914

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 4, AUGUST 2006

A General Approach for All-to-All Routing in
Multihop WDM Optical Networks

Weifa Liang, Senior Member, IEEE, and Xiaojun Shen, Senior Member, IEEE

Abstract—WDM optical networks provide unprecedented high
speed and reliability for message transfer among the nodes.
All-to-all routing is a fundamental routing problem in such net-
works and has been well studied on single hop WDM networks.
However, the number of wavelengths to realize all-to-all routing
on the single hop model typically is very large. One way to reduce
the number of wavelengths is to use k-hop routing, in which each
routing path consists of £ segments and each segment is assigned
a different wavelength, where k£ usually is a small constant. Be-
cause of the complexity of design and analysis for such a routing
problem, only few papers discussed and proposed all-to-all routing
by &k > 2 hops. However, the proposed algorithms are usually
exceeding complicated even for ring topologies. Often, an ad hoc
approach is employed to deal with each individual topology.

In this paper we propose a generic method for all-to-all routing
in multi-hop WDM networks, which aims to minimize the number
of wavelengths. We illustrate the approach for several optical
networks of commonly used topology, including lines, rings,
tori, meshes, and complete binary trees. For each case an upper
bound on the number of wavelengths is obtained. The results
show that this approach produces clear routing paths, requires
less wavelengths, and can easily incorporate load balancing. For
simple topologies such as lines and rings, this approach easily
produces the same bounds on the number of wavelengths that
were hard-obtained previously. Moreover, this general approach
provides a unified routing algorithm for any d-dimensional torus,
which seems impossible to obtain by the previous approach.

Index Terms—All-to-all routing, gossiping, multihop routing al-
gorithms, network design, optical networks, robust routing pro-
tocol, WDM routing.

I. INTRODUCTION

HE emerging Wavelength-Division Multiplexing (WDM)
Toptical networks can provide capacities exceeding sub-
stantially those of conventional networks. Such networks
promise data transmission rates several orders of magni-
tude higher than current electronic networks. This opens the
opportunity for many real-time applications such as video con-
ferencing, scientific visualization, real-time medical imaging,
high speed supercomputing, and distributed computing [1],
[26], [28]. The key to high speed in the network is to maintain
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the signal in optical form rather than traditional electronic form.
The high bandwidth of fiber-optic links is utilized through the
WDM technology which supports the propagation of multiple
laser beams through a single fiber-optic link provided that each
laser beam uses a distinct optical wavelength. Thus, optical
communication introduces a new routing environment with
new characteristics different from traditional one. By nature,
packet routing algorithms are ill-designed for this setting. It is
necessary to develop new routing methodologies for optical
network communication.

WDM optical networks can be classified into two categories:
switch-less (also called broadcast-and-select) and switched.
Each of these can further be classified as either single-hop (also
called all-optical) or multihop [23]. In switch-less networks,
the transmission from each node is broadcast to all other nodes
in the network. At each node, the desired signal is extracted
from all the broadcast signals. The switch-less networks are
practically important since the whole network can be con-
structed out of passive optical components, which are reliable
and easy to operate. However, switch-less networks suffer
from severe limitations when extended to wide area networks.
Indeed, it has been proved in [1] that switch-less networks
require a large number of wavelengths even for simple traffic
patterns. Therefore, optical switches are required to build large
scale networks. A switched optical network consists of nodes
interconnected by point-to-point optic communication links.
Each fiber-optic link supports a given number of wavelengths.
Switches at each node direct their input signals to one or more
output links. Each link consists of a pair of uni-directional links
[26]. In this paper we consider switched networks in which
signals from different applications may travel on the same
communication link into a node and then exit along different
outgoing links. The only constraint is that any two paths in the
network sharing a common optical link must be assigned with
different wavelengths. In switched networks it is allowed to
“reuse wavelengths”, thus, achieving a dramatic reduction on
the number of required wavelengths with respect to switch-less
networks [1].

All-optical (also called single hop) networks are networks
where the information is transmitted in the form of light from
source to its final destination without being converted to elec-
tronic form. Maintaining the signal in optical form allows the
network to reach high speed since there is no overhead on con-
versions to and from the electronic form.

All-to-all routing (also called gossiping) is to disseminate
a unique message from each node to every other node. This
is a fundamental problem in multiprocessor systems and
telecommunication networks that need to collect information
about other nodes in the network regularly in order to manage
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network resources efficiently. The need also arises in many
applications in the fields of parallel and distributed computing
[71, [13], [10]. Therefore, the problem has been extensively
studied in the literature in both traditional electronic networks
[12], [18], [19] and optical networks [2], [5], [6], [27], [24],
[25], [17]. However, most studies in optical networks focus on
the single hop model, which usually requires a large number of
wavelengths to be used. Using k (> 2) hops routing can greatly
reduce the bound on the number of wavelengths required.

A. Related Work

All-to-all routing on a single hop model has been studied for
rings, tori, meshes, hypercubes, and trees of rings [2], [4]-[6],
[24], [27], [29], [30]. Beauquieer [2] showed that the number
of wavelengths needed in a d-dimensional torus with n nodes
in each dimension is at most n¢*! /8 when n is even. Bermond
et al. [5], [6] showed that the number of wavelengths needed
in a ring of n nodes is [(1/2)|n?/4]], and in a hypercube of
24 nodes is 2¢~'. Schroder et al. [27] considered some special
product graphs with the following results. When n is odd, the
number of wavelengths needed in an xn torus is (1/8)n(n%—1)
when n > 3; the number of wavelengths needed in a s X ¢
torus or mesh with 2 < s and 2s < tis [s/2[t/2][t/2]]
or s/2|t/2]|[t/2]. Beauquier [2] showed that the number of
wavelengths needed for a d-dimensional torus with n nodes
in each dimension is either n*1/8 or no greater than (n +
1)4+1/8 depending on whether or not n is even, and the number
of wavelengths needed for a d-dimensional mesh with n nodes
in each dimension is either n?*1/4 if n is even, or no more
than (n + 1)4+1 /4 otherwise. Narayanan et al. [24] considered
all-to-all routing for a family of chordal rings of degree 4 by
presenting an approximation algorithm that requires only 1.013
times the theoretic optimal bound. Zhang and Qiao [30] ad-
dressed the problem of scheduling all-to-all personalized con-
nections in WDM rings. For a given number of wavelengths K
and a number of transceivers per node 7', they showed the lower
bound on the schedule length, which is a function of the pa-
rameters K and 7. They also presented a scheduling algorithm
for the problem, which delivers a solution almost matching the
lower bound.

