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Abstract—With the advent of Network Function Virtualization
(NFV) technology, more and more mobile users make use of
virtual network services in Mobile Edge Computing (MEC)
networks. Each service request not only requests for a service
but also a Service Function Chain (SFC) associated with the
request. How to effectively allocate resources in MEC to meet
the resource demands of user service requests to maximize the
expected profit of the network service provider poses a great
challenge. Most existing studies considered resource allocation
and scheduling in MEC for user request admissions, under the
assumption that the amounts of different resources demanded
by each request are given a prior and do not change during
the execution of the request. In practice, the resource demands
during the implementation of a request are dynamically evolving.
This uncertainty of resource demands at different execution
stages of the request does impact the service quality and the profit
of network service providers. Thus, providing robust services to
users against their resource demand uncertainties is a critical
issue. In this paper, we study the robust service function chain
placement (RSFCP) problem under the uncertainty assumption
of both computing resource and data rates demanded by request
executions, through the placement of SFCs. We first formulate
the RSFCP problem as a Quadratic Integer Programming (QIP)
and show that the problem is NP-hard. We then develop a
near-optimal approximation algorithm for it, by adopting the
Markov approximation technique. We also analyze the proposed
approximation algorithm with the optimality gap, and the bounds
on the convergence time and perturbation caused by resource
demand uncertainties. We finally evaluate the performance of the
proposed algorithm through analytical and empirical analyses.
Experimental results demonstrate that the proposed algorithm is
promising, compared with existing baseline algorithms.

Index Terms—Mobile Edge Computing networks; Network
Function Virtualization (NFV); uncertain resource demands
and measurement; Service Function Chain placement; Markov
approximation technique; resource allocation and optimization;
QoS-aware request admissions; performance analysis.

I. INTRODUCTION

With the advance of mobile communication technology
and mobile device fabrications, more and more mobile de-
vices including mobile phones, tablets, and various sensors
are deployed for business, entertainment, social networking,
smart cities, and the Internet of Things (IoT) [16], [17]. The
demanded computing and storage resources for various appli-
cations by mobile users grow exponentially [18]. Mobile Edge
Computing (MEC) facilitates the offloading of computing-
intensive tasks from mobile devices with low latency, by
utilizing cloudlets co-located with Access Points (APs) in the
proximity of mobile users [9].
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Traditional network service providers provide services to
their users with Network Functions (NFs) that are imple-
mented on dedicated middleboxes [13]. However, the deploy-
ment of various middleboxes for different NFs usually incurs
high instantiation expenses, complex management, and weak
extensibility [37]. Network Function Virtualization (NFV) as
a promising technology recently is introduced to implement
Virtualized Network Functions (VNFs) as software in Virtual
Machines [28], which enables network service providers to
dynamically scale up or scale down their service provisioning
to meet the Quality of Services (QoS) of users [19]. In reality,
most mobile users not only request network services but also
have specified service requirements such as Service Function
Chain (SFC) and latency requirements [27], where an SFC is
a sequence of VNFs that directs the data traffic flow of the
request to pass through the listed VNFs in their specified order
through automatic interconnection and resource allocation [9].
For each mobile user request, a certain SFC is requested
to be coordinated and embedded into some physical nodes
(cloudlets) in an MEC network in consideration of resource
and latency constraints, this is the service function chain
placement (SFCP) problem [37].

