among all VNF instance types, i.e.,
CðfmaxÞ ¼ max1�k�KfCðfðkÞÞg.

Proof. Consider a request rj0 2 AðjÞ admitted by Algo-

rithm 3. For any VNF instance i 2 F ðkÞv , we have

W
ðkÞ
v;i ðj0 þ 1Þ �W

ðkÞ
v;i ðj0Þ

¼ mðkÞ a
1�

m
ðkÞ
v;i
ðj0þ1Þ

mðkÞ � 1

0
@

1
A� mðkÞ a

1�
m
ðkÞ
v;i
ðj0 Þ

mðkÞ � 1

0
@

1
A

¼ mðkÞa
1�

m
ðkÞ
v;i
ðj0 Þ

mðkÞ a

m
ðkÞ
v;i
ðj0Þ�mðkÞ

v;i
ðj0þ1Þ

mðkÞ � 1

0
@

1
A

¼ mðkÞa
1�

m
ðkÞ
v;i
ðj0 Þ

mðkÞ a

rj0

mðkÞ � 1

� �

¼ mðkÞa
1�

m
ðkÞ
v;i
ðj0 Þ

mðkÞ 2
rj0

mðkÞ
loga � 1

� �

� mðkÞa
1�

m
ðkÞ
v;i
ðj0 Þ

mðkÞ �
rj0

mðkÞ
� loga

(11)

¼ a
1�

m
ðkÞ
v;i
ðj0Þ

mðkÞ � rj0 � loga; (12)

where Ineq. (11) holds due to that 2a � 1 � a for 0 � a � 1.

Similarly, for any cloudlet v 2 V , we have Wvðj0 þ 1Þ�
Wvðj0Þ � b

1�Cvðj0 Þ
Cv ð

PLj0
l¼1 Cðfð�ðj

0;lÞÞÞ � xð�ðj0;lÞÞv Þlogb and for

any link e 2 E, we have Weðj0 þ 1Þ �Weðj0Þ � g
1�Beðj0Þ

Be �
rj0 � be � log g.

We then calculate the cost sum of all VNF instances
when admitting request rj0 . The difference of the cost sum
of VNF instances before and after admitting request rj0 is

X
v2V

XLj0

l¼1

X
i2F ð�ðj

0 ;lÞÞ
v

W
ðkÞ
v;i ðj0 þ 1Þ �W

ðkÞ
v;i ðj0Þ

¼
XLj0

l¼1
W
ðkÞ
v;i ðj0 þ 1Þ �W

ðkÞ
v;i ðj0Þ

(13)

�
XLj0

l¼1
a
1�

m
ð�ðj0 ;lÞÞ
v;i

ðj0Þ

mð�ðj0 ;lÞÞ � rj0 � loga; by Ineq. (12)

¼ rj0 � loga
XLj0

l¼1
a
1�

m
ð�ðj0 ;lÞÞ
v;i

ðj0Þ

mð�ðj0 ;lÞÞ ;

¼ rj0 � loga
XLj0

l¼1
ða

1�
m
ð�ðj0 ;lÞÞ
v;i

ðj0Þ

mð�ðj0 ;lÞÞ � 1Þ þ
XLj0

l¼1
1

0
@

1
A

¼ rj0 � loga
XLj0

l¼1
v
ðkÞ
v;i ðj0Þ þ Lj0

0
@

1
A

� 2nrj0 � loga:

(14)

Ineq. (12) holds since
Pn

i¼1 Ai �Bi �
Pn

i¼1 Ai �
Pn

i¼1 Bi,

for all Ai � 0 and Bi � 0. Eq. (13) holds due to that for

each network function fj0;l, only one VNF instance is

employed to process data traffic of request rj0 . Ineq. (14)

holds due to the fact that if request rj0 is admitted, the

admission control policy is met, i.e.,
PLj0

l¼1 v
ð�ðj0;lÞÞ
v;i ðj0Þ ¼

PLj0

l¼1 a
1�

m
ð�ðj0 ;lÞÞ
v;i

ðj0Þ

mð�ðj0 ;lÞÞ � 1 � s1 ¼ n, and the length of service

function chain of request rj0 is less than the number of

APs, i.e., jSFCj0 j ¼ Lj0 � Lmax � n.

