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Wireless energy transfer technology based on magnetic resonant coupling has been emerging as a promising
technology for wireless sensor networks (WSNs) by providing controllable yet perpetual energy to sensors. In
this article, we study the deployment of the minimum number of mobile charging vehicles to charge sensors
in a large-scale WSN so that none of the sensors will run out of energy, for which we first advocate a flexible
on-demand charging paradigm that decouples sensor energy charging scheduling from the design of sensing
data routing protocols. We then formulate a novel optimization problem of scheduling mobile charging
vehicles to charge life-critical sensors in the network with an objective to minimize the number of mobile
charging vehicles deployed, subject to the energy capacity constraint on each mobile charging vehicle. As the
problem is NP-hard, we instead propose an approximation algorithm with a provable performance guarantee
if the energy consumption of each sensor during each charging tour is negligible. Otherwise, we devise a
heuristic algorithm by modifying the proposed approximation algorithm. We finally evaluate the performance
of the proposed algorithms through experimental simulations. Experimental results demonstrate that the
proposed algorithms are very promising, and the solutions obtained are fractional of the optimal ones. To
the best of our knowledge, this is the first approximation algorithm with a nontrivial approximation ratio
for a novel scheduling problem of multiple mobile charging vehicles for charging sensors.
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1. INTRODUCTION

Sensors in conventional wireless sensor networks (WSNs) are mainly powered by bat-
teries. Due to the limited energy capacity imposed on the batteries, the operational
time of WSNs usually is limited. To prolong the lifetime of sensor networks, exten-
sive studies have been conducted in the past decade, which include batch deploy-
ments of sensors and harvesting energy from surrounding environments, among others
[Akyildiz et al. 2002; Anastasi et al. 2009; Chang and Tassiulas 2004; Hou et al. 2008;
Lin et al. 2005; Liang et al. 2013; Yick et al. 2008]. Despite these intensive efforts, the
network lifetime remains the main obstacle in large-scale deployments of WSNs.

To prolong the operational lifetime of a WSN, an obvious solution is to replace the
expired batteries with new ones [Tong et al. 2011; Xu and Liang 2011; Xu et al. 2012;
Yuan et al. 2008]. However, for large-scale WSNs, it is not only painstaking but also
costly to do so. Worst of all, it is almost impossible to adopt this approach for some
applications, where WSNs are deployed for monitoring dangerous or seriously pol-
luted regions. Alternatively, another solution is to compensate the expired sensors by
dispatching a batch of new sensors to the region of dead sensors. However, this is
achieved at the expense of long-term environmental contamination, as most batter-
ies are made with poisonous chemical materials. Contrary to these solutions, a new
technique for environmentally friendly WSN deployments has been explored in recent
years. In other words, sensors are powered by renewable energy that is harvested
from their surrounding environments, such as solar energy and wind energy [Jiang
et al. 2005; Kansal et al. 2007; Liang et al. 2013; Ren et al. 2013, 2014; Shi and
Hou 2008; Sudevalayam and Kulkarni 2011; Wang et al. 2008]. Although energy har-
vesting is an ideal solution, its success in WSNs remains limited in practice, as the
time-varying nature of energy-harvesting sources poses a great challenge in sensor
energy management. For example, in a solar energy harvesting system, statistics have
shown that the differences of energy generating rates on shadowy, cloudy, and sunny
days can be up to three orders of magnitude [Rahimi et al. 2003]. Furthermore, the
size of an energy-harvesting device is also an important concern in its deployment,
particularly when the size of a solar panel is of a much larger scale than the sen-
sor node that it is attempting to power. Furthermore, the cost of energy-harvesting
sensors will be significantly increased, especially for the deployment of a large-scale
WSN.

Complementary to the energy-harvesting technique, the recent breakthrough of a
wireless energy transfer technology has attracted a lot of attention that adds a new
dimension to prolong the lifetime of sensor networks [Kurs et al. 2007, 2010; Xie
et al. 2013a; Shu et al. 2014]. By exploiting a novel technique called strongly coupled
magnetic resonances, Kurs et al. showed that the wireless energy transfer is not only
efficient but also immune to its surrounding environment [Kurs et al. 2007]. Industry
research further demonstrated that it is possible to transfer 60W of power over a
distance of up to two to three feet with an energy transfer efficiency of 75% [Intel
2011], and several products based on the wireless energy transfer technology are now
commercially available in markets, such as sensors [Powercast 2015], RFIDs [WISP
2015], cell phones [Powermat 2015], and automobiles [EV World 2015]. It is reported
that the wireless energy transfer market is expected to grow from just $216 million in
2013 to $8.5 billion in 2018 [Yoo and Jeong 2012]. Armed with the advanced wireless
energy transfer technology, mobile charging vehicles can be employed to charge sensors
within their vicinities wirelessly [Shi et al. 2011]. The adoption of mobile charging
vehicles for sensor charging can provide high and stable charging rates to sensors. Thus,
less effort will be spent on the sensor energy management, and the manufacturing cost
of sensors can be significantly reduced.

ACM Transactions on Sensor Networks, Vol. 12, No. 2, Article 14, Publication date: May 2016.



Maintaining Large-Scale Rechargeable Sensor Networks Perpetually 14:3

Most existing studies assumed that one mobile charging vehicle will have enough
energy to charge all sensors in a WSN, and the proposed algorithms for vehicle charging
scheduling thus are only applicable to small-scale WSNs [Shi et al. 2011; Xie et al. 2012,
2013a; Zhao et al. 2011; Xu et al. 2015a]. However, in a large-scale sensor network,
the amount of energy carried by a single mobile charging vehicle may not be enough to
charge all nearly expired sensors, as there are a large proportion of life-critical sensors
to be charged to avoid their energy depletion. Thus, multiple mobile charging vehicles
need to be employed, and new scheduling algorithms need to be devised.

In this article, we will study the use of multiple mobile charging vehicles to replenish
energy to sensors for a large-scale WSN such that none of the sensors runs out of energy,
and each sensor can be charged by a mobile charging vehicle within its vicinity through
wireless energy transfer. We will adopt a flexible on-demand sensor charging paradigm
that decouples sensor energy charging scheduling from the design of sensing data
routing protocols and dispatch multiple mobile charging vehicles to charge life-critical
sensors in an on-demand way. Specifically, in this article, we assume that each mobile
charging vehicle can carry only a limited, rather than infinite, amount of energy. We will
study a fundamental sensor charging problem in a large-scale WSN. In other words,
given a set of life-critical sensors to be charged and the energy capacity constraint
on each mobile charging vehicle, what is the minimum number of mobile charging
vehicles needed to fully charge these sensors to save the operational cost of the WSN
while ensuring that none of the sensors runs out of energy? To address this problem,
not only should the number of charging vehicles be determined but also the charging
tour of each mobile charging vehicle needs to be found so that all life-critical sensors
can be charged prior to their energy expirations, where each vehicle consumes energy
on charging sensors in its tour and its mechanical movement along the tour.

The main contributions of this work are as follows. We first consider the problem of
sensor recharging by minimizing the number of mobile charging vehicles needed, sub-
ject to the energy capacity constraint on each of the mobile charging vehicles. We then
devise an approximation algorithm with a provable performance guarantee if the en-
ergy consumption of each sensor during each charging tour can be ignored; otherwise,
we propose a heuristic algorithm by modifying the proposed approximation algorithm.
Finally, we conduct extensive simulation experiments to evaluate the performance of
the proposed algorithms. Experimental results demonstrate that the proposed algo-
rithms are promising, and the solutions delivered are fractional of the optimum. To
the best of our knowledge, this is the first approximation algorithm with a constant
approximation ratio for the multiple mobile charging vehicle scheduling problem to
charge sensors wirelessly so that the number of mobile charging vehicles needed is
minimized.

The remainder of the article is organized as follows. Section 2 reviews related studies.
Section 3 introduces the system model, notions and notations, and problem definition.
Section 4 details a 5-approximation algorithm for the optimal p closed tour problem (to
be defined later), which serves as a subroutine of the proposed algorithms. Sections 5
and 6 propose an approximation algorithm and a heuristic algorithm, respectively. Sec-
tion 7 evaluates the performance of the proposed algorithms, and Section 8 concludes
the article.