Because of the complexity of design and analysis, only
few papers [17], [25] discussed the multi-hop models. Opa-
trny [25] studied the uniform all-to-all routing problem for
a symmetric directed ring. The numbers of wavelengths are
((n+3)/3)V/((n+16)/5) + n/4, (n/2)3/([n/4] +4)/5,
and ((n+16)/2)y/[n/4] +8 for a uniform 2-hop, 3-hop
and 4-hop model respectively, where a uniform routing is
such a routing that each node communicates directly with an
equal number of nodes at the same distance as any other node.
Comellas et al. [9] further considered the uniform routing in a
torus for some special cases. Independently, Gu and Peng [17]
also studied the all-to-all routing problem in several specific
mulit-hop WDM optical networks including lines, rings, 2-D
square tori, and 3-D square tori. They showed that, to realize
all-to-all routing in a network of N nodes under the k-hop
model, it requires O(N'+1/*) wavelengths in a ring, while it
needs O(N'+1/2k) or O(N'+1/3%) wavelengths in a 2-D torus
or a 3-D torus, respectively. Since they dealt with each case

with topology-specific ad hoc design, their routing algorithms
are exceedingly complicated. This makes it prohibitively dif-
ficult to extend their approaches to solve the problem in high
dimensional tori or other topological structures. In contrast to
their approaches, our approach is much simpler and generic,
which is suitable for the architectures including lines, rings,
d-dimensional square tori with any fixed d (d > 1), rather than
d < 3, and complete binary trees. It must also be mentioned
that our solution for complete binary trees partially answers an
open problem given in [17], that is, how to efficiently realize
all-to all routing in a tree topology, in terms of network resource
(wavelengths) consumption.

B. Major Results of This Paper

A major result of this paper is a generic method for realizing
all-to-all routing for a given network with k-hop routing. By this
method, the original network is first partitioned into a number
of subnetworks of roughly equal size such that the nodes in each
subnetwork are connected. A super network whose topology is
similar to the original network but with a smaller size is then
constructed, which takes the subnetworks as its nodes. There is
a super link between two nodes if there are any links between
the two subnetworks. Each subnetwork is either the same type of
network as the original one or a network which can be induced
from the original network by removing some links from it. As
a result, all-to-all routing for the original network is realized in
two phases. In the first phase it realizes all-to-all routing for the
super network under a single hop model, and in the second phase
it realizes all-to-all routing in each subnetwork under a (k —
1)-hop model, recursively, assuming that the solutions for the
original network and the subnetworks under a single hop model
are known in advance. We will illustrate this generic method
for several commonly used topologies in later sections. A brief
summary of the bounds on the number of wavelengths required
is as follows.

For a line or a ring of N nodes, the number of wave-
lengths used is no more than (1/4)kN'*+1/k 4 o( N1+1/F) or
(122 VR ENIHYE 4 o( N1HL/F) respectively. For a d-di-
mensional torus or mesh of N nodes with the same number of
nodes in each dimension, the number of wavelengths needed
is no more than (1/22FVk)EN1+I/kd 4 o(N1F+L/Rd) o
(1/4)kN1+1/kd 1 o(N1+1/kd) “where d > 2. For a complete
binary tree of N nodes, the number of wavelengths used is no
more than 2(k=1/2"7") N1+1/2"71 4 o N1+1/2571)

Although these bounds for rings, 2-D tori, and 3-D tori match
with that in [17], our algorithms are much simpler, clearer,
and more general, as shown in later sections. Especially, our
methods produces a unified routing algorithm for any d-dimen-
sional torus, which seems impossible to obtain by the previous
approach. Clearly, the previously hard-obtained bounds on 2-D
and 3-D tori now become only special cases in our general
solution when d = 2, 3 respectively.

C. Paper Organization

The remainder of the paper is organized as follows. Section II
introduces necessary notations and concepts. Since the generic
method has been presented in the introduction, the following
sections present detailed algorithms for several commonly used
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topologies. Section III deals with all-to-all routing for a line of
N nodes. Section IV deals with all-to-all routing for a ring of
N nodes. Section V deals with all-to-all routing for a d-dimen-
sional torus or mesh of N (= n%) nodes with d > 2. Section VI
studies all-to-all routing in a complete binary tree. The conclu-
sion is given in Section VII.

II. PRELIMINARIES

A WDM optical network can be represented by a symmetric
directed graph G = (V, E) with node set V representing the
nodes of the network and edge set £ representing optical links.
Moreover, edge (u,v) € E if and only if edge (v,u) € E.