Similarly, the difference of the cost sum of cloudlets
before and after admitting request rj0 is

P
v2V Wvðj0þ

1Þ �Wvðj0Þ � 2nLj0 � CðfmaxÞ � logb, where CðfmaxÞ is the
maximum computing resource consumption of any VNF
instance f ðkÞ, 1 � k � K in theMEC. And the difference of
the cost sum of links before and after admitting request rj0
is
P

e2E Weðj0 þ 1Þ �Weðj0Þ � 2nrj0 � be � log g.
The cost sum of VNF instances for request admissions

when rj arrives thus is

X
v2V

XLj

l¼1

X
i2F ðkÞv

W
ðkÞ
v;i ðjÞ

¼
Xj�1
j0¼1

X
v2V

XLj0

l¼1

X
i2F ðkÞv

W
ðkÞ
v;i ðj0 þ 1Þ �W

ðkÞ
v;i ðj0Þ

¼
X

rj0 2AðjÞ

X
v2V

XLj0

l¼1

X
i2F ð�ðj

0 ;lÞÞ
v

ðW ðkÞ
v;i ðj0 þ 1Þ �W

ðkÞ
v;i ðj0ÞÞ

�
X

rj0 2AðjÞ
2nrj0 � loga; by Ineq. (14)

¼ 2n loga
X

rj0 2AðjÞ
rj0

¼ 2n loga � BðjÞ;

(15)

where Eq. (15) follows from the fact that if a request is not
admitted, none of the processing capacity of any VNF
instance will be consumed.

Similarly, the cost sum of cloudlets for request admis-
sions when rj arrives is

P
v2V WvðjÞ � 2nLmaxlogb � jAðjÞj�

CðfmaxÞ, and the cost sum of links for request admissions
when rj arrives is

P
e2E WeðjÞ � 2n log g � BðjÞ. tu

Wenowprovide a lower bound on theweight of a rejected
request by Algorithm 3 but admitted by an optimal offline

402 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

algorithm denoted by OPT . Before we proceed, we choose
appropriate values for a, b, and g prior to the arrival of any
request rj and VNF instance k, 1 � k � K as follows.

2nþ 2 � a � min
1�k�K

f2
mðkÞ
rj g (16)

2nþ 2 � b � min
1�k�K

min
v2V
f2

Cv

CðfðkÞÞg (17)

2nþ 2 � g � min
e2E
f2

Be
rj �beg: (18)

Lemma 3. Let T ðjÞ be the set of requests that are rejected by
Algorithm 3 but admitted by the optimal offline algorithm
OPT prior to the arrival of request rj. Then, for any request
rj0 2 T ðjÞ, we have

X
v2V

XLj0

l¼1

X
i2F ð�ðj

0 ;lÞÞ
v

v
ð�ðj0;lÞÞ
v;i ðj0Þ þ

X
v2V

vvðj0Þ þ
X
e2E

veðj0Þ

> minfs1; s2; s3g ¼ n:

Proof. Consider a request rj0 that is admitted by the optimal
offline algorithm OPT yet rejected by Algorithm 3. A
request r0j will be rejected by Algorithm 3 by one of the
four cases: (1) at least one VNF instance does not have suf-
ficient processing capacity to admit request rj0 ; (2) there is
no sufficient computation resource in cloudlets to create
new VNF instances for request rj0 as required; (3) there is
no sufficient bandwidth in G for routing its data traffic; or
(4) the sum of normalized usage costs is too high, in other
words, the admission control policy is notmet.

Case (1). At least one VNF instance i0 of type k0 in
cloudlet v0 does not have sufficient processing capacity to

process data traffic of request rj0 , i.e., m
ðk0Þ
v0;i0 ðj0Þ < rj0 . We

then have

X
v2V

XLj0

l¼1

X
i2F ð�ðj

0 ;lÞÞ
v

v
ð�ðj0;lÞÞ
v;i ðj0Þ � v

ðk0Þ
v0;i0 ðj

0Þ

¼ a
1�

m
ðk0 Þ
v0 ;i0
ðj0Þ

mðk0 Þ � 1 > a
1�

rj0

mðk0 Þ � 1; since m
ðk0Þ
v0;i0 ðj

0Þ < rj0

� a
1� 1

loga � 1 ¼ a

2
� 1 � n; by Ineq. (18):

(19)
Case (2). At least one cloudlet v0 2 V does not have

sufficient capacity to create a new instance for a VNF of
type k0 in SFCj0 as required, i.e., Cv0 ðj0Þ < Cðf ðk0ÞÞ. Simi-

larly, we have
P

v2V vvðj0Þ � vv0 ðj0Þ � b
2 � 1 � n.

