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Abstract—Mobile edge computing (MEC) has emerged as a promising technology that offers resource-intensive yet delay-sensitive
applications from the edge of mobile networks. With the emergence of complicated and resource-hungry mobile applications, offloading
user tasks to cloudlets of nearby mobile edge-cloud networks is becoming an important approach to leverage the processing capability of
mobile devices, reduce mobile device energy consumptions, and improve experiences of mobile users. In this paper we first study the
provisioning of virtualized network function (VNF) services for user requests in an MEC network, where each user request has a
demanded data packet rate with a specified network function service requirement, and different user requests need different services that
are represented by virtualized network functions instantiated in cloudlets. We aim to maximize the number of user request admissions
while minimizing their admission cost, where the request admission cost consists of the computing cost on instantiations of requested
VNF instances and the data packet traffic processing of requests in their VNF instances, and the communication cost of routing data
packet traffic of requests between users and the cloudlets hosting their requested VNF instances. We study the joint VNF instance
deployment and user requests assignment in MEC, by explicitly exploring a non-trivial usage tradeoff between different types of
resources. To this end, we first formulate the cost minimization problem that admits all requests by assuming that there is sufficient
computing resource in MEC to accommodate the requested VNF instances of all requests, for which we formulate an Integer Linear
Programming solution and two efficient heuristic algorithms. We then deal with the problem under the computing resource constraint. We
term this problem as the throughput maximization problem by admitting as many as requests, subject to computing resource capacity on
each cloudlet, for which we formulate an ILP solution when the problem size is small; otherwise, we devise efficient algorithms for it. We
finally evaluate the performance of the proposed algorithms through experimental simulations. Experimental results demonstrate that the
proposed algorithms are promising. To the best of our knowledge, we are the first to explicitly explore the usage tradeoff between
computing and communication resources in the admissions of user requests in MEC through introducing a novel load factor concept to
minimize the request admission cost and maximize the network throughput.

Index Terms—Mobile edge computing networks (MEC); network function virtualization (NFV) services; resource allocations of cloudlets;
request admission cost minimization; throughput maximization; generalized assignment problem (GAP); VNF instance placement and
sharing; usage tradeoffs between computing and communication resources.

F

1 INTRODUCTION

THERE is a substantial growth in the usage of mobile
devices. These devices, including smartphones, sensors,

and wearables, are limited by their computational and
energy capacities, due to their portable sizes. Leveraging
rich computing and storage resources in clouds, mobile
devices can extend their capability by offloading user tasks
to the clouds for processing, ameliorating their limited
computing, storage and battery capacities. However, clouds
are usually far away from most end-users, resulting in high
communication delays between end-users and the cloud and
high service cost. Mobile edge computing (MEC), which
provides cloud resources at the edge of mobile network in
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close proximity to mobile users, is a promising technology to
reduce response delays, ensure network operation efficiency,
and improve user service satisfaction. Meanwhile, Network
Function Virtualization (NFV) has been envisaged as the
next-generation networking paradigm. It leverages generic
server/server clusters to implement various network func-
tions as software components instead of purpose-specific
hardware middleboxes, which introduces a new dimension
of cost savings and network function deployment flexibility.

To meet various service demands from mobile users,
network service providers usually instantiate frequently
demanded virtualized network function (VNF) instances
at cloudlets in MEC networks. The deployment of VNF
instances at the network edge can not only shorten the latency
of user service access but also reduce their cost on the services.
However, provisioning network services with different types
of VNFs in an MEC network poses many challenges. For
example, how many VNF instances need to be instantiated
to meet service demands of user requests? how to optimally
place the services in cloudlets and assign which requests
to the services in order to minimize their admission costs?
and how to strive for a non-trivial usage tradeoff between

Authorized licensed use limited to: Australian National University. Downloaded on December 14,2020 at 02:19:57 UTC from IEEE Xplore.  Restrictions apply. 



2168-7161 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2020.3043313, IEEE
Transactions on Cloud Computing

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. X, NO. X, XX 2021 2

different types of resources in MEC in the admissions of
user requests to minimize the request admission cost? In this
paper we will address the aforementioned challenges.

In this paper we deal with the cost minimization problem
in MEC by admitting user requests with network function ser-
vice requirements. We strive for a non-trivial tradeoff between
the computing resource consumption and the communication
resource consumption in admissions of user requests dynam-
ically. Intuitively, when computing resource in the system
becomes the bottleneck in terms of its availability while the
communication resource is sufficient, we may deploy fewer
VNF instances for network function services in cloudlets,
thereby reducing the usage of computing resource, then
the processing of the data packet traffic of each admitted
request takes a longer routing path to its VNF instance and
consumes more communication resource. Alternatively, if
communication resource is the bottleneck in MEC, we may
deploy more VNF instances to ensure each user request
routed to its nearby cloudlet for service processing in order
to shorten the routing path of its data packet traffic. Such a
non-trivial tradeoff between the usages of different resources
can be achieved through the introduction of a load factor
λ at every VNF instance with 0 < λ ≤ 1. That is, if the
computing resource is expensive at the moment, we may
set the load factor higher such that every VNF instance can
serve more requests; otherwise, we may set the load factor
lower, and more VNF instances then are available. Thus, the
routing path of each request between its location and the VNF
instance to process its data packet traffic becomes shorter.
Notice that during the course of network operations, the
consumptions of the two mentioned resources dynamically
change overtime.

The novelty of this work lies in exploring a non-trivial
tradeoff between different types of resource usages in MEC
to minimize the request admission cost, by introducing the
load factor concept. To the best of our knowledge, we are
the very first to explore non-trivial usage tradeoffs between
different types of resources for user request admissions while
minimizing their admission cost or maximizing the network
throughput. That is, we use inexpensive resource to replace
expensive resource for request admissions through the load
factor concept.

The main contributions of this paper are described as
follows. In this paper we study the provisioning of VNF
services for user requests in an MEC network by jointly
considering service placement and request scheduling, where
each user request has a demanded packet rate and a specified
network function service requirement. We aim to maximize
the number of request admissions while minimizing their
admission cost. We consider the problem under two scenar-
ios: admit all requests when there are abundant computing
resource; or admit as many as requests if the computing
resource at each cloudlet is capacitated while minimizing
the admission cost of admitted requests. Specifically, we
first formulate the cost minimization problem. Since the
problem is NP-hard, we then provide an ILP solution and
devise two efficient algorithms for the problem if there
are sufficient computing resource in the MEC network.
Otherwise, we formulate an ILP solution for the throughput
maximization problem when the problem size is small, and
develop two efficient algorithms for it. We finally evaluate

the performance of the proposed algorithms through experi-
mental simulations. Experimental results demonstrate that
the proposed algorithms are promising.

The rest of the paper is organized as follows. Section 2
deals with related works. Section 3 introduces notions,
notations, and the problem definitions. Section 4 formulates
an ILP solution and devises two efficient algorithms for
the problem if there is abundant computing resource in
MEC. Section 5 formulates an ILP solution first and then
develops two efficient heuristics for the problem if computing
resource of cloudlets is capacitated. Section 6 evaluates the
performance of the proposed algorithms empirically, and
Section 7 concludes the paper.

2 RELATED WORK

As a key enabling technology of 5G, mobile edge-cloud
networks have gained tremendous attention from the re-
search community recently [21]. Also, with the emergence
of complicated and resource-hungry mobile applications,
offloading user tasks to cloudlets of a nearby mobile edge-
cloud network is becoming an important approach to reduce
mobile device energy consumption and improve mobile user
experience.

There are extensive studies on user request processing
in mobile edge computing networks [4], [5], [12], [14],
[15], [16], [24], [25]. Although MEC has received significant
attention, most existing studies focused on minimizing the
maximum/average delay, maximizing the throughput, or the
linear combination of multiple performance metrics such as
delays, energy consumptions and throughput. For example,
Fan et al. [8] studied an application aware workload alloca-
tion problem in MEC with the aim to minimize the latency of
IoT applications by jointly considering computing resource
allocations and request assignments. Their solution takes
into account both the communication delay and cloudlet
processing delay, while considering workload dynamics
in cloudlets. They also assumed each IoT application to
be handled by a dedicated virtual machine in a cloudlet.
They [9] also explored the cloudlet placement problem with
the aim to minimize the cloudlet deployment cost. They
proposed a Lagrangian heuristic to achieve a suboptimal
solution, which considered both the cloudlet placement cost
and average end-to-end delay cost. They further designed
a resource allocation scheme to minimize the end-to-end
delays between users and their cloudlets after cloudlets being
deployed in the network. Alameddine et al. [1] investigated
joint resource allocation and request scheduling problem for
delay-sensitive IoT services. They formulated the problem of
concern as a Mixed Integer Program (MIP) when the problem
size is small. Otherwise, they devised a heuristic solution to
decompose the problem into two stages, performing resource
allocation in the first stage, and addressing task offloading
for each single IoT application in the second stage. Ren
et al. [23] considered a task offloading problem with the
aim to minimize the overall task computation time in MEC
networks. They proposed a distributed algorithm based
on the game theory approach to split tasks and offload
appropriate percentage of tasks to the MEC cloudlets. Hu
et al. [13] studied the joint resource allocation and request
offloading problem in MEC networks with the aim to
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minimize user request response delay. They divided the
problem of concern into two sub-problems, and analyzed
the problem as a double decision-making problem and then
formulated a mixed integer nonlinear program for it by
applying the quasi-convex technique based on game theory.

