
Monitoring Quality Maximization through Fair
Rate Allocation in Harvesting Sensor Networks

Weifa Liang, Senior Member, IEEE, Xiaojiang Ren, Student Member, IEEE,

Xiaohua Jia, Fellow, IEEE, and Xu Xu

Abstract—In this paper, we consider an energy harvesting sensor network where sensors are powered by reusable energy such as

solar energy, wind energy, and so on, from their surroundings. We first formulate a novel monitoring quality maximization problem that

aims to maximize the quality, rather than the quantity, of collected data, by incorporating spatial data correlation among sensors. An

optimization framework consisting of dynamic rate weight assignment, fair data rate allocation, and flow routing for the problem is

proposed. To fairly allocate sensors with optimal data rates and efficiently route sensing data to the sink, we then introduce a weighted,

fair data rate allocation and flow routing problem, subject to energy budgets of sensors. Unlike the most existing work that formulated

the similar problem as a linear programming (LP) and solved the LP, we develop fast approximation algorithms with provable

approximation ratios through exploiting the combinatorial property of the problem. A distributed implementation of the proposed

algorithm is also developed. The key ingredients in the design of algorithms include a dynamic rate weight assignment and a reduction

technique to reduce the problem to a special maximum weighted concurrent flow problem, where all source nodes share the common

destination. We finally conduct extensive experiments by simulation to evaluate the performance of the proposed algorithm. The

experimental results demonstrate that the proposed algorithm is very promising, and the solution to the weighted, fair data rate

allocation and flow routing problem is fractional of the optimum.

Index Terms—Energy harvesting sensor networks, monitoring quality maximization, fair rate allocation optimization, time-varying

energy replenishment, maximum weighted concurrent flow problem, approximation algorithms, combinatorial optimization problem

Ç

1 INTRODUCTION

IN conventional wireless sensor networks, sensors are
typically powered by batteries and, thus, have limited life

time [2]. A promising approach to achieve “perpetual
operations” for sensor networks is to harvest various energy
from its surrounding environments such as solar energy,
wind energy, electromagnetic waves energy, thermal
energy, salinity gradients energy, vibration energy, and so
on [15], [9], [25], [17]. The characteristics of these energy
harvesters is essentially different from that of conventional
battery-powered counterparts. This opens up a new
dimension to the design of algorithms and routing protocols
for energy harvesting sensor networks. The random nature
of harvested energy requires that the data rate, transmission
power control, and (data) flow routing scheduling are
optimized accordingly [18].

The time-varying profile of replenishment rates of
renewable energy sources poses challenges on assigning
optimal data rates to source nodes to maximize the quality
of collected data. On the one hand, if the data rate at a
node is set too high, the node will run out of its energy

quickly. Consequently, this will compromise the sensing
coverage of the node as well as network connectivity. On
the other hand, if the data rate at a node is set too low
while its energy replenishment rate is high, the volume of
data generated at the planned data rate is small, thereby
affecting the quality of monitoring. This also loses the
opportunity of utilizing the extra energy charged during
this period and the extra charged energy will be wasted.
Thus, to maximize the data quality of a harvesting sensor
network, it is vital to assign each source node a fair,
optimal data rate, and make sure all generated data will be
routed to the sink efficiently.

1.1 Related Work

It is desirable to maximize the sum of rates from all the
nodes in the network, subject to energy constraint on each

sensor node. Typically, the problem is formulated as a
linear programming problem with an objective to maximize

the sum of data rates or the network lifetime with the flow
balance and energy constraints at each node. However, as
mentioned by Hou et al. [13], although such a solution can

maximize the sum of the rates of all nodes, it suffers a
severe bias in rate allocation among the nodes. In particular,

nodes consuming the least amounts of energy on the data
routing are allocated with much more data rates than the
other nodes in the network. As a result, the data collection

behavior of the entire network only favors the nodes near to
the sink, while other remote nodes will be unfavorably

penalized with much smaller, even zero data rates.
Consequently, the quality of monitoring of the network
will be compromised because not sensing data from all

sensors has been collected. Thus, it is needed to provide fair

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013 1827

. W. Liang, X. Ren, and X. Xu are with the Research School of Computer
Science, The Australian National University, Building 108 (CS&IT
Building), North Road, Canberra, ACT 0200, Australia.
E-mail: wliang@cs.anu.edu.au, {richard.rxj, grace.xu}@anu.edu.au.

. X. Jia is with Research Lab for Mobile Ad-hoc and Sensor Networks,
Department of Computer Science, City University of Hong Kong, Tat Chee
Avenue, Kowloon, Hong Kong. E-mail: csjia@cityu.edu.hk.

Manuscript received 2 July 2012; revised 8 Oct. 2012; accepted 25 Nov. 2012;
published online 16 May 2013.
Recommended for acceptance by M. Thai.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2012-07-0613.
Digital Object Identifier no. 10.1109/TPDS.2013.136.

1045-9219/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society

data rate allocation to all sensors to ensure the quality of
monitoring of the network.

In conventional wireless sensor networks, to provide a
fair, optimal data rate allocation for each node under the
specified network lifetime constraint, the fair data rate
allocation and flow routing problem was extensively
studied [30], [6], [13], [28]. For example, Hou et al. [13]
coined the problem as the lexicographic max-min rate
allocation problem, and proposed a linear programming
solution by exploiting the parametric analysis technique
and the duality of the problem. Although their algorithm
does deliver a polynomial-time heuristic solution, the
computational complexity is Oðn8mÞ, which is quite high,
where n and m are the number of nodes and links in the
network. Chen et al. [6] studied the same problem and
provided a linear programming solution, too. Wang and
Kar [30] addressed the rate control problem with the
objective of achieving proportional fairness among the end-
to-end sessions. Su et al. [28] formulated the rate allocation
problem as a network utility maximization problem and
expressed the utility function as a nonconvex function.
They transformed the problem into an approximate,
convex optimization problem, and decomposed the pro-
blem into a rate control and scheduling subproblems, using
duality theory.

In energy harvesting sensor networks, Fan et al. [10], [18],
[19] studied the lexicographic max-min rate allocation
problem and provided a distributed algorithm for the
problem in special network topologies including tree or
directed acyclic graph networks. Liu et al. [18] considered
the same problem by providing a linear programming
solution, too. Consider the time-varying nature of energy
replenishment in harvesting sensor networks, they pre-
sented a heuristic to adaptively adjust data rates and showed
that this dynamic adjustment strategy is optimal in long-
term [18]. Zhang et al. [32] recently considered the data rate
allocation problem in tree networks for optimizing a concave
utility function. They devised an optimal solution and a
distributed implementation of the proposed algorithm.

Most existing studies on fair data rate allocation aim to
maximize the rate sum without incorporating spatial and
temporal data correlations among sensors. Such a rate
allocation may suffer the following deficiencies. For these
higher rate neighboring sensors whose sensing data
are highly correlated, lots of identical data from them will
be routed to the sink, while for those lower rate sensors
whose readings are not correlated, less data from them will
be routed to the sink. Consequently, the data received at the
sink from different subregions will be unbalanced, and the
quality of monitoring of the network will be compromised.

As sensors usually are densely and randomly deployed,
their sensing data are likely spatially temporally correlated.
Particularly for those sensors that are near each other, their
readings have high similarities. In this paper, we focus on
the monitoring quality (or data quality) by incorporating
spatial data correlations when performing fair rate alloca-
tion and flow routing. We aim to achieve proportional
fairness of requested rates. Unlike previous work by
formulating the data rate allocation and flow routing
problem as a linear program problem (LP) and solving

the LP, we focus on developing fast approximate solutions
by exploiting the combinatorial property of the problem, as
an exact solution delivered by the LP usually is computa-
tionally expensive and the worst of all may not be
applicable to real sensor networks due to the time varying
nature of harvesting energy source profiles. Since the
uncertainty of energy replenishment, there is no way to
predict the exact amount of energy that a sensor node will
be recharged for a given time period. Thus, in most
application scenarios, to maintain the “neutral operation”
of the network, it is assumed that the energy budget of each
sensor in the given time period is roughly equal to the
amount of energy generated in that period, based on the
past information of harvested energy at the node [16].
Therefore, there is no need to find an exact solution to the
optimal data rate allocation to each node based on this
estimated energy budget, instead, an approximate solution
suffices. Furthermore, finding an approximate solution
takes much less time than finding an optimal solution. In
this paper, we will focus on exploiting the combinatorial
property of the problem by developing a fast, approximate
solution to the problem. Motivated by a scenario illustrated
in Fig. 1, we assume that the data rates of nodes a and b are
8 packets per second, while those of nodes c and d are
2 packets per second, assuming that each packet contains a
single reading only. We further assume that nodes a and b

are near each other and their sensing readings are highly
correlated, while nodes c and d are relatively far away from
each other and their readings are not correlated. To
incorporate spatial data correlation among the sensors into
fair data rate allocation and flow routing, we introduce the
rate weight concept. Denote by wv the rate weight of a
source node v. In traditional data rate allocation, all source
nodes have equal weights, i.e., wa ¼ wb ¼ wc ¼ wd ¼ 1.
When incorporating the spatial data correlation into the
rate allocation with an objective to maximize the monitoring
quality, we may set w0a ¼ 1, w0b ¼ 0:5, w0c ¼ 1 and w0d ¼ 1. The
rate weights of nodes c and d with w0c ¼ w0d ¼ 1 imply that

1828 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

Fig. 1. A motivation example.

their sensing readings are independent of each other. Now,
if we reduce the rate of node b to 4 packets/s, we are still
able to monitor the readings of node b with great
confidence, because its readings can be approximately
represented by the readings of node a. Once the network
resource (e.g., the energy used for routing) originally
occupied by node b is now released back to the network,
nodes c and d can take this opportunity to utilize the energy
by increasing their own data rates to 4 packets/s. Thus, the
network can better monitor the readings of nodes c and d,
thereby improving the monitoring quality in their vicinities
and the entire network.