Case (3). If request rj0 is rejected, then there is an edge
e0 2 E that does not have sufficient residual bandwidth
to accommodate the request. This implies that Be0 ðj0Þ <
rj0 � be. Therefore, the normalized cost sum of E is greater
than s3, i.e.,

P
e2E veðj0Þ � ve0 ðj0Þ � g

2 � 1 � n.

Case (4). Although there are sufficient resources to
admit request rj0 , rj0 is rejected by Algorithm 3 due to
not meeting the admission control policy. That is

X
v2V

XLj0

l¼1

X
i2F ð�ðj

0 ;lÞÞ
v

v
ð�ðj0;lÞÞ
v;i ðj0Þ þ

X
v2V

vvðj0Þ þ
X
e2E

veðj0Þ

> minfs1; s2; s3g ¼ n:

(20)

Lemma 3 thus follows. tu

We finally analyze the competitive ratio of Algorithm 3.

Theorem 5. Given an MEC network G ¼ ðV;EÞ with a set V of
APs in which each v 2 V is attached a cloudlet with computing
capacity Cv, each link e 2 E has bandwidth capacityBe, there is
an online algorithm, Algorithm 3, with competitive ratio of
OðlognÞ for the online throughput maximization problem, and

the algorithm takes OððLj � jV jÞ
1
� jDjj

2
�Þ time to admit each

request rj where n ¼ jV j, Lj ¼ jSFCjj, and � is a constant with
0 < � � 1.

Proof. Denote byDmax and rmax themaximum cardinality of
destination set Dj0 and the maximum packet rate of
request rj0 among all requests respectively, prior to the
arrival of request rj, i.e., Dmax ¼ max1�j0�jfDj0 g, and
rmax ¼ max1�j0�jfrj0 g. We first analyze the competitive
ratio of the proposed online algorithm. We here abuse the
notationOPT to denote the optimal offline algorithmOPT
and the number of requests admitted by it. Let AðjÞ be the
set of admitted requests when request rj arrives, we have

n

D�
max

ðOPT � jAðjÞjÞ � n

D�
max

X
rj0 2T ðjÞ

1

�
X

rj0 2T ðjÞ
n

(21)

�
X

rj0 2T ðjÞ

X
v2V

XLj0

l¼1

X
i2F ð�ðj

0 ;lÞÞ
v

v
ð�ðj0;lÞÞ
v;i ðj0Þþ

X
rj0 2T ðjÞ

X
v2V

vvðj0Þ þ
X

rj0 2T ðjÞ

X
e2E

veðj0Þ

�
X

rj0 2T ðjÞ

X
v2V

XLj

l¼1

X
i2F ð�ðj;lÞÞv

v
ð�ðj;lÞÞ
v;i ðjÞ þ

X
rj0 2T ðjÞ

X
v2V

vvðjÞ þ
X

rj0 2T ðjÞ

X
e2E

veðjÞ;

(22)

¼
X

rj0 2T ðjÞ

X
v2V

XLj

l¼1

X
i2F ð�ðj;lÞÞv

W
ð�ðj;lÞÞ
v;i ðjÞ
mð�ðj;lÞÞ

þ

X
rj0 2T ðjÞ

X
v2V

WvðjÞ
Cv

þ
X

rj0 2T ðjÞ

X
e2E

WeðjÞ
Be

¼
X
v2V

XLj

l¼1

X
i2F ð�ðj;lÞÞv

W
ð�ðj;lÞÞ
v;i ðjÞ

X
rj0 2T ðjÞ

1

mð�ðj;lÞÞ
þ

X
v2V

WvðjÞ
X

rj0 2T ðjÞ

1

Cv
þ
X
e2E

WeðjÞ
X

rj0 2T ðjÞ

1

Be

(23)