Chen et al. [3] investigated the problem of task offloading
for mobile edge computing in a software-defined ultra-
dense network, with an aim to minimize the total execution
duration of all tasks. However, they assumed that edge
clouds are deployed at each base station, and did not deal
with the VNF placement in the paper. Feng et al. [10]
proposed an algorithm with performance guarantees for
placing VNF in distributed cloud networks and routing
service flows among the placed VNFs under the constraints
of service function chains of the requests. Chen et al. [4] inves-
tigated the problem of multi-user computation offloading for
mobile edge clouds in a multi-channel wireless interference
environment, which is formulated as a game among multiple
users and a mechanism with a Nash equilibrium is proposed.
Their mechanism however may not be applicable to a mobile
edge-cloud computing network located between wireless
access points and the core network.

The above researches considered VNF instance provision-
ing in which the VNF instances requested by each request is
dedicated to its user only. In practice, most users may request
the same service from network service providers. Thus, the
VNF instances of such services can be shared by multiple
users [12], [15]. For example, Jia et al. [15] investigated a
task offloading problem in a wireless metropolitan area
network. They aimed to maximize the throughput while
minimizing the admission cost of requests. They developed
an effective prediction mechanism to instantiate and release
VNF instances of network functions for cost savings. He et
al. [12] considered the problem of joint service placement
and request scheduling in order to optimally provision
edge services while taking into account the demands of
both sharable and non-sharable resources in MEC, with
an aim to maximize the throughput. They proposed an
approximation algorithm for a special case of their problem
where both services and cloudlets are homogeneous. For
the general case of their problem, they devised a greedy
heuristic based on linear program relaxation and rounding.
However, none of these studies explored the usage tradeoff
between computing resource and communication resource
in the VNF instance deployment, in order to minimize the
admission cost of offloading task requests with specified
service requirements which is a fundamental problem of
network service provisioning in MEC. Ma et al. [18], [19]
studied NFV-enabled multicasting in an MEC network
subject to resource capacities on both its cloudlets and
links. They devised an approximation algorithm for the cost
minimization problem of admitting a single NFV-enabled
multicast request by reducing it to a directed multicast
Steiner Tree problem and exploring VNF instance sharing.
They also proposed an online algorithm with a provable
competitive ratio for the online throughput maximization
problem.

In this study, we jointly consider VNF instance de-
ployment and request assignment while meeting resource
capacity constraints. In contrast with the above studies, to
the best of our knowledge, we are the very first to explore a

brand new research topic in MEC that is the non-trivial usage
tradeoff between different types of resources for the user
request admissions in MEC to minimize their admission cost.
That is, we use inexpensive resource to replace expensive
resource for request admissions. This tradeoff purpose can
be realized through introducing a novel concept that is the
load factor concept at VNF instances.

3 PRELIMINARIES

In this section, we first introduce the system model, notions
and notations. We then define the problems precisely.

3.1 System model
We consider a metropolitan mobile edge cloud computing
network (MEC), which is represented by an undirected
graph G = (V,E), where V is a set of access points (APs)
located at different locations in the metropolitan region, e.g.,
schools, cafe shops, shopping malls, public libraries, bus
stations, train stations, and hospitals. There is a cloudlet
with computing capacity Cv that is attached with each AP
node v ∈ V , for implementing virtualized network functions
(VNFs) requested by mobile users. E is the set of wired links
between APs. The two endpoints of each link e ∈ E are
connected by a high-speed optical cable, which implies that
there is plenty of bandwidth on link e. We assume that each
AP node covers a certain area in which mobile users can
access the MEC wirelessly through it. For simplicity, an AP
node and the area covered by it will be used interchangeably
if no confusion arises. In case a mobile user in an overlapping
region among multiple APs, we assume that the mobile user
will connect to its nearest AP or the AP with the strongest
signal strength. Figure 1 is an example of an MEC network.

Access 
Point
(AP)

Cloudlet
(Server)

Fig. 1. An illustrative example of an MEC network consisting of 6 APs
with each co-located with a cloudlet.

3.2 User requests with VNF service requirements
We consider the provisioning of virtualized network function
services to mobile users. Let F = {f (1), f (2), . . . , f (K)} be
the set of network functions provided by the network service
provider. Assume that there is a set U of users accessing the
MEC network through their nearby APs. Each user j ∈ U
issues a user request rj that demands for a specified VNF
service, and rj is represented by a tuple rj = 〈vj , f (k)j , ρj〉,
where vj is the AP location of the request, f (k)j is the VNF
service requested by the request, and ρj is the demanded
data packet rate of the request. Denote by Uk and Uk,v the
sets of users requested for network function f (k) in G and
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at AP v ∈ V , respectively. It can be seen that Uk,v ⊆ Uk and
Uk ⊆ U for each k with 1 ≤ k ≤ K.

We assume that computing resource of cloudlets in the
MEC is virtualized. Each VNF is implemented by a VNF
instance of its type that consumes a certain amount of
computing resource. Without loss of generality, we assume
that different types of virtualized network functions among
all requests can be classified into K types. The VNF instance
of f (k)j for user request rj can be implemented in a cloudlet
v ∈ V that is not necessarily co-located with its user at AP
vj , i.e., vj 6= v. Denote by f (k) and C(f (k)) the virtualized
network function of type k and the amount of computing
resource consumed for its VNF instance implementation for
each k with 1 ≤ k ≤ K. We further assume that each VNF
instance of f (k) has a maximum packet processing rate µ(k),
and the data packet traffic of each request is not splittable
and must be processed by a single VNF instance.

3.3 Admission cost of a request

Instantiating VNF instances at cloudlets consumes comput-
ing and storage resources of cloudlets and thus incurs the
implementation cost. The instantiation of a VNF instance of
network function f (k) in a cloudlet v incurs the instantiation
cost cins(f (k), v), while the processing of data packet traffic
of a request rj at a VNF instance of f (k)j at cloudlet v has the
usage cost of computing resource ρj · cproc(f (k), v), where
cproc(f

(k), v) is the cost of processing a packet by a VNF
instance f (k) at cloudlet v and ρj is the packet rate of rj .
Notice that the processing cost of a data packet cproc(f (k), v)
of different VNF instances at different cloudlets may be
significantly different, since different amounts of computing
resource is consumed by different VNF instances. In addition
to the processing cost of its data packet traffic at a VNF
instance in a cloudlet, the data packet traffic of each request
rj is routed along a routing path in the network between the
request’s AP location and the cloudlet hosting its VNF in-
stance, which incurs the communication cost. Let P (vj , v) be
the shortest routing path for request rj between its AP node
vj and cloudlet v in which its data packet traffic is processed
by a VNF instance of f (k)j . The routing cost of a packet along
path P (vj , v) thus is cbw(P (vj , v)) =

∑
e∈P (vj ,v)

ce, where
ce is the unit transmission cost on each link e ∈ E. Notice
that if the data packet traffic of request rj is processed by
a VNF instance in the cloudlet attached to its AP vj , the
communication cost of the request is negligible.

3.4 The knapsack and generalized assignment prob-
lems

We here introduce the knapsack problem and the generalized
assignment problem as they will be used in the rest of this
paper, and defined as follows.

Given a set I of elements and a bin B with capacity
cap(B) where each element i ∈ I has a size size(ai) and
a profit profit(ai) if element ai ∈ I is placed into bin B,
the knapsack problem is to place as many as elements of I
into B such that the sum of profits of the placed elements
is maximized, subject to the capacity of bin B. There is an
approximation algorithm for the knapsack problem with an

approximation ratio of 1
1+ε [7], which takes O( |I| log |I|ε ) time,

where ε is a constant with 0 < ε ≤ 1.
Given a set I of elements and a set B of bins where

each bin bj ∈ B has computing capacity of cap(bj), and
each element ai ∈ I has a size size(ai, bj) and a profit
profit(ai, bj) if element ai is placed into bin bj , the Gen-
eralized Assignment Problem (GAP) is to place as many as
elements in I into the bins in B such that the profit sum of
all placed elements is maximized, subject to the capacity on
each bin in B. There is an approximation algorithm for the
GAP with an approximation ratio of 1

2+ε due to Cohen et
al. [6], which takes O( |I|·|B|ε + |B|ε4 ) time, where ε is a constant
with 0 < ε ≤ 1.

