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ABSTRACT

With the advances of more and more mobile sink deployments (e.g., robots and unmanned aerial vehicles), mobile sinks
have been demonstrated to play an important role in the prolongation of network lifetime. In this paper, we consider
the network lifetime maximization problem for time-sensitive data gathering, which requires sensing data to be sent to
the sink as soon as possible, subject to several constraints on the mobile sink. Because the mobile sink is powered by
petrol or electricity, its maximum travel distance per tour is bounded. The mobile sink’s maximum moving distance from
its current location to the next must also be bounded to minimize data loss. As building a new routing tree rooted at
each new location will incur an overhead on energy consumption, the mobile sink must sojourn at each chosen loca-
tion at least for a certain amount of time. The problem, thus, is to find an optimal sojourn tour for the mobile sink such
that the network lifetime is maximized, which is subject to a set of constraints on the mobile sink: its maximum travel
distance, the maximum distance of each movement, and the minimum sojourn time at each sojourn location. In this
paper, we first formulate this novel multiple-constrained optimization problem as the distance-constrained mobile sink
problem for time-sensitive data gathering. We then devise a novel heuristic for it. We finally conduct extensive experi-
ments by simulation to evaluate the performance of the proposed algorithm. The experimental results demonstrate that
the performance of the proposed algorithm is very promising, and the solution obtained is fractional of the optimal one.
Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Wireless sensor networks consist of several hundreds
to thousands of battery-powered tiny sensors that are
endowed with a multitude of sensing modalities includ-
ing multimedia (e.g., video and audio) and scalar data
(e.g., temperature, pressure, light, and infrared). The strong
demand for these networks is spurred by numerous appli-
cations that require in situ, unattended, high-precision,
and real-time observation over the monitored region [1].
Although there have been significant progress in sensor
fabrications including processing design and computing,
advances of battery technology still lag behind, making
energy resource the fundamental constraint in wireless

sensor networks. In maximizing the network lifetime,
energy conservation is of paramount importance.

Most existing studies on data gathering in wireless sen-
sor networks assumed that there is a fixed base station
(sink). The sensed data is relayed to the sink through mul-
tihop relays. The sensors near the sink, thus, become the
bottlenecks of energy consumption because of the relay-
ing of messages for others. Once they run out of energy,
the sink will be disconnected from the rest of the network,
and the network service will be interrupted. New strategies
that exploit the mobility of network components have been
developed to prolong the network lifetime by mitigating
the deficiency of the fixed sink. One strategy is to allow a
fraction of sensors to be movable. However, because of the
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severe energy constraint on sensors, this approach is infea-
sible in most application scenarios where sensors are sta-
tionary and powered by tiny batteries. Another strategy is
to employ mobile sinks instead of fixed sinks to collect data
by traversing the monitoring area, and recent studies have
demonstrated that use of mobile sinks can improve various
network performance significantly. These include the net-
work lifetime, network connectivity, network throughput,
and so on [2–13]. A comprehensive survey on this topic
can be found in [14].

1.1. Related work

Sink mobility can be further classified into uncontrolled
mobility [4,10] and controlled mobility [5–7,15]. For the
former, mobile sinks can move randomly in the monitoring
region, whereas for the latter, they can only move along
pre-defined trajectories. Recent advance in uncontrolled
mobility showed that if a mobile sink can sojourn at all
given locations, there is a polynomial solution for network
lifetime maximization [10]. However, handling controlled
mobility is much more challenging and needs more efforts.
For example, Luo and Hubaux [6] considered the prob-
lem in a circle where the sensors are uniformly distributed.
They formulated the network lifetime maximization prob-
lem as a min–max problem, and derived a nice solution.
That is, keeping the sink moving along the external perime-
ter of the circle will achieve a much longer network life-
time in comparison with the case where the sink only
stays at the center of the circle. To improve network life-
time further by deploying multiple mobile sinks, Gandham
et al. [3] presented an integer linear programming (ILP)
model to determine the locations of multiple mobile sinks.
They aimed to minimize the energy consumption per sen-
sor node and the total energy consumption within each
round, assuming that the movement of multiple sinks is
scheduled round by round and each sink at each round is
assigned with equal amount of sojourn time. Within each
round, they assume that the maximum energy consumption
of each sensor node is proportional to a fixed fractional of
its residual energy. Wang et al. [4] considered a joint opti-
mization problem of determining the sink movement and
its sojourn time at certain network locations (co-located
with the sensor nodes) in a grid network so that the net-
work lifetime is maximized. For this special network, they
proposed an ILP solution by finding the sojourn time of
the mobile sink at each node, assuming that half the work
load (the number of messages generated and received) of
each node flows along its horizontal and vertical links
toward the current location of the mobile sink. Because the
grid network is a special network, the load at each node
toward the sink can be calculated easily. Thus, they are able
to calculate the exact energy consumption of each node
when the mobile sink is at each possible location. Note
that in all of these mentioned approaches, they adopt flow-
based routing protocols to route sensing data to the mobile
sink. Although the flow-based routing approaches are

theoretically attractive by solving mixed ILP [3–5,10,16],
they may not be applicable to real sensor networks because
of inherent difficulties in flow control at each sensor at each
time instance. Furthermore, this approach is computation-
ally infeasible with the growth of network size. By contrast,
in this paper we will adopt the well-known routing tree
structure for data gathering [6,7,17,18], as the tree struc-
ture is naturally suitable for distributive wireless sensor
networks. For tree-based data gathering, Luo et al. [7] con-
sidered a two-stage joint optimization framework: First, the
mobile sink visits all ‘anchor’ points (locations) one by one
and sojourns at each of them for a short sampling period.
During this stage, the sink collects the power consumption
of all nodes and builds a profile for each anchor point. At
the end of this stage, the sink calculates an ILP formula
and drops those anchor points at which the sojourn time
of the sink is below a given threshold, because it is not
worthwhile to keep them in the sojourn tour as the sojourn
time is not long enough to amortize the energy overhead on
building trees. What follows is to solve the ILP to find the
exact sojourn times at the chosen anchor points. Basagni
et al. [5] considered a more realistic model by incorpo-
rating two realistic bottleneck constraints on the mobile
sink: the maximum moving distance at each movement and
the minimum sojourn time at each sojourn location. They
first formulated the network lifetime maximization prob-
lem as a mixed integer linear program and then proposed
a simple, distributed heuristic. Liang et al. [19] recently
considered the network lifetime maximization problem for
time-sensitive data gathering by incorporating the maxi-
mum travel distance constraint on a mobile sink, and a
breadth-first search (BFS) tree was built at each chosen
location for data gathering. Yun and Xia [20] considered
the network lifetime maximization with the tolerant delay
constraint. They derived the relationship between the net-
work lifetime and the data delivery delay. However, they
did not take into account the maximum travel distance on
the mobile sink. Xu et al. [21] dealt with event collec-
tions in sensor networks with a mobile sink. They aimed
to minimize the total travel distance of the mobile sink
per tour to collect all events by exploring spatial and tem-
poral data correlations. In summary, existing studies in
the literature focused on the network lifetime optimiza-
tion under various bottleneck constraints on the mobile
sink. These include bounding the number of sojourn loca-
tions [7], the minimum sojourn time at each sojourn loca-
tion, and the maximum moving distance at each movement
[5]. However, none of the works has taken into account
an important additive constraint on the mobile sink—the
maximum travel distance. Incorporating this additive con-
straint into the problem formulation makes the problem
much more realistic but poses a great challenge, too. In
this paper, a novel heuristic, which exhibits low compu-
tational complexity and high scalability, will be proposed
to cope with this joint optimization problem under both
additive and bottleneck constraints on the mobile sink.
The heuristic will deliver a near optimal solution through
experimental simulations.
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1.2. Contributions

The main contributions of this paper are as follows. We
first formulate the network maximization problem for time-
sensitive data gathering with multiple constraints on a
mobile sink as a multiple-constrained optimization prob-
lem. Because of its NP-hardness, we then devise a novel
heuristic to find an optimal sojourn tour and sojourn time
scheduling for the mobile sink. We finally conduct exten-
sive experiments by simulations to evaluate the perfor-
mance of the proposed algorithms. We also investigate
the impacts of different constraints on the network life-
time. The experimental results demonstrate that the perfor-
mance of the proposed heuristic is very promising, and the
solution obtained is fractional of the optimal one.