1.2 Contributions

The main contributions of this paper are as follows: A novel
monitoring quality maximization problem in harvesting
sensor networks is formulated that focused on the data
quality, not the data quantity, by incorporating spatial
sensing data correlation among sensors into consideration.
A dynamic rate weight concept is introduced. To fairly
allocate sensors optimal data rates and efficiently route the
sensing data to the sink, a weighted, fair data rate
allocation, and flow routing problem is introduced. Unlike
most existing work that formulated the similar problem
(lexicographic rate maximization problem) as a linear
programming (LP) and solved the LP, we exploit the
combinatorial property of the problem by developing fast
approximation algorithms with provable approximation
ratios. Distributed implementations of the proposed algo-
rithms are also devised. To evaluate the performance of the
proposed algorithms, extensive experiments by simulation
are conducted. The experimental results demonstrate that
the proposed algorithms are promising, and their solutions
are fractional of the optimum.

To the best of our knowledge, this is the first time that
the spatial data correlation among sensors has been
incorporated into the data rate allocation in energy harvest-
ing sensor networks, a novel optimization framework
aiming to optimize the quality, not the quantity (the
volume) of collected data is formulated. A dynamic rate
weight concept is introduced and a very first fast approx-
imation algorithm for the fair data rate allocation and flow
routing problem is devised, which may have interest by
itself and be applicable to other optimization problems
beyond energy harvesting sensor networks.

1.3 Paper Organization

The remainder of this paper is organized as follows: We
first introduce the system model, notions, and problem
definitions in Section 2. We then briefly describe Garg and
Könemann’s flow framework for the maximum concurrent
flow problem in Section 3. We third devise a novel
algorithm for the monitoring quality maximization problem
in which a key subroutine, an approximation algorithm for
the weighted, fair rate allocation and flow routing problem,
is devised based on Garg and Könemann’s flow framework
in Section 4. Furthermore, we devise a faster approximation
algorithm for the weighted, fair rate allocation and flow
routing problem in Section 5. A distributed implementation
of the new algorithm is developed in Section 6. We finally
conduct extensive experiments by simulation to evaluate

the performance of the proposed algorithm in Section 7, and
we conclude in Section 8.

2 PRELIMINARIES

In this section, we first introduce the system model. We then
define the monitoring quality of the network, data correla-
tion, data quality, and rate weight concept, the monitoring
quality maximization problem, and the weighted, fair data
rate allocation and flow routing problem precisely.

2.1 System Model

Consider a wireless sensor network G ¼ ðV ;EÞ consisting of
n ¼ jV j stationary sensor nodes and a sink (a base station),
deployed for periodic environmental monitoring, where each
sensor is powered by reusable energy like solar energy and
has identical transmission range. There is an edge in E
between two sensors or a sensor and the base station if they
are within the transmission range of each other, where
m ¼ jEj. Time is slotted into equal time slots. At each time
slot, a single sampling reading or a packet can be generated or
transmitted. An interval consists of a fixed number of
consecutive time slots. We assume that data rate allocation
and flow routing are scheduled interval by interval, in
response to dynamic changes of spatial data correlation and
energy replenishment rates of sensor nodes. The scheduling
proceeds in the beginning of each interval, based on the
energy budget of each sensor in the interval. Denote by � the
number of time slots within an interval, where the value of �
usually is determined by the energy recharging and
consuming rates of sensors.

In this paper, we follow a wide-adopted assumption
that the amount of harvested energy at a future time
period is uncontrollable but predictable based on the
source type and harvesting history [16], [18]. We assume
that in the beginning of each interval t, the energy budget
BvðtÞ of sensor v for that interval is instantaneously
available, and the energy replenishment rate of v is much
slower than its energy consumption rate [18]. To estimate
the energy budget BvðtÞ of node v in interval t, there are
many efficient approaches to achieve that [16], [22], [24].
For example, one such approach is that the energy budget
of sensor v in interval t is estimated based on the weighted
sum of its available energy in previous l intervals, i.e.,
BvðtÞ ¼ a1 � Bvðt� 1Þ þ a2 � Bvðt� 2Þ þ � � � þ al �Bvðt� lÞ if
BvðtÞ � CBv, BvðtÞ ¼ CBv otherwise, where ai is a constant
with 0 < ai < 1 and

Pl
i¼1 ai ¼ 1, and CBv is the battery

capacity of node v. We also assume that ETX and ERX are
the amounts of energy consumed by transmitting and
receiving a single bit of data, respectively. Following the
similar assumption as in [10], we assume that no
constraints are imposed on the link bandwidth because
we consider environmental monitoring. In such application
scenarios, sensors usually sense samples every 1-5 minutes
and the communication bandwidth is not a major issue [3].
Furthermore, to support long-period, continuous monitor-
ing service, we assume that sensors should not consume
more energy than they can collect to achieve perpetual
operations [16]. The data rate of a sensor in a given period,
thus, is determined by the amount of energy it can collect
in that period.

LIANG ET AL.: MONITORING QUALITY MAXIMIZATION THROUGH FAIR RATE ALLOCATION IN HARVESTING SENSOR NETWORKS 1829

2.2 Data Correlation and Rate Weight

To maximize the quality of monitoring, we assign each
source node a rate weight between 0 and 1 that represents a
certain degree of spatial correlation of readings between the
node and its neighbors. This rate weight will be used in the
next interval when performing the rate allocation to this
node and its neighbors. In the following, we detail how to
collect spatial data correlation information in the current
interval. That is, at each time slot whenever there is data
transmission from a source node v, all its neighbors can
receive the packet no matter whether the receiver is an
intended receiver. To represent this spatial data correlations
among sensors, an undirected graph, the data correlation
graph GðtÞ ¼ ðV ;E; ctÞ in interval t is identical to the
communication network graph GðV ;EÞ, its edge weight
function ctð�Þ is defined as follows:

Given two neighboring nodes u and v with data rates rv
and ru in interval t, we assume rv � ru. For the case where
rv � ru, the discussion is similar, omitted. Let rvð1Þ;
rvð2Þ; . . . , rvð�Þ and ruð1Þ; ruð2Þ; . . . ; ruð�Þ be the sequences
of sensing reading values of v and u within interval t if there
were a reading per time slot, the distance dtðu; vÞ between u

and v is defined as follows: Assume that rvði1Þ; rvði2Þ; . . . ;
rvðirvÞ are the sampling readings of node v within interval t,
then for each missing sampling reading rvðiÞ with i 2
f1; . . . ; �g n fi1; i2; . . . ; irvg but ij�1 � i < ij, the recent read-
ing of v will be used as the estimate of the missing reading
at time slot i, i.e., r̂vðiÞ ¼ rvðij�1Þ. The distance between u

and v in interval t then is

dtðu; vÞ ¼
X�
j¼1

�

���� rvðjÞ � ruðjÞ
maxfrvðjÞ; ruðjÞg

����
� �

; ð1Þ

where & is a given similarity threshold with 0 � & < 1,
�ðja� bjÞ ¼ 1 if ja� bj � &; otherwise �ðja� bjÞ ¼ 0.

In the rest of the paper, we assume that the data
correlation graph G ¼ ðV ;E; ctÞ in interval t has been
constructed, where ctðu; vÞ ¼ dtðu;vÞ

� � 1 for each edge
ðu; vÞ 2 E. We will calculate data correlation based on
historical data correlation information, using similar tech-
niques for energy-harvesting predictions. The calculated
data correlation information will be used for fair rate
allocation at the current time slot. We here use a simple data
correlation model as an illustrative example. Let rv be the
rate of node v 2 V that is evenly distributed among the �

time slots in each time interval t. The rest � � rv time slots
without data samplings are referred to as “default value
time slots.” The rv sampling readings of node v can be
written as a vector VvðtÞ in which each component Vvðt; jÞ is
either “—” or the actual sampling value at each slot j,
1 � j � � . We now “smooth” vector VvðtÞ to another vector
V 0vðtÞ as follows: For each default value, we use the previous
reading data of node v to replace the default value.

2.3 Data Quality

We aim to maximize the quality of collected data (monitor-
ing quality), by incorporating the spatiotemporal data
correlation into fair rate allocation and routing, where the
quality of collected data at time slot t is defined as follows:
Given a node v 2 V , its contribution to the network-wide

data quality can be represented by a nonnegative, concave
utility function utðvÞ:

utðvÞ ¼
X

u2NcðvÞ
gðrvðtÞ; ruðtÞÞ; ð2Þ

where the value of utðvÞ will be jointly determined by a
function g whose parameters are the rate rv of v, the rates ru
of its correlated master neighbors u 2 NðvÞ, and the
common sensing data time slots between ru and rv in the
interval. Here, NcðvÞ � NðvÞ is the set of correlated
neighbors of v. The utility function utðvÞ is a monotonic
increasing function whose marginal utility decreases with
the increase of its rate, 0 � utðvÞ � 1, which means that
when the assigned data rate to v approaches its maximum
requested data rate Rv, its gain becomes smaller.

In this paper, we adopt the following utility function.

Each node has at most one neighbor to be chosen as its

correlated partner at time slot t. For this special assignment,

assume that node v is the master node wv ¼ 1 while node u is

the slave node of v with wu < 1, then the (sampling data)

vector of u at time slot t can be further smoothed by the data

from the vector of v due to their highly spatial data

correlation. Notice that the contribution of slave u to the

data quality of the network is determined not only by its

own readings but also by its master readings, the readings

of v at time slot t. As we assumed that the sampling of a

node is evenly performed within the � slots and let ru;v
(ru;v � minfru; rvg) be the number of time slots at which

both u and v have sampling readings, then the utility rate of

the slave node u is �u ¼ minf1; ruþrv�ru;vRu
g while the utility

rate of its master node v is �v ¼ rv=Rv, and for a stand-alone

node v (not pairing with any other node), its utility rate is

�v ¼ rv=Rv, where the utility function can be any concave

function, for example, it can be defined as follows:

utðvÞ ¼ fð�vÞ ¼ 1� ð1� �vÞa; ð3Þ

where function fðxÞ is a monotonic increasing function with
0 � x � 1 and a > 1 is a constant. Generally, for a given
node v, the larger the utility value utðvÞ is, the bigger the
contribution made by the node to the higher the data
quality of the entire network will be. Thus, maximizing the
quality of collected data is equivalent to maximizing the
sum of utilities of all nodes, i.e.,

P
v2V utðvÞ.