3.5 Problem definitions
To admit a user request, we may utilize an existing VNF
instance or instantiate a new one for the processing of the
data packet traffic of the request. The admission of a request
not only consumes the computing resource but also the
communication (bandwidth) resource of the network, and
there is a non-trivial tradeoff between the usages of these two
types of resources. For example, if the computing resource in
MEC is more expensive, we may instantiate less numbers of
VNF instances for the admissions of user requests. Otherwise
(if the communication resource in MEC is more expensive),
we may instantiate more VNF instances at cloudlets to
reduce the communication resource consumption of admitted
requests.

In this paper, we consider two NFV-enabled request
admission problems in MEC: one is the cost minimization
problem if there is sufficient computing resource in cloudlets
to meet all user requests’ resource demands; and another is
the throughput maximization problem that aims to maximize
the number of user request admissions while minimizing
their admission cost, subject to the computing capacity
constraint at each cloudlet. The precise definitions of these
two problems are given as follows.

Definition 1: Given an MEC network G = (V,E) with
a set V of APs, a cloudlet is co-located with each AP for
implementing VNF instances, a set of users U with each user
j ∈ U having an NFV-enabled request rj = 〈vj , f (k)j , ρj〉,
where vj is the AP location of the request, f (k)j is its requested
network function, and ρj is its data packet rate if the request
is admitted, the cost minimization problem is to admit all
user requests through deploying a certain number of VNF
instances of network functions in cloudlets to meet the
service demands of all requests such that their admission cost
is minimized, assuming that there is sufficient computing
resource at cloudlets for the admissions of all requests.

In Definition 1, we assumed that the computing resource
in each cloudlet is unlimited. However, in practice, the
computing resource in each cloudlet is capacitated. This
implies that not all requests can be admitted due to lack
of computing resource in the network. We instead aim to
maximize the number of requests admitted while minimizing
their admission cost, subject to the computing capacity at
each cloudlet in G, by presenting the following problem
definition.

Definition 2: Given an MEC network G = (V,E) with a
set V of APs, a cloudlet v ∈ V with computing capacity Cv
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is co-located with each AP v ∈ V , a set U of users with each
user j ∈ U having a request rj = 〈vj , f (k)j , ρj〉, the throughput
maximization problem is to maximize the number of requests
admitted by deploying VNF instances in the cloudlets while
minimizing the admission cost of the admitted requests,
subject to the computing capacity on each cloudlet in G.

3.6 NP hardness of the defined problems

In the following we show that the two defined optimization
problems are NP-hard.

Theorem 1. The cost minimization problem in G = (V,E) is
NP-hard.

Proof. We prove the NP hardness of the cost minimization
problem by a reduction from a well known NP-hard problem
- the bin packing problem that is defined as follows. Given
a set I of items with each item ai ∈ I having a specified
size size(ai), the problem is to find a packing schedule for
the items into bins each with capacity B that minimizes the
number of bins used, assuming that B ≥ maxai∈I size(ai).

We show that an instance of the bin packing problem
can be reduced to an instance of the cost minimization
problem. Specifically, each bin corresponds to a VNF instance
with processing capacity B, a set I = {ai | 1 ≤ i ≤ n} of
items corresponds to a set of requests to be admitted and
processed by VNF instances in cloudlets. Each request ai
has a packet rate size(ai). Here we assume only one type
of VNF instances is considered and only the cost of the
VNF instance instantiation is taken into account while the
processing and routing costs of the packets of each request
are ignored, and the aim is to minimize the number of
VNF instances deployed to minimize the admission cost
of admitted requests. It can be seen that a solution to this
special case of the cost minimization problem is a solution to
the bin packing problem. Thus, the theorem holds.

Theorem 2. The throughput maximization problem in G =
(V,E) is NP-hard.

Proof. We prove the NP hardness of the throughput maxi-
mization problem by a reduction from a well known NP-hard
problem - the Generalized Assignment Problem (GAP). We
show that an instance of the generalized assignment problem
can be reduced to an instance of the throughput maximiza-
tion problem. Specifically, each bin bj ∈ B corresponds to
a cloudlet with capacity cap(bj), a set I = {ai} of items
corresponds to a set of requests to be admitted and processed
by their VNF instances at a cloudlet. Each request ai requires
a VNF instance with specified computing resource C(fi)
which is the size size(ai, bj) of each item ai in a bin bj , and
the profit profit(ai, bj) received is 1 if it is admitted. Here
we assume a VNF instance can only admit one request of
its type. We aim to admit a subset of requests by creating
VNF instances for them assuming there is no existing VNF
instances deployed for them, so that the number of user
requests been admitted is maximized, while the size of each
cloudlet is bounded by its capacity cap(bj). It can be seen
that a solution to this special profit maximization problem is
a solution to the generalized assignment problem. Thus, this
theorem holds.

4 ALGORITHM FOR THE COST MINIMIZATION PROB-
LEM

In this section, we deal with the cost minimization problem.
We first formulate the problem as an integer linear program
(ILP) problem. We then devise an efficient algorithm for it,
and we finally analyze the time complexity of the proposed
algorithm.

4.1 An integer linear program solution

We start with formulating the problem as an integer linear
program (ILP). We then determine the value range of N (k)

which is the number of VNF instances of f (k) needed to
admit all requests in Uk for each k with 1 ≤ k ≤ K. Recall
that Uk and Uk,v are the sets of user requests that request
for network function f (k) in the network and at an AP node
v ∈ V respectively, clearly Uk ⊆ U and Uk,v ⊆ Uk.

Notice that for the sake of convenience, we here assume
that each request rj is located at AP vj . In fact, it can be
located at another AP vl with l 6= j, this does not affect the
applicability of the proposed algorithms in this paper.

Recall that F = {f (1), f (2), . . . , f (K)} is a set of network
functions provided by the network. For each type network
function k with 1 ≤ k ≤ K, let N (k) be the number of
VNF instances to be deployed for admitting all requests in
Uk, in other words, the data packet traffic of all requests
in Uk can be processed by these N (k) VNF instances. Let
I(k) = {I(k)1 , I

(k)
2 , . . . I

(k)

N(k)} be the set of VNF instances of
f (k). Let V = {v1, v2, . . . , v|V |} be the set of APs or cloudlets
and I = ∪Kk=1I(k).

Define a function φ : F×I 7→ V . Specifically, the variable
domain of φ(·) consists of K disjoint subdomains, i.e., φ :
F × I(k) 7→ V for each k with 1 ≤ k ≤ K, the ith VNF
instance I(k)i of f (k) will be deployed to a cloudlet indexed
at φ(k, i). Notice that different VNF instances in I(k) can be
mapped to a single or multiple cloudlets.

Define another function ψ : F × U 7→ I . Specifically, the
variable domain of ψ(·) consists of K disjoint subdomains,
i.e., ψ : F × Uk 7→ I(k) for each k with 1 ≤ k ≤ K, each
request rj ∈ Uk of f (k) is assigned to the ψ(k, j)th VNF
instance of f (k), which also implies that the VNF instance is
hosted in a cloudlet indexed at φ(k, ψ(k, j)).

If all VNF instances of f (k) have been instantiated in
cloudlets, the processing and routing cost of admitting a user
request rj = 〈vj , f (k)j , ρj〉 is the sum of the routing cost
of its data packet traffic ρj · cbw(P (vj , vφ(k,ψ(k,j))) at the
ψ(k, j)th VNF instance of f (k) that is accommodated at
cloudlet vφ(k,ψ(k,j)) and the processing cost of its data packet
traffic cproc(f (k), vφ(k,ψ(k,j))) at the VNF instance, i.e., ρj ·
(cbw(P (vj , vφ(k,ψ(k,j)))) + cproc(f

(k), vφ(k,ψ(k,j)))).
The cost minimization problem is to admit all requests

while minimizing their admission cost, that is, the optimiza-
tion objective is to minimize

K∑
k=1

N(k)∑
i=1

cins(f
(k), vφ(k,i)) +

K∑
k=1

N(k)∑
i=1

∑
rj∈Uk

ρj · cbw(P (vj , vφ(ψ(k,j)))) +
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K∑
k=1

N(k)∑
i=1

∑
rj∈Uk

ρj · cproc(f (k), vφ(k,ψ(k,j))), (1)

and the number of VNF instancesN (k) of f (k) for all requests
in Uk must meet

max{d
∑
rj∈Uk ρj

λ · µ(k)
e, nB(λ · µ(k), Uk)} ≤ N (k)

≤ min{
∑
v∈V

nB(λ · µ(k), Uk,v), |Uk|}, (2)

where nB(λ · µ,U ′) is the minimum number of bins that
can pack all elements in U ′, assuming that each bin has
computing capacity of λ · µ and λ is a given load factor
within 0 < λ ≤ 1, and there is a set U ′ of elements with each
element rj having a profit 1 and weight ρj .

The correctness of Ineq. (2) will be shown in Lemma 1 in
Section 4.

In the optimization objective (1), the first term is the
cost of instantiating all VNF instances to meet computing
demands of all requests. The second term is the routing cost
of data packet traffic of all requests between the location vj
of each request rj and the location vφ(k,ψ(k,j)) of its VNF
instance, and the third term is the processing cost of data
packets of all requests at different VNF instances in different
cloudlets.