The rest of the paper is organized as follows. We first
introduce the system model and the problem definition
in Section 2. We then introduce a greedy algorithm for
the constructions of load-balanced routing trees (LBTs)
in Section 3. Thirdly, we propose a novel heuristic that
not only finds a sojourn tour for the mobile sink but also
determines the actual sojourn time of the sink at each
sojourn location in Section 4. We finally evaluate the per-
formance of the proposed algorithms through experimental
simulations in Section 5, and we conclude in Section 6.

2. PRELIMINARIES

In this section, we first introduce the system model, which
includes introducing terminologies and the energy cost
model. We then define the problem precisely.

2.1. System model

We consider a wireless sensor network consisting of n sta-
tionary, homogeneous sensor nodes to monitor a region of
interest. There is one mobile sink, which may not initially
be in the monitoring region, for data collection. The loca-
tion of each sensor is fixed and known a priori. Each sensor
equipped with an omnidirectional antenna has an identical
transmission range. We further assume that although the
mobile sink has unlimited energy supplies in comparison
with the energy supplies of sensors, its energy consumption
on mechanical movement is proportional to its travel dis-
tance, as it is powered by petrol or electricity, which is not
an infinite resource and must be refueled over time. We also
assume that the mobile sink can sojourn at each sojourn
location for a certain amount of time to collect sensing data
through a routing tree rooted at the location. For the sake
of convenience, we assume that the potential sojourn loca-
tions of the mobile sink are co-located with the sensors.
Unless otherwise specified, in this paper we only count the
transmission and reception energy consumptions of each
sensor by ignoring its other energy consumptions includ-
ing sensing and computation energy consumptions, as it
is well known that the radio frequency (RF) transmission

is the dominant energy consumption in wireless communi-
cations [22].

Given a sensor network G D .V ;E/, where V is the
set of nD jV j stationary sensor nodes and E is the set of
mD jEj links. There is a link between two nodes if they
are within the transmission range of each other. The net-
work lifetime is defined as the time of the first sensor fail-
ure due to the expiration of its energy [23]. A mobile sink
(e.g., a robot or a moving vehicle) usually is powered by
petrol or electricity to support its mechanical movement.
Its maximum travel distanceL per tour, thus, is bounded by
the volume of petrol or the capacity of power it can carry.
On the other hand, the sensing data by sensors may be lost
because of the sink movement from one location to another.
It is expected that the distance of the sink at the next loca-
tion should not be far from its current location to minimize
the data loss by its movement. With the assumption that
the potential locations of the mobile sink are identical to
the locations of sensors, the sensor at the current location
of the mobile sink may be assigned as the temporary sink to
collect data from other sensors during this transition period
of the sink to avoid the data loss. Let �� be the maximum
duration of the sink moving from its current location to its
next location in addition to the setting up time of a new
routing tree rooted at that location. Then, the buffer size of
the sensor serving as the temporary sink is at least n�ra���
to ensure that there will be no sensing data lost, where ra is
the data generation rate. Once the sink resumes to work at
the next location, the temporary sink will forward all col-
lected data to the sink directly. Notice that we assume that
the energy consumption for the buffer data transfer is neg-
ligible, compared with the regular data gathering session.
In other words, the maximum distance at each sink move-
ment is bounded by a given value Rmax to minimize data
loss because of sink mobility. Although the residual energy
among the sensors can be balanced through the frequent
movement of the mobile sink, the overhead associated with
the sink movement must be taken into account, too. It is
required that the mobile sink stays at each sojourn location
at least a certain amount of time Tmin [5] to make such a
movement profitable.

2.2. Problem definition

The distance-constrained mobile sink problem for time-
sensitive data gathering in a wireless sensor network is
defined as follows.

Given a sensor network G.V ;E/ consisting of n sta-
tionary sensors and a mobile sink, the mobile sink starts
from its depot site v0 and eventually returns to the depot to
recharge its petrol or electricity for its next tour, where v0
may be outside of the monitoring region. Assume that all
potential sojourn locations of the mobile sink are exactly
the locations of the n sensors and a routing tree rooted at
each sink sojourn location will be used for data gathering.
As we deal with time-sensitive data gathering, it requires
that the sensing data from each sensor must be relayed to
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the sink within the minimum number of hops. Thus, the
number of hops from each sensor to the root of the routing
tree must be minimized. For the mobile sink, (i) its maxi-
mum travel distance per tour is bounded by L; (ii) its max-
imum moving distance at each movement is bounded by
Rmax; and (iii) its minimum sojourn time at each sojourn
location is at least Tmin time units. The problem is to find
a sojourn tour (also referred to as the sink tour) for the
mobile sink such that the network lifetime is maximized,
which is subject to the mentioned three constraints on the
mobile sink.

In other words, let v1; v2; : : : ; vk be the sequence
of visited sensor locations by the mobile sink, and let
ti be the sojourn time of the sink at the location vi ,
1� i � k. The problem is to find a sensor sequence and
the sojourn time scheduling at each sensor location in
the sequence such that the network lifetime

Pk
iD1 ti is

maximized, provided that the following constraints on
the mobile sink must be met: the maximum travel dis-
tance

Pk�1
iD0 d.vi ; viC1/C d.vk ; v0/ � L, the maximum

moving distance d.vi ; viC1/ � Rmax, and the minimum

sojourn time Tmin, where d.u; v/ is the Euclidean distance
between two locations of sensors u and v. For the sake of
convenience, all symbols in the paper are listed in Table I.

3. LOAD-BALANCED
ROUTING TREE

In this section, we assume that the mobile sink has cho-
sen a specific location v as its current sojourn location.
The problem then is to determine the sojourn time pro-
file of the sink at v. That is, to determine the amount
of energy consumed of each sensor per time unit when
the sink located at v for data gathering. To maximize the
sojourn time of the sink at v, we will construct a routing
tree rooted at v, and the load among the children of the tree
root must be balanced, because these children will be the
energy bottlenecks of the entire network. We assume that
no data aggregation will be performed at each relay node.
As we deal with time-sensitive data gathering, it is required
that each sensor can reach the tree root in the shortest

Table I. Notations.