2.4 Problem Definitions

Given a harvesting sensor network GðV ;EÞ with a sink and
a data correlation confidence threshold � with 0 < � � 1, the
monitoring quality maximization problem in GðV ;EÞ in
interval tþ 1 is to assign each sensor node v 2 V a data
rate rvðtþ 1Þ and all generated data by the node will be
routed to the sink such that the monitoring quality of the
network in interval tþ 1,

P
v2V utðvÞ, is maximized, subject

to the energy budget constraint Bvðtþ 1Þ on each sensor
v 2 V and the maximum data rate of v being bounded by a
given value Rv.

To solve the above optimization problem is to assign
each source node a rate weight based on the data correlation
graph in the previous interval, and to solve the weighted, fair
data rate allocation and flow routing problem, which is defined

1830 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

as follows: Given a harvesting sensor network GðV ;EÞ,
assume that the maximum data rate of each sensor v 2 V is

bounded by Rv in interval tþ 1, the rate weight wv of v has

been calculated from the data collection graph GðV ;E; ctÞ
with 0 � wv � 1, the problem is to allocate each sensor node

v 2 V a weighted, fair data rate rv � Rv such that the sum of

allocated rates is maximized, subject to the energy budget

Bvðtþ 1Þ of each sensor v 2 V in interval tþ 1, where the

fairness on the weighted data rate allocation is that each

source node will be allocated with the same proportional of

its request rate (the maximum data rate). In other words,

the objective is to maximize the value of � such thatP
v2V �ðwv �RvÞ is maximized.

2.5 Approximation Algorithm

Given an optimization problem, denote by Approx and

OPT the costs of the approximate solution delivered by an

approximation algorithm A, and the optimal solution of the

problem, the approximation ratio of algorithm A is � if
Approx
OPT � � when it is a minimization problem, or Approx

OPT � �
when it is a maximization problem.

3 THE MAXIMUM WEIGHTED CONCURRENT FLOW

PROBLEM

The multicommodity flow problem is defined on a directed

network GðV ;E; cÞwith capacities c : E ! Rþ and k source-

sink terminal pairs ðsi; tiÞ, 1 � i � k, the problem is to find

flows fi from si to ti that satisfy node conservation

constraints and meet some objective function criteria so

that the sum of flows on each edge e 2 E does not exceed its

capacity cðeÞ. Let jfij be the amount of flow sent from si to

ti. The maximum concurrent flow problem is to find a largest �

such that there is a multicommodity flow which routes � � di
units of commodity i from si to ti, assuming that there are di
demands of commodity i for all i with 1 � i � k.

3.1 Garg and Könemann’s Framework

Garg and Könemann’s [12] flow framework for the

maximum concurrent flow problem is as follows.
Let Pi denote the set of paths in GðV ;E; cÞ from si to ti

and let P ¼ [ki¼1Pi. Variable fp represents the flow on path

p 2 P. The linear programming formulation for the max-

imum concurrent flow problem is then

LP : max �

s:t:
X
e2p

fp � cðeÞ 8e 2 E;
X
p2Pi

fp � � � di 81 � i � k;

fp � 0 8p 2 P;
� � 0:

The dual linear programming of the LP is to assign a length

lðeÞ to each edge e 2 E and a nonnegative variable zi to each

commodity i so that the length of the shortest path from si
to ti is at least zi for each commodity i with 1 � i � k, and

the sum of the product of commodity variables and

demands is at least 1. The dual of the above LP is as follows:

DP : min DðlÞ ¼
X
e2E

lðeÞcðeÞ

s:t:
X
e2p

lðeÞ � zi 8p 2 Pi;

Xk
i¼1

di � zi � 1;

lðeÞ � 0 8e 2 E;
zi � 0 81 � i � k:

Garg and Könemann’s approximation algorithm for the DP
proceeds in phases. Initially, lðeÞ ¼ �

cðeÞ , zi ¼ minp2PiflðpÞg
where lðpÞ ¼

P
e2p lðeÞ and � is a constant to be defined later.

In each phase, there are k iterations. In iteration i, it routes di
units of flow for commodity i from si to ti, which can be
further divided into steps. In each step, a shortest path p from
si to ti is found, using the current edge length function lð�Þ.
Assume that cðe0Þ is the bottleneck capacity of path p, then
the minimum cmin between cðe0Þ and the remaining demands
d0i of commodity i is sent along path p. The dual variable l is
updated accordingly, and zi is then set equal to the length of
the new shortest path from si to ti. The algorithm terminates
when the dual objective function value DðlÞ is at least one,
i.e., DðlÞ ¼

P
e2E lðeÞ � cðeÞ � 1. The final flow f delivered

may violate some of the edge capacities. To obtain a feasible
solution, we need to scale f by the maximum congestion
incurred on edges. Since we only augment the flow along the
paths with lengths smaller than one, and the length update
rule ensures that the length of edges is exponential in their
congestion, we conclude that the maximum congestion on
any edge will not be very large. Let 	 be the optimal objective
value of DðlÞ. When � ¼ ð1�
jEj Þ

1=
, Garg and Könemann
showed the following lemmas.

Lemma 1 (see [12]). If 	 � 1, Garg and Könemann’s algorithm
terminates after at most T ¼ 1þ 	

 log1þ

jEj
1þ
 phases.

Lemma 2 (see [12]). After ðT � 1Þ phases, ðT � 1Þ � di units of
commodity i have been routed. Scaling the final flow by
log1þ

1
� yields a feasible primal solution of value � ¼ T�1

log1þ
 1=� ,
where
 is a constant with 0 <
 � 1=3.

Lemma 3 (see [12]). If 	 � 1, then jf j
log1þ

1
�

� ð1� 3
Þ �OPT ,

where OPT is the value of the optimal flow, where
 is a

constant with 0 <
 � 1=3.

In case 	 < 1, they proposed an approach to scale the
value of 	 to at least one by adopting a popular technique in
[26]. We state this in the following theorem.

Theorem 1 (see [12]). There is an approximation algorithm for

the maximum concurrent flow problem in GðV ;EÞ, which

delivers a solution with approximation ratio of ð1� 3
Þ. The

algorithm takes Oð
�2ðk logmþmÞ logm � ðmþ n lognÞÞ
time, where n ¼ jV j, m ¼ jEj, and
 is a constant with

0 <
 � 1=3.

3.2 Maximum Weighted Concurrent Flow Problem

We now generalize the maximum concurrent flow problem
to the maximum weighted concurrent flow problem. The latter is
to find flows for the k pairs such that the weighted ratio of
net demands is maximized, assuming that each commodity
i is associated with a positive weight wi. In other words, let
�i be the ratio of the delivered demands Di of commodity i,

LIANG ET AL.: MONITORING QUALITY MAXIMIZATION THROUGH FAIR RATE ALLOCATION IN HARVESTING SENSOR NETWORKS 1831

to demands di, then �i ¼ Di

di
, the weighted ratio of commodity

i is wi � �i. The optimization objective of the maximum
weighted concurrent flow problem, thus, is to maximize
� ¼ minfwi � �i j 1 � i � kg.

Notice that the maximum weighted concurrent flow
problem where each commodity has demands di with
weight wi can be reduced to another maximum concurrent
flow problem where each commodity has demands
d0i ¼ wi � di. To obtain a linear program formulation for the
maximum weighted concurrent flow problem, we can
simply change the constraint of the LP:

P
p2Pi fp � � � di toP

p2Pi fp � � � ðwidiÞ. The dual of this modified LP is the
DP(2), where the constraint

Pk
i¼1 di � zi now becomesPk

i¼1ðwidiÞ � zi.

4 MAXIMIZING MONITORING QUALITY

In this section, we provide an optimization framework for
the monitoring quality maximization problem, which
consists of assigning source nodes rate weights, and
devising an approximation algorithm for the weighted, fair
data rate allocation and flow routing problem.

4.1 Rate Weight Assignment

We assign each source node a weight between 0 and 1. We
assume that each source node can either “stand alone,”
which means that its sampling readings are independent of
its neighbors, or become a partner of one of its neighbors.
For the latter, we further assume that the source node has
“at most” one partner only for the convenience of
discussion. It is easy to extend this single partner to
multiple partners, omitted. For each pair of partner nodes,
due to the high correlation between their sampling read-
ings, one of the nodes will become the master and its rate
weight is set to 1; another will become the slave of the master
and its rate weight is set to a value strictly less than 1. For
each stand-alone source node, its rate weight is set to 1.

Given the data correlation graph GðV ;E; ctÞ in interval t,
we proceed the computation of partner pairs and rate
weight assignment in interval tþ 1 as follows:

We first construct a subgraph G0 ¼ ðV ;E0Þ of GðV ;E; ctÞ,
where E0 � E. For each node v 2 V , let ðv; vuÞ be the edge
incident to v with the maximum cost ctðv; vuÞ among its
incident edges of v. If ctðv; vuÞ � �, then ðv; uvÞ 2 E0, where �
is a given confidence threshold.

We then find a maximum matching MG0 in G0, where the
two endpoints of each matched edge become a pair of
partners. We finally assign each source node a rate weight.
For each source node v that is not an endpoint of any edge
in MG0 , assign it a rate weight wv ¼ 1. For each edge
ðu; vÞ 2MG0 , if the energy budget Bvðtþ 1Þ of node v is no
less than Buðtþ 1Þ of node u, v will become the master of u
while u will become the slave of v. The rate weight assigned
to v is wv ¼ 1. For slave nodes, there are two different rate
weight assignment strategies: one is the uniform weight
assignment that assigns all slaves an identical weight
0 � w < 1. Another is the variable weight assignment that
assigns each slave node u a weight of wu ¼ 1� ctðu; vÞ,
where v is the master of u. It can be seen that the larger the
value of ctðu; vÞ, the higher the reading similarity between u
and v, and the smaller the weight wu will be.