The solution of the cost minimization problem thus
consists of (i) the value of N (k); (ii) the deployment of
the N (k) VNF instances at different cloudlets (the mapping
function φ(·) ); and (iii) the assignment of each request in
Uk to one of the deployed N (k) VNF instances (the mapping
function ψ(·)) as well as its cloudlet indexed at φ(k, ψ(·))
such that the optimization objective (1) is minimized, for
each k with 1 ≤ k ≤ K.

For each request rj ∈ U , there are K (K = |F|) binary
constants akj where akj = 1 if rj requests network function
f (k); akj = 0 otherwise for all k with 1 ≤ k ≤ K. For the ith
VNF instance I(k)i ∈ I(k) of f (k) and each cloudlet vl ∈ V
with 1 ≤ i ≤ N (k), 1 ≤ k ≤ K, and 1 ≤ l ≤ |V |, there is a
binary decision variable xikl where xikl = 1 if the ith VNF
instance I(k)i of f (k) is deployed in cloudlet vl. Furthermore,
there is a binary decision variable yijl, which indicates if
the data packet traffic of a request rj is processed by the ith
VNF instance I(k)i of f (k) in cloudlet vl. The optimization
objective (1) can be rewritten into an equivalent optimization
objective (3) of the cost minimization problem is to minimize
the admission cost of all requests in G(V,E) as all requests
will be admitted by the assumption, i.e.,

minimize
K∑
k=1

N(k)∑
i=1

|V |∑
l=1

cins(f
(k), vl) · xikl+

∑
rj∈U

K∑
k=1

N(k)∑
i=1

|V |∑
l=1

ρja
k
j · (cproc(f (k), vl) + cbw(P (vj , vl))) · yijl,

(3)
subject to:
N(k)∑
i=1

|V |∑
l=1

akj · yijl = 1, ∀rj ∈ U, 1 ≤ k ≤ K (4)

∑
rj∈U

ρj · akj · yijl ≤ λ · µ(k) · xikl,

∀1 ≤ l ≤ |V |, 1 ≤ k ≤ K, 1 ≤ i ≤ N (k) (5)

max{d
∑
rj∈Uk ρj

λ · µ(k)
e, nB(λ · µ(k), Uk)} ≤ N (k)

≤ min{
|V |∑
l=1

u(k, vl), |Uk|},∀ 1 ≤ k ≤ K (6)

akj · yijl ≤ xikl,∀1 ≤ l ≤ |V |, rj ∈ U, 1 ≤ k ≤ K,
1 ≤ i ≤ N (k) (7)

xikl ∈ {0, 1},∀1 ≤ l ≤ |V |, 1 ≤ k ≤ K, 1 ≤ i ≤ N (k) (8)

yijl ∈ {0, 1},∀1 ≤ l ≤ |V |, rj ∈ U, 1 ≤ i ≤ N (k). (9)

where nB(λ · µ,U ′) is the minimum number of bins with
capacity λ · µ to pack all elements in U ′, and u(k, v) is an
approximation (an upper bound) on nB(λ · µ(k), Uk,v) that
can be obtained by invoking an approximation algorithm for
the GAP problem such as the one in [6] (see the proof body
of Lemma 1).

Constraint (4) ensures that each request rj will be ad-
mitted and assigned to one VNF instance of its requested
network function f (k) at a cloudlet vl.

Constraint (5) ensures that the accumulative packet rate
of all requests for f (k) that are assigned to the ith VNF
instance of f (k) in cloudlet vl is no greater than its maximum
packet processing rate λ · µ(k). When λ = 1, the computing
resource in MEC is the most expensive one and it should be
fully utilized.

Constraint (6) ensures that all requests in Uk requesting
for f (k) can be admitted and their data packet traffic can be
processed by the N (k) VNF instances of type k for each k
with 1 ≤ k ≤ K. Notice that the N (k) VNF instances can be
deployed into one or multiple cloudlets in MEC.

Constraint (7) enforces that if the data packet traffic
of request rj is processed in the ith VNF instance of f (k)

in cloudlet vl, then the ith VNF instance of f (k) must be
deployed in cloudlet vl.

The rest is to show that the value of N (k) is in a given
range by the following lemma.

Lemma 1. For each k with 1 ≤ k ≤ K, we have

max{d
∑
rj∈Uk ρj

λ · µ(k)
e, nB(λ · µ(k), Uk)} ≤ N (k)

≤ min{
|V |∑
l=1

nB(λ · µ(k), Uk,vl), |Uk|}

≤ min{
|V |∑
l=1

u(k, vl), |Uk|}. (10)

Proof. Recall that N (k) is such a positive integer that the data
packet traffic of all requests in Uk can be processed by these
N (k) VNF instances of f (k). To admit all requests in Uk, we
first estimate the lower and the upper bounds on the number
of VNF instances of f (k) needed.

Denote by N (k)
low and N (k)

upp the lower and upper bounds
on N (k). It can be seen that a naive lower bound of N (k)

is d
∑
rj∈Uk

ρj

λ·µ(k) e as the maximum packet processing rate of
a VNF instance is λ · µ(k). However, this bound might not
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be tight. To ensure that all requests in Uk will be admitted,
the minimum number of VNF instances of f (k) needed is
equivalent to the minimum number of bins to pack the data
packet rates of these requests. Unfortunately the calculation
of the minimum number of bins is NP-hard. We instead
adopt an approximation algorithm for the GAP [6] to find
an approximate value of nB(λ · µ(k), Uk), which proceeds as
follows.

We start with n
(k)
L = n

(k)
B = d

∑
rj∈Uk

ρj

λ·µ(k) e bins to pack
all requests in Uk. If all requests can be packed, this value
is optimal, i.e., nB(λ · µ(k), Uk) = n

(k)
L ; otherwise, we set

an upper bound n
(k)
H = 2nL of nB(λ · µ(k), Uk), we then

examine whether all requests in Uk can be packed by n(k)H
bins. If not, we double that number again. We then find a
proper number for the approximation of nB(λ · µ(k), Uk), by
binary search in [n

(k)
L , n

(k)
H ].

On the other hand, if the data packet traffic of each
request is processed in the cloudlet co-located with the AP
it was issued, there will not incur any routing cost of its
admission. Thus, there must have enough VNF instances in
that cloudlet for the admissions of the requests. Consider
the sum of data packet rates

∑
rj∈Uk,v ρj of all requests

in Uk,v at AP v. Determining the minimum number of
VNF instances in cloudlet v for the admissions of these
requests is equivalent to determining the minimum number
of bins nB(λ · µ(k), Uk,v) with bin capacity µ(k) to pack
their data packet rates. The range of nB(λ · µ(k), Uk,v) is

between d
∑
rj∈Uk,v

ρj

λ·µ(k) e and |Uk,v|. However, finding the

exact value is NP-hard. A naive upper bound N
(k)
upp on

N (k) is
∑
v∈V |Uk,v| = |Uk|, an improved upper bound is

to apply an approximation algorithm for the GAP at each
AP [6] to identify the number of bins needed. Let u(k, v) be
the solution delivered by the approximation algorithm at
cloudlet v ∈ V . Then, N (k)

upp =
∑
v∈V u(k, v).

As mentioned in the beginning of this paper, we aim at
exploring a non-trivial usage tradeoff between computing
resource (in cloudlets) and communication resource (at links)
for request admissions. For a given type k network function
f (k) with 1 ≤ k ≤ K, in order to admit all requests in Uk,
we note that with the increase on the number N (k) (= |I(k)|)
of VNF instances of f (k), the associated computing cost
(including the instantiation cost of VNF instances and the
processing cost of data packet traffic of requests at the VNF
instances) increases, too. Contrarily, the routing cost of data
packet traffic of admitted requests decreases or vice versa.
Since the admission cost of all requests in Uk is the sum
of the processing and routing costs of the requests that is
not a monotonic function of the number of VNF instances,
we need to find a proper value of N (k) for each k with
1 ≤ k ≤ K such that the admission cost of all requests in U
is minimized. Thus, the exact solution to the problem can be
obtained, by exploring every possible integer value in the
interval of Ineq. (10), and then choosing the one with the
minimum cost as the problem solution.

4.2 Heuristic algorithm by deploying VNF instances
one by one
Although the formulated ILP for the cost minimization
problem can deliver an exact solution when the problem

size is small, its running time is prohibitively high with the
growth of problem size, and thus not scalable. We will use
the ILP solution as a baseline for the performance evaluation
of our proposed algorithm. In the following we propose an
efficient algorithm for the cost minimization problem.