2. RELATED WORK

With the advance in efficient wireless energy transfer technology, wireless energy re-
plenishment to sensors has been studied for the lifetime prolongation of WSNs in
literature [Li et al. 2011; Shi et al. 2011; Xie et al. 2012, 2013a; Zhao et al. 2011; Xu
et al. 2015b]. However, applying this technology to sensor networks is still in its infancy
stage. Several studies have been conducted in the past few years, and most of these
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studies considered sensor energy charging and dataflow routing jointly. For example,
Shi et al. [2011] are the very first to conduct a theoretical study on the usage of wire-
less charging technique in WSNs by employing a mobile charging vehicle to periodically
charge sensors such that the sensor network can operate perpetually. They formulated
an optimization problem that maximizes the ratio of the vacation time of the vehicle
over each charging cycle under the assumption that the data rates of all sensors are
given in advance. They later extended their solution to a general case where either a
mobile charging vehicle can charge multiple sensors at the same time if the sensors are
within the vicinity of the vehicle [Xie et al. 2012] or the mobile vehicle charges sensors
and collects the sensing data from being charged sensors simultaneously [Xie et al.
2013b]. Zhao et al. [2011] proposed a joint design of energy replenishment and sensing
data collection by exploiting sink mobility. They designed an adaptive solution that
jointly selects the sensors to be charged and finds an optimal data gathering scheme
such that the network utility can be maximized and the perpetual operation of the sen-
sor network can be maintained. Li et al. [2011] argued that existing charging schemes
only passively replenish sensors that are deficient in energy supply and cannot fully
leverage the strength of wireless energy transfer technology. They instead proposed a
“charging-aware” routing protocol (J-RoC) by incorporating dynamic energy consump-
tion rates of sensors into the design of data routing protocols. Although this schema can
proactively guide the routing activities and charge energy where it is needed, it makes
routing protocols design and management more complicated and may not be realistic
in some application scenarios. For example, operational routing protocols in some sen-
sor networks are required to be replaced (or updated) frequently due to the privacy
and security of sensing data. There are also several recent studies on passive sensor
energy replenishment. For example, Xu et al. [2014, 2015b] considered the problem of
scheduling multiple mobile charging vehicles in a rechargeable sensor network for a
given monitoring period of T , with an objective of maintaining the perpetual operations
of sensors so that the sum of the traveling distances by all mobile charging vehicles in
that period is minimized, for which they proposed an approximation algorithm with a
guaranteed performance ratio. Xu et al. [2015a] also studied the problem of scheduling
K mobile chargers to replenish a set of to-be-charged sensors such that the length of
the longest charging tour among the K tours of the K chargers is minimized, for which
they proposed constant approximation algorithms. Wang et al. [2013] devised a hybrid
strategy for scheduling multiple charging vehicles to replenish sensor energy: active
and passive energy replenishments. He et al. [2013] investigated a mobile charging
problem using a nearest-job-next with preemption and provided analytical results on
the number of charging requests served as well as the charging latency at each sensor,
assuming that sensor charging request rates follow a Poisson distribution. However,
their solution does not guarantee that all sensors will be charged prior to their energy
expirations.

It must be mentioned that joint consideration of energy replenishment and dataflow
routing in reality may have limited applications due to unrealistic assumptions, such
as (1) the sensor energy consumption rate and/or sensing data rate do not change over
time, (2) flow conservation at each sensor node is maintained, and (3) wireless commu-
nications between each pair of nodes are reliable. In reality, sensing data rates within
a sensor network are usually closely related to the application scenario of the sensor
network, whereas the flow conservation prevents any data aggregation at relay nodes.
However, data aggregation is an important primitive operation in most sensor net-
works, as not only can it reduce network-wide data traffic, it also can save the energy
consumption of sensors [Krishnamachari et al. 2002]. Furthermore, it is well known
that wireless communication is notoriously unreliable [Zhao and Govindan 2003], and
retransmissions at some nodes may lead to substantial energy consumptions of the
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nodes. In contrast, in this work, we advocate a new sensor charging paradigm—the
on-demand charging paradigm. In other words, sensor energy replenishment should
be decoupled from sensing data collection, particularly for real-time sensing monitor-
ing and event surveillance applications. Since the frequencies between data collection
and sensor energy charging are significantly different, the former is several orders of
magnitude higher than the latter. The sensing data is required to be collected as soon
as possible to better monitor the region of interest. Sensors will be charged according
to their need, as energy consumption rates of different sensors may significantly vary.
Thus, it is more economical to charge sensors that need to be charged. Furthermore, de-
coupling energy replenishment from sensing data routing protocol design can simplify
the management of sensor networks. Routing protocol designers thus can concentrate
only on routing protocol functionalities rather than taking sensor charging scheduling
into account.

There are two closely related studies on minimizing the number of deployed vehi-
cles [Nagarajan and Ravi 2011; Dai et al. 2014]. Specifically, Nagarajan and Ravi [2011]
studied the distance-constrained vehicle routing problem (DVRP), in which given a set
of nodes in a metric graph, a depot, and an integral distance bound D, the problem
is to find the minimum number of tours rooted at the depot to cover all nodes such
that the length of each tour is no more than D. For the DVRP problem, they pre-
sented a (O(log 1

ε
), 1 + ε)-bicriteria approximation algorithm for any constant ε with

0 < ε < 1—that is, the algorithm finds a set of tours in which the length of each tour
is no more than (1 + ε)D, whereas the number of deployed vehicles is no more than
O(log 1

ε
) times the minimum number of vehicles. On the other hand, Dai et al. [2014] in-

vestigated the problem of deploying the minimum number of charging vehicles to fully
charge the sensors by making use of the approximation algorithm in Nagarajan and
Ravi [2011], assuming that all sensors have identical energy consumption rates. How-
ever, there are two essential differences between these two mentioned studies and the
work in this article. First, the cost of each found tour by the algorithms in Nagarajan
and Ravi [2011] and Dai et al. [2014] may violate the travel distance constraint on the
mobile vehicles. In contrast, in this work, the total energy consumption of each mobile
charging vehicle per tour cannot exceed its energy capacity IE. Otherwise, the vehicle
cannot return to the depot for recharging itself. In addition, a novel approximation
algorithm for the minimum vehicle deployment problem is devised. Second, the study
in Dai et al. [2014] assumed that there is not any energy consumption for any sensor
during a mobile charging vehicle tour, and all sensors have identical energy consump-
tion rates. Contrarily, our work does not require that all sensors have identical energy
consumption rates, and the energy consumption rates of different sensors may be sig-
nificantly different. Furthermore, the energy consumption or leaking of each sensor
during its charging has also been considered. Therefore, the proposed algorithms in
the two mentioned studies cannot be applicable to the problem in this article. New ap-
proximation and heuristic algorithms need to be devised, and new algorithm analysis
techniques for analyzing the approximation ratio need to be developed as well.

3. PRELIMINARIES

In this section, we introduce the system model, sensor energy charging paradigm, and
the problem definition.

3.1. System Model

We consider a large-scale WSN, Gs = (Vs, Es), deployed for environmental monitoring
or event detection, where Vs is the set of sensors and a base station. There is an edge
in Es between any two sensors or a sensor and the base station if they are within the
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Fig. 1. A rechargeable WSN.

transmission range of each other. All sensing data will be relayed to the base station
through multihop relays. Figure 1 illustrates such a network. Assume that there is
sufficient energy supply to the base station. Each sensor vi ∈ Vs is powered by a
rechargeable battery with energy capacity Bi. It consumes its energy when performing
sensing, data processing, and data transmission and reception.

To maintain the long-term operation of a rechargeable sensor network, the sensors
in the network will be charged at certain time points by mobile charging vehicles.
We thus assume that there is a depot in the monitoring region, where there are a
number of mobile vehicles available to meet sensor charging demands. Assume that
each mobile charging vehicle has a full energy capacity IE and a charging rate μ for
charging a sensor, and the vehicle travels at a constant speed s. We further assume
that the mechanical movement of the vehicle is derived from its energy as well. Let η
be the energy consumption rate of each vehicle on traveling per unit length. All mobile
vehicles will start from the depot when performing their charging duties and return to
the depot after finishing their charging tours. They will be recharged at the depot and
wait for the next round of scheduling. Since the energy capacity of each mobile vehicle
is limited, its total travel length and the number of to-be-charged sensors by the mobile
vehicle must be constrained by its energy capacity IE.

The residual lifetime of each sensor vi ∈ Vs at time t is defined as

li(t) = REi(t)
ρi(t)

, (1)

where REi(t) and ρi(t) are the amount of residual energy and energy consumption rate
of vi at time t, respectively. The base station keeps a copy of the energy depletion rate
ρi(t) and the residual energy REi(t) of each sensor vi ∈ Vs.

We assume that each sensor is able to monitor its residual energy REi(t) and estimate
its energy consumption rate ρi(t) in the near future through some prediction techniques,
such as linear regressions. We further assume that the energy consumption rate of each
sensor does not change within a charging round, or that such minor changes can be
neglected as the duration of a charging round usually is short (e.g., a few hours).
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But the energy consumption rate of each sensor is allowed to change at a different
charging round. Thus, each sensor can estimate its residual lifetime li(t) prior to the
next charging round. Recall that for each sensor vi ∈ V there is a record of its energy
consumption rate ρi(t) at the base station, and this value is subject to be updated if
the energy consumption profile of the sensor in the future will experience significant
changes. To accurately measure the energy consumption rate of each sensor, each
sensor adopts a lightweight prediction technique to estimate its energy consumption
rate in the near future. For example, a sensor can make use of a linear regression
ρ̂i(t) = ωρi(t − 1) + (1 − ω)ρ̂i(t − 1), where ρ̂i is the estimation, ρi is the actual value at
that moment, and ω is a weight between 0 and 1 [Cox 1961]. Let θ > 0 be a small given
threshold. For each sensor vi ∈ Vs, the updating of its energy consumption rate is as
follows. If |ρ̂i(t) − ρ̂i(t − 1)| ≤ θ , no updating report from sensor vi will be forwarded
to the base station; otherwise, the updated energy consumption rate and its residual
energy of vi will be sent to the base station through a charging request is issued by vi.
The base station then performs the update accordingly.