Notation Description

G.V ;E/ The sensor network with sensor set V and link set E
n Number of nodes in G, nD jV j
m Number of links in G, mD jEj
et Transmission energy consumption per bit in G
er Reception energy consumption per bit in G
ndT .v/ Number of descendants of sensor v in a routing tree T
L End-to-end distance of the sink tour
Rmax Maximum distance of mobile sink at each movement
Tmin The minimum sojourn time of the sink at each sojourn location
l Length of sensing data per sensor at each data gathering session
Vl Set of sensors whose distances to the sink are l, 0� l � h
nl nl D jVl j, 0� l � h
Gl.Xl ;Yl ;El ;w/ A node-weighted bipartite graph, where Xl D V1 and Yl D VlC1

and w.x/¤ 0 and w.y/D 1
Nl.s; t;Gl/ An induced flow network from Gl, 2� l � h
B The capacity assigned to any link incident to t in Nl

Bopt The optimal capacity value assigned to any link incident to t in Nl

f The value of flow f that goes through each link in Nl

d Number of children of the tree root
Gl;lC1 A bipartite graph that is used to assign nodes in VlC1 to nodes in Vl

such that each node in Vl is load balanced
d.vi ;vj/ Euclidean distance between sensors vi and vj with 1� i and j � n
RE.vj/ The residual energy of sensor vj

cvi .vj/ Number of descendants of vj in the routing tree rooted at sensor vi

v0 Initial and final location of the mobile sink
ti The sojourn time of the sink at location of sensor vi , 1� i � n
tmax tmax Dmax1�i�nftig

M M D ntmax

� �D 1=ntmax

Pu;v A sink tour starting from sensor u and ending at sensor v
D.Pu;v / D.Pu;v /D

P
e2Pu;v

d.e/
T .Pu;v / The sum of sojourn times of sensor nodes in Pu;v

t 0i The actual sojourn time of the sink at location of vi
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distance (in terms of number of hops). Thus, sensors in
the routing tree can be partitioned into different layers by
their distances to the tree root. Meanwhile, it is also desir-
able that the load (energy consumption) among the sensor
nodes in every other layer besides the first layer is also
load-balanced. The motivation behind is that, consider a
scenario where the nodes in a specific layer are heavily
imbalanced, if one of the nodes later is chosen as a sojourn
location of the sink, it is likely that some of the nodes
in the same layer will become the children of the cho-
sen node, while the residual energy among these sensors
is heavily imbalanced, the sojourn time of the sink at this
new location will be significantly shortened. To maximize
the sojourn time of the sink at any given location, we will
construct an LBT. However, it has been shown that find-
ing an optimal LBT is NP-complete by a reduction from
the set cover problem and a heuristic to find such a tree is
devised [24].

3.1. Heuristic algorithm for load-balanced
spanning trees

In this subsection, we introduce a novel heuristic for find-
ing a load-balanced spanning tree rooted at the sink by
employing the network flow technique. We assume that the
nodes in the network have been partitioned into h layers,
according to their distance (the minimum number of hops)
to the sink. Let Vi be the set of sensor nodes in layer i , then
[hiD1Vi D V , and Vi \ Vj D ; if i ¤ j , where V0 con-
tains just the sink and V1 contains all the sensor nodes that
the sink is within their transmission ranges, 1 � i , j � h.
The tree is constructed layer by layer in a top-down fash-
ion. Assume that a partial, load-balanced tree spanning the
nodes from layer 0 to layer l has been constructed, we now
expand the tree further by including the nodes in layer lC1
as follows.

Let v1; v2; : : : ; vnl be the nodes in layer l where nl D
jVl j and 1 � l < h. We first construct a node-weighted,
bipartite graph Gl D .Xl ; Yl ; El ; w/, where Yl is the set
of nodes in layer .l C 1/, that is, Yl D VlC1. Xl � V1 is
obtained as follows. The nodes in Vl are grouped by their
ancestors in V1, that is, the nodes in Vl are partitioned into
at most d subsets, where d is the number of children of the
tree root r . All the nodes in the same subset are the descen-
dants of a child of the root. Let x1; x2; : : : ; xd 0 be the d 0

(�d ) ancestors in V1 of the nodes in Vl that are incident
to nodes in Yl . Associated with each xi 2 Xl , there is a
weight w.xi /, which is the number of descendants of xi in
the current tree. And each node y 2 Yl is assigned a weight
w.y/D 1. There is an edge .x; y/ 2 El if .vi ; y/ 2 E and
vi 2 Vl is a descendant of x 2 V1.

The load-balanced tree problem then is to choose a node
xi 2 Xl as its ancestor for each node yj 2 Yl such that
the maximum number of descendants (the load) among the
nodes in Xl in the resulting tree is minimized. We will
transform this problem into a maximum flow and minimum
cut problem. In the end, each sensor yj 2 Yl will choose a

xi 2Xl as its ancestor, we refer to xi as the ancestor of yi
in the resulting tree and denote by anc.yj /D xi .

Following the definition of the load-balanced spanning
tree, we aim to balance not only the load among the chil-
dren of the tree root but also the load among the nodes in
other layers. Because the tree is expanded layer by layer,
we assume that the load among the nodes in the first l � 1
layers is balanced already, we proceed to balance the load
among the nodes in layer l as follows.

A bipartite graph Gl;lC1 D
�
V 0
l
; VlC1; E

0
l

�
is con-

structed based on the results in Gl , where V 0
l

is the subset
of Vl , which is the set of nodes whose ancestors are in
Xl . There is an edge .u; v/ 2 E 0

l
if .u; v/ 2 E, u 2 V 0

l
,

v 2 VlC1, and anc.u/ D anc.v/. To balance the load
among the nodes in layer l , we then find a node u 2 V 0

l
such that u is the parent of v in the expanded tree and the
maximum load among the nodes in V 0

l
is minimized. This

can be solved using the similar technique to balance the
load among the children of the tree root.

In the following, we propose a solution for the tree
expansion by transforming the load balancing tree prob-
lem among the children of the tree root and the nodes in
layer l into the maximum flow and minimum cut problem
in the corresponding auxiliary flow networks.

To balance the load among the nodes in the first layer
(the children of the tree root), we transform the load bal-
ancing problem inGl .Xl ; Yl ; El ; w/ into a maximum flow
and minimum cut problem in an auxiliary flow networkNl
through assigning its links with different capacities dynam-
ically. Nl D .Xl [Yl [fs; tg; El [fhs; xi ig[fhs; yi j y 2
Yl g[ fhx; ti j x 2Xl g/; c/, where s is the source node and
t is the destination node. There is a directed edge from s to
y with capacity 1 for each y 2 Yl , that is, c.s; y/D 1. For
each xi , there is a directed edge from s to xi with capacity
c.s; xi / D w.xi /. For each edge .y; vj / 2 E in the orig-
inal network G, there is a directed edge hy; xki from y to
xk with capacity 1, that is, c.y; xk/ D 1, assuming that
vj is a descendant of xk in the constructed tree. There is
a directed edge from each xi 2 Xl to the destination node
t with capacity c.xi ; t / D B , where B is the maximum
load among the nodes in Xl and will be determined later.
Thus, given a positive integer B , apply the maximum flow
and minimum cut algorithm in Nl to find a flow f from
s to t , and check whether jf j D

P
1�i�d w.xi / C jYl j.

It can be seen that max1�i�d 0fw.xi / j xi 2 Xl g �

B � max1�i�d 0fw.xi / j xi 2 Xl g C jYl j. To deter-
mine the optimal value Bopt of B , we can use the
binary search on the interval Œmax1�i�d 0fw.xi / j xi 2
Xl g;max1�i�d 0fw.xi / j xi 2 Xl g C jYl j�. As a result,
the proposed maximum flow algorithm performs at most
dlog jVlC1je D dlognlC1e times to find the optimal load
Bopt for the current tree expansion, where nlC1 D jVlC1j.
As a result, each node y 2 Yl D VlC1 has been assigned
an ancestor xi if f .y; xi /D 1, where f is the value of the
flow and .y; xi / 2 El and anc.y/ D xi , which means that
xi is an ancestor of y in the expanded tree.