�
X
v2V

XLj

l¼1

X
i2F ð�ðj;lÞÞv

W
ð�ðj;lÞÞ
v;i ðjÞ þ

X
v2V

WvðjÞ þ
X
e2E

WeðjÞ

� 2nBðjÞlogaþ 2nLmaxCðfmaxÞlogb � jAðjÞj þ 2nBðjÞlog g
� 2njAðjÞj

�
rmaxlogaþ Lmax � CðfmaxÞlogbþ rmax � belog g

�
:

(24)

MA ET AL.: THROUGHPUT MAXIMIZATION OF NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUD NETWORKS 403

Ineq. (21) holds since Dmax � 1, and 0 < � � 1, thus
D�

max � 1. Ineq. (22) holds since the resource utilization
ratio does not decrease and thus the usage cost of each
VNF instance, each cloudlet, and each link does not
decrease with more request admissions. Ineq. (23) holds
because

Pm
i¼1

Pn
j¼1 Ai �Bj �

Pm
i¼1 Ai �

Pn
j¼1 Bj, for all

Ai � 0 and Bj � 0. Ineq. (24) holds because all algo-

rithms, including the optimal offline algorithm OPT , the

accumulated usage of resources in any VNF instance,

cloudlet and link is no greater than its capacity.
Recall that AðjÞ is the set of requests admitted by

Algorithm 3, and T ðjÞ is the set of requests rejected by
Algorithm 3 but accepted by the optimal offline algo-

rithm OPT . We have OPT�jAðjÞj
jAðjÞj � 2D�

maxðrmax logaþ
Lmax � CðfmaxÞ logb þ rmax � belog gÞ. Thus, we have
OPT
jAðjÞj � 2D�

maxðrmax loga þ Lmax � CðfmaxÞlogbþ rmax �
belog gÞ þ 1 ¼ OðlognÞwhen a ¼ b ¼ g ¼ OðnÞ.

We finally analyze the time complexity of Algo-

rithm 2. The construction of auxiliary graph G0j takes

OðLj � jV j þ jEjÞ time. It takesOðjV 0j j
1
� jDjj

2
�Þ time to find an

approximate Steiner tree in G0j for each request rj, by

invoking the approximation algorithm in [4]. Algo-

rithm 2 therefore takes time OððLj � jV jÞ
1
� jDjj

2
�Þ for each

request admission, where � is a constant with 0 < � � 1.tu

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms for the admissions of NFV-enabled multicasting
requests through experimental simulations. We also investi-
gate the impact of important parameters on the perfor-
mance of the proposed algorithms.

7.1 Experiment Settings

We consider an MEC network G ¼ ðV; EÞ consisting of
from 10 to 250 APs (cloudlets). All network topologies are
generated by the tool GT-ITM [7]. The computing capacity
of each cloudlet is set in the range from 2; 000 MHz to
5; 000 MHz [12], while the bandwidth capacity of each link
varies from 2; 000 Mbps to 20; 000 Mbps [14]. The number of
different types of network functions K is set at 30. The com-
puting resource demand of each network function is set
from 300 MHz to 600 MHz randomly, and their processing
rate is also randomly drawn from 50 to 100 data packets per
millisecond [20]. Recall that the admission cost of an NFV-
enabled multicast request consists of three components: the
VNF instance processing cost, the VNF instance instantiation
cost, and the bandwidth usage cost, where the instantiation
cost of a VNF instance in a cloudlet is randomly drawn in the
interval ½0:50; 2:0	, while the processing cost of per packet by
a VNF instance is a random value drawn from ½0:01; 0:1	 [24].
The routing cost per data packet along a link is a value drawn
randomly from the interval ½0:01; 0:1	. To generate request rj,
one AP node in V is randomly selected as its source sj, and a
set of AP nodes in V are randomly chosen as its destination
setDj. The data packet rate is drawn from 2 to 10 packets per
millisecond [15], where each data packet is of size 64KB.
The length of its service function chain is set from 5 to 20,
and each network function is randomly drawn from the K

types. The value in each figure is the mean of the results out
of 30 MEC instances of the same size. The running time of an
algorithm is obtained on a machine with 4.0 GHz Intel i7
Quad-core CPU and 32GBRAM.Unless otherwise specified,
these parameters will be adopted in the default setting.