Service robustness is crucial to limit the performance degra-
dation of network services with unpredictable changes, due to
dynamic resource demands [1]. Most previous studies con-
sidered the SFCP problem under the assumption of accurate
amounts of resources demanded for its VNF instance place-
ments of each request [2], [12], [21], [30], [34], [37], [38],
[39]. In reality, there is an uncertainty of resource demands
during various stages of a request implementation [32]. In ad-
dition, there exists potential blockage during the transmission
of 5G mmWave signals [11]. And the resource demands are
time-varying to guarantee high-quality task offloading [40]. In
this paper, we assume that the demanded computing resource
and data rate of a request are different at its different execution
stages, and we refer to this problem as the robust service
function chain placement (RSFCP) problem, which poses the
following three challenges. (1) Optimization of SFC place-
ments: The requested VNF instances are first instantiated into
cloudlets under the cloudlet capacity constraint. Then, VNF
instances will be chained in the specified order in the SFC,
subject to both the link capacity constraint and the latency
requirement of the request. (2) Uncertain resource demands:
During the request execution period, the request may demand
more resources than the ones initially allocated to it, then
the scheduling will be infeasible, and an admitted request
may never fully executed. Consequently, the network service
provider will earn much less profits due to underestimating
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the resource demands of each admitted request. (3) Inaccu-
rate measurements: As the RSFCP problem depends heavily
on real-time measurements of system features in the MEC
network (e.g., dynamic resource consumptions of different
components such as cloudlets and links), it is difficult to
obtain accurate measurements on these features in order to
achieve global optimality. The actual profit collected could be
perturbed from the initially expected one.

The novelty of this paper lies in the formulation of a novel
RSFCP problem in MEC environments, under the assumption
of both demanded resource uncertainty and measurement
inaccuracy, and a near-optimal approximation algorithm with
a good performance guarantee for the problem is devised.

The main contributions of this paper are as follows. We first
formulate a novel RSFCP problem with the aim to maximize
the expected profit collected by the network service provider
of an MEC network, under the uncertainty assumption of
both computing resource and data rate demands in the im-
plementation of a user request. We show that the problem is
NP-hard and provide a Quadratic Integer Programming (QIP)
formulation for it. We then develop an efficient approxima-
tion algorithm for it. Specifically, we start with a special
case of the problem where the measurement of the expected
demanded resources for each request admission is accurate,
under which we propose a near-optimal approximation algo-
rithm by adopting the Markov approximation technique, which
can achieve a provable optimality gap. We then extend the
proposed approach to the problem of concern, for which we
show that the proposed algorithm is still applicable, and the
solution delivered has a moderate optimality gap with bounded
perturbation errors on the profit measurement. We finally
evaluate the performance of the proposed algorithm through
experimental simulations. Experimental results demonstrate
that the proposed algorithm is promising, and outperforms the
baseline algorithms.

The remainder of this paper is organized as follows. Sec-
tion II reviews related works. Section III introduces the system
model and the problem definition. Section IV formulates a QIP
solution to the problem and shows the NP-hardness of the
problem. Sections V proposes a near-optimal approximation
algorithm for the problem. Section VI evaluates the perfor-
mance of the proposed algorithm by experimental simulations,
and Section VII concludes the paper.

II. RELATED WORK

The extensive effort on the SFCP problem and its variants
have been conducted in the past several years under both
datacenter networks and MEC environments. Particularly, most
studies of SFC request admissions were based on the fixed
resource allocation mode, i.e., all resource demands are fixed
prior to the execution of a request. For example, Beck et al. [2]
proposed a heuristic to coordinate the composition of SFCs
and their embedding into a substrate network with the aim to
minimize bandwidth utilization. Jalalitabar et al. [12] studied
how to efficiently accommodate SFC requests while taking
into account the function dependence in SFCs, the comput-
ing demand, and the bandwidth demand by SFC requests.

They devised a heuristic algorithm for the construction and
mapping of an SFC, by incorporating Dependence Sorting
and Independent Grouping. Liu et al. [21] dealt with a
profit maximization problem by jointly deploying the SFCs of
incoming user requests and readjusting the SFC placement of
accepted user requests. They developed a column generation
based algorithm, considering the resource capacity constraint
and the operational overhead constraint. Sun et al. [30] devised
two heuristic algorithms for the SFC orchestration problem
considering the distinct domains provisioned by different net-
work providers. They proposed two SFC partitioning methods,
and a bidding mechanism-based sub-SFC mapping solution.
Tomassilli et al. [34] studied the problem of deploying reliable
SFCs over a virtualized network function architecture. They
then applied the column generation technique to deal with
the decomposition model derived from the Integer Linear
Programming (ILP) formulation. Zhu et al. [37] took both link
bandwidth and node computing resource capacities into con-
sideration. They devised an efficient online heuristic algorithm
to improve the resource utilization rate by reducing resource
fragmentation in physical networks. Zheng et al. [38] aimed
to minimize the service delay considering the composition and
embedding of hybrid SFCs. They proposed an Eulerian Circuit
based approximation algorithm for the problem under a special
case where each substrate node is assumed to provide only
one unique VNF. They also applied the betweenness centrality
technique to devise a heuristic algorithm for the problem
under the general case. Zhang et al. [39] studied an SFC
placement problem with the aim to minimize the total energy
consumption in a telecom network. They developed efficient
algorithms based on the Markov approximation technique for
the problem under offline and online scenarios, respectively.