4.2 Algorithm for Monitoring Quality Maximization
Problem

Having assigned the rate weight to each source node, we
now allocate each source node a weighted, fair data rate
and route the sensing data by the node to the sink such that
the sum of all data rates in interval tþ 1 is maximized. We
reduce the weighted, fair data rate allocation and flow
routing problem in GðV ;E;Bðtþ 1ÞÞ to the maximum
weighted concurrent flow problem in graph G1ðV1; E1; CtÞ
whose definition will be given later, where for each sensor
node in V there is a corresponding source node in G1. Each
source node v0 2 V1 has a commodity of demands
dv ¼ Rv=� , where Rv is the maximum data rate of node v

in interval tþ 1. Algorithm for the monitoring quality
maximization problem, Monitor_Quality_Max, is de-
scribed in Algorithm 1.

Algorithm 1. Monitor_ Quality_Max in interval tþ 1.

Input: The data correlation graph G ¼ ðV ;E; ctÞ in interval

t, the confidence threshold �, the energy budget Bvðtþ 1Þ
and the maximum data rate Rv for each v 2 V in interval

tþ 1, and an accuracy parameter
 > 0.

Output: The rate allocation rv of each node v 2 V in interval

tþ 1 such that
P

v2V rv is maximized.
1: Construct a subgraph G0 from the data correlation

graph GðV ;E; ctÞ with confidence threshold �;

2: Find a maximum matching MG0 in G0, using an

algorithm due to Micali and Vazirani [21];

3: Assign each slave node a fractional weight for each

matched edge in MG0 and every other node with weight

1; relay MG0 to the sink;

4: Construct the auxiliary graph G1ðV1; E1; CtÞ;
5: Find a maximum weighted concurrent flow in G1

from all source nodes to the sink by calling either

Algorithm 2 (to be introduced), or a faster

approximation algorithm, Algorithm 3, in Section 5;

6: Assign each source node v 2 V a data rate rv in interval

tþ 1.

4.3 Algorithm for the Weighted, Fair Data Rate
Allocation and Flow Routing Problem

In this section, we devise an approximation algorithm,
Algorithm 2, for the weighted, fair data rate allocation
and flow routing problem in GðV ;E;Bðtþ 1ÞÞ, by redu-
cing it to the maximum weighted concurrent flow problem
in G1ðV1; E1; CtÞ. To apply Garg and Könemann’s flow
framework for the maximum weighted concurrent flow
problem in a flow network, it requires that the network is
a directed network with edge capacities. However, the
harvesting sensor network GðV ;E;Bðtþ 1ÞÞ is an undir-
ected network with node capacities, where the energy
budget Bvðtþ 1Þ for each node v in interval tþ 1 is its
capacity in the interval, there is not any specified capacity
on any edge.

Algorithm 2. Weighted_Fair_Data_Rate.

Input: the flow network G1ðV1; E1; CtÞ derived from

GðV ;E;Bðtþ 1ÞÞ, the rate weight wv, the energy budget

Bvðtþ 1) in interval tþ 1 and the maximum data rate Rv

of each v 2 V , and the accuracy parameter
.

1832 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

Output: the rate allocation rv for each v 2 V in interval tþ 1

such that
P

v2V wvrv is maximized.

1: for each node v0 2 V1 do

2: rv 0; dv wv�Rv

�

/* rv is the data rate and dv is the demands of

source node v */

3: end for;

4: D 0 =� DðlÞ ¼
P

e2E1
lðeÞ � CtðeÞ�=;

5: for each edge e 2 E1 do

6: � ð1�
jE1jÞ
1=
; lðeÞ �

CtðeÞ ; D Dþ lðeÞ � CtðeÞ;
7: end for;

/* the value of D determines whether the following

iteration executes */

8: while D < 1 do

9: for each node v0 2 V1 do

10: d0v dv;

11: while ðd0v 6¼ 0Þ & ðD < 1Þ do

12: Find a shortest path pv in G1 from v0 to the sink
w.r.t. the current length function lðÞ;

13: Find the bottleneck capacity Ctðe0Þ in pv with

e0 2 pv, rvðpvÞ Ctðe0Þ
ETXþERX ;

/* calculate the amount of the increased data rate

of v */

14: �rv minfrvðpvÞ; d0vg;
15: for each edge e 2 pv do

16: lðeÞ lðeÞð1þ
 � �rvðETXþERXÞ
CtðeÞ Þ;

17: D Dþ
 � �rvðETXþERXÞ
CtðeÞ ;

18: rv0 rv0 þ�rv;

19: d0v d0v ��rv
20: end for;

21: end while;

22: end for;

23: end while;

24: for each node v 2 V do

25: the rate rv � � rv= log1þ

ð1þ
Þ
� ; /* flow scaling */

26: end for

We now transform the maximum weighted concurrent
flow problem in GðV ;E;Bðtþ 1ÞÞ with node capacities to
the maximum weighted concurrent flow problem in
another directed network G1 ¼ ðV1; E1; CtÞ with edge capa-
cities, using a traditional transformation approach [1]. That
is, for each node v 2 V except the sink, there are two
corresponding nodes v0 and v00 in V1 and v0 is a source node.
Each source node v0 2 V1 has demands wv � dv (¼wv � Rv

�) and
the energy capacity of v0 is Bvðtþ1Þ

� at each time slot among
the � time slots in interval tþ 1. There is a directed edge
hv0; v00i in E1 from v0 to v00 whose capacity is a fraction of the
energy budget Bvðtþ 1Þ of node v, i.e., Ctðv0; v00Þ ¼
Bvðtþ 1Þ=� . For each edge ðv; uÞ 2 E, there are two edges
hv00; u0i and hu00; v0i with capacities Ctðv00; u0Þ ¼ Bvðtþ 1Þ=�
and Ctðu00; v0Þ ¼ Buðtþ 1Þ=� , respectively, because the en-
ergy budget for each outgoing edge of a node is upper
bounded by its energy budget. The detailed algorithm for
the weighted, fair data rate allocation and flow routing
problem, Weighted_Fair_Data_Rate, is presented
in Algorithm 2.

In the following, we first investigate the maximum

concurrent flow property of network G1, followed by

analyzing the time complexity and the approximation ratio
of Algorithm 2.

Lemma 4. Given the constructed network G1ðV1; E1; CtÞ, if a

flow routing protocol based on Garg and Könemann’s flow

framework is adopted to route the sensing data of all source

nodes to the sink, the following claims hold: 1) Each edge

hv0; v00i is saturated no later than any edge hv00; u0i for all

v0 2 V1. 2) Once all edges hv0; v00i are saturated for all v0 2 V1,

Algorithm 2 will terminate no matter whether the other

edges in G1 are saturated or not. 3) The types of edges hv0; v00i
are the first n edges to be saturated.

Proof. Case 1. Let p be a directed path from a source node x0

to the sink and e1 ¼ hv00; u0i an edge on p. Then, edge
e2 ¼ hv0; v00i must be on p too, because it is the only entry
edge to node v00 by the construction of G1. In addition,
the capacities of both e1 and e2 are Bvðtþ 1Þ. Now, if e1 is
saturated through the flow augmentation, e2 must be
saturated, too. This implies that e2 is saturated is no later
than that of e1. Case 2. Note that all directed paths from
each source node v0 to the sink must include edge hv0; v00i.
When each edge hv0; v00i for all v0 2 V1 is saturated, there
will no longer have any directed path from a source node
to the sink any more, this implies that no further flow
augmentations from source nodes to the sink will be
possible, the algorithm terminates. Case 3. Following the
similar discussion as the one in Case 2, once edge hv0; v00i
is saturated, all the directed edges hv00; u0i starting from
node v00 will not be in any directed path from any other
source node to the sink, because edge hv0; v00i is the only
predecessor of the edge hv00; u0i on any such directed
path. Meanwhile, edge hv00; u0i is one of the successors of
edge hv0; v00i in any such path. tu

Theorem 2. There is an approximation algorithm Algorithm 2

for the weighted, fair data rate allocation and flow routing

problem in a harvesting sensor network GðV ;E;Bðtþ 1ÞÞ in

interval tþ 1. The algorithm takes Oð
�2ðm2 log2 nþ
mn log3 nÞÞ time, and delivers an approximate solution of no

less than ð1� 3
Þ times of the optimum for any constant

with 0 <
 � 1=3, where n ¼ jV j and m ¼ jEj.
Proof. Following Lemma 1, Lemma 2, Lemma 3 and

Theorem 1, the claims are straightforward, omitted. tu

5 SHORTEST PATH TREE-BASED ALGORITHM

In this section, we devise a faster approximation algorithm
for the weighted, fair data rate allocation and flow routing
problem. Since all source nodes share the common destina-
tion node—the sink, there is a shortest path tree rooted at
the sink w.r.t. the edge length function. Instead of routing a
fractional flow along a single shortest path from a source
node to the sink in each step within each iteration by Garg
and Könemanns’ framework, we can route the same

proportion of the demands of each commodity along the
shortest path from each source node to the sink simulta-
neously such that 1) the sum of flows is maximized; and
2) the ratio of net demands for all source nodes is identical,
subject to the bottleneck capacity of the edges in the shortest
path tree. Consequently, the number of iterations needed to

LIANG ET AL.: MONITORING QUALITY MAXIMIZATION THROUGH FAIR RATE ALLOCATION IN HARVESTING SENSOR NETWORKS 1833

saturate all edges in the network can be significantly
reduced, the algorithm will run much faster.

5.1 Algorithm

The proposed algorithm constructs shortest path trees
iteratively. Within each iteration i with i � 1, a shortest
path tree Ti spanning all source nodes of G1 is
constructed, the maximum proportion of the remaining
demands from all source nodes will be routed to the sink
such that at least one tree edge is saturated. Then, update
the length of each edge in the tree, where the length of an
edge will be determined by the amount of flows running
through the edge. The algorithm terminates when DðlÞ ¼P

e2E1
lðeÞCtðeÞ � 1.

Consider the shortest path tree Ti. Clearly, Ti contains all
edges hv0; v00i in G1, otherwise, at least one source node v

does not have any demands left for transmission and the
algorithm terminates. Therefore, in the rest we only
consider these tree edges hv0; v00i by neglecting the other
tree edges hv00; u0i, because the former will be saturated
before the latter by Lemma 4.