A request is an ordered pair (u,v) of nodes in G which cor-
responds to a message to be sent from w to v. An instance 1 is
a collection of requests. Given an instance I in the network, an
optical routing problem is to determine a path through the net-
work and assign a wavelength to each requestin /, so that no two
requests whose paths share a link are assigned the same wave-
length. Since the cost of an optical switch is proportional to the
number of wavelengths it can handle, it is paramount to deter-
mine paths and wavelengths so that the total number of wave-
lengths required is minimized. Thus, an optical routing problem
contains the related tasks of route assignment and wavelength
assignment. A routing R for a given instance I is a set of paths
{P(z,y) | (z,y) € I}, where P(z,y) is a path from z to y in
the network. By representing a wavelength by a color, the wave-
length assignment can be seen as a coloring problem where one
color is assigned to all the edges of a path. We say that the col-
oring of a given set of paths is conflict-free if any two paths
sharing a link are assigned different colors.

Given an instance I and a routing R for a graph G, the wave-
length index of the routing R, denoted by w(G, I, R), is the min-
imum number of colors needed for a conflict-free assignment to
paths given by R. The edge-congestion or load of the routing
R for I, denoted by 7(G, I, R), is the maximum number of
paths that share a common link. The optimal wavelength index
(G, I), and the optimal load 7(G, I) for the instance [ in G
are the minimum values over all possible routings for the in-
stance [ in G. It is easy to see that (G, I, R) > 7(G, I, R) for
every routing R, thus, W(G,I) > 7(G, I).

Given a routing R for an instance I in G, the routing graph
Gr = (V,Eg,I) [11] is defined as follows. There is an edge
(u,v) € Eg if there is a directed path in R from u to v, u € V/
andv € V.Let L(e, G, I, R) be the number of wavelengths as-
signed to e € F by routing R for an instance [ in G. The link
load is defined L(G, I, R) = max.cg{L(e,G,I, R)}. The link
load L(G,T) of G for an instance [ is defined as L(G,T) =
minger{L(G, I, R)}, where R is the set of all possible rout-
ings for I.

Let I be an instance in G. A k-hop solution [22], [23] of I is
arouting R and an assignment of wavelengths to the paths in R
such that 1) it is conflict-free, i.e., any two paths of R sharing
a directed link have different wavelengths; 2) for each request
(u,v) in I, a path from w to v in R can be obtained by con-
catenation of at most k paths in R. In other words, in a k-hop
model with k > 2, the signal must be converted into electronic
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form k£ — 1 times before reaching its destination. This conver-
sion slows down the transmission, but reduces the number of
wavelengths needed significantly [23].

An all-to-all routing instance [ 4 is an instance in a network
that consists of all ordered pairs of nodes. For any given di-
rected symmetric graph G, the question of whether W(G, I4) =
(G, 14) is still open [15]. It is known to be true only for some
specific networks, which include rings [6], trees [14], square tori
or meshes [2], [27], d-dimensional tori or meshes with each di-
mension containing the same number of nodes [27], [2], hyper-
cubes [6], and the Cartesian product of complete graphs [2].

Despite the fact that the single hop solution for all-to-all
routing in a network is desirable, it uses an unrealistically
large number of wavelengths to realize the instance I4,
while the number of wavelengths in a real network is very
limited. To reduce the number of wavelengths needed, one
possible way is to realize 14 on a k-hop model with & > 2.
There are number of different routing solutions for /4 on
a k-hop model. Some of them have poor performance. For
example, consider a ring of n nodes numbered from O to
n — 1. One possible 2-hop solution for I4 in the ring is
R={poi|1<i<n—-1}U{p;o]|1<i<mn—1},inwhich
path pg; is the shortest path from node 0 to node % and path
Di,0, from node ¢ to node 0. Any request from node 4 to node
j in I4 can be obtained by a concatenation of paths p; o and
Po,j- Thus, a conflict-free assignment of colors to all the paths
in R uses [(n —1)/2] colors. However, this solution suffers
load imbalance and poor fault-tolerance, because node O is a
bottleneck whose failure will result in the entire network broken
down. For better fault-tolerance and load balancing, Narayanan
et al. [24] proposed a uniform routing in a ring, in which each
node can communicate directly with the same number of nodes
and at the same distance along the ring as any other node. Thus,
the routing graph derived from the uniform routing for /4 is a
regular graph in which every node has the same degree.

Inspired by the definition of uniform routing, in this paper we
propose a robust routing which is a fault-tolerant and load bal-
anced routing. However, we do not require the routing graph de-
rived by the robust routing to be a regular graph because the re-
quirement of regular graphs is too strict, and impossible in some
cases. Instead, we only require that the work load at each node
be roughly balanced. More specifically, for a given instance
in G, let D be a function of the size of G, we focus on finding
a robust routing R for I in G on a k-hop model such that (i) D
is minimized and the degree of every node in the routing graph
GRr(V,ER,I) is between D — p and D + p, where p is either
a small constant or p = o(D); (ii) the link load L(G, I, R) is
minimized. Condition (i) aims to minimize and balance the node
load in routing R, so that the difference of work load between
any two nodes is no more than 2p; condition (ii) intends to min-
imize the number of wavelengths associated with each link in
G, thereby reducing the cost of optical-to-electronic switches
or electronic-to-optical switches. In particular, we will focus on
devising k-hop robust routing algorithms for 7 4 in several pop-
ular optical networks including lines, rings, d-dimensional tori
or meshes with n nodes in each dimension, and complete binary
trees.
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A line of 9 nodes

: N

Super node

Super link

A super line of 3 supernodes.

Fig. 1. A super line derived from a line of 9 nodes.

In the remaining discussion, we define wx(N;k) to be
the number of wavelengths for realizing all-to-all routing
in a network X of N nodes using k-hop routing, where
X = {line, ring, star, and complete binary tree}.

III. ALL-TO-ALL ROUTING FOR A LINE OF N NODES

In this section we investigate all-to-all routing for a line of
N nodes. We first obtain a solution for 2-hop routing and then
extend the result to the k-hop model, k£ > 2.