In the following, we first evaluate the performance of
Algorithm 1 for the minimum cost problem against three
baseline heuristics CostMinGreedy, ExistingGreedy,
andNewGreedy. Algorithm CostMinGreedy considers net-
work functions in the service function chain one by one, it
always chooses the cloudletwith the theminimumadmission
cost (including the processing cost, instance instantiation
cost, and routing cost) for the next network function. Algo-
rithm ExistingGreedy considers network functions one
by one and tries to admit the request by existing VNF instan-
ces with the minimum admission cost as long as there is a
VNF instance with sufficient residual processing capacity,
while algorithm NewGreedy always aims to instantiate a
new VNF instance for the request providing sufficient
computation resource in a cloudlet.We then evaluate the per-
formance of Algorithm 2 against a baseline heuristic Ran-
domSelect for the throughput maximization problem,
where algorithm RandomSelect randomly chooses an
unexamined request, and randomly selects available VNF
instances for its service function chain. If the request is admit-
ted, the residual capacities of cloudlets, and links in the net-
work are updated. This process continues until all requests
are examined. We finally evaluate the performance of Algo-
rithm 3 against a benchmark OnlineLinear for the online
throughput maximization problem, where for each arrived
request, algorithm OnlineLinear first excludes those VNF
instances, cloudlets and links that do not have sufficient
residual resources to accommodate the admission of the
request from the consideration, it then assigns a cost to each
VNF instance, each cloudlet, and each link, and constructs an
auxiliary directed acyclic graph for the request. It finally finds
a multicast tree rooted at the source node and spanning all
destination nodes for the request.

7.2 Performance Evaluation of Algorithms

We first investigate the performance of Algorithm 1
against that of three baseline heuristics CostMinGreedy,
ExistingGreedy, and NewGreedy, for the cost minimiza-
tion problem of a single NFV-enabled request admission, by
varying the network size from 10 to 250. Fig. 4 illustrates the
admission cost and running time of the four mentioned
algorithms. From Fig. 4a, we can see that Algorithm 1
achieves a much lower admission cost than those three
benchmarks. Specifically, Algorithm 1 is only 43.1, 24.0,
and 14.4 percent of the admission costs of algorithms New-
Greedy, ExistingGreedy, and CostMinGreedy, respec-
tively, when the network size is 250. The reason behind is
that Algorithm 1 jointly considers the placement of VNF
instances and data traffic routing for a request admission, it
also makes a smart decision between using an existing VNF
instance or creating a new VNF instance. Fig. 4b plots the
running time curves of the four comparison algorithms. It
can be seen that algorithm NewGreedy achieves the least
running time, as it gives priority to create new VNF instan-
ces in cloudlets, while Algorithm 1 takes the most running
time due to the fact that it strives for finding a multicast tree

404 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

with the least cost while passing through VNFs in its service
function chain at the same time.

We then study the performance of Algorithm 2 against
a heuristic RandomSelect for the throughput maximiza-
tion problem, by varying the network size from 10 to 250
for a set of 12,000 NFV-enabled multicast requests. Fig. 5
plots the performance curves of the two algorithms. It can
be seen from Fig. 5a that Algorithm 2 outperforms the
benchmark RandomSelect in all cases, and their perfor-
mance gap becomes larger and larger with the increase
on network size. Specifically, the network throughout
achieved by Algorithm 2 is 14.7 and 29.6 percent higher
than that by algorithm RandomSelect and the admission
cost by Algorithm 2 is 10.4 and 21.1 percent higher than
that by algorithm RandomSelect, when the network size

is set at 50 and 250, respectively. Fig. 5b depicts the run-
ning times of the two mentioned algorithms. It can be
seen that Algorithm 2 takes a longer time than that of
algorithm RandomSelect for finding a more accurate
solution.

7.3 Performance Evaluation of the Online Algorithm

We now evaluate the performance of Algorithm 3 for the
online throughput maximization problem, by varying the
network size from 10 to 250 for a sequence of 10,000 requests.
Fig. 6 plots the performance curves of different algorithms,
from which we can see that Algorithm 3 outperforms the
baseline algorithm OnlineLinear in all cases, and Algo-

rithm 3 can admit 38.6 percent more requests than that by
algorithm OnlineLinear when the network size is 200.
Fig. 6c shows the running time of the two comparison
algorithms.