3.2. Sensor Energy Charging Paradigm

We notice that there is no need for every sensor to be charged at each round. In addition,
sensor charging tours are not necessarily periodic; instead, sensors should be charged
in an on-demand fashion. The rationale behind this is that in some applications, such as
event detections, if there are no events happening in a monitoring area, sensors usually
perform duty cycling to save energy, and thus they can run much longer than remaining
in wake-up statuses. When an event does occur, the sensors within the event region
will remain in wake-up statuses to capture the event and report their sensing results
to the base station, whereas for the sensors not in the event region, they continue to
maintain their wake-up and sleep duty cycling statuses, thus consuming much less
energy. It can be seen from this case that not all sensors in the network need to be
charged in each energy charging round; only the sensors in the regions where the event
happened need to be charged.

Let lmax be the longest duration of a mobile vehicle tour for charging all sensors in the
network. Consider that all sensors in the network will be charged by only one mobile
charger. Then, lmax should be no more than the sum of the time spent on traveling and
the time spent on charging sensors on its tour by a mobile charging vehicle. Thus, the
value of lmax is upper bounded as follows:

lmax ≤ LTSP

s
+ min

{
IE,

∑
vi∈Vs

Bi
}

μ
, (2)

where LTSP is the length of a traveling salesman problem (TSP) tour including all
sensors and the depot that can be approximately found by applying Christofides’ algo-
rithm [Christofides 1976], s is the travel speed of the charging vehicle, IE is the battery
capacity of the vehicle, Bi is the battery capacity of sensor vi, and μ is the charging
rate for sensors. In other words, to ensure that none of the sensors fails due to its
energy expiration, a sensor should be charged when its residual lifetime is no greater
than lmax.

We define the critical time point of a sensor as the time point that the sensor can
survive for the next lmax time units. We say that a sensor vi at time t is in a critical
lifetime interval if lmax ≤ li(t) ≤ α · lmax with a given constant α ≥ 1, where li(t) has been
defined in Equation (1). Following the definition of the critical lifetime interval, only
the sensors within their critical lifetime intervals need to be charged to avoid running
out of their energy completely. Without loss of generality, in the rest of this article,
we assume that V is the set of sensors within their critical lifetime intervals—that is,
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Table I. Notations and Their Descriptions

Notations Descriptions
Vs Set of sensors
Bi Battery capacity of sensor vi

REi(t) Residual amount of energy of sensor vi at time t
ρi(t) Energy consumption rate of sensor vi at time t
li(t) = REi (t)

ρi (t)
Residual lifetime of sensor vi at time t

IE Energy capacity of each mobile charging vehicle
μ Charging rate
s Travel speed of a charging vehicle
η Energy consumption rate of each vehicle on traveling per unit length
lmax Longest duration of a vehicle tour for charging all sensors
α Parameter of critical lifetime interval
V Set of to-be-charged sensors
r Depot
h(v) Amount of energy charged to sensor v

w(u, v) Energy consumption of a vehicle traveling between sensors u and v

V = {vi | vi ∈ Vs, lmax ≤ li(t) ≤ α · lmax}, where li(t) is the residual lifetime of sensor vi at
time t. Clearly, V ⊆ Vs.

We propose a flexible on-demand sensor energy charging paradigm as follows. Each
sensor will send an energy-charging request to the base station for its energy replenish-
ment when its the residual lifetime falls to the critical lifetime lmax. The energy-charging
request contains the identity, the amount of residual energy, and the energy consump-
tion rate of the sensor. Once the base station receives a set of such requests from the
sensors, it then performs a scheduling to dispatch a number of mobile charging vehicles
to charge the sensors in the set, where a sensor vi at time t is in its critical lifetime
interval if lmax ≤ li(t) ≤ α · lmax. Hence, the result of each scheduling consists of the
number of mobile charging vehicles needed, a closed tour for each of the mobile vehicle,
and the charging duration at each to-be-charged sensor node along the tour. Finally,
the mobile charging vehicles are dispatched from the depot to perform charging tasks.
Table I lists the notations used in this article.

3.3. Problem Definition

Given a rechargeable sensor network Gs = (Vs, Es) consisting of sensors, one stationary
base station, and a depot with multiple mobile vehicles, following the on-demand sensor
energy charging paradigm, assume that at a specific time point the base station receives
charging requests from the sensors within their critical lifetime intervals. The base
station then starts a new round of scheduling by dispatching a certain number of
mobile charging vehicles to charge these sensors so that none of sensors runs out of
energy. Let V be the subset of sensors in Gs to be charged (within their critical lifetimes)
in the next round (V ⊆ Vs) (see Figure 1). Assume that for each sensor vi ∈ V , its energy
consumption rate ρi does not change during each charging round (or such changes are
marginal and can be ignored) and its residual energy REi is given (at the base station);
the minimum vehicle deployment problem is to find a scheduling of mobile charging
vehicles to fully charge the sensors in V by providing a closed tour for each vehicle such
that the number of mobile vehicles deployed is minimized, subject to the energy capacity
constraint IE on each mobile vehicle. For this defined problem, we further distinguish
it into two different cases: one is that the energy consumption of each to-be-charged
sensor during its charging round is not considered, and the other is that such energy
consumption is taken into account. We will devise an approximation algorithm and a
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heuristic algorithm for them in Sections 5 and 6, respectively. The minimum vehicle
deployment problem is NP-hard through a reduction from the well-known NP-hard
TSP.

In the following, we define the p-optimal closed tour problem, which will serve as a
subroutine of the proposed algorithms for the minimum vehicle deployment problem.
Given a node and edge weighted complete metric graph G = (V, E; h, w), a root node
r ∈ V , and an integer p ≥ 1, where h : V �→ R

≥0 and w : E �→ R
>0 (i.e., the node weight

h(v) of each sensor node v ∈ V is the amount of energy to be charged to sensor v, and the
edge weight w(u, v) of each edge (u, v) ∈ E represents the amount of energy consumed
by a mobile vehicle traveling along the edge), the p-optimal closed tour problem in G
is to find p node-disjoint closed tours covering all nodes in V, except the root r that
appears in each of the tours, such that the maximum total cost among the p closed
tours is minimized, where the total cost of a closed tour is the weighted sum of nodes
and edges in it.

Notice that we assume the p found tours are node disjoint in the p-optimal closed
tour problem, as there is no such need to include a node in multiple closed tours. In fact,
the optimal cost of the problem under the node-disjoint requirement is identical to that
of the problem without the node-disjoint requirement, which is shown as follows. On
one hand, it can be seen that the optimal cost of the problem under the node-disjoint
requirement is no less than the optimal cost of the problem without the node-disjoint
requirement, as an optimal solution to the former is a feasible solution to the latter. On
the other hand, given an optimal solution to the latter, we can find a feasible solution to
the former by the removal of multiple appearances of a sensor from the charging tours
in the optimal solution and performing short cutting to obtain shorter closed tours.
The cost of the updated solution is no more than the cost of the optimal solution to
the problem without the node-disjoint requirement. Therefore, the optimal costs of the
problems with and without node-disjoint requirements are identical.

4. ALGORITHM FOR THE P-OPTIMAL CLOSED TOUR PROBLEM

In this section, we devise a 5-approximation algorithm for the p-optimal closed tour
problem in a node and edge weighted metric graph G(V, E; h, w). This algorithm will
be used as a subroutine for the minimum vehicle deployment problem in Section 5.
As a special case of the p-optimal closed tour problem, when p = 1 is the well-known
TSP problem that is NP-hard, the p-optimal closed tour problem is NP-hard as well.
In the following, we start by introducing a popular technique to transform a tree into a
closed tour in G. We then introduce a novel tree decomposition. We finally present an
approximation algorithm for the problem based on the tree decomposition.

4.1. A Closed Tour Derived from a Tree

We first introduce the technique that transforms a tree in G to a closed tour by the
following lemma.

LEMMA 4.1. Given a node and edge weighted metric graph G = (V, E; h, w) with sets
V and E of nodes and edges, h : V �→ R

≥0 and w : E �→ R
>0, and the edge weight follows

the triangle inequality, let T = (V, ET ; h, w) be a spanning tree of G rooted at r. Let C
be the traveling salesman tour of G derived from T through performing the pre-order
traversal on T and pruning, then the total cost WH(C) of C is no more than twice the
total cost WH(T ) of T —that is, WH(C) ≤ 2WH(T ) = 2(

∑
v∈V h(v) + ∑

e∈ET
w(e)).