On the other hand, there are also several studies focusing
on request admissions through dynamic resource allocation in
MEC, under uncertain resource demands of request implemen-
tations. For example, Ali et al. [1] proposed a novel metric
to measure the robustness of resource allocation in distributed
systems against various perturbations applied to system pa-
rameters. A procedure was also described by them to guide
the efficient resource allocation based on the metric. Chen et
al. [4] devised a QoS-guaranteed SFC outsourcing algorithm
based on the Hidden Markov Model to plan the outsourcing
of SFCs, by predicting state sequences with the highest
probability. Esposito et al. [7] designed an SFC instantiation
prototype to deal with the random failures of processes or com-
munication links, based on a fully distributed asynchronous
consensus mechanism. Eshraghi et al. [8] studied a task
offloading problem with unknown processing time for a three-
tier cloud computing network with multi-processor access
points. They developed an efficient algorithm for the problem
by constructing a series of locally tight approximate geometric
programming problems, which are iteratively updated. Nguyen
et al. [24] investigated the deadline-aware SFC orchestration
problem under the co-located and geo-distributed schemes,
respectively, and developed approximation algorithms for SFC
placement and routing with the partial knowledge of traffic
demands. Psychas et al. [26] considered a job scheduling
problem with random resource requirements to maximize the
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throughput. They proposed two obvious scheduling algorithms
for the problem based on a ‘Best-Fit’ packing method and a
‘universal partitioning’ method, respectively. Wang et al. [35]
studied a parallelized SFC placement problem with the aim to
ensure efficient data transmission while reducing the end-to-
end delay of an SFC. They proposed resource-efficient VNF
placement methods to enhance the resiliency of a parallelized
SFC via multi-flow backups. Zhang et al. [40] investigated a
task offloading problem in a 5G small cell network considering
the uncertainty of both the resource consumption and the
reward of a task. They developed a multi-armed bandit based
online learning algorithm, and its regret and violations are
proved to be bounded sub-linearly.

Unlike the aforementioned studies that assumed the resource
demands of each SFC request are given in advance [2], [12],
[21], [30], [34], [37], [38], [39], this assumption may not
be realistic as the accurate resource demands of a request
implementation are not known until its completion [32]. There
are a few other studies that considered the uncertainty of
the other metrics such as the execution time, throughput,
etc. [1], [4], [7], [8], [24], [26], [35]. The study of [40]
includes the uncertainty of the resource consumption in task
offloading, however, the efficient SFC placement is not taken
into consideration. In this paper we study the RSFCP problem
under the assumption that both computing resource and the
data rate demand of each request dynamically change during
its implementation. We aim to maximize the expected profit
collected by the network service provider through admitting
as many requests as possible. To the best of our knowledge,
we are the first to study this RSFCP problem under the
uncertainty of both computing resource and data rate demands
of all admitted requests, by devising the very first near-optimal
approximation algorithm with a provable performance gap to
the problem.

III. PRELIMINARIES

In this section, we first introduce the system model and
notations. We then define the RSFCP problem precisely.

A. System model

We consider an MEC network that consists of Access Points
(APs), cloudlets, and links connecting the APs. Each cloudlet
in which VNFs are deployed, is co-located with an AP, while
an AP may not necessarily be co-located with any cloudlet.
The MEC network can be represented by an undirected graph
G = (V,E), where V is the set of network nodes and E is
the set of optical links. The set V is the union of the set VC
in which each network node consists of both an AP and a
cloudlet, and the set VA in which each network node consists
of an AP only. For the sake of convenience, in the rest of the
discussion, we only focus on computing resource consumption
in each cloudlet. Each cloudlet v ∈ VC has computing capacity
cv . For a node v ∈ VA without any computing resource, its
capacity is cv = 0. Figure 1 illustrates an MEC network that
consists of six APs and three cloudlets co-located with APs.