We then investigate the scalability of Algorithm 3, by
varying the number of cloudlets from 200 to 1,600 for a
sequence of 40,000 NFV-enabled multicast requests while
setting the length of request service function chains between
15 and 20. Fig. 7 shows that its performance for a large-scale
network is similar to it for moderate-size networks. That is,
Algorithm 3 achieves a much higher network throughput
than that algorithm OnlineLinear achieves in all cases,
while the increase on the admission cost is minimal.

Fig. 5. Performance of Algorithm 2, and RandomSelect, by varying the network size from 10 to 250.

Fig. 4. Performance of Algorithm 1, CostMinGreedy, Exist-

ingGreedy, and NewGreedy, by varying the network size.

Fig. 6. Performance of Algorithm 3 and OnlineLinear by varying the network size from 10 to 250.

Fig. 7. Scalability performance of Algorithm 3 and OnlineLinear by varying the network size from 200 to 1,600.

MA ET AL.: THROUGHPUT MAXIMIZATION OF NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUD NETWORKS 405

We finally study the impact of the admission control vari-
ables s1, s2, and s3 on the performance of Algorithm 3.
Fig. 8 plots the performance curves of Algorithm 3 with
and without adopting the admission control policy, from
which it can be seen that less numbers of requests can be
admitted if no admission control policy is adopted. When
the network size is 100, Algorithm 3 admits 40.4 percent
more requests than itself without adopting the admission
control policy. Furthermore, the performance gap of Algo-
rithm 3 with and without the admission control policy
becomes larger and larger with the increase in network size.
This is due to that in large networks, the size of the destina-
tion set of each request can be very large, and the distance
between the source node and a destination node of the
request can be quite long, thus consumingmuch more band-
width resource for routing the data traffic of the request,
while Algorithm 3 is able to reject those requests with large
admission costs, thereby enabling to admit more requests in
future to achieve a larger throughput. Fig. 8b shows that the
admission costs of Algorithm 3 with and without the
admission control policy.

8 CONCLUSION

In this paper, we studied NFV-enabled multicast request
admissions in a mobile edge cloud network, by formulating
three novel optimization problems. We first proposed an
approximation algorithm with approximation ratio for the
cost minimization problem of a single multicast request
admission. We then proposed an efficient algorithm for the
throughput maximization problem of admitting a given set
of multicast requests by reducing the problem to the cost
minimization problem. We also studied the online through-
put maximization problem where NFV-enabled multicast
requests arrive one by one without the knowledge of future
arrivals, for which we devised an online algorithm with a
provable competitive ratio. We finally evaluated the perfor-
mance of the proposed algorithms through experimental
simulations. Simulation results demonstrate that the pro-
posed algorithms are very promising, and exhibits better
performance compared with their counterparts.

ACKNOWLEDGMENTS

We would like to thank the four anonymous referees and
the associate editor for their expertise comments and con-
structive suggestions, which have helped us improve the
quality and presentation of the paper greatly. The work of
Zichuan Xu is supported by the National Natural Science
Foundation of China (Grant No. 61802048, 61802047), the

fundamental research funds for the central universities in
China (Grant No. DUT17RC(3)061, DUT17RC(3)070), and
the Xinghai Scholar Program in Dalian University of Tech-
nology, China.

REFERENCES

[1] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge com-
puting: A survey,” IEEE Internet Things J., vol. 5, no. 1, pp. 450–465,
Feb. 2018.

[2] O. Alhussein, P. T. Do, J. Li, Q. Ye, W. Shi, W. Zhuang, X. Shen,
X. Li, and J. Rao, “Joint VNF placement and multicast traffic rout-
ing in 5G core networks,” in Proc. IEEE Global Commun. Conf.,
2018, pp. 1–6.

[3] A. Ceselli, M. Premoli, and S. Secci, “Mobile edge cloud network
design optimization,” IEEE/ACM Trans. Netw., vol. 25, no. 3,
pp. 1818–1831, Jun. 2017.

[4] M. Charikar, C. Chekuri, T.-Y. Cheung, Z. Dai, A. Goel, S. Guha,
and M. Li, “Approximation algorithms for directed Steiner prob-
lems,” J. Algorithms, vol. 33, no. 1, pp. 73–91, 1998.

[5] M. Chen and Y.Hao, “Task offloading formobile edge computing in
software defined ultra-dense network,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597,Mar. 2018.