A. The 2-Hop Model

All-to-all routing for a line under a single hop model has
been studied and the minimum number of wavelengths needed
is wiine(N;1) < N?/4 [5]. We consider this problem on the
2-hop model. The idea is to partition a line into several roughly
equal segments. Thus, every segment forms a group and con-
tains a roughly equal number of nodes. We treat each group as
a supernode. Thus, a super line consists of the supernodes with
two adjacent supernodes connected by a super link. Fig. 1 illus-
trates the construction of a super line for a line of 9 nodes.

The algorithm for 2-hop routing consists of two phases. In
the first phase it realizes all-to-all routing in the super line on a
single hop model, and in the second phase it realizes all-to-all
routing within each group (in a line) on a single hop model also.
Thus, any routing path consists of at most two segments ob-
tained in the two phases, and each segment is assigned a dif-
ferent wavelength. Note that in the second phase, the same set
of wavelengths will be used for all-to-all routing in every group
due to the fact that all groups are disconnected. Fig. 2 illustrates
the two phases of the proposed algorithm for a line of 9 nodes.
We need to say a few words about the all-to-all routing in the
super line. The super line can be treated as [ (= 3) networks
under the single hop model logically, since each supernode con-
tains [ nodes. In this example node 1 in supernode G(1), node
4 in supernode G(2), and node 7 in supernode G(3) form a net-
work. Similarly, node 2 in G(1), node 5 in G(2) and node 8 in
G(3) form a network; node 3 in G(1), node 6 in G(2) and node
9 in G(3) also form a network. Realizing all-to-all routing in
the super line is to realize all-to-all routing in these three net-
works under a single hop model. Since these networks share
some links, each one needs a different set of wavelengths.

Now let us consider group G(1) containing nodes 1, 2, and 3.
After the first phase of the algorithm, node 1 received messages
from nodes 4 and 7, node 2 received messages from nodes 5 and
8, and node 3 received messages from nodes 6 and 9. Obviously,
after the second phase, each node in G(1) received the messages
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Fig. 2. Two phases for realizing all-to-all routing in a line of 9 nodes on the
2-hop model.

from all other nodes in the original network. The same is true
for any other node.

Fig. 2 shows an ideal case where N is divisible by [, N = ql.
In this ideal case, it is easy to estimate the number of wave-
lengths: Phase 1 needs lq?/4 wavelengths, and Phase 2 needs
ql? /4 wavelengths since each node has ¢ messages to send in
the second phase. Therefore, the total number of wavelengths
will be

7 1?2 ql N

Wiine(IN;2) will be minimized when ¢ = [. Therefore,
Wiine(N;2) < (1/2)N3/2 when /N is an integer.

Now let us consider the general case where v/N is not an
integer. If v/ is not an integer, we can find an integer K such
that K2 < N < (K + 1)2. Let N = K2 +r,where 1 <7 <
2K . We distinguish two cases, 1 <r < K,and K < r < 2K.

(i) 1 < r < K. In this case we divide the /N nodes into K

groups, each of which contains at most (K + 1) nodes.
There are (K + 1) networks in the super line, each con-
taining K nodes except one that contains  nodes. If =
K, then,

K+1)K? K(K+1)?
wlzne(N72)§( +) + ( +)
4 4
_KP 3K K
2 4 4
3

=+ O(K?)

= +o(N%/2). 0

If r < K, there are r groups containing (K + 1) nodes
each and (K — r) groups containing K nodes each. For
this case we add a dummy node to each of these (K — r)
groups and select a real node to take care of this dummy
node. Now we still have (K + 1) networks in the super
line and each one contains K nodes. Of course, one net-
work contains 7 real nodes and (K — r) dummy nodes.
The function of each dummy node is to receive messages



from other nodes in the network, and send no messages.
The real node that takes care of a dummy node will do
actual work for the dummy node as well as the work
in its own network. Because a different network uses a
different set of wavelengths. This can be implemented
without problem. Thus, the total number of wavelengths
needed will be the same as that of (1).

(i) K < r < 2K. In this case we divide the nodes into
(K + 1) groups with each group containing no more than
(K + 1) nodes. Because K < r < 2K, there are 7’
(= r — K) groups that contain (K + 1) nodes each and
(K — 1) + 1 groups that contain K nodes each, where
0 < 7 < K. By adding dummy nodes, we obtain (K +
1) networks in the super line and each network contains
(K + 1) nodes. The number of wavelengths required is
estimated as follows.

(K +1)(K +1)?
4

+3K2+3K+1
2 2

N (K +1)(K +1)?

Wiine (Na 2) S
K3

2

=~ +o(N*/?). )

We can see that in both cases (i) and (ii), we have
wiine(N;2) < (1/2)N3/2 4 o(N3/?). We therefore have
the following theorem.

Theorem 1: There is an algorithm for realizing all-to-all
routing for a line of N nodes with 2-hop routing. The number
of wavelengths used is no more than N3/2/2 4+ o(N?3/2).
Moreover, if /N is an integer, wyine (N;2) < N3/2/2.

Proof: This follows from the above discussion. ]

Note that the fundamental difference between this method
and that of in [17] is that our method does not pre-determine
the value [, but uses an equation to optimally determine / and gq.

Remark: When we actually implement 2-hop routing, we
need to add dummy nodes and distribute them along the line
evenly. Very fine analysis shows that the even distribution will
further reduce the number of wavelengths needed, although this
reduction will not change the order stated in Theorem 1. Inter-
ested readers can refer to the paper in [20].

B. The k-Hop Model With k > 2

We now extend the approach for 2-hop routing to k-hop
routing. The idea behind the algorithm is similar to that for
2-hop routing. That is, in the first phase the algorithm realizes
all-to-all routing in the super line on a single hop model, and
in the second phase the algorithm realizes all-to-all routing in
each group on a (k — 1)-hop model, recursively.