For each tree edge e ¼ hv0; v00i (or e ¼ hv00; u0i), denoted by
DSðeÞ the set of descendant source nodes in the subtree
rooted at v0 of Ti including v0 itself (for the sake of
simplicity, we abuse the notation and use v to represent v0

if no ambiguity arises). For each source node v, there is a
unique path piv in Ti from v0 to the root, and the flow routed
along piv is in a proportion of the remaining demands of
source node v.

Let fiv be the total data flow (the primal objective function
value) of source node v 2 V routed and fi the total data flow
routed from iteration 1 to iteration i, then fi ¼

P
v2v f

i
v. For

any two source nodes u and v, the rate �i of their flows in
iteration i is equal, i.e.,

�i ¼
fiv � fi�1

v

d0v
¼ f

i
u � fi�1

u

d0u
; ð4Þ

where d0v is the amount of remaining demands at source
node v in iteration ði� 1Þ. Initially d0v ¼ dv. The amount of
data flow routed through tree Ti is the sum of flows,
i.e., fðTiÞ ¼

P
v2V ðfiv � fi�1

v Þ ¼ �i � ð
P

v2V d
0
vÞ. To maximize

fðTiÞ is equivalent to maximize �i. In the following, we
show how to find a flow to maximize the value of �i.

Lemma 5. Given the shortest path tree Ti in iteration i, for each

edge e ¼ hv0; v00i in Ti, compute the maximum rate �ðeÞ of

descendant source nodes in the subtree of Ti rooted at v0 that

statures edge e,

�ðeÞ ¼ CtðeÞP
v2DSðeÞ d

0
vðETX þ ERXÞ :

If we route the same rate of demands from each source node

such that at least one of the tree edges is saturated by the flows,

then the maximum rate �i is �i ¼ minf�ðeÞ j 8e 2 Tig.
Proof. We show the claim by contradiction. Assume that

the maximum rate in Ti is �0i with �0i > �i. Let e and e0 be
the two edges in Ti such that �i ¼ �ðeÞ and �0i ¼ �ðe0Þ.
We distinguish the relationship between e and e0 into
the following three cases.

Case 1. e0 and e are in the same directed path of Ti and
e is an ancestor edge of e0, then DSðe0Þ � DSðeÞ. If all the
source nodes in DSðeÞ also adopt the maximum rate �0i to
route their fractional demands, then the amount
energy consumed at e isX

v2DSðeÞ

�
�0id
0
v

�
ðETX þ ERXÞ

¼
X

v2DSðeÞ�DSðe0Þ

�
�0id
0
v

�
ðETX þ ERXÞ

þ
X

u2DSðe0Þ

�
�0id
0
u

�
ðETX þ ERXÞ

>
X

v2DSðeÞ�DSðe0Þ

�
�id
0
v

�
ðETX þ ERXÞ

þ
X

u2DSðe0Þ

�
�id
0
u

�
ðETX þ ERXÞ

¼
X

v2DSðeÞ

�
�id
0
v

�
ðETX þ ERXÞ ¼ CtðeÞ;

which is strictly larger than the energy capacity of edge e,

leading to a contradiction.
Case 2. e0 and e are in the same directed path of Ti and

e0 is an ancestor edge of e0, the proof is similar to Case
one, omitted.

Case 3. There is no relationship between edge
e and edge e0, i.e., they are on two disjoint paths to
the sink. Now, if all source nodes in DSðeÞ adopt the
maximum rate �0i, then the energy consumption at edge
e is

P
v2DSðeÞð�0id0vÞðETX þ ERXÞ >

P
v2DSðeÞð�id0vÞðETX þ

ERXÞ ¼ CtðeÞ, which is larger than the energy capacity of
edge e. This leads to a contradiction. tu

The detailed algorithm Shortest_Path_Tree is pre-

sented in Algorithm 3.

Algorithm 3. Shortest_Path_Tree ðG1Þ.
Input: flow network G1ðV1; E1; CtÞ derived from

GðV ;E;Bðtþ 1ÞÞ, the rate weight wv, the energy budget

Bvðtþ 1) in interval tþ 1 and the maximum data rate Rv

for each v 2 V , and the accuracy parameter
.

Output: the rate allocation rv for each v 2 V in interval tþ 1

such that
P

v2V wvrv is maximized.

1: for each node v0 2 V1 do

2: rv 0; d0v wv�Rv

�

3: end for;

4: f 0; D 0; /* DðlÞ ¼
P

e2E1
lðeÞ � CtðeÞ */

5: for each edge e 2 E1 do

6: � 1þ

ðð1þ
ÞjE1jÞ1=

; lðeÞ �
CtðeÞ ; D Dþ lðeÞ � CtðeÞ

7: end for;

8: i 0; /* the number of iterations */

9: while ðD < 1Þ and (d0v 6¼ 0) do

10: i iþ 1;
11: Find a shortest path tree Ti in G1 rooted at the sink

and spanning all source nodes;

12: for each edge e ¼ hv0; v00i 2 Ti do

13: Compute DSðeÞ, the set of descendant nodes in

the subtree rooted at v0;

14: �ðeÞ CtðeÞ
ðETXþERXÞ�

P
v2DSðeÞ d

0
v

;

1834 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

/* the maximum rate for sources through e */
15: end for;

16: �i 1; /* the possible maximum ratio */

17: for each edge e ¼ hv0; v00i 2 Ti do

18: if �i > �ðeÞ then

19: �i �ðeÞ
20: end if;

21: end for;

22: for each edge e 2 Ti do

23: lðeÞ lðeÞ
�

1þ

ðETXþERXÞ�

P
u2DSðeÞð�i�d

0
uÞ

CtðeÞ

�
;

24: D Dþ

ðETXþERXÞ�

P
u2DSðeÞð�i�d

0
uÞ

CtðeÞ
25: end for;

26: for each node v 2 V do

27: rv rv þ �i � d0v; d0v d0v � �i � d0v;
28: end for;

29: f f þ
P

v2V �i � d0v;
30: end while;

31: for each node v 2 V do

32: return rv rv��
log1þ

1þ

�

33: end for.

5.2 Algorithm Analysis

We now investigate the computational complexity of
Algorithm 3 and analyze its approximation ratio.

Let e0 be an edge in Ti such that �i ¼ �ðe0Þ. Edge e0 is
referred to as the bottleneck rate edge of Ti. Clearly, the
bottleneck rate edge will be saturated in iteration i and the
total amount of flows routed in iteration i is fðTiÞ ¼P

v2V �id
0
v, where d0v is the remaining demands of source

node v 2 V . We have the following lemma.

Lemma 6. Algorithm 3 has the following properties. 1) The
number of iterations is upper bounded by n log1þ

1þ

� ; and

2) the maximum amount of flow going through any edge e 2
E1 is bounded by CtðeÞ log1þ

1þ

� , where � is a constant to be

determined later.

Proof. Case 1. Given any edge e in G1ðV1; E1Þ, let liðeÞ be the
length of edge e in iteration i. The initial length of e is
l0ðeÞ ¼ �

CtðeÞ , where � is a constant. Within each iteration
the length of e is updated, where

liðeÞ ¼ li�1ðeÞ 1þ

P

v2DSðeÞð�id0vÞðETX þERXÞ
CtðeÞ

 !

if e is an edge in Ti w.r.t. li�1; liðeÞ ¼ li�1ðeÞ otherwise.
Since

P
v2DSðeÞð�id0vÞðETX þ ERXÞ � minfCtðe0Þ j 8e0 2

Tig by Algorithm 3,

P
v2DSðeÞð�id0vÞðETX þ ERXÞ

CtðeÞ
� 1:

We, thus, have

liðeÞ ¼ li�1ðeÞ 1þ

P

v2DSðeÞð�idvÞðETX þERXÞ
CtðeÞ

 !

� li�1ðeÞð1þ
Þ � l0ðeÞð1þ
Þi;

since ð1þ
Þa � 1þ
 � a if 0 < a � 1. We claim that the
final length of e is no greater than 1þ

CtðeÞ when
the algorithm stops. The termination condition of the
algorithm is Dðli0Þ ¼

P
e2E1

li0ðeÞ � CtðeÞ � 1 in iteration
i0, while Dðli0Þ � li0ðeÞ � CtðeÞ ¼ 1þ

CtðeÞ � CtðeÞ ¼ 1þ
 � 1.
The rest is to find the largest i0 such that li0ðeÞ � 1þ

CtðeÞ .
Thus, the number of flow augmentations on e is bounded
by i0 � log1þ

1þ

� .

Intuitively, Algorithm 3 stops when all the edges in
G1 are saturated, the number of iterations, thus, is
bounded by jE1j log1þ

1þ

� . However, as G1 is a special

network, one important fact about it is that once all edges
hv0; v00i are saturated, the algorithm terminates no
matter whether or not the other edges are saturated.
Furthermore, by Lemma 4, edges hv0; v00i are the first n
edges to be saturated. Thus, the maximum number of
iterations of Algorithm 3 is n log1þ

1þ

� .

Case 2. It is obvious that the total amount of
flows routed on an edge e cannot exceed CtðeÞ � i0 ¼
CtðeÞ log1þ

1þ

� . In other words, a feasible solution to the

maximum concurrent flow problem can be obtained by
scaling the final flow by a factor of log1þ

1þ

� . tu

Theorem 3. There is an approximation algorithm Algorithm 3
for the weighted, fair data allocation and flow routing problem
in a harvesting sensor network GðV ;E;Bðtþ 1ÞÞ in interval
tþ 1, which takes Oð
�2n3 lognÞ time and delivers an
approximate solution with the approximation ratio ð1� 2
Þ
for any constant
 with 0 <
 � 1=2, where n ¼ jV j and
m ¼ jEj.