PROOF. Let H(X) be the weighted sum of nodes in X, and let W(Y ) be the weighted
sum of edges in Y , as the weighted sum W(C) of the edges in C is no more than
2

∑
e∈ET

w(e), and the weighted sum H(C) of nodes in C is the same as the one in T .
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Fig. 2. An illustration of the tree decompositions.

Thus, the total cost of C is WH(C) = W(C) + H(C) ≤ 2W(T ) + H(T ) ≤ 2(W(T ) +
H(T )) = 2WH(T ).

4.2. Tree Decomposition

Given a metric graph G = (V, E; h, w), let T = (V, ET ; h, w) be a spanning tree in G
rooted at node r, and let δ ≥ maxv∈V {h(v), 2w(v, r)} be a given value; then, both the node
weight h(v) of any node v ∈ V and the edge weight w(e) of any edge e ∈ ET in tree T
are no more than δ—that is, h(v) ≤ δ and w(e) ≤ δ. We decompose the tree into a set of
subtrees such that the total cost of each subtree is no more than 2δ as follows.

Let (u, v) be a tree edge in T , where u is the parent of v and v is a child of u.
Additionally, let Tv be a subtree of T rooted at node v. We perform a depth-first search
on T starting from the tree root r until the total cost of the leftover tree rooted at r
is less than 2δ—that is, WH(Tr) < 2δ. Figure 2 demonstrates an example of the tree
decomposition procedure. Assume that node v is the node that is currently visited;
wedistinguish this into the following four cases:

—Case 1: If WH(Tv) < δ and WH(Tv) + w(u, v) < δ, no action is needed and the tree
decomposition procedure continues.

—Case 2: If WH(Tv) < δ and WH(Tv)+w(u, v) ≥ δ, then we must have WH(Tv)+w(u, v) <
2δ, as the weight w(u, v) of edge (u, v) is no more than δ. A new tree Tv ∪ {(u′, v)} is
created with a virtual node u′ with h(u′) = 0. Split the subtree Tv ∪ {(u′, v)} from the
original tree (see Figure 2(b)).

—Case 3: If δ ≤ WH(Tv) < 2δ, split the subtree Tv from the original tree and remove
edge (u, v) ∈ ET from the original tree (see Figure 2(c)).

—Case 4: Let vc
1, v

c
2, . . . , v

c
k be the k children of v. Let l be the maximum children index

so that δ ≤ ∑l
j=1(WH(Tvc

j
) + w(v, vc

j)) < 2δ with 1 ≤ l ≤ k; then, a new subtree
∪l

j=1(Tvc
j
∪ {(v′, vc

j)}), rooted at the virtual node v′, is created, which consists of these
subtrees with h(v′) = 0. Split off this subtree from the original tree (see Figure 2(d)).
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As a result, a set of subtrees is obtained by the tree decomposition on T (see Fig-
ure 2(e)). The number of subtrees is bounded by the following lemma.

LEMMA 4.2. Given a spanning tree T = (V, ET ; h, w) of a graph G = (V, E; h, w)
with the total cost WH(T ) and a value δ ≥ maxv∈V {2w(r, v), h(v)}, the tree T can be
decomposed into p subtrees T1, T2, . . . , Tp with WH(Ti) < 2δ by the proposed tree de-
composition procedure, 1 ≤ i ≤ p. Then,

p ≤
⌊

WH(T )
δ

⌋
. (3)

PROOF. Following the tree decomposition on T , subtrees with the total cost in [δ, 2δ)
are split away from T until the total cost of the leftover tree including root r is less
than 2δ. Suppose that T1, T2, . . . , Tp are the split trees with p ≥ 2. From the subtree
construction, we know that δ ≤ WH(Ti) < 2δ for each i with 1 ≤ i ≤ p − 1. The only
subtree with the total cost less than δ is Tp. Note that prior to splitting Tp−1, the total
cost of the remaining tree is at least 2δ. Therefore, the average total cost of Tp−1 and
Tp is no less than δ. In other words, the average total cost of all Ti is at least δ. Thus,
p · δ ≤ WH(T )—that is, p ≤ WH(T )

δ
. Since p is an integer, p ≤ 
WH(T )

δ
�.

4.3. Algorithm for Finding p-Optimal Closed Tours

Given a metric graph G = (V, E; h, w) with root r and a positive integer p, we now devise
an approximation algorithm for the p-optimal closed tour problem in G as follows.

Let T be a minimum spanning tree (MST) of G rooted at r. The basic idea of
the proposed algorithm is that we first perform a tree decomposition on T with
δ = maxv∈V {WH(T )/p, 2w(v, r) + h(v)} and later show that δ is a lower bound on
the optimal cost of the p-optimal closed tour problem. As a result, p′ subtrees are
derived from such a decomposition, and p′ closed tours are then derived from the p′
subtrees. We finally show that p′ ≤ p and the maximum total cost of any closed tour
among the p′ closed tours is no more than 5δ.

Specifically, T is decomposed into no more than p′ edge-disjoint subtrees, except the
root node r that appears in one of these subtrees. Let T1, T2, . . . , Tp′ be the p′ trees
obtained by decomposing T . It can be observed that each Ti contains at least one real
node and at most one virtual node, where a node v is a real node if h(v) �= 0; otherwise,
it is a virtual node. As a result, a forest F consisting of all trees is found through the
tree decomposition, the number of trees in F is p′ ≤ 
WH(T )/δ�, and the total cost of
each subtree is no more than 2δ by Lemma 4.2.

For each Ti ∈ F , if it does not contain the root r, then a tree T ′
i = Ti ∪ {(vi, r)} rooted

at r is obtained by including node r and a tree edge (vi, r) into Ti, where node vi is a
node in Ti and w(vi, r) = minv∈Ti {w(v, r)}. The total cost WH(T ′

i ) of T ′
i is

WH(T ′
i ) = WH(Ti) + w(vi, r) ≤ 2δ + w(vi, r) ≤ 2.5δ, as w(vi, r) ≤ δ/2.

Otherwise (Ti contains node r), T ′
i = Ti and WH(T ′

i ) = WH(Ti) ≤ 2δ. We thus obtain
a forest F ′ = {T ′

1, T ′
2, . . . , T ′

p′ }. From the trees in F ′, p′ edge-disjoint closed tours with
each containing the root r can be derived. Let C ′ = {C ′

1, C ′
2, . . . , C ′

p′ } be the set of p′

closed tours obtained by transforming each tree in F ′ into a closed tour. For each C ′
i, we

have that WH(C ′
i) ≤ 2 · WH(T ′

i ) ≤ 5δ by Lemma 4.1. As there are some C ′
is containing

virtual nodes that are not part of a feasible solution to the problem, a feasible solution
can be derived through a minor modification to the closed tours in C ′. In other words,
for each C ′

i, if it contains a virtual node (as each C ′
i contains at most one virtual node),

a closed tour Ci with a less total cost than that of C ′
i is obtained by removing the

virtual node and the two edges incident to the node from C ′
i through short cutting,
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then WH(Ci) ≤ WH(C ′
i), as the edge weight follows the triangle inequality. Otherwise,

Ci = C ′
i. Clearly, each of the p′ closed tours C1, C2, . . . , Cp′ roots at r. The detailed

algorithm is described in Algorithm 1.

ALGORITHM 1: Finding Closed Tours Rooted at r with Each Having the Bounded Total
Cost

Input: A metric graph G = (V, E; h, w), a root r ∈ V , and a given value
δ ≥ maxv∈V {h(v), 2w(v, r)}.

Output: A set of node-disjoint closed tours covering all nodes in V with the shared root r
so that the total cost of each tour is no more than 5δ.

1: Let T be an MST of G and WH(T ) be the total cost of T ;
2: Let F = {T1, T2, . . . , Tp′ } be the forest obtained by performing the tree decomposition on T

with the given value δ;
3: Let F ′ = {T ′

1, T ′
2, . . . , T ′

p′ } be a forest, where T ′
i = Ti ∪ {(r, vi)} is derived by adding root r and

an edge with the minimum edge weight between a node vi in Ti and r if r is not in Ti ;
otherwise, T ′

i = Ti , where 1 ≤ i ≤ p′;
4: Let C ′ = {C ′

1, C ′
2, . . . , C ′

p′ } be a set of p′ closed tours, where C ′
i is derived from T ′

i ;
5: Let C = {C1, C2, . . . , Cp′ } be a set of closed tours,where Ci is derived by removing the virtual

node from C ′
i ∈ C ′ if it does contain a virtual node. Otherwise, Ci = C ′

i ;
6: return C.

4.4. Algorithm Analysis

We now show that Algorithm 1 delivers a 5-approximate solution by the following
theorem.

THEOREM 4.3. Given a metric graph G = (V, E; h, w) and an integer p ≥ 1, there is
a 5-approximation algorithm for finding p-optimal closed tours. The time complexity of
the proposed algorithm is O(|V |2).