Theorem 2: There is an algorithm for realizing all-to-all
routing for a line of N nodes under a k-hop model such
that the number of wavelengths used is no more than
(1/4)kNHV/E 4 o(N1*+/k) Moreover, if N'/* is an in-
teger, then, it is no more than (1/4)N1+1/%,

Proof: The theorem has been proved for & = 2 in Sec-
tion III.A. Now we prove this theorem by induction on k. We
assume that N/* is an integer first. Let N = p*. We divide N
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nodes into p groups with each containing p*~! nodes exactly.
Then, the number of wavelengths needed in the first phase is
pF~1.p? /4, and the number of wavelengths needed in the second
phase is p - (1/4)(k — 1) - (p*~1)*/(*=1) by induction. There-
fore, the total number of wavelengths will be
) . L k1, Loprr Lo it
wllne(N7 k) S _(k - l)p + -p =-kN .
4 4 4
So, the theorem is correct.

Now let us consider the case where N # p*. For this case we
have an integer p such that p* < N < (p + 1)*. By adding
dummy nodes at each recursion, we get a new line that has
N; = (p + 1)* nodes. Because the work done by a dummy
node is less than the work required for each real node, we have
Wiine (N3 k) < wiine(N13 k) < (1/9)kNFTD/% Since k is a
fixed constant, we have

N = (D
=p" 4+ (k+1)p" + <
=p"* + 00"
= ph T 4 o(ph ).

Therefore, wiin.(N; k) <
(%) k_N1+1/k + O(N1+1/k).

E+1

9 )pk_1+---+p+1

1) fpktl 4 o(pht
4

IV. ALL-TO-ALL ROUTING FOR A RING OF N NODES

In this section we study all-to-all routing for a ring of N nodes
using k-hop routing. The idea is similar to that for the line. That
is, the nodes in the ring are partitioned into a number of groups
such that each group contains equal number of nodes roughly
and the subgraph induced by the nodes in a group is a line. Each
group is treated as a supernode, and there is a super link between
two supernodes if there is any link between them. Thus, a super
ring consists of the supernodes and super links. The algorithm
consists of two phases. In the first phase it realizes all-to-all
routing for the super ring under the single hop model, and in
the second phase it realizes all-to-all routing in each group (in
a line) under the (k — 1)-hop model recursively. Thus, we have
the following theorem.

Theorem 3: There is an algorithm for realizing all-to-all
routing in a ring of IV nodes for k-hop routing. The number of
wavelengths needed is no more than (1/22t1/F)EN1+1/k 4
O( N1+1/ k)_

Proof: Assume that N is divisible by [ and N = ¢l. Then,
we divide N nodes into ¢ groups with each group containing [
nodes. The total number of wavelengths required for realizing
all-to-all routing in a ring, w,i,,4(IN; k), is as follows.

The number of wavelengths in the first phase is /[¢?/8], and
the number of wavelengths in the second phase is ¢ - (1/4)(k —
1)1+1/(=1)_ Ths,

2
1
Wring (N3 k) gl(%} + Zq(k — )/ (D)
1
= gql(q +2(k — 1)11/(k_1)) 3)

assuming 2 /8 is an integer.
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Wying(N; k) is minimized when | = (N/2)'~'/* and ¢ =
2(N/2)Y/*. Therefore, assuming [ = p*~1, when N = 2p*, we
have ¢ = 2p. Then,

141/k
wring(NiK) < galla+ 20k = DIYED) =i (5]

8 2 2

If ¢%/8 is not an integer, then the number of wavelengths in
Wying(N; k) is increased by at most I = o((N/2)*~1/*), fol-
lowing formula (3).

When N # 2p*, we can use dummy nodes and arguments
similar to those used for lines to show w,.;,4 (IV; k) will increase
in the order of o( N'+1/¥). Therefore, the theorem follows. m

V. ALL-TO-ALL ROUTING ON A SQUARE MESH OR TORUS

In this section we first deal with the all-to-all routing problem
in a n X n square torus or mesh. We then address all-to-all
routing in a d-dimensional torus or mesh with n nodes in each
dimension, where d > 2. Let wfjish(n; k) or wggz,us(nk)
be the number of wavelengths needed for realizing all-to-all
routing in a d-dimensional mesh or a d-dimensional torus
with n nodes in each dimension using k-hop routing. For a
d-dimensional torus (d > 3) of N = n? nodes, it has been
shown that wgg,)ms(n; 1) = n*1/8[2], [27] when n is even,
wgg,)nus(n; 1) < (n + 1)4+1/8 otherwise [2]. For a d-dimen-
sional mesh either wg:f;sh(n; 1) = nd*1/4 when n is even [27],

orw'® (n;1) < (n+ 1)4+1/4 by the result for torus in [2].

mesh

A. The 2-D Square Mesh or Torus on the 2-Hop Model

The n x n torus or mesh is partitioned into a number of
node-disjoint square blocks (square sub-meshes) such that the
subgraph induced by the nodes in each block is connected. Each
block is treated as a supernode, and there is a super link between
two supernodes if there is any link between the nodes in them.
A super square torus or a super square mesh consists of the su-
pernodes and super links.

The basic idea of the proposed algorithm consists of two
phases. In the first phase it realizes all-to-all routing in the super
square torus or the super square mesh on the single hop model.
In the second phase it realizes all-to-all routing in each square
block (square sub-mesh) on a single hop model. Let W; be the
set of wavelengths used in phase 7, i = 1, 2, W7 N W5 = ) due
to the fact that a link within a sub-mesh can be contained by the
routing paths in both phases. The total number of wavelengths
for 2-hop routing is |W1| + [Wa|.

Given the partition parameter ¢, letn = gl + 7,0 < r < gq.
We consider the block partition in the square mesh or torus as
follows.