What follows is the balancing of the load among the
nodes in V 0

l
D Vl�fu j if there is not any edge .v; u/ 2E
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with u 2 Vl and v 2 VlC1g through the construction of
another bipartite graph Gl;lC1; because none of the
nodes in Vl � V

0
l

will have a descendant in the future
tree expansion, they therefore will not be considered any
more. To achieve the load balance among the nodes
in V 0

l
, we can transform the problem into the maxi-

mum flow and minimum cut problem in a flow network
Nl;lC1 D .s; t ; Gl;lC1; w/ as follows.

Let Vl;i D fu j anc.u/D xi ; xi 2Xl ; u 2 Vl g be the
set of nodes in Vl sharing the same ancestor xi 2 V1.
Then, V 0

l
D[d

0

iD1Vl;i . Clearly, set VlC1 can be parti-
tioned into d 0 corresponding subsets VlC1;i D fy j y 2

VlC1 and xi D anc.y/g, that is, VlC1 D[
d 0

iD1VlC1;i , and
there is not any edge in Gl;lC1 between nodes in Vl;i and
VlC1;j if i ¤ j , 1� i , and j � d 0. Then, the optimal value
of the maximum load among the nodes in V 0

l
is within

the interval between max1�i�d 0
˚
djVlC1;i j=jVl;i je

�
and

max1�i�d 0
˚
djVlC1;i j=jVl;i je C jVlC1;i j

�
. The flow net-

work Nl;lC1 is then defined, where s and t are the

source and destination nodes; there is a directed edge
from s to each v 2 VlC1 with capacity 1. There is a
directed edge from s to each u 2 V 0

l
with capacity

1, and there is a directed edge from each u 2 V 0
l

to t with capacity B , while the value of B will be
assigned dynamically, where the value range of B is within�
max1� i �d 0

˚
jVlC1;i j=jVl;i j

�
;max1� i�d 0

˚
.jVlC1;i j=

jVl;i j/C jVlC1;i j
��

. For each edge hu; vi 2 E 0
l
, its capac-

ity is 1. If there is a flow f 0 in Nl;lC1 from s to t

with jf 0j D jV 0
l
j C jVlC1j under the optimal capacity

assignment B 0opt, then for each edge f .v; u/D 1, u will
be the parent of v in the expanded tree, where u 2 V 0

l
and v 2 VlC1. The detailed routine of tree expansion from
layer l to layer l C 1 is described in Routine 1.

We, thus, have the following lemma.

Lemma 1. Let T be a partial load-balanced tree
including the nodes from layer 1 to layer l . Routine
Top_Down_Load expands the tree by including the

1268 Wirel. Commun. Mob. Comput. 2013; 13:1263–1280 © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/wcm



W. Liang, J. Luo and X. Xu Network lifetime maximization in sensor networks with a mobile sink

nodes in layer l C 1. Then, the maximum load among the
children of the tree root in the resulting tree is the optimal
in terms of the expansion to layer l C 1, 1� l < h.

Proof . Let U D fu1; u2; : : : ; ud g be the set of d chil-
dren of the root node and the weight w.ui / of each node
ui 2 U be the number of descendants of ui in the par-
tial load-balanced tree, that is, the tree spans all the nodes
from layer 1 to layer l . Let U 0 D

˚
u01; u

0
2; : : : ; u

0
d 0

�
be

a subset of U . For a node v 2 Vl , if there is at least a
neighboring node y 2 VlC1 (i.e., .v; y/ 2 E), then the
ancestor u 2 V1 of v is included by U 0. Otherwise, the
ancestor of v will not be in U 0. It is obvious that the maxi-
mum load among the children of the root node in the partial
load-balanced tree is Lmax.l; U / D maxfw.u/ j u 2 U g.
Denote by Lmax.l; U

0/ D maxfw.u0/ j u0 2 U 0g. Notice
that the nodes in U � U 0 will not increase their load in
the future tree expansion, because they do not have any
descendants in layer l C 1. Instead, only the nodes in U 0

will increase their load during the expansion. Thus, the
maximum load among the nodes in U 0 in the resulting tree
is within the interval ŒLmax.l; U

0/; Lmax.l; U
0/C jVlC1j�.

Routine Top_Down_Load aims to find the optimal max-
imum load Bopt through assigning each outgoing link inci-
dent to each node inXl in flow networkNl with a capacity
that is the approximation of the optimal load, while the
optimal load can be found through the binary search on its
value interval. Because the value of the maximum flow f

in Nl from s to t must be equal to
P
x2U 0 w.x/C jVlC1j,

this means that all the nodes in VlC1 must be included in
the tree expansion. �

3.2. An example

We use here an example to illustrate the tree expan-
sion. From Figure 1, it can be seen that the constructed
tree is spanning the nodes in the first two layers (l D 2).
Now, we expand the tree to include the nodes in the
third layer. To do so, we construct an auxiliary bipartite
graph G2 D .fx1; x3g; fy1; y2; : : : ; y7g; E2; w/, where
w.x1/D w.x3/D 3 while w.yj /D 1 for all j s with
1� j � 7. Notice that x2 is not included in G2 because
it does not have any descendant in the third layer.

To construct a flow network N2 D .s; t ; G2; c/, where
s and t are the source and destination nodes, we assign
each outgoing link incident to a node in U 0 a capac-
ity equal to the maximum load B , where the value
of B is assigned dynamically and its range is within
Œmaxfw.x1/; w.x3/g;maxfw.x1/; w.x3/gCjV3j�D Œ3;10�.

The maximum flow found in N2 corresponds to an
ancestor assignment of the nodes in Y2. That is, x1 is
the ancestor of nodes y1, y2, and y3, whereas x3 is the
ancestor of nodes y4, y5, y6, and y7 in the expanded tree.
Having this ancestor assignment of the nodes in Yl D VlC1
(see the graph in the right-hand side of Figure 2(a)), an
induced subgraph G2;3 by the nodes in V 02 and V3 is con-
structed, illustrated in Figure 2(a), and its corresponding
flow network N2;3 is shown in Figure 2(b). The maximum
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Figure 2. The constructions of Gl;lC1 and Nl;lC1 with l D 2 and the expanded resulting tree including the nodes in layer 3.

flow and minimum cut problem in N.2; 3/ are then solved,
and the optimal capacity B 0opt is obtained. Consequently,
the resulting tree including the nodes in layer 3 is shown in
Figure 2(c).

The load-balanced spanning tree rooted at location r

can then be constructed layer by layer. We refer to this
algorithm as algorithm Balanced_Load_Tree(G; r).
The rest is to analyze the time complexity of the proposed
algorithm by the following theorem.

Theorem 1. Given a wireless sensor network G.V ;E/
with the sink r at a specified location, there is a heuris-
tic algorithm Balanced_Load_Tree for finding a

load-balanced spanning tree rooted at r , which takes
O.mn logn/ time, where nD jV j is the number of sensors
and mD jEj is the number of links in the network.