PROOF. In the following, we first show that Algorithm 1 delivers a feasible solution to
the p-optimal closed tour problem. We then show that the total cost of each closed tour
in the solution is no more than 5δ. Next, we show that δ (= maxv∈V {WH(T )/p, 2w(v, r)+
h(v)}) is a lower bound on the optimal cost of the problem. Then, the total cost of each
closed tour in the solution delivered by Algorithm 1 is no more than 5δ ≤ 5OPT. We
finally analyze the time complexity of Algorithm 1.

We first show that Algorithm 1 delivers a feasible solution to the p-optimal closed
tour problem. Recall that T is an MST of G. Since δ = maxv∈V {WH(T )/p, 2w(v, r)+h(v)},
δ ≥ maxv∈V {2w(v, r), h(v)}. A solution C, which consists of p′ closed tours rooted at r,
can be obtained by applying Algorithm 1 on T , and

p′ ≤ 
WH(T )/δ�
≤ WH(T )/δ

= WH(T )
maxv∈V {WH(T )/p, 2w(v, r) + h(v)}

≤ WH(T )
WH(T )/p

= p, (4)

by Lemma 4.2. Thus, C is a feasible solution.
We then show that the total cost of each closed tour in C is no more than 5δ. As each

Ci ∈ C is derived from a C ′
i ∈ C ′, we have WH(Ci) ≤ WH(C ′

i) ≤ 2WH(T ′
i ) ≤ 2 · 2.5δ = 5δ

by Lemma 4.1.
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Next, we prove that δ is a lower bound on the optimal cost of the problem. Given a node
and edge weighted metric graph G = (V, E; h, w) with root r, an integer p ≥ 1, partition
the nodes in V into p disjoint subsets X1, X2, . . . , Xp, and let Cj be the closed tour
containing all nodes in Xj and the root r. The optimal partitioning is a partitioning such
that the maximum value max1≤ j≤p{WH(Cj)} is minimized. Let OPT be the total cost of
the maximum closed tour in the optimal solution. We show that δ ≤ OPT as follows.

Let C∗
1, C∗

2, . . . , C∗
p be the p closed tours in the optimal solution with the shared root

r. Then, WH(C∗
i ) ≤ OPT. Let ei be the maximum weighted edge in C∗

i . Then, a tree
T ′ = ∪p

i=1C∗
i \ ∪p

i=1{ei} rooted at r can be obtained by removing ei from each tour C∗
i . We

then have

WH(T ′) =
p∑

i=1

(WH(C∗
i ) − w(ei)) ≤

p∑
i=1

WH(C∗
i ) ≤ p · OPT. (5)

It can be seen that T ′ is a spanning tree in G. Since T is an MST of G, WH(T ) ≤ WH(T ′).
We thus have

WH(T )
p

≤ WH(T ′)
p

≤ OPT. (6)

On the other hand, each node v ∈ V must be contained by one closed tour C∗
i in the

optimal solution. Since tour C∗
i contains node v and the depot r, then the total cost of

C∗
i , WH(C∗

i ), is at least 2w(v, r) + h(v), Thus,

2w(v, r) + h(v) ≤ WH(C∗
i ) ≤ OPT, ∀v ∈ V . (7)

Combing inequalities (6) and (7), we have

δ = max
v∈V

{
WH(T )

p
, 2w(v, r) + h(v)

}
≤ OPT. (8)

We finally analyze the time complexity of Algorithm 1. Following the algorithm, the
MST T of G can be found in O(|V |2) time. The tree decomposition and the construction
of F ′ can be done in O(|V |) time. For each C ′

i ∈ C ′, its corresponding Ci can be found
in O(|E′

i|) time, where E′
i is the set of edges in C ′

i. We also know that E′
i ∩ E′

j = ∅ if

i �= j. As C ′
i is derived from tree T ′

i ∈ F ′, |E′
i| ≤ 2|E(T ′

i )|. Since
∑p′

i=1 |E(T ′
i )| ≤ |V | − 1,∑p′

i=1 |E′
i| ≤ ∑p′

i=1 2|E(T ′
i )| ≤ 2|V |. Thus, Algorithm 1 takes O(|V |2) time.

5. APPROXIMATION ALGORITHM FOR THE MINIMUM VEHICLE DEPLOYMENT PROBLEM

In this section, we provide an approximation algorithm for the minimum vehicle de-
ployment problem. As each mobile vehicle consumes energy on traveling and charging
sensors per tour, the total amount of energy consumed by the mobile vehicle is bounded
by its energy capacity IE.

5.1. Algorithm

The basic idea of the proposed approximation algorithm is to reduce the minimum
vehicle deployment problem into a p-closed tour problem by bounding the total cost of
each closed tour. A solution to the latter in turn returns a solution to the former as
follows.

Recall that we assume the base station knows both the residual energy REi and
the energy consumption rate ρi of each sensor vi ∈ V , and μ is the wireless charging
rate of a mobile vehicle. Assume that there are sufficient numbers of fully charged
mobile vehicles available at the depot. Then, a mobile vehicle takes τi = Bi−REi

μ
time to
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charge sensor vi to its full capacity Bi when it approaches the sensor. We thus construct
a node and edge weighted metric graph G = (V, E; h, w), where V is the set of sensors
to be charged in this round. There is an edge in E between any two to-be-charged
sensor nodes. For each edge (u, v) ∈ E, its weight is w(u, v) = η · d(u, v), which is the
amount of energy consumed by a mobile vehicle traveling along the edge, where η is the
energy consumption rate of a mobile vehicle for traveling per unit length and d(u, v)
is the Euclidean distance between sensor nodes u and v. For each node vi ∈ V , its
weight h(vi) (= Bi − REi = μ · τi) is the amount of energy needed to charge sensor vi
to reach its full capacity Bi. We assume that IE ≥ maxv∈V {2w(v, r) + h(v)}; otherwise,
there are no feasible solutions to the problem, which will be shown by Lemma 5.1
later. The detailed algorithm is described in Algorithm 2. We refer to this algorithm as
NMV_without_Eloss.

ALGORITHM 2: Finding the Optimal Number of Mobile Vehicles and Their Closed Tours
(NMV Without Eloss)

Input: A metric graph G = (V, E; h, w), a root r, and IE with IE ≥ maxv∈V {2w(r, v) + h(v)}.
Output: p-node-disjoint closed r-rooted tours C1, C2, . . . , Cp covering all nodes in V such

that WH(Ci) ≤ IE.
1: Let T be an MST of G. Denote by W (T ) and H(T ) the total costs of the edges and nodes in

T , respectively;
2: if IE ≥ 2 · W (T ) + H(T ) then
3: One mobile vehicle suffices by Lemma 4.1; EXIT;
4: end
5: A ← maxv∈V {2w(v, r)};
6: if IE/5 ≥ A then
7: δ ← IE/5; /* δ is the average cost of each subtree after tree decomposition */
8: else
9: δ ← IE−A

4 ;
10: end
11: Perform the tree decomposition using δ. If there is a node v with h(v) > δ, then the node

itself forms a tree;
12: Let C = {C1, C2, . . . , Cp} be the solution by applying Algorithm 1 for the tree

decomposition on T with the given δ;
13: return C as a solution to the problem and p = |C|.

5.2. Algorithm Analysis

In this section, we analyze the approximation ratio of Algorithm 2 and its time com-
plexity. We start by Lemma 5.1, which says that there must be a feasible solution
to the problem if and only if IE ≥ maxv∈V {2w(v, r) + h(v)}; otherwise, there are
no solutions to the problem. Thus, in the rest of our discussions, we assume that
IE ≥ maxv∈V {2w(v, r) + h(v)}.

LEMMA 5.1. Given a metric graph G = (V, E; h, w) and an energy capacity IE of each
mobile charging vehicle, there is a feasible solution to the minimum vehicle deployment
problem in G if and only if IE ≥ maxv∈V {2w(v, r)+h(v)}, where r is the depot of charging
vehicles.

PROOF. If IE ≥ maxv∈V {2w(v, r) + h(v)}, we can derive a feasible solution to the
problem by dispatching one charging vehicle to charge only one of the n = |V | sensors.
Thus, n charging vehicles are deployed. On the other hand, assume that there is a
feasible solution C = {C1, C2, . . . , Cp} to the problem, where p charging vehicles are
deployed to fully charge the n sensors and Cj is the charging tour of the j-th charging
vehicle with 1 ≤ j ≤ p. It is obvious that WH(Cj) ≤ IE for 1 ≤ j ≤ p. Consider a
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sensor vi ∈ V such that vi = arg maxv∈V {2w(v, r) + h(v)}. Let Cj be the charging tour
containing sensor vi in the solution. Since tour Cj must contain sensor vi and depot
r, the total cost of the tour, WH(Cj), must be no less than 2w(vi, r) + h(vi)—that is,
WH(Cj) ≥ 2w(vi, r) + h(vi). Then, IE ≥ 2w(vi, r) + h(vi) = maxv∈V {2w(v, r) + h(v)}.