The nodes in each column are partitioned into g groups
such that there are r groups with each containing [ + 1
nodes and (¢ — r) groups with each containing ! nodes.
As a result, the nodes in each column are partitioned into
g groups C(1),C(2),...,C(q), and use the exact parti-
tion, the nodes in each row can be partitioned into ¢ groups
R(1),R(2),...,R(q), where C(i) and R(7) are the sets of
the row and column coordinates of the nodes. Thus, there is a
block partition for a square torus or mesh, which partitions the
torus or mesh into ¢? blocks {G(4,7) |1 <i < ¢q,1 < j < q},
where G(i,j) = {(z,y) | = € C(i),y € R(j)}. Consequently,

the size of a block in this partition is one of the values, [ x [,
Ix(+1),(0+1)xlor(I+1)x({+1).

(i) If » = 0, then we have a ¢ X ¢ super square torus or
mesh and ¢% [ x [ square sub-meshes. The numbers of
wavelengths for all-to-all routing in a super square torus
and mesh are (1/8)1%-¢* and (1/4)1?-¢> respectively. The
number of wavelengths for all-to-all routing in a square
sub-mesh is (1/4)q? - I3, because each node in the sub-
mesh now contains ¢ messages to be sent after the first
phase. Thus, we have

1 1
wgzz’us(n; 2) S _l2 : q3 + _q2 . 13 (4)
8 4
and
1 1
wr(flsh(n; )< =124 -2 1P )
4 4
win),o(n:2) = (1/2/)n%/? = (1/2%/2)N*/4 is min-
imum when [ = \/W, and wgish(n; 2) = (1/2)n5/2 _

(1/2)N°/* is minimum when [ = /n. So far we have as-
sumed that both /n/2 and \/n are integers and r = 0.

(i) If » # 0, then we add dummy columns and rows to the
blocks such that each of them becomes a square block.
The detailed description is as follows.

For the mesh, we assume that K? < n < (K + 1)? =
KZ4+2K +1.Letn = K24+ r,thenl < r < 2K. Let
m = (2K + 1) —r. We evenly insert mn dummy columns and m
dummy rows in the network such that n+m = (K +1)2. In the
worst case a block may have 2 dummy columns and 2 dummy
rows. As we argued before, we have
w? (n;2) <w®

mesh me sh

< (K +1)?
< (K +1)

(n+m;2)

(K + 1)“”%(1@1)2 (K +1)

1 _ - 5 5 1
— K5 —K4 rK3 rK2 °K -
5 —1-2 +oK”+5 —1—2 +2

1 -
=K+ O(K*)

1. .- -
:§KO+O(KO)
1

= 5Nf”>/4 + o(N?/4).
For the torus, we assume that K2 < n/2 < (K + 1)2. Let
n=2K?+rthenl <r<4K+1.Letm =4K +1—1.
We evenly insert m dummy columns and m dummy rows such
that n + m = 2(K + 1)2. Using arguments similar to those we

used for the mesh case, we have

@3An%<w$wm+mﬂ>
—(K+1)2 (2K +1)3+ (2K+1) (K

59 11
SE A+ TE+

_2K°+ K4—|—11K3—|— 1

=2K° + O(K4)
= 21(5 + o(K?)
No/4 + O(No/4)

+1)°
3
8

23/2
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We therefore have the following theorem.

Theorem 4: Given a 2-D n X n square torus or mesh of N (=
n?) nodes, there is an algorithm for realizing all-to-all routing
with 2-hop routing. The numbers of wavelengths is no more than
(1/23/2)N>/% 4 0(N>/%) for the square torus, and (1/2) N>/ 4+
o(N®/%) for the square mesh.

B. The 2-D Square Mesh or Torus on the k-Hop Model

In this section we generalize the algorithm for a 2-D square
mesh or torus on the 2-hop model to the k-hop model as fol-
lows. The algorithm consists of two phases. In the first phase it
realizes all-to-all routing in the super square torus or the super
square mesh on a single hop model. In the second phase it real-
izes all-to-all routing in each square sub-mesh on a (k — 1)-hop
model, recursively. We then have the following theorem.

Theorem 5: Given a 2-D n X n square torus or mesh of NV
nodes with N = n?, there is an algorithm for realizing all-to-all
routing on a k-hop model. The number of wavelengths for the
square mesh is no more than (1/4)kN+1/2k 4 o( N1+1/2k) ‘and
the number of wavelengths for the square torus is no more than
(1/22FVR)ENIHL/2k 4 o( N1+L/2K) Moreover, if n = p* for
mesh and n = 2p” for torus, then the bounds can be improved
to (1/4)kN1*1/2k and (1/22+1/k)E N1 H1/2k respectively.

Proof: The theorem has been proved for & = 2 in Sec-
tion V.A. We now prove this theorem by induction on k.

We first consider a n X n square mesh. We assume that n =
p*. We divide n nodes in a row or column into p groups with
each containing p*~! nodes exactly. Thus, there is a p x p super
square mesh in which there are p*~! x p*~! networks, and there
are p2 p*~1 x p*~! square sub-meshes. The number of wave-
lengths needed in the first phase is (pF—1 . pF=1) . (1/4)p3,
and the number of wavelengths needed in the second phase is
p? - (1/4)(k — 1) - p>(*=D+1 by induction. Therefore, the total
number of wavelengths will be

1

1
wr(jesh(n k) < 1P p2ktl 4 Z(k _ 1)p2k+1

1

=k 2k+1
4 p
1

=—kn 2+1/k
4
1
— _EN1t1/2k
4

Now we consider the case where n # p”. For this case we have
an integer p such that p* < n < (p + 1)*. By adding dummy
nodes at each recursion, we get a new line (row or column) that
has n; = (p + 1)* nodes. Because the work done by a dummy
node is less than the work required for each real node, we have
w? (k) < w?, (n3k) < (1/4)kn2T* . Since k is a

fixed constant, we have

n%-{-l/k < (p+ 1)2k+1
:p2k+1 + O(ka)