Proof . The nodes in the network are partitioned into h dis-
joint subsets, and the node partitioning takes O.m C n/
time, using the BFS technique. The problem then is to con-
struct a load-balanced spanning tree rooted at r . Assume
that the tree constructed so far contains all the nodes from
layer 0 to layer l . To expand the tree by including the
nodes in layer .l C 1/, we construct a node-weighted cor-
responding bipartite graph Gl .Xl ; Yl ; El ; w/, which con-
tains jXl j D d 0 � d D jV1j D n1 children of the root
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node and nlC1 D jVlC1j D jYl j sensor nodes. We claim
that jEl j � j.Vl � VlC1/ \ Ej by the following obser-
vation. Consider four links .va; yi / 2 E, .vb ; yj / 2 E,
.va; yj / 2 E, and .vb ; yi / 2 E. If both va and vb share
the same ancestor x in V1, then there are only two edges
.x; yi / 2 El and .x; yj / 2 El in Gl by the construc-
tion of Gl . Let ml D jEl j. Then, the construction of Gl
takes O.n1 C nlC1 Cml / time because the size of Gl is
O.nlC1C d

0Cml /DO.n1C nlC1Cml /.
The corresponding flow network Nl .s; t ; Gl ; c/ of Gl

contains O.n1 C nlC1/ nodes and O.ml C n1 C nlC1/
links. To find an optimal balanced load Bopt for this
layer expansion, we will perform the maximum flow
algorithm in Nl at most dlog jVlC1je times, while this
algorithm takes O.n0m0/ time in a graph with n0 nodes
and m0 links [25]. Thus, each call of the maximum flow
algorithm in Nl takes O..nlC1 C n1/ml / time. The
constructions of Gl;lC1 and Nl;lC1 can be performed
in O.jVl j C jVlC1j C jEl j/ D O.nl C nlC1 C ml /

time, whereas the semi-matching computation in Gl;lC1
can be performed in O..nl C nlC1/jE

0
l
j lognlC1/ time,

by applying the maximum flow and minimum cut algo-
rithm in Nl;lC1 for dlog jVlC1je times, while jE 0

l
j �

j.Vl � VlC1/\Ej �ml and
Ph�1
lD1 ml Dm. Following

algorithm Balanced_Load_Tree, the construction
of load-balanced spanning tree takes

Ph�1
lD1 O..nlC1 C

n1/ml lognlC1/ D
Ph�1
lD1 O..n1 C nlC1/ml logn/ DPh�1

lD1 O.n1ml logn/ C
Ph�1
lD1 O.nlC1/ �

Ph�1
lD1 O.ml

logn/DO.mn logn/ time, because nlC1� n,
Ph
lD1 nl D

n, and
Ph�1
lD1 ml D

Ph�1
lD1 jEl j �

Ph�1
1Dl j.Vl � VlC1/ \

Ej D j [h�1
lD1

Œ.Vl � VlC1/\E�j � jEj Dm. �

4. HEURISTIC ALGORITHMS FOR
FINDING SOJOURN TOURS FOR
THE MOBILE SINK

As the distance-constrained mobile sink problem is NP-
hard, in this section we focus on developing heuris-
tic algorithms by proposing a basic algorithm first, fol-
lowed by presenting an improved algorithm based on the
basic algorithm.

4.1. Overview of the basic algorithm

The idea behind the proposed algorithm is to fully uti-
lize the load-balanced spanning tree to prolong the sojourn
time of the sink at each location, which then serves as the
sojourn time profile of the sink at that location. It finally
finds a sojourn tour and actual time schedule at each cho-
sen location for the sink such that the network lifetime is
maximized, provided that all specified constraints on the
mobile sink are met. Specifically, the proposed algorithm
consists of the following three stages.

It first builds a LBT rooted at each sensor location and
determines the sojourn time profile of the sink at that

location, assuming that the sink will sojourn at the loca-
tions of all sensors. It then finds a sojourn tour (also
referred to as the sink tour or a visiting sensor sequence)
based on the sojourn time profile at each sensor loca-
tion, provided that maximum travel distance per tour is
no greater than L, the maximum moving distance at each
movement is no more thanRmax, and the minimum sojourn
time at each sojourn location is no less than Tmin. It finally
determines the exact sojourn time at each location in the
sojourn tour.

4.2. The sojourn time of the sink at the
location of each sensor

To calculate the duration of the sink staying at the loca-
tion of a sensor, we construct a load-balanced spanning
tree rooted at that location. Let Tv be the load-balanced
tree rooted at the location of sensor v 2 V and cv.u/ be the
number of descendants of sensor u 2 V in Tv . Notice that
a node is a descendant of itself. Thus, the amount of energy
consumed at u is ecv.u/ D l � cv.u/ in Tv if each sensor
sends l-unit-length data to the sink using Tv . Let ti be the
sojourn time of the sink at the location of sensor vi and
RE.vi / the residual energy of sensor vi , 1 � i � n. The
network lifetime maximization problem without distance
constraint on the mobile sink is to

maximize
nX
iD1

ti (1)

which is subject to

nX
iD1

ecvi .vj / � ti � RE.vj /; for all j ; 1� j � n (2)

ti � 0; 1� i � n (3)

Notice that the above linear programming is polyno-
mially solvable. The amount time ti at location vi is a
lower bound of the actual sojourn time of the sink at the
location if it is chosen as a sojourn location because all
sensor locations are counted in the calculation of sojourn
time profile.

Inequality (2) implies that the total amount of energy
consumed at each sensor vj is no more than the amount of
energy it has. Assume that IE is the initial energy capacity
of the sensor and RE.vj /D IE initially.

4.3. Finding a sojourn tour for the
mobile sink

To find a sojourn tour for the mobile sink, we will reduce
the problem to a distance-constrained shortest path prob-
lem as follows.

A weighted, directed graph GD D .VD ; ED ; !; d/ is
constructed, where VD D fvi ;1; vi ;2 j vi 2 V g. Assuming
that the sink initially is located at v0. The sink will start
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from and return to v0 when it finishes the tour. Associ-
ated with each sensor vi 2 V , there are two corresponding
nodes vi ;1 and vi ;2 in GD , and there is a directed edge
in ED from vi ;1 to vi ;2 with weight !.vi ;1; vi ;2/ D ti ,
which is the sink sojourn time profile at location vi and
d.vi ;1; vi ;2/ D 0. There is a directed edge hvi ;2; vj ;1i in
ED from vi ;2 to vj ;1 if the distance from vi to vj is no
more than Rmax, that is, d.vi ;2; vj ;1/ � Rmax, and the
sojourn time at vj is at least Tmin, that is, tj � Tmin, the
associated weight is !.vi ;2; vj ;1/ D 0, and d.vi ;2; vj ;1/
.D d.vi ; vj // is the Euclidean distance between vi and vj .
GD has the following important properties. For each node
vi ;1, there are multiple incoming edges but only one out-
going edge hvi ;1; vi ;2i. For each node vi ;2, there is only
one incoming edge but multiple outgoing edges. The dis-
tance (length) of the two endpoints of each edge is no more
than Rmax.

To find an optimal sojourn tour in G.V ;E/ for the
mobile sink starting from and returning to v0 is reduced
to find a distance-constrained longest path in GD from
a source node vi ;1 to a destination node vj ;2 such that
the weighted sum (in terms of function !) of all edges in
the path is maximized, while the distance sum (in terms
of function d ) of all edges in the path is bounded by
Lvi ;vj D L � d.vi ; v0/ � d.v0; vj /, where L.vi ; vj / is
the distance sum of all edges in the segment of the sojourn
tour from vi to vj . It is well known that the distance-
constrained longest path problem is NP-hard, because the
well-known Hamiltonian path problem is one of its special
cases where no constraints are imposed on its edges. In the
following, we instead propose a heuristic for it.

We first reduce the distance-constrained longest path
problem in GD to the distance-constrained shortest path
problem in another auxiliary graph G0

D
D .VD ; ED ;

!0; d /. The latter in turn will return a feasible solution
to the former. We then perform local improvement on
the feasible solution by including as many qualified loca-
tions (sensors) as possible, provided that the specified
constraints on the mobile sink are still met.