Denote by N+(v) the set that contains all neighbors of
node v in G and itself, i.e., N+(v) = {u |(u, v) ∈ E} ∪ {v}.

Cloudlet

Access 
Point
 (AP)

Fig. 1. An illustrative example of an MEC network consisting of six APs
and three cloudlets co-located with APs.

Each link (v, u) ∈ E between nodes v and u has bandwidth
capacity c(v, u). Denote by l(v, u) the latency per unit data
traffic along link (v, u) ∈ E.

Denoted by F the set of VNFs in the MEC and any SFC
consists of some VNFs from F in a certain order. The VNFs
are instantiated in virtual machines on cloudlets, and denote
by cf the required amount of computing resource to deploy
a specific VNF of type f for all f ∈ F . Denote by lvf the
processing time per unit data traffic of VNF f on node v.

B. Uncertainties of demanded computing resource and data
rate

Consider a set R of user requests, we assume that the
demanded data rate Bi of a request ri ∈ R is not precisely
measured, and the amount of computing resource cf of a
VNF f is various at different stages of a request implemen-
tation. In a realistic scenario, the network service provider
is informed of the exact requested SFC instead of the exact
resource requirements of a request (e.g., the demanded data
rate Bi and the amount of computing resource cf for a
VNF of f are not known until the request is processed to
its completion [32]). Although the same types of VNFs are
established, they always have similar but different computing
resource requirements [26]. The network system can perform
some prediction mechanisms to obtain necessary information
about resource demands of admitted requests and to estimate
the amounts of computing resource and data rate demands by
analyzing past traces [8].

We first assume that both the lower bounds and the upper
bounds on the expected demanded computing resource and
the data rate of each request are given in advance, which can
be obtained through analyzing the past traces [8]. Recall that
Bi is the data rate of request ri. Denote by BLi and BUi the
lower and upper bounds on Bi with expectation Bi, which
are given in advance. Similarly, denote by cLf and cUf the
lower and upper bounds on the computing resource demand
cf of a VNF instance of function f with expectation cf .
However, it is difficult to accurately estimate the expected
amount of demanded resources with past traces, due to the
uncertainty of actual resource demands in the execution of
requests. Therefore, the expected amounts of resources may
experience perturbations and the analysis of such perturbations
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will be given later. We also introduce an adjustable control
parameter of cost variation caused by the uncertain resource
demands in our model to achieve a desired stable system
performance, which will be shown later.

C. User requests with both SFC and latency requirements

Each request ri ∈ R is represented by a tuple
〈si, di, Bi,Li, sfci, payi〉, where si and di are the source and
destination nodes of the data traffic of the request, respectively,
Bi is the demanded data rate, Li is the latency requirement,
sfci is the service function chain, and payi is the payment
of the request. For request ri, its latency consists of the
processing times of ri on cloudlets and the communication
latency along links in the routing path of ri [23].

Although the data traffic of request ri has to start from node
si and end at node di, the deployed VNF instances in its SFC
may be in neither of them. Meanwhile, a specific SFC may go
through a node v ∈ V without any VNF instance deployed on
it. Also, the routing path of a request may do retracing multiple
times. Therefore, it is complicated to characterize the traffic
flow under the context of SFCs, and we herein introduce a set
of dummy VNFs, denoted by D, in a routing path construction
of data traffic to ensure that when a routing path for request
ri passes through a node v ∈ V , at least one VNF or one
dummy VNF is deployed on it. Therefore, the deployment of
the dummy VNF helps the Quadratic Integer Programming
(QIP) formulation of the problem, which will be formally
defined later. And the solution by the QIP formulation serves
as the exact solution to the problem. Especially, dummy VNFs
g0 and g1 are always appended at the start and end of sfci.
Dummy VNF g0 is placed on node si while dummy VNF g1

is place on node di. Therefore, it is guaranteed that the data
flow for request ri always starts from node si and ends at
node di. It is worth mentioning that dummy VNFs consume
neither computing resource nor processing time (i.e., for a
dummy VNF g ∈ D, cg = 0 and lvg = 0, where cg and lvg are
the computing resource cost and processing time per unit data
traffic of dummy VNF g on node v). Thus, for any network
node v ∈ VA that consists of only a single AP, only dummy
VNFs can be implemented on it.