The rationale behind the proposed algorithm is to explore
a non-trivial tradeoff between the usages of computing
and communication resources in admissions of requests
dynamically. If computing resource is relatively abundant,
we can increase the deployment of the number N (k) of VNF
instances of each type f (k) by lowering the load factor λ of
the VNF instances (e.g., λ = 0.5). Thus, most requests can
be served by their requested VNF instances instantiated at
their nearby cloudlets, thereby reducing the routing cost (the
communication cost) of their data packet traffic. On the other
hand, if less and less computing resource becomes available,
we can reduce the deployment of the number N (k) of VNF
instances of each f (k) by increasing its load factor λ (e.g.,
λ = 0.95). Thus, less computing resource is consumed on the
VNF instance instantiations. Meanwhile, the routing path of
each request from its location to the cloudlet hosting its VNF
instance becomes longer, and more communication resource
on routing its packet traffic is consumed to the admission of
the request.

The proposed algorithm is an iterative algorithm. Specifi-
cally, for each k with 1 ≤ k ≤ K , we identify a proper value
N (k), and deploy the N (k) VNF instances of f (k) to different
cloudlets. We deploy the VNF instances one by one and
assign a subset of unassigned requests in Uk to the newly
deployed VNF instance. This procedure continues until all
requests in Uk are assigned.

Consider the deployment of the ith VNF instance of f (k)

that can be deployed in one of the |V | cloudlets. Let R(k)
v be

the set of requests in U ′k requested for f (k) that have not been
admitted in the previous (i− 1) iterations of the algorithm
but will be admitted in the ith iteration and processed by the
ith VNF instance of f (k) in a cloudlet v, where U ′k ⊆ Uk. In
order to identify which requests in U ′k to be assigned to the
ith newly instantiated VNF instance I(k)i of f (k) in cloudlet v,
we aim to assign as many as requests in U ′k to I(k)i such that
the sum of the processing and routing costs of these requests
is minimized, subject to the maximum packet processing rate
λ · µ(k) of I(k)i .

If all VNF instances of f (k) have been instantiated in
cloudlets, denote by

cost(rj) = ρj · (cproc(f (k), v) + cbw(P (vj , v))) (11)

the processing and routing cost of admitting request rj . To
this end, we treat I(k)i as a bin with capacity λ · µ(k), each
request rj ∈ U ′k as an element in U ′k with size ρj , and a profit
profit(rj) = 1

cost(rj)
that is the inverse of the processing

and routing cost of a newly admitted request, assuming
that instance I(k)i has been instantiated in cloudlet v ∈ V
already. A solution R

(k)
v (⊆ U ′k) to this knapsack problem

is obtained by applying an approximation algorithm for
knapsack problems.

Notice that the profit maximization in this knapsack
problem is roughly equivalent to the cost minimization of
admitting all requests in R(k)

v . Furthermore, the instantiation
cost of I(k)i in cloudlet v has not been taken into account.
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The rest is to choose a cloudlet v0 hosting I(k)i if the ratio
of the number of newly admitted requests to the admission
cost of the requests in R(k)

v is maximized, i.e.,

v0 = argmax
v∈V

|R(k)
v |

cins(f (k), v) +
∑
rj∈R(k)

v
cost(rj)

, (12)

where the maximum ratio in Eq. (12) implies that deploying
the ith VNF instance I

(k)
i in cloudlet v0 results in the

minimization of the admission cost of newly admitted
requests R(k)

v in iteration i for network function f (k) with
1 ≤ i ≤ N (k) and 1 ≤ k ≤ K.

The detailed algorithm for the cost minimization problem
thus is given in Algorithm 1.

Algorithm 1 Deploying VNF instances one by one for the
cost minimization problem
Input: Given an MEC network G = (V,E) and a set U of

users with each having a user request rj = 〈vj , f (k)j , ρj〉,
and a given load factor λ with 0 < λ ≤ 1.

Output: A solution to minimize the admission cost of all
requests, by deploying VNF instances one by one in
cloudlets to admit all user requests.

1: cost← 0; /* the cost of all request admissions */
2: S ← ∅; /* different VNF instance placements in cloudlets,

i.e., function φ(·) */
3: A← ∅; /* different user request assignment to different

VNF instances at different cloudlets, i.e., function ψ(·) */
4: for k ← 1 to K do
5: i ← 0; /* the ith VNF instance I

(k)
i of f (k) to be

deployed in a cloudlet */
6: U ′k ← Uk; /* the set of unassigned requests in Uk */
7: I(k) ← ∅; /* the set of VNF instances of f (k) */
8: while U ′k 6= ∅ do
9: i← i+ 1;

10: Compute the ratio in formula (12) if the ith VNF
instance I(k)i of f (k) is deployed in cloudlet v for
each v ∈ V by invoking an approximation algorithm
for the knapsack problem with capacity λ · µ(k) and
set U ′k, and let cloudlet v0 be chosen to the host of
the ith VNF instance I(k)i ;

11: I(k) ← I(k) ∪ {I(k)i };
12: U ′k ← U ′k \ R

(k)
v ; /* all requests in R

(k)
v now have

been admitted and assigned to VNF instance I(k)i in
cloudlet v0 */

13: cost ← cost + cins(f
(k), v0) +

∑
rj∈R(k)

v
ρj ·

(cproc(f
(k), v0) + cbw(P (vj , v0)));

14: S ← S ∪ {I(k)i in cloudlet v0}; /* i.e., φ(k, i) = v0
*/

15: A← A ∪ {rj is assigned to I(k)i in cloudlet v0 | rj ∈
R

(k)
v }; /* i.e., ψ(k, j) = i and φ(k, ψ(k, j)) =

ψ(k, i) = v0 */
16: return cost, S, and A.

4.3 An improved algorithm by deploying multiple VNF
instances simultaneously

In Algorithm 1, only one VNF instance I(k)i is deployed
in a cloudlet v ∈ V within iteration i, 1 ≤ i ≤ N (k).

Instead of deploying VNF instances one by one, we explore
deploying multiple (e.g., α) VNF instances together, where
α is a positive integer, i.e., α = 1, 2, 3, etc. When α = 1,
one VNF instance is deployed in each iteration, and this is
Algorithm 1. The rationale for deploying a group of α VNF
instances is the fact that a single request can be admitted
by multiple VNF instances, and its admission will occupy
certain amounts of resources that will affect future request
admissions. If multiple VNF instances are deployed at the
same time, a better combination of requests can be admitted
with the minimum admission cost.

Denote by I(k)i = {I(k)i,1 , I
(k)
i,2 , . . . , I

(k)
i,α } a group of α VNF

instances of type k in iteration i. We treat each VNF instance
I
(k)
i,a as a bin with capacity λ · µ(k) and has been instantiated

in a cloudlet v ∈ V already, and each request rj ∈ U ′k as
an element with size ρj , and a profit profit(rj) = 1

cost(rj)

is collected if it is admitted. A solution to this generalized
assignment problem (GAP) can be obtained by invoking an
approximation algorithm due to Cohen et al. [6]. Then, we
choose a group of α cloudlets to host the set I(k)i of VNF
instances. The group of cloudlets are not necessarily distinct,
which means multiple VNF instances in I(k)i can reside in
the same cloudlet.

Denote by Sα the collection of all subsets of cloudlets of
size α, that is Sα = {S}, and S = {v | v ∈ V, |S| = α}. Thus,
|Sα| = |V |α. A set S0 of cloudlets (not necessarily distinct) of
size α is selected if the ratio of the number of newly admitted
requests R(k)

S to their admission cost is maximized, i.e.,

S0 = argmax
S∈Sα

|R(k)
S |∑

v∈S cins(f
(k), v) +

∑
rj∈R(k)

S
cost(rj)

.

(13)

This procedure continues until all requests can be ad-
mitted. The detailed algorithm is given in Algorithm 2.

4.4 Analysis on the proposed algorithms
In the following we analyze the time complexities of
Algorithm 1 and Algorithm 2.

Theorem 3. Given an MEC network G = (V,E), and a set
U of users with each having a user request rj = 〈vj , f (k)j , ρj〉,
assuming that there is sufficient computing resource in cloudlets
to accommodate all VNF instances of different network functions,
there are algorithms, Algorithm 1 and Algorithm 2, for the
cost minimization problem, which take O(|V | · |U | log |U |ε + |V |3)
time and O(|V |α(|U | log 1

ε +
1
ε4 ) + |V |

3) time respectively, and
deliver feasible solutions to the problem, where α ≥ 1 is a positive
integer and ε is a constant with 0 < ε ≤ 1.

Proof. As there are K iterations of Algorithm 1 and
Algorithm 2. For iteration k with 1 ≤ k ≤ K, all requests
in Uk are admitted, and N (k) VNF instances of f (k) are
deployed, and the sum of packet rates of all requests in Uk
assigned to any of the N (k) VNF instances is no greater than
its maximum packet processing rate λ · µ(k). The solutions
delivered by Algorithm 1 and Algorithm 2 thus are
feasible.

We then analyze the time complexity of Algorithm 1.
The algorithm contains K iterations. Within iteration k with
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Algorithm 2 Deploying VNF instances with a look-ahead
strategy for the cost minimization problem
Input: Given an MEC network G = (V,E) and a set U of

users with each having a user request rj = 〈vj , f (k)j , ρj〉,
a given load factor λ with 0 < λ ≤ 1, and a constant α.