[6] H. Feng, J. Llorca, A. M. Tulino, D. Raz, and A. F. Molish,
“Approximation algorithms for the NFV service distribution
problem,” in Proc. IEEE Conf. Comput. Commun., 2017, pp. 1–9.

[7] GT-ITM, 2019. [Online]. Available: http://www.cc.gatech.edu/
projects/gtitm/

[8] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s
hard to share: Joint service placement and request scheduling in
edge clouds with sharable and non-sharable resources,” in Proc.
IEEE 38th Int. Conf. Distrib. Comput. Syst., 2018, pp. 365–375.

[9] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement and user
to cloudlet allocation in wireless metropolitan area networks,” IEEE
Trans. Cloud Comput., vol. 5, no. 4, pp. 725–737, Oct.–Dec. 2017.

[10] M. Jia,W. Liang,M.Huang, Z. Xu, andY.Ma, “Throughputmaximi-
zation of NFV-enabled unicasting in software-defined networks,” in
Proc IEEEGlobal Commun. Conf., Dec. 2017, pp. 1–6.

[11] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing
in wireless metropolitan area networks,” in Proc. 35th Annu. IEEE
Int. Conf. Comput. Commun., 2016, pp. 1–9.

[12] M. Jia, W. Liang, and Z. Xu, “QoS-aware task offloading in distrib-
uted cloudlets with virtual network function services,” in Proc.
20th ACM Int. Conf. Model. Anal. Simul. Wireless Mobile Syst., 2017,
pp. 109–116.

[13] M. Jia, W. Liang, M. Huang, Z. Xu, and Y. Ma, “Routing cost mini-
mization and throughput maximization of NFV-enabled unicast-
ing in software-defined networks,” IEEE Trans. Netw. Serv.
Manage., vol. 15, no. 2, pp. 732–745, Jun. 2018.

[14] S. Knight. S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and
M. Roughan, “The internet topology zoo,” IEEE J. Sel. Areas Com-
mun., vol. 29, no. 9, pp. 1765–1775, Oct. 2011.

[15] Y. Li, L. T. X. Phan, and B. T. Loo, “Network functions virtualiza-
tion with soft real-time guarantees,” in Proc. 35th Annu. IEEE Int.
Conf. Comput. Commun., 2016, pp. 1–9.

[16] Y. Ma, W. Liang, and J. Wu, “Online NFV-enabled multicasting in
mobile edge cloud networks,” in Proc Int. Conf. Distrib. Comput.
Syst., Jul. 2019, pp. 821–830.

[17] Y. Ma, W. Liang, and Z. Xu, “Online revenue maximization in
NFV-enabled SDNs,” in Proc IEEE Int. Conf. Commun., May 2018,
pp. 1–7.

[18] Y. Ma, W. Liang, Z. Xu, and S. Guo, “Profit maximization for admit-
ting requests with network function services in distributed clouds,”
IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 5, pp. 1143–1157,
May 2019.

[19] Y. Mao, C. You, J. Zhang, K. Huang, and K. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE
Commun. Surv. Tut., vol. 19, no. 4, pp. 2322–2358, Oct.–Dec. 2017.

[20] J. Martins, J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,
R. Bifulco, and F. Huici, “ClickOS and the art of network function
virtualization,” in Proc. 11th USENIX Conf. Netw. Syst. Des. Imple-
mentation, 2014, pp. 459–473.

[21] S. V. Rossem, W. Tavernier, B. Sonkoly, D. Colle, J. Czentye,
M. Pickavet, and P.Demeester, “Deploying elastic routing capability
in an SDN/NFV-enabled environment,” in Proc. IEEE Conf. Netw.
Function Virtualization Softw. DefinedNetw., Nov. 2015, pp. 22–24.

Fig. 8. Impact of the admission control policy on the performance of
Algorithm 3.

406 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2020

http://www.cc.gatech.edu/projects/gtitm/
http://www.cc.gatech.edu/projects/gtitm/

[22] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proc. Workshop Mobile Big Data, 2015,
pp. 37–42.

[23] Q. Xia, W. Liang, and W. Xu, “Throughput maximization for
online request admissions in mobile cloudlets,” in Proc. 38th
Annu. IEEE Conf. Local Comput. Netw., 2013, pp. 589–596.