THEOREM 5.2. Given a metric graph G = (V, E; h, w) and the energy capacity IE of each
mobile charging vehicle with IE ≥ maxv∈V {2w(v, r) + h(v)}, there is an approximation
algorithm, Algorithm 2, with an approximation ratio of 8 for the minimum vehicle
deployment problem in G if IE ≥ 2A; otherwise, the approximation ratio of the algorithm
is 4(1+ A

hmin
). The algorithm takes O(|V |2) time, where r is the depot of charging vehicles,

A = maxv∈V {2w(r, v)}, and hmin = minv∈V {h(v)}.
PROOF. We first show that Algorithm 2 can deliver a feasible solution C =

{C1, C2, . . . , Cp}. Recall that A = maxv∈V {2w(v, r)}, which is the maximum energy con-
sumption of a charging vehicle on one round trip between a sensor v and the depot r in
the sensor network. We distinguish it into three cases:

—Case 1: If IE ≥ 2 · W(T ) + H(T ), then there is a closed tour C including all nodes
in V derived from T , and the total cost of C, WH(C) (≤ 2 · W(T ) + H(T ) ≤ IE by
Lemma 4.1), is no more than the energy capacity of a mobile vehicle IE. Hence, one
mobile charging vehicle suffices for charging all nodes in V .

—Case 2: If IE/5 ≥ A, then δ = IE/5, and the total cost of each closed tour in the
solution is no more than 5δ = IE by Theorem 4.3.

—Case 3 (IE/5 < A ≤ IE): Following Algorithm 2, we set δ = IE−A
4 . Clearly, w(v, r) ≤ A/2

for any node v ∈ V since A = maxv∈V {2w(r, v)}. Then, the total cost of each closed
tour C in the solution is analyzed as follows. First, C contains only one sensor node
v ∈ V . The total cost of C is thus WH(C) = 2w(r, v) + h(v) ≤ IE by Lemma 5.1
and the input condition of the algorithm. Second, C consists of multiple sensor
nodes and is derived from a tree Ti. Then, the total cost of tour C in the solution
is WH(C) ≤ 2 · (2δ + w(v0, r)) ≤ 4 · IE−A

4 + 2w(v0, r) ≤ IE − A + A = IE, where
w(v0, r) = minv∈Ti {w(v, r)} and Ti is the tree from which C is derived. Thus, the
solution is a feasible solution to the problem.

We then analyze the approximation ratio of the proposed algorithm. Assume that the
minimum vehicles needed is pmin. With a similar discussion in Theorem 4.3, a lower
bound on the value of pmin is

pmin ≥
⌈

WH(T )
IE

⌉
. (9)

Let p be the number of vehicles delivered by the proposed algorithm. We show the
approximation ratio by the following four cases:

—Case 1: If IE ≥ 2·W(T )+ H(T ), only one mobile vehicle suffices and this is an optimal
solution.

—Case 2: If IE/5 ≥ A, we have δ = IE/5. Then, p
pmin

≤ 
WH(T )/δ�
�WH(T )/IE� ≤ WH(T )/δ

WH(T )/IE = IE/δ = 5
by Lemma 4.2.

—Case 3 (IE/5 < A ≤ IE/2): We have δ = IE−A
4 . Then, p

pmin
≤ 
WH(T )/δ�

�WH(T )/IE� = WH(T )/δ
WH(T )/IE =

IE
δ

= 4·IE
IE−A = 4

1−A/IE ≤ 4
1−A/2A = 8 by Lemma 4.2, Equation (9), and IE ≥ 2A.

—Case 4 (IE/2 < A < IE): We also have δ = IE−A
4 . Let hmin = minv∈V {h(v)}, which is

the minimum amount of energy for fully charging an energy-critical sensor v in the
sensor network. Then, IE ≥ maxv∈V {2w(r, v) + h(v)} ≥ 2w(r, vi) + h(vi) = A+ h(vi) ≥
A+ hmin, where vi = arg maxv∈V {2w(r, v)}. The approximation ratio for Case 4 then is
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p
pmin

≤ 
WH(T )/δ�
�WH(T )/IE� ≤ WH(T )/δ

WH(T )/IE = IE
δ

= 4·IE
IE−A = 4(1+ A

IE−A) ≤ 4(1+ A
A+hmin−A) = 4(1+ A

hmin
) =

O(1), as each of the to-be-charged sensors has consumed a large portion of its energy
already and hmin is thus proportional to the battery capacity of each sensor. The
ratio A

hmin
is usually a constant, where A is the maximum energy consumption of a

charging vehicle on one round trip between a sensor and the depot r, and hmin is the
minimum amount of energy for fully charging an energy-critical sensor. Therefore,
the approximation ratio for Case 4 is a constant. Notice that in practice, Case 4
rarely happens, as the energy capacity of a charging vehicle cannot be used just for
its travel without charging sensors, or its energy is only enough to charge one or two
sensors per tour.

In summary, the approximation ratio of Algorithm 2 is no more than 8 when IE ≥ 2A;
otherwise (maxv∈V {2w(w, r) + h(v)} ≤ IE < 2A), its approximation ratio is 4(1 + A

hmin
).

The dominant time of Algorithm 2 is the invoking of Algorithm 1, which takes O(|V |2)
time by Theorem 4.3.

6. HEURISTIC ALGORITHM WITH SENSOR ENERGY CONSUMPTION PER CHARGING TOUR

Thus far, we have provided an approximate solution to the minimum vehicle deploy-
ment problem by assuming that the energy consumption of each sensor during a charg-
ing tour is several orders of magnitude less than its full capacity, and therefore such
a small amount of energy consumption can be neglected. However, if this energy con-
sumption has to be considered, the problem becomes much more complicated. For
example, if a critical lifetime sensor has not been charged in the current tour, the sen-
sor may run out of energy prior to the next round of charging. For this extreme case,
the mobile charging vehicle must charge the sensor no later than its critical time point;
otherwise, the sensor is dead. Thus, the charging tour of each mobile charging vehicle
may not be the shortest one, as it must charge sensors in the order of their survival
time. To minimize the energy consumption of each mobile charging vehicle on traveling,
in this section we assume that all to-be-charged sensors have sufficient residual energy
for any charging tour. Since the residual lifetime li(t) of each to-be-charged sensor vi at
time point t is no less than lmax and lmax is the longest duration of a mobile vehicle tour
for charging all sensors in the network, the charging order of the sensors in a charging
tour does not matter. Under this assumption, we propose a novel heuristic algorithm
for the problem by incorporating sensor energy consumption during each charging tour
as follows.

The basic idea is that we first apply the approximation algorithm with the mobile
vehicle energy capacity IE to deliver a solution. This solution may or may not be feasible.
If it is feasible, done. Otherwise, we then use a portion of the energy capacity of a mobile
vehicle for sensor charging and the rest of the energy capacity to compensate for the
total energy consumption of sensors during its charging tour. This procedure continues
until a feasible solution is found. Specifically, we apply the approximation algorithm
with vehicle energy capacity IE to deliver a solution. Let C = {C1, C2, . . . , Cp} be the
solution. For each closed tour C ∈ C, we start from the root node r by indexing its nodes
clockwise. Let v1, v2, . . . , v|C| be the node sequence in C with r = v1, and let e1, e2, . . . , e|C|
be the edge sequence of C, where ei = (vi, v(i+1) mod |C|). Let ti be the charging time spent
on node vi that consists of two parts: the time τi on charging the sensor just prior to the
current tour and the time 
ti for compensating the energy consumption of the sensors
due to the travel delay and the delay on charging other nodes by the mobile charging
vehicle in the tour so far. Notice that we ignore the energy consumption of a sensor in
the period during which it is being charged. Thus, we have
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t1 = 0 + 
t1 = 0 as 
t1 = 0,
t2 = τ2 + 
t2 as 
t2 = ρ2(t1+d(v1,v2)/s)

μ
,

t3 = τ3 + 
t3 as 
t3 = ρ3(t1+t2+(d(v1,v2)+d(v2,v3))/s)
μ

,
...
ti = τi + 
ti as 
ti = ρi

∑i−1
j=1(tj+d(v j ,v j+1)/s)

μ
for each i with 1 ≤ i ≤ |C|, where s is the

traveling speed of each vehicle.

The total amount of time spent on tour C by a mobile vehicle is
∑|C|

j=1 tj +
∑|C|

j=1
d(v j ,v j+1)

s .
And the total amount of energy needed for tour C is

E(C) =
|C|∑
j=1

(μtj + ηd(v j, v j+1)) =
|C|∑
j=1

(μ(τ j + 
tj) + ηd(v j, v j+1))

=
|C|∑
j=1

(μτ j + ηd(v j, v j+1)) + 
E(C), (10)

where 
E(C) = μ
∑|C|

j=1 
tj = ∑|C|
j=1 ρ j

∑ j−1
k=1(tk + d(vk, vk+1)/s). Notice that 
E(C) is the

extra amount of energy needed compared to the one in the previous section without
taking the sensor energy consumption during each charging tour into account. It can
be seen that the value of 
E(C) is determined by the mobile vehicle traveling distance,
the energy consumption rate ρ j , and the charging duration τ j of each node v j in C.