:p2k+1 + 0(p2k+1)'
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Therefore,
(2) 1 2 2k+1 2k+1
wmesh(n k) S <Z> kp + 0(p )
<

<l> EN1t1/2k + 0(N1+1/2k).
4

We then consider a n X n square torus. We first assume
that n = 2p*. We divide n nodes in a row or column into 2p
groups with each containing p*~! nodes exactly. Thus, there is
a 2p X 2p super square torus in Wthh there are pF—1 x ph-1
networks, and there are 4p? p*~1 x p*~! square sub-meshes.
The number of wavelengths needed in the first phase is
(pF=1 . pF=1) . (1/8)(2p)3, and the number of wavelengths
needed in the second phase is (2p)? - (1/4)(k — 1) - p>(:-D+1
by the above result for a 2-D square mesh. Therefore, the total

number of wavelengths will be

wie) o (3 k) <P 4 (k- 1)pt
_ k‘p2k+1
1 24+1/k
= gagiEhn
L 1412k

We now assume that n # 2p*. For this case we have an in-
teger p such that 2p* < n < 2(p + 1)*. By adding dummy
nodes at each recursion, we get a new ring (row or column) that
has ny = 2(p + 1)* nodes. Since the work done by a dummy
node is less than the work required for each real node, we have
wighy (1K) < wio), (ni:k) < (1227 )it E Kis

fixed constant, so we have

<@+ 1P

:22+1/k(p+ 1)2k+1
:22+1/kp2k+1 + O(ka)
:22+1/kp2k+1 +0(p2k+1)'

Therefore,

@) s(nsk) <

Wiorus

k22+1/k 2k+1 +o(p 2k+1>

- 22+1/k
_kp2k+1 + 0(p2k+1)

an—l—l/k 4

241/k
< 22+1/k o(n )

kNl—‘,—l/?k

22+1/k o(N1FI/ZE).

The theorem thus follows. [ |

C. The d-Dimensional Mesh and Torus on the k-Hop Model

We now generalize the approach for 2-D square torus or mesh
to the d-dimensional torus or mesh of 7 nodes in each dimension
with d > 3. Following the similar discussion for a 2-D square
mesh or torus on the k-hop model, we partition the d-dimen-
sional torus or mesh into a number of blocks (d-dimensional
sub-meshes), and each of the blocks as a super node. The algo-
rithm proceeds in two phases. In the first phase it implements
all-to-all routing in the super d-dimensional torus or mesh on a
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single hop model, and in the second phase it realizes all-to-all
routing in each of the blocks (d-dimensional sub-meshes) on
the (k — 1)-hop model recursively. We thus have the following
theorem.

Theorem 6: Given a d-dimensional torus or mesh of N =
n nodes with n nodes in each dimension, there is an algo-
rithm for realizing all-to-all routing in it with k-hop routing.
The number of wavelengths needed for the torus is no more than
(1/22FV/* N1 H/Rd o o( N1H1/kd) “and the number of wave-
lengths needed for the mesh is no more than (1/4)kN1*+1/kd 4
0( N1+ / kd).

Proof: The proof is similar to Theorem 5. In the following
we only prove the results for a d-dimensional mesh. The results
for a d-dimensional torus can be shown similarly.

The special case where d = 2 has been proved in Theorem
5. We now prove this theorem for d > 3 by induction on k.
We first assume that n = p* and p is even. It is obvious that
the theorem is true when &£ = 1 for the single hop model. Sup-
pose the theorem is true for the (k — 1)-hop model. We prove
that it is true for the k-hop model. We divide n nodes in each
dimension into p groups with each containing p*~! nodes ex-
actly. Thus, there is a super d-dimensional mesh with p nodes
in each dimension, and in this super d-dimensional mesh, there
are p? d-dimensional sub-meshes with each containing p(*—1¢
nodes. The number of wavelengths needed in the first phase is
pF=14 . (1/4)p?+!, and the number of wavelengths needed in
the second phase is p? - (1/4)(k — 1) - p*(*=1)+1 by induction.
Therefore, the total number of wavelengths is

[ 1 1
“’gzzsh(n; k) < Zpkd""l + Z(k _ l)pdk+1

1

= ikl
4 p
1

— and—‘,—l/k
1

— D NHFL/kd
4

Now we consider the case where n # p* or p is odd. For this
case we have an integer p such that either p* < n < (p +
1)* or p* = n < (p + 1)*. By adding dummy nodes at each
recursion, we get a new line (row or column) of n; = (p + 1)*
nodes. Because the work done by a dummy node is less than
the work required for each real node, we have w'® (n; k) <

mesh

wfjish(nl; k) < (1/4)k'ncll+1/k. Since k is a fixed constant, we

have
ny ™ < (p 1)k
=p(p+ 1) + (p+ 1)*
:pkd-l—l + O(pkd)
:pkd+1 + O(pkd+1)'

Therefore,

w'® (n; k)

mesh

IN

1
<Z> kpkd+1 + 0(pkd+l)

<l> kNl—I—l/kd +O(N1+1/kd).
4

Using the similar argument, it can be shown that wt(;izus (n; k) <

(1/22+ /R N1/ kd 4 o( N1+1/kd) The theorem follows. W

Fig. 3. A complete binary tree is partitioned into ¢ complete binary subtrees
with equal size.

Note that our generic method provides a neat and clear recur-
sive structure for the routing paths without introducing tedious
dimension-specific routing details and designs as did in [17].
The hard-obtained bounds in [17] become special cases (d = 2,
3) in our solution.