Denote by Si the extended SFC of sfci including both g0

and g1, and the length of Si is (|sfci| + 2). Let Γ = D \
{g0, g1}.

D. Problem definition

Given an MEC network G = (V,E), a set F of VNFs, a
set R of user requests, the admission of each request ri ∈ R
suffers uncertainties of the amounts of demanded computing
resource cf of VNF f in its SFC and demanded data rate
Bi, the Robust Service Function Chain Placement (RSFCP)
problem is to maximize the expected profit collected of the
network service provider, by admitting as many requests in
R as possible while meeting the latency requirement of each
admitted request, subject to both computing and bandwidth
resource capacities in G, where the expected profit will be
defined in Section IV.

IV. QIP FORMULATION

In this section, we first formulate the RSFCP problem as a
Quadratic Integer Programming (QIP), and we then show that
the problem is NP-hard.

A. Traffic flow of requests

We deal with VNF placements of SFCs of multiple requests.
For a single request ri ∈ R, we introduce a binary decision
variable xi indicating whether request ri ∈ R is admitted
(xi = 1) or rejected (xi = 0) by the system.

V1

V2

V4

V3

g0 g1

f1

f1

Path 1

path 2

f1g2 Path 3

Fig. 2. An example of a routing path of g0 → f1 → g1.

Recall that Si is the extended SFC of sfci including both g0

and g1. To satisfy the network function dependence in Si of ri,
we divide the SFC into a set of two-VNF sub-chains and then
consider these sub-chains separately pair by pair. The core idea
behind is to find a routing path between every two adjacent
VNFs in Si first, ∀ri ∈ R. Then, the selected routing paths
between the VNF instance pairs are concatenated to form an
ordered chain. Denote by hki the kth VNF of Si, e.g., h1

i = g0.
We introduce a binary variable ρv,a,u,bi,k denoting that when

constructing the routing path between the kth two-VNF sub-
chain hki → hk+1

i , whether the data traffic of request ri
traverses from VNF a on node v to VNF b on node u. Thus,
the routing subpaths for ri are expressed by the values of
{ρv,a,u,bi,k | ∀ri ∈ R,∀k ∈ {1, . . . , |Si| − 1},∀v ∈ V,∀u ∈
N+(v),∀a ∈ {hki }∪Γ,∀b ∈ {hk+1

i }∪Γ, a 6= b}. For example,
as shown in Figure 2, for the requested SFC, g0 → f1 → g1,
dummy VNFs g0 and g1 are first deployed on source node v1

and destination node v4, respectively. The SFC g0 → f1 → g1

is then considered as two two-VNF sub-chains: g0 → f1 and
f1 → g1. Once the routing paths for two-VNF sub-chains
g0 → f1 and f1 → g1 are decided, they are concatenated
together to map the SFC g0 → f1 → g1 into the network.
Meanwhile, several dummy VNFs in Γ may have been inserted
to construct the routing path to ensure that when a routing path
passes through a node v ∈ V , at least one VNF f ∈ Si ∪Γ is
deployed on it. Figure 2 shows the three routing paths.

As multiple VNFs of an SFC could be mapped to a single
node, the data traffic of a request can traverse between the
VNF instances in the same node multiple times. As shown in
Figure 2, in path 1, both VNF g0 and f1 are placed on node
v1, which is represented by setting ρv1,g0,v1,f1

i,1 = 1. Also, in
Figure 2, inserting one dummy VNF g2 on node v2 is enough
in describing path 3, it is not allowed to place multiple dummy

Authorized licensed use limited to: Australian National University. Downloaded on March 18,2021 at 02:17:10 UTC from IEEE Xplore.  Restrictions apply. 