The definition of G0
D

is as follows. For each directed
edge hvi ;1; vi ;2i 2ED ,

!0.vi ;1; vi ;2/D

(
M if ti D 0;
1
ti
� � otherwise:

For each hvi ;2; vj ;1i 2 ED , !0.vi ;2; vj ;1/ D 0, where
M and � are positive constants, tmax D max1�i�nfti g.
The value of M is no less than tmax, and the value of
� is no greater than 1=tmax. For example, M D ntmax
and � D 1=ntmax. The purpose of introducing the term �

is to break a tie between two equal-length shortest paths
between a pair of nodes by favoring the longer sojourn
time 1. The rationale behind is illustrated by the following
example.

Assume that the assignment of edge weights does not
contain the term �. Consider a case where there are two
distance-constrained shortest paths between a pair of nodes

with equal length: one consists of two sensors a and b with
sojourn times of ta D 2 and tb D 2, respectively, whereas
another consists of four sensors c, d , e, and f with sojourn
times of tc D td D te D tf D 4, then, the length of both
paths is 1. Thus, the proposed algorithm can choose either
one. However, it can be seen that the path consisting of
sensors c, d , e, and f delivers a longer network lifetime.
Now, we incorporate the term � into the assignment of edge
weights. Then, the length of the path consisting of sensors
a and b is .1=ta/C .1=tb/ � 2� D 1 � 2�, and the length
of the path consisting of sensors c, d , e, and f is .1=tc/C
.1=td /C.1=et/C.1=tf /�4�D 1�4�. Thus, the proposed
algorithm will choose the shorter one consisting of sensors
c, d , e, and f , not the one consisting of sensors a and b.

The distance-constrained shortest path problem in G0
D

is to find a path from a source node vi ;1 to a destination
node vj ;2 such that the weighted sum of the edges in the
path is minimized, while the distance constraint in the path
Lvi ;vj D L�d.v0; vi /�d.v0; vj /must be met. For con-
venience, in the rest of this paper, we say that a path Pvi ;vj
in G0

D
actually means path Pvi;1;vj;2 starting from node

vi ;1 and ending at node vj ;2. There are several approx-
imation algorithms for distance-constrained shortest path
problem, and the state-of-the-art one is due to Chen et al.
[26], which provides an optimal solution by relaxing the
distance constraint to .1 C �/Lvi ;vj where � is constant
with 0� � < 1.

To find a sojourn tour for the mobile sink, it finds
a distance-constrained shortest path in G0

D
such that

the sum of the sojourn time of the sink at each loca-
tion in the path is maximized. Let Pu;v be a distance-
constrained shortest path in G0

D
from node u to node

v. Let C.Pu;v/ D
P
e2Pu;v

!0.e/ be the weighted sum
of the edges in Pu;v and D.Pu;v/ D

P
e2P.u;v/ d.e/

be the distance sum of the edges in Pu;v . Then,
D.Pu;v/ � L � d.v0; u/ � d.v0; v/. The sum of sojourn
times of the sink at the nodes in Pu;v is T .Pu;v/DP
hvi; 1;vi;2i2Pu;v

˚
1=Œ!0.vi ;1; vi ;2/C �� j if !0.vi ;1; vi ;2/

¤M gC
P
hvi;2;vj;1i2Pu;v

!0.vi ;2;vj ;1/D
P
hvi;1;vi;2i2Pu;v

ti . The original problem is to find a sojourn tour for

the mobile sink Pvi0 ;vj0
such that T

�
Pvi0 ;vj0

�
D

maxvi2VD ; vj2VD
˚
T
�
Pvi ;vj

��
.

Assume that a feasible sink tourP D hv0; v1; : : : ; vk ; v0i
has been found. Let D.P / D

Pk
iD0 d.vi ; viC1/; clearly,

D.P / � L. We now perform local improvement on path
P such that the resulting path P 0 (if existent) contains
more sojourn locations while all specified constraints are
met. What follows is to check whether there are a sen-
sor vj 62 P and a sensor vi 2 P with i ¤ 0 such that
d.vj ; vi / � Rmax, d.vj ; viC1/ � Rmax, tj � Tmin, and
D.P / C d.vj ; vi / C d.vj ; viC1/ � d.vi ; viC1/ � L.
If yes, an improved path P 0 D hv0; v1; v2; : : : ; vi ; vj ;

viC1; viC2; : : : ; vk ; v0i is found. If there are multiple such
candidate sensors vj 62 P , the one with the maximum
sojourn time tj among the candidate sensors will be cho-
sen. This local improvement continues until no further
improvement is possible. It is obvious that the time spent
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for local improvement is no more thanO.n2/. The detailed
algorithm for stage two is described in Routine 2.

4.4. Calculating the sojourn time at each
location in the sink tour

Let Pvi0 ;vj0 be a found path in G0
D

with the maximum
value of T .Pvi0 ;vj0 /. Then, the sojourn tour of the mobile
sink is determined, which is Pvi0 ;vj0 . For the sake of sim-
plicity, let v1; v2; : : : ; vk be the sensor sequence of k sen-
sors in Pvi0 ;vj0 . Then, the current solution consisting of ti
for all i with 1 � i � k is a feasible solution to the orig-
inal problem. To find a better solution to the problem of
concern, we calculate the actual sojourn time t 0i of the sink

at each location vi such that
Pk
iD1 t

0
i �

Pk
iD1 ti , where

t 0i D ti C�ti , and the calculation of �ti is as follows:

maximize
kX
iD1

�ti ; (4)

which is subject to

kX
iD1

ecvi .vj / ��ti � IE�
kX
iD1

evvi .vj / � ti ;

for all j ; 1� j � n:

(5)

�ti � 0; 1� i � k: (6)
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4.5. Algorithm

In summary, the proposed heuristic algorithm is described
in Algorithm 1.

We refer to Algorithm 1 as algorithm CSPLI and have
the following theorem.

Theorem 2. Given a wireless sensor network G.V ;E/
and a mobile sink with the maximum travel distance L,
the maximum moving distance Rmax, and the minimum
sojourn time Tmin, there is a heuristic algorithm CSPLI
for the distance-constrained mobile sink problem, which
takes O.mn2 lognC .n2mCn3 logn/.L=�// time, where
n is the number of sensors, m is the number of edges in G,
and � is a constant with 0 < � � 1.

Proof . We first show that algorithm CSPLI delivers a fea-
sible solution to the distance-constrained mobile sink data
collection problem. Following the construction of auxil-
iary directed graph G0

D
, let Pvi0 ;vj0 D hv1; v2; : : : ; vki

be the sojourn tour for the mobile sink by the routine
Find_Sink_Tour; clearly, the end-to-end distance of

Pvi0 ;vj0
isD

�
Pvi0 ;vj0

�
� L�d

�
v0; vi0

�
�d

�
v0; vj0

�
,

and d.vi ; viC1/ � Rmax for all i , 1 � i � k � 1. Mean-
while, the total sojourn time of the sink derived from path
Pvi0 ;vj0

is the maximum one in G0
D

. The local improve-
ment on the feasible solution obtained also meets the dis-
tance constraint. Thus, the sink tour obtained at stage 2 is a
feasible solution of the problem. That is, the total travel
distance of the sink tour is bounded by L, the distance
between two neighboring nodes vi and viC1 is no more
than Rmax, ti � Tmin, and tiC1 � Tmin if i ¤ 0. Within
stage 3, the sojourn time t 0i of the sink at location vi is

maintained no less than ti , that is, t 0i D ti C �ti � ti �

Tmin. Therefore, the solution is a feasible solution. It can
also be seen that

˝
t 01; t
0
2; : : : ; t

0
k

˛
is a feasible solution of the

problem, because its extension
˝
t 01; t
0
2; : : : ; t

0
k
; 0; 0; : : : ; 0

˛
is

a solution to inequality (2).
We then analyze the time complexity of the pro-

posed algorithm. Following algorithm CSPLI, step 2 takes
O.mn2 logn/ time by Theorem 1, whereas step 3 takes
O.n2/ time. Step 4 takes O.n3/ time to solve a lin-
ear programming. The running time of step 5 is ana-
lyzed as follows. The construction of G0