Proof. The construction of network G1 takes OðjE1j þ
jV1jÞ ¼ Oðm1 þ n1Þ ¼ Oðmþ nÞ time, where m1 ¼ jE1j ¼
2jEj þ jV j ¼ 2mþ n and n1 ¼ jV1j ¼ 2jV j ¼ 2n. The initi-
alization of the algorithm takes OðmÞ time. The number
of iterations in Algorithm 3 is bounded by n log1þ

1þ

�

by Lemma 6. Within iteration i, it first finds a shortest
path tree Ti which takes Oðm1 þ n1 logn1Þ ¼ Oðmþ
n lognÞ time, using Dijkstra’s algorithm. It then performs
the fractional, optimal data rate calculation to all source
nodes, which takes Oðn2Þ time. Specifically, for each
node in Ti, it takes OðnÞ time to find all descendant
source nodes of the node as the number of nodes in Ti is
OðnÞ. Meanwhile, the calculation of �ðeÞ for each edge
e 2 EðTiÞ in Ti takes OðnÞ time. Thus, it takes
OðnjEðTiÞjÞ ¼ Oðn2Þ time to find all �ðeÞ and �i. The
running time of Algorithm 3, thus, is

O n log1þ

1þ

�
ðn2 þmþ n lognÞ þ

ffiffiffi
n
p

m

� �

¼ O n3 log1þ

1þ

�

� �

¼ O n3 log1þ
ð1þ
Þ
�

1þ

ðð1þ
Þm1Þ1=

 !

¼ O n3

� ð1þ log1þ
 m1Þ

� �
¼ O n3

� 1þ logm1

log 1þ

� �� �

¼ O n3

� 1þ logm1

� �� �
since logð1þ
Þ �
 when
 < 1

¼ O n3

þ n

3 logð2mþ nÞ

2

� �
¼ O n3 logn

2

� �
:

LIANG ET AL.: MONITORING QUALITY MAXIMIZATION THROUGH FAIR RATE ALLOCATION IN HARVESTING SENSOR NETWORKS 1835

The rest is to analyze its approximation ratio, by
adopting the similar proof due to Garg and Könemann
[12]. Recall that DðliÞ ¼

P
e2E1

liðeÞCtðeÞ is the dual
objective function value in iteration i. Let piv be the
shortest path in tree Ti from a source node v0 to the sink
with respect to the length function li�1 in iteration i. Let
�vðli�1Þ ¼

P
e2piv li�1ðeÞ be the length of piv and �ðli�1Þ the

length sum of shortest paths from all source nodes to
the sink, then �ðli�1Þ ¼

P
v2V �vðli�1Þ. Denote �ðli�1Þ by

�ði� 1Þ and DðliÞ by DðiÞ. Let 	 ¼ minfDðiÞ�ðiÞ j 0 � i � i0g
be the optimal dual objective value, where i0 will be
determined later, then 	 � Dði�1Þ

�ði�1Þ for all i. For every
iteration i � 1,

DðiÞ ¼
X
e

liðeÞCtðeÞ

¼
X
e

li�1ðeÞCtðeÞ þ

X
v2V

X
e2piv

li�1ðeÞ � ð�id0vÞðETX þ ERXÞ

¼
X
e

li�1ðeÞCtðeÞ þ

X
v2V

li�1

�
piv
�
� ð�id0vÞðETX þ ERXÞ

¼
X
e

li�1ðeÞCtðeÞ þ

X
v2V

�vði� 1Þ � ð�id0vÞðETX þERXÞ

¼ Dði� 1Þ þ

X
v2V

�vði� 1Þ �
�
fiv � fi�1

v

�
ðETX þ ERXÞ

� Dði� 1Þ þ

X
v2V

�vði� 1Þ

�
X
v2V

�
fiv � fi�1

v

�
ðETX þ ERXÞ;

since
X
ðaibiÞ �

�X
ai

�
�
�X

bi

�
;

� Dði� 1Þ þ
�ði� 1Þ �
X
v2V

�
fiv � fi�1

v

�
ðETX þ ERXÞ

� Dði� 1Þ þ
Dði� 1Þ
	

�
X
v2V

�
fiv � fi�1

v

�
ðETX þ ERXÞ;

since 	 � Dði� 1Þ
�ði� 1Þ ;

¼ Dði� 1Þ
	

1þ

	
�
X
v2V

�
fiv � fi�1

v

�
ðETX þ ERXÞ

� Dði� 1Þe

	

P
v2V ðf

i
v�fi�1

v ÞðETXþERXÞ

since 1þ x � ex for x � 0

¼ Dð0Þe

�fiðETXþERX Þ

	 since fi ¼
X
v2V

fiv and f0
v ¼ 0:

ð5Þ

W h i l e Dð0Þ ¼
P

e2E1
l0ðeÞ � CtðeÞ ¼

P
e2E1

�
CtðeÞ � CtðeÞ ¼

jE1j � � ¼ m1�, Algorithm 3 stops when Dði0Þ � 1. We,

thus, have

1 � Dði0Þ � Dð0Þ � e

�fi0 ðE

TXþERX Þ
	 ¼ ðm1�Þ � e

�fi0 ðE
TXþERX Þ
	 :

This implies

	

fi0ðETX þERXÞ �

ln 1
m1�

: ð6Þ

Let � be the ratio of the dual and primal solutions,

then � ¼ 	
fi0 ðETXþERXÞ log1þ

1þ

� . By substituting the bound

on 	
fi0 ðETXþERXÞ from Inequality (6), we have

� ¼ 	

fi0ðETX þ ERXÞ log1þ

1þ

�
�

 log1þ

1þ

�

ln 1
m1�

¼

lnð1þ
Þ �
ln 1þ

�

ln 1
m1�

 !
�

ð1�
Þ lnð1þ
Þ

�

ð1�
Þð
�
2=2Þ �
1

ð1�
Þ2
� 1

1� 2

;

due to the fact that
ln1þ

�

ln 1
m1�

¼ 1
1�
 when � ¼ 1þ

ðð1þ
Þm1Þ1=

. The

theorem then follows. tu

6 DISTRIBUTED IMPLEMENTATION

In this section, we provide a distributed implementation of
the proposed centralized algorithm Algorithm 1 in
interval tþ 1. In a distributed environment, each node has
only the knowledge of its neighbors and, thus, can only
communicate with its neighbors. The distributed imple-
mentation of Algorithm 1 where Algorithm 3 is
employed as it subroutine is described as follows:

First, to calculate the rate weight wv of each source node
v 2 V , based on the data correlation graph GðV ;E; ctÞ
generated in interval t, instead of finding a maximum
matching MG0 in the centralized algorithm 1, a maximal
matching in G0ðV ;E0Þ is found, using a distributed algo-
rithm by Sanghavi et al. [27], [4], where G0 is a subgraph of
G. The detailed description of the Sanghavi et al.’s
algorithm proceeds as follows:

Given a positive integer K > 1, each source node in
network G0 randomly decides to be a seed with a given
probability p. Each seed chooses an intended size for its
augmentation, uniformly from the set f1; 2; . . . ; Kg. All
seeds are the active nodes. Each seed then aims to find an
augmented path within 2K þ 1 iterations. Consequently,
there are a number of augmented paths with lengths no
more than 2K þ 1, the algorithm finally terminates and
returns a maximal matching that is derived from the
augmented paths. They showed that the cardinality ratio
of the maximal matching to the maximum matching is K

1þK
with a certain probability [27]. Note that GðV ;E; ctÞ has
identical topology as the harvesting sensor network
GðV ;EÞ. Thus, the implementation of the distributed
algorithm by Sanghavi et al. [27], [4] in the sensor network
is straightforward, omitted.

Second, assuming that a maximal matching in G0 has
been found, the rate weight assignment to each source node
then can be performed in constant time, as each matched
edge in the matching corresponds to a pair of a master and
a slave. The maximal matching obtained can be sent to the
sink, using any routing tree structure. For example, a
minimum spanning tree rooted at the sink delivered by a
distributed algorithm due to Gallager et al. [11] can be used
for such a purpose.

Third, to perform the weighted, fair data rate allocation
to each source node, the weighted fair rate allocation and
routing problem can be reduced into a maximum weighted
concurrent flow problem in network G1ðV1; E1; CtÞ, where
CtðvÞ is the energy budget of sensor node v 2 V in interval
tþ 1. G1 is embedded into the physical network GðV ;EÞ as
follows: Each source node v 2 V in G accommodates two
corresponding nodes v0 and v00 in G1 as well as the edge
hv0; v00i 2 E1. The physical link between two neighboring

1836 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

nodes u and v in G can be treated at two directed edges
hv00; u0i and hu00; v0i in G1. Since G1 is a directed network
with edge capacities and the rate weight of each source
node, Algorithm 3 is then applied to G1 which delivers a
feasible solution to the maximum weighted concurrent
flow problem. Notice that Algorithm 3 essentially calls
Dijkstra’s algorithm iteratively. Thus, its efficient distrib-
uted implementation is determined by the distributed
implementation of Dijkstra’s algorithm, and there are many
efficient distributed algorithms for the latter (e.g., [5]).

Having the shortest path tree Ti rooted at the sink in
iteration i, finally, it assigns each source node an identical
fractional data rate such that the flow is maximized, subject
to the bottleneck rate edge in the tree. This can be
implemented in OðnÞ time with OðnÞ messages, because
finding the value of �i takes OðnÞ time and OðnÞ messages,
using the tree topology Ti. The tree root broadcasts �i to all
source nodes through the tree edges. Each source node v sets
its data rate as �i � d0v in iteration i. The lengths of the edges in
Ti are then updated. Consequently, the distributed imple-
mentation Algorithm 1 is stated by the following theorem.

Theorem 4. Given an energy harvesting sensor network GðV ;EÞ
with jV j ¼ n and jEj ¼ m, there is a distributed implementa-
tion of Algorithm 1 for the monitoring quality maximiza-
tion problem in G where Algorithm 3 is employed as its
subroutine. Algorithm 1 takes Oðn log1þ

1þ

� � ðTSP þ

OðnÞÞ time and Oðn log1þ

1þ

� � ðMSP þOðnÞÞ messages,

where TSP and MSP are the time and message complexity of
distributed Dijkstra’s algorithm in G,
 is a constant with
0 �
 � 1=2 and � ¼ 1þ

ðð1þ
Þ�ð2mþnÞÞ1=

.