1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3062650, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. X, XX 2021 5

VNFs on the same node for the same k, i.e., when considering
a two-VNF sub-chain, we have∑
a,b∈D,a6=b

ρv,a,v,bi,k =0,∀ri ∈ R,∀v ∈ V,∀k∈{1, . . . , |Si| − 1}.

(1)
When we insert dummy VNFs, the routing path of the kth

two-VNF sub-chain in Si goes through at most all nodes. Thus,
we let |Γ| = |V |. Dummy VNF g0 is placed on node si when
constructing the routing path for the first two-VNF sub-chain.
While dummy VNF g1 is placed on node di when constructing
the routing path for the last two-VNF sub-chain. We then have∑

u∈N+(si),b∈{h2
i }∪Γ

ρsi,g0,u,b
i,1 = 1, (2)

∑
v∈N+(di),a∈{h

|Si|−1

i }∪Γ

ρv,a,di,g1

i,|Si|−1 = 1. (3)

The construction of a routing path for the kth two-VNF sub-
chain in Si, i.e., hki → hk+1

i , ∀ri ∈ R,∀k ∈ {1, . . . , |Si| − 1}
is as follows.

The source and destination VNFs of the kth routing path are
hki and hk+1

i . Then, the outgoing flow from hki and incoming
flow to hk+1

i must be 1, which is represented by the following
equations.∑

v∈V,u∈N+(v),

b∈{hk+1
i
}∪Γ

ρ
v,hk

i ,u,b
i,k = 1,∀ri ∈ R,∀k ∈ {1, . . . , |Si| − 1}.

(4)∑
v∈V,u∈N+(v),

a∈{hk
i
}∪Γ

ρ
v,a,u,hk+1

i

i,k = 1,∀ri ∈ R,∀k ∈ {1, . . . , |Si| − 1},

(5)

And for any inserted dummy VNF g ∈ Γ in the kth
two-VNF sub-chain, the incoming flow at VNF g equals the
outgoing flow from it, and each dummy VNF g ∈ Γ appears
in the path at most once, i.e.,∑

u∈N+(v),

b∈{hk+1
i
}∪Γ,a6=b

ρv,a,u,bi,k −
∑

u∈N(v),

b∈{hk
i
}∪Γ,a6=b

ρu,b,v,ai,k = 0,

∀ri ∈ R,∀k ∈ {1, . . . , |Si| − 1},∀v ∈ V,∀a ∈ Γ. (6)∑
v∈V,u∈N+(v),

b∈{hk+1
i
}∪Γ,a6=b

ρv,a,u,bi,k ≤ 1,∀ri ∈ R,∀k ∈ {1, . . . , |Si|−1},

∀a ∈ Γ. (7)

Let yvi,k be a binary variable indicating whether VNF hki ∈
Si is placed in cloudlet node v. As the first and last VNFs in
Si are dummy VNFs, we only consider the other VNFs in Si,

yvi,k =
∑

u∈N+(v),

b∈{hk+1
i
}∪Γ

ρ
v,hk

i ,u,b
i,k ,∀ri ∈ R,∀v ∈ V, k ∈ [2, |Si| − 1].

(8)

Recall that the upper bound of computing resource con-
sumption of VNF hki is cU

hk
i
. To ensure that no resource

capacity is violated, the computing capacity constraint on each
node v is expressed as follows.∑

ri∈R,k∈{2,...,|Si|−1}

xi · yvi,k · cUhk
i
≤ Cv,∀v ∈ V. (9)

The routing path for request ri may pass through a link
multiple times. Let zv,ui be an integer variable indicating the
number of times link (v, u) is contained in the routing path
for request ri. Then, we have

zv,ui =
∑

k∈[1,|Si|−1]

∀a∈{hk
i
}∪Γ,∀b∈{hk+1

i
}∪Γ

(ρv,a,u,bi,k + ρu,a,v,bi,k ),

∀ri ∈ R,∀e(v, u) ∈ E. (10)