[24] Z. Xu, W. Liang, A. Galis, and Y. Ma, “Throughput maximization
and resource optimization in NFV-enabled networks,” in Proc.
IEEE Int. Conf. Commun., 2017, pp. 1–7.

[25] Z. Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis,
“Approximation and online algorithms for NFV-enabled multi-
casting in SDNs,” in Proc. 37th Int. Conf. Distrib. Comput. Syst.,
2017, pp. 625–634.

[26] Z. Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis, “Efficient
NFV-enabled multicasting in SDNs,” IEEE Trans. Commun., vol. 67,
no. 3, pp. 2052–2070,Mar. 2019.

[27] Z. Xu,W. Liang,M. Jia,M.Huang, andG.Mao, “Task offloadingwith
network function services in a mobile edge-cloud network,” IEEE
Trans. Mobile Comput., 2018. [Online]. Available: https://ieeexplore.
ieee.org/document/8502709, doi: 10.1109/TMC.2018.2877623.

[28] Z. Xu, Y. Zhang, W. Liang, Q. Xia, O. Rana, A. Galis, G. Wu, and
P. Zhou, “NFV-enabled multicasting in mobile edge colouds with
resource sharing,” in Proc. 48th Int. Conf. Parallel Process., Aug.
2019, Art. no. 104.

[29] S. Q. Zhang, Q. Zhang, H. Bannazadeh, and A. L. Garcia, “Routing
algorithms for network function virtualization enabled multicast
topology on SDN,” IEEE Trans. Netw. Serv. Manage., vol. 12, no. 4,
pp. 580–594, Dec. 2015.

Yu Ma received the BSc degree with the first
class Honours in computer science from the
Australian National University, in 2015. He is cur-
rently working toward the PhD degree in the
Research School of Computer Science, Austra-
lian National University. His research interests
include software defined networking, Internet of
Things (IoT), and social networking.

Weifa Liang (M’99–SM’01) received the BSc
degree fromWuhan University, China, in 1984, the
ME degree from the University of Science and
Technology of China, in 1989, and the PhD degree
from the Australian National University, in 1998, all
in computer science. He is currently a professor
with the Research School of Computer Science,
Australian National University. His research inter-
ests include design and analysis of energy efficient
routing protocols for wireless ad hoc and sensor
networks, Mobile Edge Computing (MEC), Net-

work Function Virtualization (NFV), Software-Defined Networking (SDN),
design and analysis of parallel and distributed algorithms, approximation
algorithms, combinatorial optimization, and graph theory. He is a senior
member of the IEEE.

Jie Wu (F’09) is the chair and a Laura H. Carnell
professor with the Department of Computer and
Information Sciences, Temple University. He is
also an Intellectual Ventures endowed visiting chair
professor with the National Laboratory for Informa-
tion Science and Technology, Tsinghua University.
His current research interests include mobile com-
puting and wireless networks, routing protocols,
cloud and green computing, network trust and
security, and social network applications. He
serves on several editorial boards, including the

IEEE Transactions on Service Computing and the Journal of Parallel and
Distributed Computing. He was general co-chair/chair of IEEE MASS
2006, IEEE IPDPS 2008, IEEE ICDCS 2013, and ACMMobiHoc 2014, as
well as program co-chair of IEEE INFOCOM 2011 and CCF CNCC 2013.
He is a fellow of the IEEE.

Zichuan Xu (M’17) received the BSc and ME
degrees from the Dalian University of Technology
in China, in 2011 and 2008, and the PhD degree
from Australian National University, in 2016, all in
computer science. He was a research associate
with the Department of Electronic and Electrical
Engineering, University College London, United
Kingdom. He currently is an associate professor in
School of Software, Dalian University of Technol-
ogy, China. His research interests include cloud
computing, software-defined networking, network

function virtualization, wireless sensor networks, algorithmic game theory,
and optimization problems. He is amember of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

MA ET AL.: THROUGHPUT MAXIMIZATION OF NFV-ENABLED MULTICASTING IN MOBILE EDGE CLOUD NETWORKS 407

https://ieeexplore.ieee.org/document/8502709
https://ieeexplore.ieee.org/document/8502709
http://dx.doi.org/10.1109/TMC.2018.2877623

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