We now estimate an upper bound of 
E(C) in tour C as follows. We know that

E(C) = ∑|C|

j=1 ρ j
∑ j−1

k=1(tk+d(vk, vk+1)/s), where
∑ j−1

k=1(tk+d(vk, vk+1)/s) is the time dura-
tion from the time a vehicle departs from the depot to the time the vehicle begins charg-
ing sensor v j . Recall that lmax = LTSP

s + min{IE,
∑

vi∈Vs Bi}
μ

is the longest duration of a mobile

vehicle tour for charging all sensors in the network. Thus,
∑ j−1

k=1(tk+d(vk, vk+1)/s) ≤ lmax.
Let ρmax = maxvi∈V {ρi} be the maximum energy consumption rate among the sensors
in V . Then, 
E(C) ≤ ∑|C|

j=1(ρmax · lmax). Since the number of sensors in any tour C is no
more than |V |, 
E(C) ≤ |V | · ρmax · lmax.

To find a feasible solution to the problem, it must ensure that the total amount of
energy consumed per tour in the solution is no more than the vehicle energy capacity
IE. To this end, let Emax = max1≤i≤p{E(Ci)} be the maximum amount of energy needed
among the p closed tours delivered by the approximation algorithm. If the solution is
feasible (Emax ≤ IE), done. Otherwise, a new energy capacity IE− Eextra for each mobile
vehicle is assigned, and apply the approximation algorithm again, where Eextra =
ρmax · lmax. If the new solution is still infeasible, then increase Eextra by ρmax · lmax. The
increase on Eextra will reduce the vehicle energy capacity to IE− Eextra in later invoking
the approximation algorithm; this implies that the number of mobile vehicles used
for the current round charging will be increased. This procedure continues until a
feasible solution is found. It can be seen that a feasible solution will be found within
|V | times of increasing Eextra since the extra amount of energy needed in each tour

E(C) is no more than |V | · ρmax · lmax. The detailed algorithm for the minimum vehicle
deployment problem under this general setting is described in Algorithm 3. We refer
to this algorithm as NMV_with_Eloss.

THEOREM 6.1. Given a metric graph G = (V, E; h, w), there is a heuristic algo-
rithm, Algorithm 3, for the minimum vehicle deployment problem in G if the energy
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ALGORITHM 3: Finding the Optimal Number of Mobile Vehicles and Their Closed Tours
Under the Sensor Energy Consumption Assumption (NMV With Eloss)

Input: A metric graph G = (V, E; h, w), a root r ∈ V , the energy capacity IE, the charging
rate μ of each mobile vehicle, and the energy depletion rate ρi of each node vi ∈ V .

Output: p-node-disjoint closed tours with a shared node r covering all nodes in V such
that the total cost of each tour is no more than IE.

1: infeasible ←′ false′; /* determine the solution is a feasible solution to the problem */
2: Find a solution C = {C1, C2, . . . , Cp} by applying Algorithm 2 with vehicle energy capacity

IE;
3: for each closed tour Ci ∈ C do
4: Compute E(Ci) by Equation (10);
5: if E(Ci) > IE then
6: infeasible ←′ true′;
7: end
8: end
9: Eextra ← ρmax · lmax, where ρmax = maxvi∈V {ρi};

10: while infeasible do
11: A new solution C ′ is obtained by invoking Algorithm 2 with vehicle energy capacity

IE′ = IE − Eextra;
12: C ← C ′;
13: if the new solution is infeasible then
14: Eextra ← Eextra + ρmax · lmax;
15: else
16: infeasible ←′ false′;
17: end
18: end
19: return C and the number of mobile vehicles p = |C|.

consumption of each sensor during a charging tour is also taken into account. The time
complexity of the proposed algorithm is O(|V |3).

PROOF. Following Algorithm 3, it can be seen that a feasible solution can be found by
invoking Algorithm 2 with O(|V |) times, and each invoking takes O(|V |2). The proposed
heuristic algorithm thus takes O(|V |3) time.

7. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed algorithms through exper-
imental simulations. We also investigate the impact of several important parameters
on algorithm performance, including the network size n, the variance of energy con-
sumption rates, the energy capacity IE of mobile charging vehicles, and the critical
lifetime interval parameter α.

7.1. Simulation Environment

We consider a wireless rechargeable sensor network consisting of from 100 to 500
sensors that are randomly deployed in a 500 × 500 m square. The battery capacity Bi
of each sensor vi ∈ Vs is set to be 10.8 kiloJoules (kJ) by referring to a regular NiMH
battery [Shi et al. 2011]. A base station is located at the center of the square, and a
depot of mobile vehicles is co-located with the base station. The energy capacity of each
mobile charging vehicle IE ranges from 1,000 to 5,000 kJ. We assume that each of them
travels at a constant speed of s = 5m/s with an energy consumption rate of η = 0.6kJ/m
[Xie et al. 2013b]. The energy charging rate of each charging vehicle is μ = 5W [Kurs
et al. 2007]. The default value of α is 5.
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We consider two different distributions of energy consumption rates of sensors: the
linear distribution and the random distribution. In the linear distribution, the energy
consumption rate ρi of sensor vi is proportional to its distance to the base station.
The sensors nearest to and farthest from the base station have the maximum energy
consumption rates ρmax and the minimum energy consumption rates ρmin, respectively,
where ρmin = 1mJ/s and ρmax = 10mJ/s. The linear distribution models the energy
consumptions of sensors in WSNs where the main energy consumption of sensors is
on the data transmission and relays. Sensors close to the base station must relay the
sensing data for other remote sensors, thus consuming much more energy than the
others. Furthermore, by adjusting the energy consumption ratio of each sensor from
ρmax to ρmin, this model can be used to model data aggregations at relay sensor nodes
(i.e., a smaller ratio ρmax

ρmin
implies a higher data aggregation). On the other hand, in the

random distribution, the energy consumption rate ρi of each sensor vi ∈ Vs is randomly
chosen from a value interval [ρmin, ρmax]. The random distribution captures the energy
consumption of heterogeneous sensors. For example, video camera sensors in multime-
dia sensor networks typically consume plenty of energy on image processing [Akyildiz
et al. 2007]. Thus, the energy consumption rates of sensors in such sensor networks
do not closely correlate to the distances between the sensors and the base station.
We further assume that the energy charging rate μ of each mobile vehicle is several
orders of magnitude of the energy depletion rate of sensors (i.e., μ >> maxvi∈V {ρi}). A
fully charged sensor can survive from 10 days up to 4 months. We put 1 year as our
monitoring period of the sensor network. Each value in the figures is the mean of the
results by applying each mentioned algorithm to 50 different network topologies with
the same network size.

To evaluate the performance of the proposed algorithms, we have also implemented
three benchmarks: LB_optimal, algorithm Heuristic, and algorithm minMCP [Dai et al.
2014; Nagarajan and Ravi 2011], in which LB optimal is a lower bound on the min-
imum number of mobile vehicles, which is an approximate estimation of the optimal
solution—that is, LB_optimal = �WH(T )/IE� by Equation (9), where WH(T ) is the
total cost of the MST T of the metric graph G induced by the to-be-charged sensors
and IE is the energy capacity of each mobile charging vehicle. Algorithm Heuristic
is described as follows. Given n to-be-charged sensors v1, v2, . . . , vn indexed by their
appearance in the area, we assume that the depot is the origin and index the sensors
in counterclockwise order. Algorithm Heuristic assigns the vehicles to the sensors one
by one until all sensors are charged. Specifically, assume that the first K − 1 mobile
vehicles have been assigned to sensors v1, v2, . . . , vi−1 already. We now assign the K-th
mobile vehicle to charge the sensors in the sequence vi, vi+1, . . . , vn. Initially, K = 1 and
i = 1. The set of sensors charged by vehicle K will be vi, vi+1, . . . , v j if the total cost
of a shortest closed tour CK including depot r and sensors vi, vi+1, . . . , v j is no more
than the energy capacity IE, whereas the total cost of a shortest closed tour C ′

K includ-
ing depot r and sensors vi, vi+1, . . . , v j, v j+1 is larger than IE—that is, WH(CK) ≤ IE
and WH(C ′

K) > IE, where i ≤ j ≤ n. This procedure continues until all n sensors are
charged.