Recall that the upper bound of demanded data rate of request
ri is BUi . To ensure that no resource capacity is violated,
the link capacity constraint on each link (v, u) for ri can be
expressed as follows.∑

ri∈R
xi · zv,ui ·BUi ≤ c(v, u),∀e(v, u) ∈ E. (11)

Note that the latency of request ri consists of the processing
times on nodes and the communication latency along links in
the routing path [23]. To admit request ri, we need to ensure
that its latency requirement must be met. With the upper bound
of demanded data rate BUi of request ri, the latency constraint
of request ri can be expressed as follows.∑

v∈V,
k∈{1,...,|Si|−1}

xi · yvi,k ·BUi · lvhk
i

+
∑

e(v,u)∈E

xi · zv,ui ·BUi · l(v, u) ≤ Li,∀ri ∈ R. (12)

B. Admission cost of requests

Recall that the problem objective is to maximize the ex-
pected profit collected by the network service provider, which
is equivalent to minimize the accumulative expected admission
cost of all admitted requests, where the expected admission
cost of a request is the sum of the expected resource usage
cost on both computing and bandwidth resource consumptions
for implementing the request, which is defined as follows.

Considering the computing resource consumption for plac-
ing VNF instances for SFCs of requests in nodes, the com-
puting resource usage cost at each node v, denoted by Ev ,
is

Ev = ϕv ·
∑

ri∈R,k∈{2,...,|Si|−1}

xi · yvi,k · chk
i
, (13)

where ϕv is the cost of a unit computing resource on node v
with ϕv > 0. However, Ev is uncertain due to the uncertainty
of computing resource consumption. The expected computing
resource usage cost E(Ev) of Ev at node v then is

E(Ev) = ϕv ·
∑

ri∈R,k∈{2,...,|Si|−1}

xi · yvi,k · chk
i
. (14)
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Considering the demanded data rate in links for the data
traffic of request ri, the bandwidth resource usage cost on
link (v, u), denoted by Ev,u, is

Ev,u = φ(v,u) ·
∑
ri∈R

xi · zv,ui ·Bi, (15)

where φ(v,u) > 0 is the cost of a unit bandwidth resource on
link (v, u). However, the value of Ev,u is also uncertain due
to the uncertainty of demanded data rates of requests. The
expected bandwidth resource usage cost E(Ev,u) of Ev,u on
link (u, v) then is

E(Ev,u) = φ(v,u) ·
∑
ri∈R

xi · zv,ui ·Bi, (16)

The total admission cost E of all admitted requests in R
thus is the sum of the resource usage costs on both computing
and bandwidth resource consumptions, which is defined as
follows.

E =
∑
v∈V
Ev +

∑
e(v,u)∈E

Ev,u. (17)

The expectation E(E) of E is as follows.

E(E) =
∑
v∈V

E(Ev) +
∑

e(v,u)∈E

E(Ev,u). (18)

The total admission cost has the uncertainty due to unknown
demanded computing resource and data rates for the request
implementation. In spite of this uncertainty, statistical infor-
mation provided by experimental studies can be exploited to
limit the risk of cost fluctuation. Reducing cost fluctuation
is necessary to maintain a desired system performance for
different realizations of uncertainty [8].

To model the cost fluctuation, we consider the effect of
∆Bi = BUi − BLi and ∆cf = cUf − cLf on the cost variation
of E , denoted by ∆E . Since E is a linear function of both Bi
and cf , the relationship among ∆E , ∆Bi and ∆cf is given as
follows.

∆E =
∑
v∈V

ϕv ·
∑

ri∈R,k∈{2,...,|Si|−1}

xi · yvi,k ·∆chk
i

+
∑

e(v,u)∈E

φ(v,u) ·
∑
ri∈R

xi · zv,ui ·∆Bi. (19)

C. QIP Formulation

The RSFCP problem can be formulated as a Quadratic
Integer Programming (QIP) for a set R of requests with the
optimization objective to

maximize
∑
ri∈R

xi · payi − E(E)− ζ ·∆E , (20)

subject to:

(1), (2), (3), (4), (5), (6), (7), (9), (11), (12),

xi, ρ
v,a,u,b
i,k ∈ {0, 1},∀ri ∈ R,∀k ∈ {1, . . . , |Si| − 1},

∀v, u ∈ V,∀a, b ∈ Si ∩ Γ, (21)

where payi is the payment by request ri if it is admitted
and all its constraints are met, and ζ is the adjustable control

parameter of cost variation compared with the expected total
admission cost to stabilize the total admission cost [8].