Output: A solution to minimize the admission cost of all
requests, by deploying a group of VNF instances together
in each iteration to admit all user requests.

1: cost← 0; /* the cost of all request admissions */
2: S ← ∅; /* different VNF instance placements in cloudlets,

i.e., function φ(·) */
3: A← ∅; /* different user request assignment to different

VNF instances at different cloudlets, i.e., function ψ(·) */
4: for k ← 1 to K do
5: i ← 0; /* the ith set of VNF instances I(k)i of f (k) to

be deployed in cloudlets */
6: U ′k ← Uk; /* the set of unassigned requests in Uk */
7: I(k) ← ∅; /* the set of VNF instances of f (k) */
8: while U ′k 6= ∅ do
9: i← i+ 1;

10: Compute the ratio in formula (13) if the set I(k)i of
VNF instances of f (k) deployed in cloudlets S by
invoking an approximation algorithm for the GAP
problem with α bins each with capacity λ · µ(k), and
set of elements U ′k, let cloudlets S0 be chosen to the
host of the set of VNF instance I(k)i ;

11: I(k) ← I(k) ∪ I(k)i ;
12: U ′k ← U ′k \ R

(k)
S ; /* all requests in R

(k)
S now have

been admitted and assigned to VNF instances I(k)i

to be deployed in a set S0 of cloudlets */
13: cost ← cost +

∑
v∈S0 cins(f

(k), v) +∑
rj∈R(k)

S0

cost(rj);

14: S ← S ∪ {I(k)i,a in cloudlet v | I(k)i,a ∈ I
(k)
i , v ∈ S0};

15: A← A ∪ {rj is assigned to I(k)i,a in cloudlet v | rj ∈
R

(k)
S0 , I

(k)
i,a ∈ I

(k)
i , v ∈ S0};

16: return cost, S, and A.

1 ≤ k ≤ K, there are N (k) VNF instances of f (k) to be de-
ployed and they are deployed one by one, whereN (k) ≤ |Uk|.
Determining the deployment of the ith VNF instance I(k)i of
f (k) on which cloudlet and the assignment of requests in U ′k
to I(k)i take O(|V | · |U

′
k| log |U

′
k|

ε ) time, by invoking an approx-
imation algorithm for the knapsack problem, assuming that
all pairs of shortest paths between the AP location of each
request and the VNF instance assigned to it for its data packet
traffic processing is pre-calculated, which takes O(|V |3) time.
Algorithm 1 thus takes O(|V |3 + |V | ·

∑K
k=1

|U ′
k| log |U

′
k|

ε ) =

O(|V | · |U | log |U |ε + |V |3) time, where U ′k ⊆ Uk for each k
with 1 ≤ k ≤ K and ε is constant with 0 < ε ≤ 1.

The rest is to analyze the time complexity of
Algorithm 2. In each iteration, determining the deploy-
ment of a group I(k)i of VNF instances of f (k) on which
cloudlets and the assignment of requests in U ′k to I(k)i take
O(α|V |α(|U ′k| log 1

ε +
1
ε4 )) time, by invoking an approxima-

tion algorithm for the GAP problem, since |V |α combinations
of VNF instances are examined. Algorithm 2 thus takes

O(|V |α(|U | log 1
ε+

1
ε4 )+|V |

3) time and α is a positive integer
and ε is constant with 0 < ε ≤ 1.

5 ALGORITHM FOR THE THROUGHPUT MAXIMIZA-
TION PROBLEM

The cost minimization problem assumed that computing
resource at cloudlets is abundant. In practice, it is not
uncommon that the computing resource in cloudlets is
capacitated, i.e., the computing resource at each cloudlet
v ∈ V is capacitated by Cv . This implies that not all
requests in U can be admitted due to lack of computing
resource to meet their resource demands. In this section, we
study the throughput maximization problem with the aim to
maximize the throughput, by admitting as many as requests
while minimizing their admission cost, subject to computing
capacity on each cloudlet in MEC.

5.1 Integer linear program formulation

We formulate an ILP solution to the throughput maxi-
mization problem. The difference from the previous one
is the objective function and the capacity constraint on each
cloudlet.

maximize
K∑
k=1

∑
j∈U

N(k)∑
i=1

|V |∑
l=1

akj · yijl, (14)

subject to:
K∑
k=1

N(k)∑
i=1

C(f (k)) · xikl ≤ Cv,∀1 ≤ l ≤ |V | (15)

N(k)∑
i=1

|V |∑
l=1

akj · yijl ≤ 1, ∀j ∈ U, 1 ≤ k ≤ K (16)

0 ≤ N (k) ≤ min{
|V |∑
l=1

u(k, vl), |Uk|},∀ 1 ≤ k ≤ K (17)

akj · yijl ≤ xikl,
∀1 ≤ l ≤ |V |, j ∈ U, 1 ≤ k ≤ K, 1 ≤ i ≤ N (k) (18)∑

j∈U
ρj · akj · yijl ≤ µ(k) · xikl,

∀1 ≤ l ≤ |V |, 1 ≤ k ≤ K, 1 ≤ i ≤ N (k) (19)

xikl ∈ {0, 1},∀1 ≤ l ≤ |V |, 1 ≤ k ≤ K, 1 ≤ i ≤ N (k) (20)

yijl ∈ {0, 1}, ∀1 ≤ l ≤ |V |, j ∈ U, 1 ≤ i ≤ N (k) (21)

Constraint (15) ensures that computing capacity constraints
of all cloudlets are not violated.

5.2 Deploying VNF instances one by one

We propose a greedy algorithm for the problem, which
proceeds iteratively. Within iteration i, one VNF instance of
a network function f (k0) deployed at a cloudlet v0 is chosen
if its ratio of the number of newly admitted requests that
request for f (k0) to their admission cost is the maximum one,
assuming that cloudlet v0 has sufficient residual computing
resource to accommodate the VNF instance of f (k0), where
both network function f (k0) and cloudlet v0 for the new
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VNF instance deployment are determined by the following
formula.

〈k0, v0〉 = argmax
1≤k≤K,v∈V

ηk,v

= argmax
1≤k≤K,v∈V

|R(k)
v |

cins(f (k), v) +
∑
rj∈R(k)

v
cost(rj)

,

(22)

where R(k)
v is the set of requests of f (k) that have not been

admitted in previous iterations and will be admitted and
processed by the VNF instance of f (k) in cloudlet v for each
k with 1 ≤ k ≤ K. Notice that identifying the set R(k)

v

is NP-hard, due to this is a knapsack problem with bin
capacity λ · µ(k) and the set of elements in U ′k (⊆ Uk), where
each element rj ∈ U ′k has size ρj and a profit profit(rj) =

1
cost(rj)

= 1
ρj ·(cproc(f(k),v)+cbw(P (vj ,v)))

.

The admission cost of newly admitted requests in R(k0)
v0 is

the sum of the instantiation cost of the VNF instance of f (k0)

in cloudlet v0, and the sum of the processing and routing
costs of all newly admitted requests in R(k0)

v0 , using the newly
instantiated VNF instance.

The above procedure repeats until either all requests in U
are admitted or no more VNF instances can be instantiated
in any cloudlet without violating its computing capacity. The
detailed algorithm is given in Algorithm 3.

5.3 Deploying VNF instances with a look-ahead strat-
egy

Similarly, we can apply a look-ahead strategy to deploy
a group of VNF instances in each iteration. Specifically,
in each iteration, a set of α VNF instances of type k are
deployed in a group S of cloudlets (not necessarily distinct),
where S = {v | v ∈ V, |S| = α}, if each cloudlet v ∈ S
has sufficient residual computing resource to accommodate
the VNF instance of f (k) and the ratio of the number of
newly admitted requests R(k)

S that request for f (k) to their
admission cost is the maximum one. The network function
f (k0) and cloudlet set S0 are determined by the following
formula.

〈k0,S0〉 = argmax
1≤k≤K,S∈Sα

|R(k)
S |∑

v∈S cins(f
(k), v) +

∑
rj∈R(k)

S
cost(rj)

,

(23)

where Sα denotes the combinations of all set of cloudlets
of size α, R(k)

S is the set of requests of f (k) that have not
been admitted in previous iterations and to be admitted and
processed by the set of α VNF instances in the following
iteration. An approximation algorithm for the GAP problem
due to Cohen et al. [6] is invoked to solve the GAP problem
with a set of α bins each with bin capacity λ · µ(k) and a set
of elements in U ′k ⊆ Uk, where each element rj ∈ U ′k has
size ρj and a profit of profit(rj) = 1

cost(rj)
.