D
takes O.n2/

time. It is required to find O.n2/ pairs of distance-
constrained shortest paths inG0

D
, while finding each of the

paths takes O..m C n logn/.L=�// time [26]. In total, it
takesO..n2mCn3 logn/.L=�// time. The local improve-
ment on the found sink tour takes O.n2/ time. Step 6
takes O.n3/ time. Thus, the proposed algorithm takes
O.mn2 lognC .n2mC n3 logn/.L=�// time. �

4.6. An improved algorithm

In this subsection, we propose an improved algorithm
for the problem of concern by using the basic algorithm
CSPLI as its subroutine. If the sojourn time profile tv at
location v is less than the minimum sojourn time threshold
Tmin, then v will not be included in any sojourn tour by
algorithm CSPLI, because the distance-constrained short-
est path in G0

D
is constructed based on the sojourn time

profile of each potential sojourn location. However, if v is
chosen as a sojourn location of the mobile sink, the actual
sojourn time t 0v of the sink at v may be above Tmin, because
the calculation of tv is based on the assumption that the
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sink will sojourn at all the potential sojourn locations. In
fact, the sink only sojourns at some of all potential loca-
tions because of its travel distance constraint. To find a
better solution, we further refine the solution of the pro-
posed heuristic by including the locations like v in the
sojourn tour finding. The strategy adopted here is to reduce
the minimum sojourn time threshold from Tmin to T 0min. A
new candidate solution is then delivered based on this new
threshold. The candidate solution will then be examined to
see whether the actual sojourn time at each sojourn loca-
tion is no less than Tmin. If so, it is a feasible solution;
otherwise, the next candidate solution will be examined
by doubling the current threshold. In the end, a feasible
solution with the maximum network lifetime will be cho-
sen as the solution to the problem. To this end, Routine 3
Is_Candidate will examine whether a candidate solu-
tion is a feasible solution by returning a ‘true’ or ‘false’
boolean value.

When the found path P
�
T 0min

�
is a feasible solution, the

actual sojourn time at each location v 2 P
�
T 0min

�
can be

calculated by stage 3 of algorithm CSPLI. Let �Tmin be
the new minimum sojourn time threshold initially. It takes
blog.Tmin=�Tmin/c calls of routine Find_Sink_Tour
and stage 3 of algorithm CSPLI to find a candidate sojourn
tours and the actual sojourn time at each location in the
tours. One of the feasible tours with the maximum sum
of sojourn times will be chosen as the solution to the

distance-constrained mobile sink problem. The improved
algorithm, referred to as algorithm RCSPLI, is described
in Algorithm 2.

We, thus, have the following theorem.

Theorem 3. Given a wireless sensor network G.V ;E/
and a mobile sink with the maximum travel distance
L, the maximum moving distance at each movement
Rmax, and the minimum sojourn time Tmin, there is a
heuristic algorithm RCSPLI for the distance-constrained
mobile sink problem, which takes O.mn2 lognC Œ.n2mC
n3 logn/.L=�/� � log.Tmin=�Tmin// time, where n is the
number of sensors and m is the number of edges in G, �
is a constant with 0 < � � 1, and �Tmin .� Tmin/ is a
positive constant.

Proof . The proof is similar to the one for Theorem 2,
omitted. �

5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of proposed
algorithms. We also investigate the impacts of constraint
parameters Rmax, L, and Tmin on the network lifetime
through experimental simulations.
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5.1. Simulation environment

We consider a wireless sensor network consisting of homo-
geneous sensors with network size from 20 to 400 ran-
domly distributed in a 200m � 150m rectangle region.
The sensor locations are known a priori. The transmis-
sion range R of each sensor is 25 m, and the initial energy
capacity of each sensor IE is 50 J. The data generation
rate is raD 4 bits/s. We assume that location .0; 0/ is the
center coordinate of the monitoring region. A mobile sink
located at v0 with (150 100) is initially located at the out-
side of the monitored region. Assume that all potential
sojourn locations of the mobile sink are co-located with
the sensors.

In our experiments, we vary the maximum travel dis-
tance of the mobile sink L from 350 to 525 m and the
maximum distance at each movement Rmax from 25 to
75 m. Notice that the travel distances of the sink from
v0 to its first sojourn location and from its last sojourn
location to return to v0 have not been constrained by
Rmax. The minimum sojourn time Tmin at each sojourn
location varies from 600 and 4800 s. In all our experi-
ments, we adopt the actual energy consumption parameters
of a real sensor, MICA2 mote [27], where the amounts
of energy by transmitting and receiving 1-bit data are
et D 14:4� 10

�6 and er D 5:76� 10
�6 J/bit, respectively.

The value in each figure is the mean of the results by apply-
ing each mentioned algorithm to five different network

topologies of same size. It must be mentioned that the run-
ning time is obtained on a Pentium 4 3.2-GHz machine
with 1-GB RAM.

To investigate the performance of algorithms CSPLI
and RCSPLI, we propose one of their variants, referred
to as a greedy heuristic, as a benchmark for the compar-
ison purpose. This heuristic consists of three stages, too.
The only difference between them lies in stage 2. Instead
of constructing auxiliary graphs by reducing the problem
to a distance-constrained shortest path problem, the greedy
heuristic lists the locations of all sensors in decreasing
order of sojourn time profiles of the sink at them. In other
words, let vi1 ; vi2 ; : : : ; vin be the sorted sensor sequence
by their sojourn time profile in increasing order, that is,
tij � tijC1 for all j with 1� j < n. The greedy algorithm
proceeds as follows. Assume that the sink tour is initially
empty. The sink tour will be expanded greedily by adding
one sensor at one time through checking the sensors in the
sorted sequence. Specifically, let P D hs1; s2; : : : ; sl i be
the sink tour constructed so far, and assume that these sen-
sors whose ranks are up to j � 1 have been examined. We
now explore the next sensor vij by checking whether the
following constraints are met.

D
�
Pv0;sl

�
C d

�
sl ; vij

�
C d

�
vij ; v0

�
� L; d

�
sl ; vij

�
�Rmax; and tij � Tmin:
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If yes, sensor vij will be appended to the end of P to be
part of the sink tour, and the sink tour P D hs1; s2; : : : ; sl ;
slC1i is updated with slC1 D vij . Otherwise, it explores
the next sensor vijC1 , and so on. The sink tour P will be
constructed after examining all sensors in the sequence.
We refer to this simple greedy heuristic as algorithm
Sorting-based Sink_Tour, or SST for short.

5.2. Performance evaluation of the
proposed heuristic

We first evaluate the performance of a heuristic algorithm
A, based on the sojourn time profile. Let Topt be the opti-
mal network time and Tupper be an upper bound on Topt,
where Tupper D

Pn
iD1 ti . Clearly, Topt � Tupper. Let TA DPk

jD1 t
0
i be the network lifetime delivered by algorithm A,

where the sojourn tour of the sink contains k sensor loca-
tions. Then, the performance ratio �A of algorithm A to
the optimal one is defined as follows:

�A D
TA
Topt
�

TA
Tupper

D

Pk
iD1 t

0
iPn

iD1 ti
; (7)

where algorithm A can be either of algorithms RCSPLI,
CSPLI, or SST.