Proof. We analyze the computational and message
complexities of the distributed implementation of
Algorithm 1 as follows:

Finding a maximal matching takes Oð1Þ time and
OðmÞ messages. Since K is a fixed integer, it takes Oð1Þ
time and OðmÞ messages in each iteration to augment
paths starting from seeds. Assigning a rate weight to
each source node takes Oð1Þ time and OðnÞ messages.
Relaying the found maximal matching to the sink takes
OðnÞ time and Oðmþ n lognÞ messages as it takes OðnÞ
time and Oðmþ n lognÞ time to build a minimum
spanning tree in G0 rooted at the sink [11], the tree will
serve as the routing tree. Embedding G0 into the physical
network G takes Oð1Þ time and OðmÞ messages.
Assuming that it takes OðTSP Þ time and requires
OðMSP Þ messages to implement Dijkstra’s algorithm in
the distributed network G, where Algorithm 3 invokes
Dijkstra’s algorithm at most n log1þ

1þ

� times. Thus, the

distributed implementation of Algorithm 1 takes

O ðnþ TSP Þ � n log1þ

1þ

�

� �
¼ O n log1þ

1þ

�
� ðTSP þ nÞ

� �

time and requires

O ðmþ n lognþ ðMSP þ nÞÞ � n log1þ

1þ

�

� �

¼ O n log1þ

1þ

�
� ðMSP þ nÞ

� �

messages, where � ¼ 1þ

ðð1þ
Þð2mþnÞÞ1=

. tu

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms and investigate the impact of different para-
meters on the performance.

7.1 Simulation Environment

We consider a wireless sensor network consisting of 50 to
500 sensors randomly deployed in a 100	 100 square
meters region. The base station is also randomly located. In
all our experiments, we adopt the energy consumption
parameters of real sensors MICA2 motes [8], where ETX ¼
14:4	 10�6 Joules=bit and ERX ¼ 5:76	 10�6 Joules=bit. We
assume that the maximum data rate of each sensor Rmax is
randomly drawn from the set f60; 80; 100g packets per
interval, and each interval are divided into � ¼ 100 equal
time slots. Each sensor is powered by a solar panel. The
solar power harvesting profile is obtained from the Baseline
Measurement System at the National Renewable Energy
Laboratory [23]. For example, we here take the solar energy
harvesting as an example [10]. The total amount of energy
collected from a 37 mm	 33 mm solar cell over a 48-hour
period is 655:15 mWh in a sunny day and 313:70 mWh in a
partly cloudy day. We further assume the energy budget
(the amount of recharged energy) of each node in an
interval is a random value ranged in ½6:53; 13:65
 mJ=s. The
accuracy parameter
 is 0.1 and the power a in the utility
function is 2 in the default setting. Each value in figures is
the mean of the results by applying each mentioned
algorithm to 15 different network topologies of the same
size. The running time is obtained on a desktop with Intel
Core i7 CPU and 4-GB RAM.

The sensing data in sensors are generated as follows:
Each sensor node is assigned a sensing data sequence for
10 consecutive intervals, and within each interval a sensor
is assigned 100 sensing data. The rate weights of source
nodes in interval iþ 1 is calculated based on the data
correlation information in interval i, 1 � i < 10. The sensing
data here are the real temperature sensing data collected
from 54 sensor nodes between February 28, 2004 and April
5, 2004, by the Intel Berkeley Research Lab [14], where a
sensor generates a reading every 31 seconds. Now, we map
these real sensing data to the sensor nodes in a sensor
network as follows: Considering the network consisting of
50 sensor nodes, the mapping between the real sensing data
and these nodes is as follows: We map the sensing data
sequence by a real sensor (e.g., sensor A) between 1:00 am
and 23:00 pm on February 28, 2004 to sensor node 1 for this
period, and map the sensing data sequence by another
sensor B in this period to sensor node 2, and so on. In the
end, the sensing data sequences of the 50 sensor nodes have
been assigned. For a network size larger than 54, the
mapping is done similarly. That is, we map the sensing
data sequences generated in different time periods to
different sensor nodes. For example, take a 100 sensor
node network, we use the sensing data sequences collected
by the first 50 sensors on February 28, 2004 as the sensing
data sequences of the first 50 corresponding sensor nodes,
and the sensing data sequences collected by these 50 sensors
on March 2, 2004 as the sensing data sequences of the rest
50 sensor nodes.

LIANG ET AL.: MONITORING QUALITY MAXIMIZATION THROUGH FAIR RATE ALLOCATION IN HARVESTING SENSOR NETWORKS 1837

7.2 Performance Evaluation of the Proposed
Algorithm on the Quality of Monitoring

We first evaluate the performance of Algorithm 1 in
which Algorithm 3 is employed as its subroutine. Fig. 2
plots the performance curves, by varying the confidence
threshold � from 0.4 to 0.8, the uniform weight w from 0 to
0.8, or a variable weight 1� ctðu; vÞ, where ctðu; vÞ is the
data correlation confidence between node v and its master
u at interval t. In comparison with the unweighted case,
where each source node has an identical weight of 1, Fig. 2
clearly indicates that the weighted data rate allocation
improves the data quality of the network significantly in
comparison with the unweighted rate allocation. When the
uniform weight for each slave node is set to zero or
assigned a variable weight, the proposed algorithm
achieves a much better performance, as the resources
(bandwidth and energy) previously occupied by the slave
nodes now is now fully reallocated to the master and
stand-alone nodes, particularly for those low rate nodes.
Consequently, the low rate nodes can substantially
improve their data rates. Specifically, define the data quality
ratio as the ratio of the data quality delivered by the
proposed algorithm based on the weighted rate assignment
to the data quality delivered by the same algorithm based
on the unweighted rate assignment. Then, when � is fixed
at 0.4, the data quality ratio is at least 18, 15, 11, 8, and
6 percent by varying the uniform rate weight w from 0 to
0.8 with step 0.2. Similarly, when � is fixed at 0.6, the data
quality ratio by the proposed algorithm is at least 16, 10,
8, 6, and 5 percent by varying w from 0 to 0.8. When � is
fixed at 0.8, the data quality ratio is at least 13, 7, 6, 5, and
3 percent by varying w from 0 to 0.8 with step 0.2. The data
quality ratio is around 13 percent when the variable rate
weight is used. In summary, with the increase on both the
confidence threshold, the data quality ratio becomes
deteriorating, no matter whether it is a uniform weight
or a variable weight assignment. For a given confidence
threshold, the smaller the uniform weight w, the higher the
data quality delivered, because more resources released
from the slave nodes will be utilized by their master and
the other stand-alone nodes. Fig. 2 also shows that when
the uniform weight w is fixed, the larger the confidence
threshold �, the less improvement the data quality, because
fewer number of nodes in the network will become the
slave nodes when � is quite large. However, when w ¼ 0,
the data quality obtained is at the same level regardless of
varying the confidence threshold. The reason behind is that
the utility values of most master nodes (e.g., a master node

u, its utility value ru=Ru) are already very high (above 0.8),
their utility gain becomes insignificant with any further
increase on the data rates.

7.3 Impact of Different Data Rate Allocation
Algorithms on the Quality

We then study the impact of the two subroutines,
Algorithm 2, referred to as GK’s algorithm, and Algo-

rithm 3, referred to as the SPT-based algorithm, on the
data quality delivered by Algorithm 1 under different
parameter settings.

Fig. 3 plots the performance of Algorithm 1 by
employing two different subroutines Algorithm 2 and
Algorithm 3, respectively. In terms of the data quality, it
can be seen from this figure that although both sub-
routines deliver almost identical results, the running time
of Algorithm 3 is substantially less than that of
Algorithm 2. To be more specific, the running time of
Algorithm 3 is no more than 1 percent of that
of Algorithm 2. Note that the dominant running time
of Algorithm 1 is the subroutine Algorithm 2 or the
subroutine Algorithm 3. Specifically, assume that
 is set
to 0.1. When w and � are fixed at 0.2 and 0.6, respectively,
the data quality of Algorithm 3 is no less than 95 percent
of that of Algorithm 2. When w and � are fixed at 0.8 and
0.6, respectively, the data quality of Algorithm 3 is no
less than 93 percent of that of Algorithm 2. When w and
� are fixed at 0.2 and 0.8, respectively, the data quality of
Algorithm 3 is no less than 94 percent of that of
Algorithm 2. When both w and � are fixed at 0.8, the
data quality of Algorithm 3 is no less than 93 percent of
that of Algorithm 2. Fig. 3 implies that the smaller the
accuracy parameter
, the bigger the running time gap
between the two subroutines. Meanwhile, it is noted
that from Fig. 3 when fixing both � and
 but varying
the uniform weight w, the smaller the uniform weight is,
the higher the data quality will be.

8 CONCLUSION

In this paper, we have studied the monitoring quality
maximization problem in harvesting sensor networks by
incorporating spatial data correlation into consideration.
We first formulated the problem as a novel optimization
problem, namely, the monitoring quality maximization
problem. The key to approach this problem is to solve the
weighted, fair data rate allocation and flow routing
problem, for which we devised a fast approximation
algorithm with a provable approximation ratio. Also, a

1838 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

Fig. 2. Impact of different � and w on the data quality by algorithm 1 in which algorithm 3 is employed when
 ¼ 0:1.

distributed implementation of the proposed algorithm is
provided, too. The core ingredients in the design of
algorithm include dynamic data rate weight assignment
and a reduction technique to reduce the problem to a
special maximum weighted concurrent flow problem. We
finally conducted extensive experiments by simulation to
evaluate the performance of the proposed algorithm. We
also investigated the impact of various parameters on the
performance of algorithms. The experimental results de-
monstrate that the proposed algorithm for the monitoring
quality maximization is promising. Particularly the approx-
imate solution to the weighted, fair data rate allocation and
flow routing problem is the very first approximation
algorithm, which may have independent of interest by
itself and can be applicable to solve other optimization
problems beyond wireless harvesting sensor networks.

ACKNOWLEDGMENTS

It is acknowledged that Weifa Liang’s research was funded
by the Australian Research Council Discovery grant
DP120102627. Xiaohua Jia’s research was partially sup-
ported by the Natural Science Foundation of China under
Grant No. 61173137. They would like to thank anonymous
referees for their helpful comments.