The above procedure continues until all requests in U
are admitted or no more VNF instances can be instantiated
in any cloudlet without violating its computing capacity.
The algorithm is termed as Algorithm 4, and can be
devised through performing modifications to Algorithm 3.
Specifically, a group of α VNF instances of network function

Algorithm 3 Deploying VNF instances one by one for the
throughput maximization problem
Input: Given an MEC G = (V,E), there is a cloudlet v ∈ V

with capacity Cv co-located with each AP v ∈ V , a
set of users U with each having a user request rj =

〈vj , f (k)j , ρj〉, and a given load factor λ with 0 < λ ≤ 1.
Output: A solution that maximizes the throughput while

minimizing the admission cost of admitted requests, by
deploying VNF instances one by one in cloudlets and
assigning the requests to the deployed VNF instances.

1: flag ← true;
2: cost← 0; /* the admission cost of all admitted requests

*/
3: S ← ∅; /* different VNF instance placements in cloudlets,

i.e., function φ(·) */
4: A ← ∅; /* all admitted requests so far, and different

user request assignment to different VNF instances at
different cloudlets, i.e., function ψ(·) */

5: while flag do
6: /* when there are not admitted requests and there is

computing resource in cloudlets for their VNF instance
instantiation */

7: ηmax ← 0;
8: sign←′ No′; /* terminate the nested loop */
9: for k ← 1 to K do

10: for each cloudlet v ∈ V do
11: U ′k ← Uk − (Uk ∩ A); /* unassigned requests in

Uk */
12: if (cloudlet v has residual computing capacity to

accommodate a VNF instance of f (k)) and (U ′k 6=
∅) then

13: Compute R(k)
v , by invoking an approximation

algorithm for the knapsack problem with capac-
ity λ · µ(k) and set U ′k;

14: Compute the ratio ηk,v in Eq.(22);
15: if ηk,v > ηmax then
16: ηmax ← ηk,v ;
17: k0 ← k;
18: v0 ← v;
19: sign←′ Y es′; /* whether there is any update

*/
20: if sign =′ Y es′ then
21: Cv0 ← Cv0 − C(f (k0)); /* update the residual

computing resource at cloudlet v0 */
22: Uk0 ← Uk0 \R

(k0)
v0 ;

23: cost ← cost + cins(f
(k0), v0) +

∑
rj∈R

(k0)
v0

ρj ·
(cproc(f

(k0), v0) + cbw(P (vj , v0)));
24: S ← S ∪ {a VNF instance of f (k0) created in cloudlet v0};

/* i.e., its ith instance, φ(k0, i) = v0 */
25: A← A ∪ {rj is assigned to I(k0)i in cloudlet v0 | rj ∈

R
(k0)
v0 }; /* i.e., ψ(k0, j) = i and φ(k0, ψ(k0, j)) = v0

*/
26: else
27: flag ← false;
28: return cost, S, and A.
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f (k) are explored and an approximation algorithm for the
GAP problem is invoked to assign requests into α VNF
instances, and Formula (23) is used to select the network
function f (k) and set S of cloudlets to accommodate the VNF
instances. Other steps are the same in the Algorithm 3, thus
its detailed description is omitted.

5.4 Algorithm analysis

The rest is to analyze the time complexity of the proposed
algorithms, Algorithm 3 and Algorithm 4.

Theorem 4. Given an MEC network G = (V,E), there is a
cloudlet v ∈ V with computing capacity Cv co-located with
an AP v ∈ V , a set U of users with each j having a user
request rj = 〈vj , f (k)j , ρj〉, there are algorithms, Algorithm 3
and Algorithm 4, for the throughput maximization problem
in G, which take O(K|V ||U |2 log |U |/ε + |V |3) time and
O(K|V |α|U |(|U | log 1

ε +
1
ε4 ) + |V |

3) time respectively, where ε
is constant with 0 < ε ≤ 1.

Proof. The analysis of time complexity of Algorithm 3
is similar to the one in the proof body of Theorem 3 for
Algorithm 1. The only difference between them is whether
the computing resource at each cloudlet is capacitated.
Specifically, assuming that all pairs shortest paths in G have
been calculated, which takes O(|V |3) time. Algorithm 3
proceeds iteratively. Within each iteration, one instance of a
specific type of network function will be deployed and some
of unassigned requests requested for that network function
will be assigned. The VNF instances are deployed one by one
until either all requests are admitted or there is no sufficient
computing resource at any cloudlet to admit any request any
more.

Consider the algorithm now is in its iteration i, a VNF
instance of f (k0) is identified and deployed at a cloudlet
vl0 , and a subset of requests in U ′k0 is determined and all
requests in it will be assigned to the VNF instance. This takes

O(K · |V | · |U
′
k0
| log |U ′

k0
|

ε ) time. As for each type-k network
function with 1 ≤ k ≤ K, there are no more than N (k)

VNF instances of f (k) to be deployed and N (k) ≤ |Uk|,
the number of iterations in Algorithm 3 is no more than∑K
k=1 |Uk| = |U |. The time complexity of Algorithm 3 thus

is
∑K
k=1O(|Uk| ·K · |V | · |U

′
k| log |U

′
k|

ε + |V |3) = O(K · |V | ·
|U |2 log |U |/ε+ |V |3) time.

The rest is to analyze the time complexity of
Algorithm 4. In each iteration, determining the deployment
of a group of VNF instance of f (k) on which cloudlets and
the assignment of requests in U ′k to α VNF instances take
O(αK|V |α(|U ′k| log 1

ε+
1
ε4 )) time, by invoking an approxima-

tion algorithm for the GAP problem, since |V |α combinations
of VNF instances are examined. Algorithm 2 thus takes
O(K|V |α|U |(|U | log 1

ε +
1
ε4 ) + |V |

3) time and ε is constant
with 0 < ε ≤ 1.

6 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed algorithms through experimental simulations. We
also investigate the impact of important parameters on the
performance of the proposed algorithms.

6.1 Experimental environment settings
We consider an MEC network G = (V,E) consisting of from
10 to 250 APs (cloudlets). We generate network topologies
through the tool GT-ITM [11]. We assume that the computing
capacity of each cloudlet varies from 5,000 MHz to 10,000
MHz [15]. Given a cloudlet, the instantiation cost of a VNF
instance in it is randomly drawn from [0.50, 2.0], while the
processing cost per packet data traffic by a VNF instance is
a random value within [0.01, 0.1]. The routing cost per data
packet along a link is a value drawn from [0.01, 0.1]. The
number K of different types of VNFs in MEC is set at 30, and
computing demand of different types of VNFs is set from 200
MHz to 800 MHz [15], while the processing rate (capacity)
of one type of VNF instance is randomly drawn from 50 to
100 data packets per millisecond [22]. Each user request rj
is randomly generated as follows. A node vj ∈ V in G is
randomly chosen as its AP of rj , and its data packet rate ρj
is randomly drawn from 2 to 10 packets per millisecond [17],
and its type of VNF f (k)j ∈ F is randomly chosen from one
of the K network functions. The value in each figure is the
mean of the results out of 30 MEC instances of the same
size. The running time of an algorithm is obtained based on
a machine with 3.4 GHz Intel i7 Quad-core CPU and 16GB
RAM. Unless otherwise specified, these parameters will be
adopted in the default setting.

In the following, we first evaluate the performance of
Algorithm 1 and Algorithm 2 for the cost minimization
problem against its optimal solution - the ILP solution in the
small-scale and a baseline heuristic GreedyNonCap respec-
tively. Algorithm GreedyNonCap examines requests one by
one, and a request is admitted if there is a VNF instance
of its type with sufficient residual processing capacity. If
there are multiple such VNF instances, we then choose the
one with the minimum request admission cost. Otherwise,
if there is no VNF instance of its type has sufficient residual
processing capacity for the request, a new VNF instance
with the minimum instantiation cost will be instantiated in a
cloudlet. This process continues until all user requests being
admitted. Another heuristic GreedyCap is also proposed
as a benchmark for the throughput maximization problem,
which follows similar idea with the one for algorithm
GreedyNonCap. Specifically, GreedyCap examines requests
one by one, and a request is assigned to a VNF instance with
sufficient residual processing capacity and the minimum
admission cost. Otherwise, if there is no VNF instance of its
type having sufficient residual processing capacity for the
request, a new VNF instance with the minimum instantiation
cost will be instantiated in some cloudlet with sufficient
residual computing capacity. This process continues until
all user requests being admitted or no more requests can be
admitted without avoiding processing capacity of each VNF
instance or computing capacity of each cloudlet.