Figure 3 plots the ratio curves of different algorithms,
where �RCSPLI, �CSPLI, and �SST represent the performance
ratios (approximation ratios) of algorithms RCSPLI,
CSPLI, and SST, respectively, from which it can be seen
that the performance of algorithm RCSPLI is marginally
better than that of algorithm CSPLI. The approximation
ratio of the network lifetime delivered by both of them is
no less than 40% to 70%, while the approximation ratio of
algorithm SST is no less than 30% to 55%, which is the
worst among them. With the increase of the network size,
the approximation ratio of all three algorithms decreases.
Note that the estimate to the optimal network lifetime in
Equation (7) is very conservative. The actual optimal net-
work lifetime will be much less than Tupper, because of the
maximum travel distance constraint on the mobile sink.

Figure 3. The performance ratios of various algorithms.

We then study the quality of the solutions delivered by
algorithms RCSPLI, CSPLI, and SST against the upper
bound Tupper on the optimal solution MILP by varying
network sizes. Figure 4(a) plots the network lifetimes by
algorithms RCSPLI, CSPLI, and SST when the network
size varies from 20 to 35 under the constraints Rmax D

35 m, L D 400 m, and Tmin D 600 s. It can be seen that
the performance of algorithms RCSPLI and CSPLI are
nearly optimal when the network size is no greater than
35. Although algorithm SST is inferior to both algorithms
RCSPLI and CSPLI, it still achieves around 94% of
the approximation ratio of the optimal one. Overall, the
average performance of RCSPLI and CSPLI are around
98:55% and 98% of the optimal one, respectively.

We finally evaluate the performance of heuristics
RCSPLI, CSPLI, and SST, by varying the network size
from 100 to 400, while keeping the other constraint param-
eters unchanged. It can be seen from Figure 4(b) that
algorithms RCSPLI and CSPLI outperform algorithm
SST in all cases. Specifically, the performance of algorithm
RCSPLI is about 165% of that of algorithm SST, whereas
the performance of algorithm CSPLI is around 158% of
that of algorithm SST when n D 250 in the best case;
otherwise, it is 117% of that of SST when nD 100.

5.3. Impacts of constraint parameters on
the network lifetime

The rest is to analyze the impacts of constraint parame-
ters Rmax, L, and Tmin on the network lifetime. Notice
that the value of Rmax is closely related to the buffer
size of sensors; the value of L in a certain degree will
restrict the sink mobility. Intuitively, the larger the values
of Rmax and L are, the longer the network lifetime will
be, because they give the mobile sink a high flexibility to
choose its next sojourn location (from its current location).
Similarly, the smaller the minimum sojourn time threshold
Tmin is, the longer the network lifetime will be, because
it implies that the energy consumption among the sensors
can be better balanced through the frequent movement of
the mobile sink.

Figure 5(a) plots the network lifetimes delivered by dif-
ferent algorithms in a network consisting of 200 sensors,
where Rmax and Tmin are fixed at 35 m and 600 s, respec-
tively, while the value ofL varies from 350 to 525 m. From
this figure, it can be seen that the gap of network life-
time between algorithms RCSPLI (or CSPLI) and SST
increases with the increase of the value of L. However,
this improvement on the network lifetime is not unlim-
ited, and any further improvement becomes insignificant
when L reaches 500 m for algorithm RCSPLI, 475 m for
algorithm CSPLI, and 450 m for algorithm SST.

Figure 5(b) shows the network lifetimes delivered by
different algorithms in a network consisting of 200 sen-
sors, where L and Tmin are fixed at 400 m and 600 s,
respectively, while Rmax varies from 25 to 100 m. From
this figure, it can be seen that although Rmax heavily
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(a) The optimal solution vs feasible solutions. (b) Performance of different heuristics.

Figure 4. Network lifetime delivered by different algorithms.

(a) Impact of L on network lifetime when n =  200, Rmax = 35m,

and Tmin = 600s.

(c) Impact of Tmin on network lifetime when n =  200, L = 400m,

and Rmax = 35m.

(b) Impact of Rmax on network lifetime when n = 200, L =

400m, and Tmin = 600s.

(b) Impact of Rmax and L on network lifetime when n = 200 and

Tmin = 600s.

Figure 5. The impact of various constraint parameters on the network lifetime.

affects the network lifetime when it is no greater than
75 m for algorithms RCSPLI, CSPLI, and SST, this effect
becomes diminishing with the further increase on the value
of Rmax.

Figure 5(c) plots the network lifetime curves of 200-
sensor networks when Rmax and L are fixed at 35 and
400 m, while the value of Tmin is ranged from 600 to
4800 s. Figure 5(c) implies, with the increase of the value

of Tmin, that the network lifetime actually decreases. Once
again, algorithm RCSPLI outperforms both algorithms
CSPLI and SST. If the value of Tmin is sufficiently large,
it may lead to the sink tour consisting of one single sensor
only, which means that if the overhead on the setting up of
the next routing tree is excessive, keeping the mobile sink
at the stationary rather than mobile status is a wise choice
in the prolongation of network lifetime.
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Figure 6. The performance ratios of various algorithms based
on the load-balanced routing tree and the breadth-first

search tree.

Figure 5(d) illustrates the impact of varying constraint
parameters Rmax and L on the network lifetime by
algorithms RCSPLI, CSPLI, and SST when Tmin D600 s
is fixed. With the increase of L, the network lifetime
becomes longer and longer, because the mobile sink can
sojourn more locations. However, the performance of
algorithms CSPLI and SST will not be improved when
L reaches 450 and 400 m and Rmax reaches 25 m. In
contrast, by increasing Rmax without changing L, the net-
work lifetime may not necessarily increase as well. With
the increase of both Rmax and L, the network lifetime is
further prolonged. It is noticed from Figure 5(d) that the
impact of Rmax on the network lifetime becomes dimin-
ishing, with the further increase of its value. For example,
whenRmax D 50m andRmax D 75m, any further increase
of their values does not result in a much better network
lifetime for neither algorithms RCSPLI and CSPLI nor
algorithm SST.

5.4. Performance evaluation via
existing solutions

In this subsection, we compare the performance of the pro-
posed algorithm against the one in our previous work [19].
In paper [19], we studied the distance-constrained mobile
sink problem and used a BFS tree instead of the LBT at
each sojourn location for data gathering.

Figure 6 illustrates the network lifetime curves deliv-
ered by different algorithms, based on the LBT and the
BFS tree. It clearly demonstrates that the algorithms based
on LBT outperform the algorithms based on BFS trees.
On average, the performance ratios by different algorithms
based on LBT and BFS tree are 145.5% for RCSPLI,
149.8% for CSPLI, and 133.2% for SST.

6. CONCLUSION

In this paper, we have studied the network lifetime maxi-
mization problem for time-sensitive data gathering under a

mobile sink environment, which is subject to the follow-
ing constraints on the mobile sink: the maximum travel
distance per tour, the maximum moving distance, and the
minimum sojourn time at each sojourn location. We first
formulated the problem as a multiple-constrained opti-
mization problem. We then devised a novel three-stage
heuristic. We finally conducted experiments by simulations
to evaluate the performance of the proposed algorithms
against existing ones as well as the optimal one. The exper-
imental results demonstrate that the proposed heuristic is
very promising, and the solution obtained is fractional of
the optimal one.
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