VI. ALL-TO-ALL ROUTING IN A COMPLETE BINARY TREE

A complete binary tree is a full binary tree in which all leaf
nodes are at the bottom level, and there are 2! leaf nodes if
the height of the tree is h (h > 1). Given a complete binary
tree 7" of N nodes with height h, then h = log(N + 1). We
partition 7" into ¢ subtrees such that each of the subtrees is still
a complete binary tree with roughly equal size. The ¢ subtrees
are constructed as follows. The first subtree T} is a tree rooted at
the original root with height h, and it contains (2"1 — 1) nodes.
For each leaf node in 77, the two children of the leaf node will
be the roots of the other two complete binary subtrees. There are
21 such subtrees with each having height (h — h1). To make
the size of each of these (¢ — 1) subtrees be roughly identical to
that of 17, we require

oht 1 =oh=hi _q, (6)

Thus, h; = log(N + 1)/2 and each subtree contains 2" —
1 = v/N 4+ 1 — 1 nodes. Fig. 3 illustrates the partition of the
q subtrees.

Assume that each subtree is a supernode. There is a super
link between two supernodes if there is any link in the original
complete binary tree between the nodes in the two supernodes.
A graph is constructed, which consists of supernodes and super
links. Obviously, the graph is a super star, and its center is the
supernode corresponding to 77. It is not difficult to show that
Wstar(N;1) = N — 1 for a star of N nodes and wyye.(N; 1) =
(N% — 1)/4 for a complete binary tree of N nodes under the
single hop model.

The algorithm for realizing all-to-all routing in a complete bi-
nary tree on the k-hop model is as follows. It realizes all-to-all
routing in the super star on the single hop model, followed by
realizing all-to-all routing in each subtree under the (k — 1)-hop
model recursively. The number of wavelengths for realizing
all-to-all routing in the first phase is (2”1 — 1) - (¢ — 1) be-
cause the super star contains ¢ supernodes, and ¢ = 2" +1 =
VN 4+ 1 + 1. In the second phase another set of wavelengths
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will be used for realizing all-to-all routing in each subtree of
(2" —1) (= VN + 1 — 1) nodes under the (k — 1)-hop model.
We thus have the following theorem.

Theorem 7: There is an algorithm for realizing all-to-all
routing in a complete binary tree of N nodes on the k-hop
model. The number of wavelengths used is no more than
o(k—1/2871) pr141/28 7t + 0(N1+1/2"*1>.

Proof: We show the theorem by induction. When k = 1, it
is known that wy,...(N;1) = (N? — 1) /4.

If the height h of T is even, following the partitioning ap-
proach above, the tree 1" is partitioned into ¢; subtrees, and the
number of nodes in each subtree is N1 = VN + 1 — 1, where
q1 = VN + 1+1. Obviously N = g1 N;. Otherwise (h is odd),
we add dummy nodes in the bottom of 7" to form a new com-
plete binary tree 7" with height A + 1. The number of nodes in
T'is N’ = 2""*1 —1 = 2(2" —1)+1 = 2N + 1. Then, the tree
T’ is partitioned into g; subtrees, and the number of nodes in
each subtree is Ny = /2N + 2—1, where ¢; = V2N + 2+1.
Obviously 2N + 1 = ¢; N;.

At the first phase we have a super star of ¢; supernodes, and
each supernode is a complete binary tree of N1 nodes. Thus, the
number of wavelengths needed for the first phase is Ny(q; —
1) = N — Nj. After the first phase we apply the (k — 1)-hop
routing on each subtree recursively. Therefore, the total number
of wavelengths needed is

wtree(N;k) = (N - Nl) +q- wtree(Nl;k - 1)

We assume that wy,... (N'; k') < g(k'=1/28'=1) ppr1+1/2" 71—1—

o(N’H'l/Zk 71) holds when N < N and k&’ < k.

It is obvious that the assumption holds when k' = 1
or N’ = 1. In the following we show w.ce(N;k) <
(k=1/2" ") N1H1/25 o (N1+1/25 71 holds for any general
integers N and k > 1.

When £ is even, we have

wtree(N; k)
=q1 - Weree(N13k — 1) + (N — Ny)
<(VN+1+1)- 2((’«—1)—1/2’“‘2)( N+l— 1)1+1/2"—2
+o(VN+1 - 1)) L (N VN +1+1)
= b1/ NI/ (N2,
When h is odd, we have

wtree(N;k)
S q1 - wtrse(Nl; k - 1) + (N - Nl)
< (V2N+2+1) - 2k-D=1/2"5) ((/oN g — 1)1+1/2"

+ (N - \/m-l- 1) + 0((\/m _ 1)1-‘1-1/2"’—2)
— 2(k—1/2k_1)N1+1/2k_1 + O(N1+1/2k—1)_

Therefore, wyee(Nik) < 20=1/2°7H N1+1/257"
o( N1+1/2"71), m

VII. CONCLUSIONS

In this paper we have dealt with the all-to-all routing problem
in several standard directed symmetric WDM optical networks
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including lines, rings, d-dimensional tori or meshes with n
nodes in each dimension (d > 2), and complete binary trees,
on a k-hop model for £ > 2. For each of these networks we
have proposed an algorithm for realizing all-to-all routing such
that the routing is fault tolerant and both node load and link
load are well balanced. The technique adopted is to partition
the network into a number of subnetworks with roughly equal
size. All-to-all routing in a network on a k-hop model is im-
plemented through first realizing all-to-all routing in the same
type of super network as the original network on a single hop
model, and then realizing all-to-all routing in each subnetwork,
which is either the same or of a similar type to the original,
on a (k — 1)-hop model, recursively. As a future work, we
conjecture that all bounds obtained here are tight.
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