To compare our work to two closely related works, we adopt a variant of algorithm
minMCP in Nagarajan and Ravi [2011] and Dai et al. [2014], as the total energy con-
sumption of some of the closed tours delivered by their algorithms may violate the
energy capacity constraint IE, and the amount of energy consumed on each such a
tour can be up to IE(1 + ε) with ε > 0 being a constant. To ensure that the energy
consumption of any charging tour is no greater than the energy capacity IE of each
mobile vehicle when applying algorithm minMCP, we set the energy capacity of mobile
vehicles as IE

1+ε
when invoking the algorithm. Thus, the total energy consumption of a
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Fig. 3. Performance of algorithms NMV_without_Eloss, Heuristic, and minMCP by varying network size under
two different distributions of energy consumption rates when IE = 1,000kJ, ρmin = 1mJ/s, and ρmax = 10mJ/s.

charging vehicle per tour will be no more than IE
1+ε

· (1 + ε) = IE, and we set ε = 0.1 in
all of our experiments to the default setting.

7.2. Performance Evaluation of Algorithms

In this section, we evaluate the performance of algorithms NMV_without_Eloss,
NMV_with_Eloss, Heuristic, and minMCP, where algorithm NMV_without_Eloss does not
take into account the sensor energy consumption during each charging tour, whereas al-
gorithm NMV_with_Eloss does take such sensor energy consumption into consideration.

We first evaluate the performance of algorithms NMV_without_Eloss, Heuristic, and
minMCP under the assumption that sensor energy consumption rates follow linear and
random distributions by varying the network size from 100 to 500 sensors. Figure 3(a)
plots their performance curves, from which it can be seen that the solution delivered by
algorithm NMV_without_Eloss is fractional of the optimal one. Specifically, the number
of mobile vehicles delivered by it is around 35% more than the lower bound LP_optimal,
whereas the number of mobile vehicles by it is about 20% and 45% less than that by
algorithms Heuristic and minMCP, respectively. The rationale behind is as follows.
Given a set of to-be-charged sensors, algorithm Heuristic first sorts the sensors in
counterclockwise order, where the depot is the origin. The algorithm then assigns the
mobile vehicles to sensors one by one until all sensors are charged. There may be some
cases in which some sensors charged by a mobile charging vehicle are far away from
each other. Then, the charging vehicle consumes more energy on traveling rather than
on charging the sensors. As a result, more charging vehicles are needed. In contrast,
the proposed algorithm NMV_without_Eloss will schedule a mobile charging vehicle to
replenish a set of sensors whose locations are close to each other. Therefore, fewer
charging vehicles are required. Figure 3(b) indicates that the four algorithms have
similar behaviors under both linear and random distributions of energy consumption
rates.

We then investigate the average total travel distance of dispatched charging vehi-
cles by algorithms TSP, NMV_without_Eloss, Heuristic, and minMCP, where algorithm
TSP finds a closed tour visiting all to-be-charged sensors and the depot by applying
Christofides’ algorithm [Christofides 1976]. We can see that the length of the tour
found by algorithm TSP is a lower bound on the minimum total travel distance of em-
ployed vehicles for the minimum vehicle deployment problem, as there is no energy
capacity constraint on the vehicle in the algorithm. Figure 4(a) shows that the average
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Fig. 4. The average total travel distance of dispatched charging vehicles by algorithms TSP,
NMV_without_Eloss, Heuristic, and minMCP by varying network size under two different distributions of
energy consumption rates when IE = 1,000kJ, ρmin = 1mJ/s, and ρmax = 10mJ/s.

total travel distance by the proposed algorithm NMV_without_Eloss is only from 18% to
32% longer than that by algorithm TSP, whereas it is about 5% and 25% shorter than
that by algorithms Heuristic and minMCP, respectively. Again, Figure 4(b) implies that
the four algorithms have the similar behaviors under both linear and random distri-
butions. Thus, in the rest, we only investigate the impact of several parameters on the
performance of these algorithms under the linear distribution of energy consumption
rates.

Next, we study the impact of the energy capacity of mobile charging vehicle IE on the
performance of algorithms NMV_without_Eloss, Heuristic, and minMCP by varying IE
from 1,000kJ to 5,000kJ. Figure 5 shows that with the growth of the energy capacity
IE, the number of mobile charging vehicles delivered by algorithm NMV_without_Eloss
decreases, and the gap between the solution and the lower bound of the optimal so-
lution becomes smaller and smaller, which implies that the performance of algorithm
NMV_without_Eloss is near optimal. On the other hand, the number of vehicles de-
livered by algorithm NMV_without_Eloss is up to 50% less than that by algorithm
Heuristic.

We further investigate the impact of the variance among energy consumption
rates of sensors on the performance of algorithms NMV_without_Eloss, Heuristic,
and minMCP by varying ρmax from 1mJ/s to 10mJ/s while fixing ρmin at 1mJ/s. Fig-
ure 6 indicates that the number of mobile vehicles needed by each of the three
algorithms, NMV_without_Eloss, Heuristic, and minMCP, decreases, followed by them
slowly growing. The rationale behind this is that when the variance is quite small
(i.e., the gap between ρmax and ρmin is small), the solution delivered by algorithm
NMV_without_Eloss will include almost all sensors in each charging round, and thus
a large number of mobile vehicles are required. With the increase on the variance,
the number of to-be-charged sensors in each charging round significantly decreases.
On the other hand, when the maximum energy consumption rate ρmax becomes large,
the average energy depletion rate of the sensors will be faster, and the solution by
algorithm NMV_without_Eloss will include more sensors to be charged per charging
round, as more sensors are within their critical lifetimes. In the following, we do not
compare the performance of algorithm minMCP, as its performance is the worst one
among the four algorithms, LB_optimal, NMV_without_Eloss, Heuristic, and minMCP,
which has been shown in Figures 3 through 6.
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Fig. 5. Performance of algorithms NMV_without_
Eloss, Heuristic, and minMCP by varying the energy
capacity of each mobile vehicle IE when n = 200,
ρmin = 1mJ/s, and ρmax = 10mJ/s.

Fig. 6. Performance of algorithms NMV_without_
Eloss, Heuristic, and minMCP by varying the max-
imum energy consumption rate ρmax from 1mJ/s to
10mJ/s when n = 200, IE = 1,000kJ, and ρmin =
1mJ/s.

Fig. 7. Performance of algorithms NMV_with_Eloss and Heuristic_Eloss by varying network size n and
energy capacity IE when ρmin = 50mJ/s, ρmax = 100mJ/s, and α = 3.

We finally evaluate the performance of algorithms NMV_with_Eloss and Heuristic_
Eloss under the assumption that sensor energy consumptions during each charging
tour are taken into account against the ones of algorithms NMV_without_Eloss and
Heuristic by varying network size n and energy capacity IE while keeping the high
sensor energy consumption rates (ρmin = 50mJ/s and ρmax =100mJ/s). Note that we
omit the experimental results under the low sensor energy consumption rates (e.g.,
ρmin = 1mJ/s and ρmax =10mJ/s), as the number of charging vehicles deployed by each
of the four mentioned algorithms is almost identical in these two cases (i.e., with and
without taking energy consumption during charging tours into consideration). Figure 7
illustrates the performance curves of different algorithms, from which it can be seen
that the number of mobile vehicles delivered by algorithm NMV_with_Eloss is around
7% more than that by algorithm NMV_without_Eloss.

7.3. The Impact of α on Algorithmic Performance

We now evaluate the impact of critical lifetime interval parameter α on the performance
of the proposed algorithms by varying the value of α from 1 to 7. A smaller α implies
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Fig. 8. Performance of algorithms NMV_without_Eloss and Heuristic by varying α when n = 200, IE =
1,000kJ, ρmin = 50mJ/s, and ρmax = 100mJ/s.

that more frequent schedulings are needed and fewer numbers of mobile vehicles
are employed per charging round. With the growth of α, more and more sensors will
be included in V , and more sensors will be charged by mobile charging vehicles per
charging round. Figure 8 implies that with the growth of α, more charging vehicles are
needed by algorithms NMV_without_Eloss and Heuristic in each charging round, as
more sensor nodes fall in the defined critical lifetime interval. However, it is interesting
to see that no more mobile vehicles are required when the value of α is greater than 6,
as all sensors will be charged in each charging round.

8. CONCLUSION

In this article, we studied the use of the minimum number of mobile charging vehicles
to charge sensors in a large-scale WSN so that none of the sensors will run out of energy,
subject to the energy capacity constraint imposed on each mobile charging vehicle. We
first proposed an on-demand energy charging paradigm for sensors. We then formulated
the minimum vehicle deployment problem. Since the problem is NP-hard, we instead
devised an approximation algorithm with a provable performance guarantee, assuming
that the energy consumption of each sensor during each charging tour is neglected;
otherwise, we proposed a novel heuristic by invoking the approximation algorithm
iteratively. We finally conducted extensive experiments by simulations to evaluate the
performance of the proposed algorithms. Experimental results demonstrate that the
proposed algorithms are promising, and the solutions obtained by them are fractional
of the optimal ones. In our future work, we will study the minimum vehicle deployment
problem when the residual lifetime of each to-be-charged sensor is very short (i.e., less
than lmax), for which we will devise new algorithms, and we believe that the charging
order of sensors in each charging tour will be the key in the design of such algorithms.
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