6.2 Performance evaluation of the proposed algorithms
for the cost minimization problem
We first investigate the performance of Algorithm 1 and
Algorithm 2 against the optimal solution of the ILP for
the cost minimization problem, by varying the number of
requests from 200 to 2,200 while fixing the number |V | of
APs at 10, and fixing the look-ahead parameter α at 2. Fig. 2
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illustrates the admission cost of requests and running time
of the three mentioned algorithms. It can be seen from
Fig. 2 (a) that both Algorithm 1 and Algorithm 2 can
achieve a near optimal admission cost, i.e., the admission
cost delivered by Algorithm 1 is no more than 19.27%
of the optimal one while the admission cost delivered by
Algorithm 2 is no more than 8.75% of the optimal one.
Fig. 2 (b) demonstrates the running times of these three
algorithms. It can be seen that the running times of both
Algorithm 1 and Algorithm 2 are only a small fraction of
that of algorithm ILP, while their solutions are comparable
with the optimal one. In particular, Algorithm 1 takes less
than 20 seconds and Algorithm 2 takes less than 90 seconds,
while algorithm ILP solution takes more than 4 hours, when
the number of requests reaches 2,200. With the increase on
the number of requests, the running time of algorithm ILP
grows exponentially.
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Fig. 2. Performance of Algorithm 1, Algorithm 2, and algorithm ILP
for the cost minimization problem, by varying the number of requests
from 200 to 2,200.

We then evaluate the performance of Algorithm 1
and Algorithm 2 against the benchmark heuristic
GreedyNonCap, by varying network size from 10 to 250
for 20,000 user requests, and fixing the look-ahead parameter
α at 2. Fig. 3 depicts the performance curves of the two
mentioned algorithms. From Fig. 3 (a) we can see that
both Algorithm 1 and Algorithm 2 outperform their
benchmark counterpart GreedyNonCap. Specifically, with
the increase on network size, the admission costs of all
algorithms grow too. However, the performance gap between
them becomes larger and larger. As shown in the figure,
Algorithm 1 has 9.29% less admission cost than that by
algorithm GreedyNonCap when the network size is 100,
and 6.86% less admission cost when the network size is
250. And Algorithm 2 has 16.69% less admission cost than
that by algorithm GreedyNonCap when the network size is
100, and 15.04% less admission cost when the network size
is 250. It is noticeable that Algorithm 2 delivers a better
solution than Algorithm 1 in all cases, which justifies the
effectiveness of the look-ahead strategy. Fig. 3 (b) shows
the running time curves of Algorithm 1, Algorithm 2,
and algorithm GreedyNonCap. It can be seen that algo-
rithm GreedyNonCap takes the least running time, while
Algorithm 2 takes the longest running time in all network
sizes. This is due to the fact that algorithm GreedyNonCap
just places each request greedily to a VNF instance with the
minimum admission cost, while Algorithm 2 strives for
finding a good assignment of requests to share a set of VNF
instances.
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Fig. 3. Performance of Algorithm 1, Algorithm 2, and algorithm
GreedyNonCap when admitting 20,000 requests, by varying the number
of APs from 10 to 250.

6.3 Impact of load factor λ on the performance of re-
source usage tradeoffs for cost minimization

We also investigate the impact of the load factor λ on the
performance of Algorithm 1 for a set of 10,000 requests in
MEC with 100 APs, and we draw the value of λ between 0.5
and 0.95. The impact of λ on the performance of resource
usage tradeoffs for admission cost minimization is shown in
Fig. 4.
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Fig. 4. Impact of the load factor λ on the performance of Algorithm 1.

We investigate the impact of λ on the algorithm perfor-
mance by the following three cases.

Case 1. The instantiation cost of a VNF instance is much
cheaper than the bandwidth usage cost. In this case, the
cost of a unit computing resource usage in a VNF instance
instantiation is drawn from [0.01, 0.1]. As a VNF instance can
be shared by multiple requests of its type, the instantiation
cost a VNF instance is much cheaper than the usage cost per
unit bandwidth. As can be seen from Fig. 4 (a), when the
instantiation cost of a VNF instance is cheap, a small load
factor λ implies more VNF instances can be instantiated in
each cloudlet.

Case 2. The instantiation cost of a VNF instance is
comparable with the bandwidth usage cost. In this case, the
cost of a unit computing resource usage in a VNF instance
instantiation is drawn from [0.5, 2.0]. It can be seen from
Fig. 4 (b) that the admission cost of requests fluctuates but
keeps steady with the changes of load factor λ.

Case 3. The instantiation cost of a VNF instance is much
more expensive than the bandwidth usage cost. In this case,
the cost per unit of computing resource consumed in a VNF
instance instantiation is drawn from [5.0, 20.0]. As can be
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seen from Fig. 4 (c) that the admission cost of requests
decreases rapidly with the increase on the load factor λ. For
example, when the load factor λ is set at 0.5, the admission
cost is 244,357.76. However, when the load factor λ increases
to 0.95, the admission cost reduces to 209,091.10. In other
words, around 14.43% of the admission cost can be saved by
fine tuning on the value of the load factor λ.

The rationale behinds is that the load factor λ can be used
to adjust the workload of cloudlets depends on the costs of
different resources in a network. When a certain resource
becomes more expensive, the load factor λ can be tuned to
achieve a much cheaper admission cost.

6.4 Performance evaluation of the proposed algorithms
for the throughput maximization problem

We thirdly evaluate the performance of Algorithm 3 and
Algorithm 4 against the optimal solution the ILP for the
throughput maximization problem, by varying the number
of requests from 200 to 2,200 while fixing the number |V |
of APs at 10, and the look-ahead parameter α at 2. Fig. 5
depicts the network throughput, admission cost and running
time of each of the three comparison algorithms. We can see
from Fig. 5 (a) that both Algorithm 3 and Algorithm 4
can achieve a near optimal throughput, i.e., Algorithm 3
and Algorithm 4 achieve at least 89.05% and 93.30%
of the performance compared with the optimal solution
delivered by the ILP, respectively. Specifically, Algorithm 3
can achieve as much network throughput as ILP solution
does, when the number of user requests is less than 600, and
it can achieve 96.24% of the optimal network throughput
delivered by the ILP when the number of requests is no
more than 1,800. The similar performance behaviors can be
observed between Algorithm 4 and the ILP too. Fig. 5 (b)
demonstrates the running times of these three algorithms.
It can be seen that the ILP takes a prohibitively long time,
while both algorithms Algorithm 3 and Algorithm 4 take
a small fraction of the running time of the ILP. Notice that
with the increase on the number of requests, the ILP fails to
deliver a solution within a reasonable amount of time when
the number of requests reaches 2,400.
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Fig. 5. Performance of Algorithm 3, Algorithm 4, and algorithm
ILP for the throughput maximization problem by varying the number of
requests from 200 to 2,200.

In the following we study the performance of
Algorithm 3 and Algorithm 4 for the throughput maxi-
mization problem against a baseline heuristic GreedyCap,
by varying the network size from 10 to 250 for 40,000 requests.
The results are shown in Fig. 6. We can see from Fig. 6 that
all algorithms deliver solutions with increasing throughput,
along with the increase on the network size. This is due to
more cloudlets are available for request admissions. However,
Algorithm 3 and Algorithm 4 outperform algorithm
GreedyCap significantly. Specifically, Algorithm 3 can
admit on average 27,514.26 requests with the admission
cost 138,238.13, while algorithm GreedyCap can only admit
on average 19,711.15 requests with admission cost 120,471.47.
Algorithm 3 can admit 25.9% more requests than that by
algorithm GreedyCap with only 14.7% more admission
cost, when the network size is 250. The performance of
Algorithm 4 is even better than that of Algorithm 3.
Specifically, Algorithm 4 can admit on average 20,621.70
requests with admission cost 84,447.25, while Algorithm 3
can only admit on average 15,203.76 requests with admission
cost 65,683.50 for a network with size 150. Fig. 6 (b) plots
the running time curves of the mentioned three algorithms,
where algorithm GreedyCap takes the least running time,
while Algorithm 4 takes the longest running time in all
network sizes.
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Fig. 6. Performance of Algorithm 3, Algorithm 4, and algorithm
GreedyCap by varying the number of APs from 10 to 250.

6.5 Impact of important parameter α on the algorithm
performance
We finally study the impact of the look-ahead parameter α
on the performance of Algorithm 2 and Algorithm 4 for
a set of 20,000 requests in an MEC with 10 APs, and varying
α from 1 to 3. From Fig. 7 (a) it can be seen that the larger the
look-ahead parameter α, the less admission cost delivered
by Algorithm 2. Similarly, from Fig. 7 (b) it can be seen
that the larger the look-ahead parameter, the more network
throughput achieved by Algorithm 4.

7 CONCLUSIONS

In this paper we studied the provisioning of virtualized
network function services for mobile users by admitting their
requests in an MEC network, where each user requested a
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Fig. 7. Impact of the look-ahead parameter α on the performance of
Algorithm 2 and Algorithm 4.

specific network function service. We aim to maximize the
number of user requests admitted while minimizing their
admission cost. We first formulated the cost minimization
problem by formulating an ILP solution and two efficient
heuristic algorithms assuming that there is no limitation of
computing resource in cloudlets. We then dealt with the
throughput maximization problem by admitting as many as
requests while minimizing their admission cost, subject to
computing capacity on each cloudlet, for which we provided
an ILP solution, followed by two efficient heuristics. We
finally evaluated the performance of the proposed algorithms
through experimental simulations. Experimental results
demonstrate that the proposed algorithms are promising.
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