REFERENCES

[1] R.K. Ahuja, T.L. Magnaati, and J.B. Orlin, Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., 1993.

[2] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless Sensor Networks: A Survey,” Computer Networks,
vol. 38, pp. 393-422, 2002.

[3] M. Alan, C. David, P. Joseph, S. Robert, and A. John, “Wireless
Sensor Networks for Habitat Monitoring,” Proc. First ACM Int’l
Workshop Wireless Sensor Networks and Applications (WSNA), pp. 88-
97, 2002.

[4] L.X. Bui, S. Sanghavi, and R. Srikant, “Distributed Link Schedul-
ing with Constant Overhead,” IEEE/ACM Trans. Networking,
vol. 17, no. 5, pp. 1467-1480, Oct. 2009.

[5] K.M. Chandy and J. Misra, “Distributed Computation on
Graphs: Shortest Path Algorithms.” Comm. ACM, vol. 25,
pp. 833-837, 1982.

[6] S. Chen, Y. Fang, and Y. Xia, “Lexicographic Maxmin Fairness for
Data Collection in Wireless Sensor Networks,” IEEE Trans. Mobile
Computing, vol. 6, no. 7, pp. 762-776, July 2007.

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, third ed. MIT Press, 2009.

[8] Crossbow Inc, “MPR-Mote Processor Radio Board Users Manual,”
2003.

[9] P. Dutta, J. Hui, J. Jeong, S. Kim, C. Sharp, J. Taneja, G. Tolle, K.
Witehouse, and D. Culler, “Trio: Enabling Sustainable and
Scalable Outdoor Wireless Sensor Network Deployments,” Proc.
Fifth Int’l Conf. Information Processing in Sensor Networks (IPSN),
pp. 407-415, 2006.

[10] K.-W. Fan, Z.-Z. Zheng, and P. Sinha, “Steady and Fair Rate
Allocation for Rechargeable Sensors in Perpetual Sensor Net-
works,” Proc. Sixth ACM Conf. Embedded Network Sensor Systems
(SenSys), pp. 239-252, 2008.

[11] R.G. Gallager, A. Humblet, and P.M. Spira, “A Distributed
Algorithm for Minimum-Weight Spanning Trees.” ACM Trans.
Programming Languages and Systems, vol. 5, pp. 66-77, 1983.

[12] N. Garg and J. Könemann, “Faster and Simpler Algorithms for
Multicommodity Flow and Other Fractional Packing Problems,”
Proc. 39th Ann. Symp. Foundation Computer Sciences (FOCS ’98),
pp. 300-309, 1998.

[13] Y.T. Hou, Y. Shi, and H.D. Sherali, “Rate Allocation and Network
Lifetime Problems for Wireless Sensor Networks,” IEEE/ACM
Trans Networking, vol. 16, no. 2, pp. 321-334, Apr. 2008.

[14] “Intel Berkeley Research Lab,” http://db.csail.mit.edu/labdata/
labdata.html, 2013.

[15] X. Jiang, J. Polastre, and D. Culler, “Perpetual Environmentally
Powered Sensor Networks,” Proc. Fourth Int’l Symp. Information
Processing in Sensor Networks (IPSN), pp. 463-468, 2005.

[16] A. Kansal, J. Hsu, S. Zahedi, and M.B. Srivastava, “Power
Management in Energy Harvesting Sensor Networks,” ACM
Trans. Embedded Computing Systems, vol. 6, article 32, Sept. 2007.

[17] K. Lin, J. Yu, J. Hsu, S. Zahedi, D. Lee, J. Friedman, A. Kasal, V.
Raghunathan, and M. Srivastava, “Heliomote: Enabling Long-
Lived Sensor Networks Through Solar Energy Harvesting,” Proc.
Third Int’l Conf. Embedded Networked Sensor Systems (SenSys),
p. 309, 2005.

[18] R.-S. Liu, P. Sinha, and C.E. Koksal, “Joint Energy Management
and Resource Allocation in Rechargeable Sensor Networks,” Proc.
IEEE INFOCOM ’10, 2010.

[19] R.-S. Liu, K.-W. Fan, Z. Zheng, and P. Sinha, “Perpetual and Fair
Data Collection for Environmental Energy Harvesting Sensor
Networks,” IEEE/ACM Trans. Networking, vol. 19, no. 4, pp. 947-
960, Aug. 2011.

[20] J. Luo and J.P. Hubaux, “Joint Sink Mobility and Routing to
Maximize the Lifetime of Wireless Sensor Networks: The Case of
Constrained Mobility,” IEEE/ACM Trans. Networking, vol. 18,
no. 3, pp. 871-884, June 2010.

[21] S. Micali and V.V. Vazirani, “An Oð
ffiffiffiffiffiffiffi
jV j

p
� EÞ Algorithm for

Finding Maximum Matching in General Graphs,” Proc. IEEE 21st
Symp. Foundations of Computer Science, pp. 17-27, 1980.

[22] C. Moser, J. Chen, and L. Thiele, “Reward Maximization for
Embedded Systems with Renewable Energies,” Proc. IEEE 14th
Int’l Conf. Embedded and Real-Time Computing Systems and Applica-
tions, 2008.

LIANG ET AL.: MONITORING QUALITY MAXIMIZATION THROUGH FAIR RATE ALLOCATION IN HARVESTING SENSOR NETWORKS 1839

Fig. 3. The data quality delivered and the running time between algorithms SPT and GK.

[23] “National Renewable Energy Laboratory,” http://www.nrel.gov,
2013.

[24] D.K. Noh, L. Wang, Y. Yang, H.K. Le, and T. Abdelzaher,
“Minimum Variance Energy Allocation for Solar-Powered Sensor
Systems,” Proc. Fifth Int’l Conf. Distributed Computing in Sensor
Systems (DOCSS ’09), 2009.

[25] C. Park and P. Chou, “AmbiMax: Autonomous Energy Harvesting
Platform for Multi-Supply Wireless Sensor Nodes,” Proc. IEEE
Third Ann. Comm. Soc. Sensor and Ad Hoc Comm. Networks
(SECON), pp. 168-177, 2006.

[26] S. Plotkin, D. Shmoys, and E. Tardos, “Fast Approximation
Algorithms For Fractional Packing and Covering Problem,” Math.
Operations Research, vol. 20, pp. 257-301, 1995.

[27] S. Sanghavi, L. Bui, and R. Srikant, “Distributed Link Scheduling
with Constant Overhead,” Proc. ACM SIGMETRICS Int’l Conf.
Measurement and Modeling Computer Systems (SIGMETRICS ’07),
pp. 313-324, 2007.

[28] L. Su, Y. Gao, Y. Yang, and G. Cao, “Towards Optimal Rate
Allocation for Data Aggregation in Wireless Sensor Networks,”
Proc. ACM MobiHoc ’11, 2011.

[29] C.M. Vigorito, D. Ganesan, and A.G. Barto, “Adaptive Control
Duty Cycling in Energy-Harvesting Wireless Sensor Networks,”
Proc. IEEE Conf. Sensor and Ad Hoc Comm. Networks (SECON) ’07,
2007.

[30] X. Wang and K. Kar, “Cross-Layer Control for End-to-End
Proportional Fairness in Wireless Networks with Random
Access,” Proc. ACM MobiHoc ’05, pp. 157-168, 2005.

[31] Y. Xue, Y. Cui, and K. Nahrstedt, “Maximizing Lifetime for Data
Aggregation in Wireless Sensor Networks,” Mobile Networks and
Applications, vol. 10, pp. 853-864, 2005.

[32] B. Zhang, R. Simon, and H. Aydin, “Maximal Utility Rate
Allocation for Energy Harvesting Wireless Sensor Networks,”
Proc. 14th ACM Int’l Conf. Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWiM ’11), 2011.

Weifa Liang (M’99-SM’01) received the BSc
degree from Wuhan University, China in 1984,
the ME degree from the University of Science
and Technology of China in 1989, and the PhD
degree from the Australian National University in
1998, and all in computer science. He is
currently an associate professor in the Research
School of Computer Science at the Australian
National University. His research interests in-
clude design and analysis of energy-efficient

routing protocols for wireless ad hoc and sensor networks, cloud
computing, design and analysis of parallel and distributed algorithms,
approximation algorithms, and graph theory. He is a senior member of
the IEEE.

Xiaojiang Ren received the BE and ME degrees
from the Huazhong University of Science and
Technology in China in 2004 and 2007, respec-
tively, and is currently working toward the PhD
degree in the Research School of Computer
Science at the Australian National University.
His research interests include wireless sensor
networks, routing protocol design for wireless
networks, and optimization problems. He is a
student member of the IEEE.

Xiaohua Jia received the BSc and MEng
degrees in 1984 and 1987, respectively, from
the University of Science and Technology of
China, and DSc in 1991 in information science
from the University of Tokyo. He is currently a
chair professor with Department of Computer
Science at City University of Hong Kong. His
research interests include cloud computing and
distributed systems, computer networks, wire-
less sensor networks and mobile wireless net-

works. He is an editor of IEEE Transactions on Parallel and Distributed
Systems (2006-2009), Wireless Networks, Journal of World Wide Web,
Journal of Combinatorial Optimization, and so on. He is the general chair
of ACM MobiHoc 2008, TPC co-chair of IEEE MASS 2009, area-chair of
IEEE INFOCOM 2010, TPC co-chair of IEEE GlobeCom 2010 Ad Hoc
and Sensor Networking Symposium, and Panel co-chair of IEEE
INFOCOM 2011. He is a fellow of the IEEE.

Xu Xu received the BS degree from China
Agricultural University in 2006, the ME degree
from the Institute of Computing Technology,
Chinese Academy of Sciences in 2009, both in
computer science, and is currently working
toward the PhD degree in the Research
School of Computer Science at the Australian
National University. Her research interests
include sink mobility in wireless sensor net-
works, routing protocol design for wireless ad

hoc and sensor networks, data gathering in wireless sensor networks,
and optimization problems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1840 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 9, SEPTEMBER 2013

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