D. NP-hardness of the problem

Theorem 1: The RSFCP problem in an MEC G(V,E) is
NP-hard.

Proof We prove the NP-hardness of the RSFCP problem
through reducing from the well-known knapsack problem.

The knapsack problem is NP-hard [25] and is defined as
follows. Given a set of items N , each item i ∈ N has a
weight ωi and a profit pi > 0, ∀i ∈ N . There is a bin with
a capacity of W . If item i can be placed in the bin without
capacity violation, the associated profit pi will be collected.
The problem is to maximize the profit collected by packing
as many items in N as possible, subject to the bin capacity.

Given an instance of the knapsack problem, we generate an
instance of the RSFCP problem as follows.

We consider a special case of the RSFCP problem and
assume that there is a single cloudlet in the MEC network with
a capacity of W , we also ignore the bandwidth and latency
constraints, and we assume that there exists no resource
demand uncertainty.

We then generate a set of requests R and further assume that
the processing time of a VNF is negligible. For each item i ∈
N , there is a corresponding request, which has the amount ωi
of computing resource consumed by the requested SFC. The
expected profit pi of request ri is calculated by its revenue and
admission cost. If a request ri ∈ R is admitted, the requested
SFC is placed in the cloudlet and the profit pi is collected. The
RSFCP problem is to maximize the expected profit collected
by the network service provider by admitting as many requests
as possible, subject to computing resource capacity.

It can be seen that a solution to the RSFCP problem returns
a solution to the knapsack problem. And it takes polynomial
time to reduce an instance of the knapsack problem to an
instance of the RSFCP problem. Due to the NP-hardness of
the knapsack problem [25], the RSFCP problem is NP-hard,
too. �

For the sake of convenience, we list all symbols adopted in
this paper in Table I.

V. A MARKOV BASED APPROXIMATION ALGORITHM

As the RSFCP problem is NP-hard, in this section we
devise a near-optimal approximation algorithm for the prob-
lem, by adopting the Markov approximation technique [5].
Specifically, we first introduce the log-sum-exp approximation
concept, and then construct a time-reversible Markov chain
with designed transition rates satisfying the detailed balance
equation [10].

A. Log-Sum-Exp approximation

Recall that there are two binary decision variables in the
RSFCP problem, xi (i.e., acceptance decision) and ρv,a,u,bi,k

(i.e., routing path decision). We then define a scheduling ηi
for request ri that consists of determining the values of xi
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TABLE I
TABLE OF SYMBOLS

Notations Descriptions

G = (V,E) an MEC network with a set V of network nodes and a set of E links

VC and VA the set of nodes in which each node consists of both an AP and a cloudlet, and the set of nodes in which each node
consists of an AP only

v and cv a node v ∈ V and the computing capacity of node v

(v, u), c(v, u) and l(v, u) a link connecting node v and node u, the bandwidth capacity of e(v, u), and the latency per unit data traffic along
link (v, u)

N+(v) the set of nodes that contains all neighbors of node v in G and itself

F , f , cf and lvf a set of VNFs offered in the MEC network, a VNF f ∈ F , the computing resource consumption of f , and the
processing time per unit data traffic of VNF f on node v

R a set of all user requests

ri=〈si, di, Bi,Li, sfci, payi〉 a user request, where si and di are the source and destination nodes of the data traffic of the request, respectively, Bi

is the demanded data rate, Li is the latency requirement, sfci is the service function chain, and payi is the payment
of the request.

g0 and g1 dummy VNFs g0 and g1 are always appended at the start and end of each requested SFC

g, D, and Γ a dummy VNF, the set of all dummy VNFs, and Γ = D \ {g0, g1}
Si and hki the extended SFC of sfci including both g0 and g1, and the kth VNF of Si

BL
i , BU

i and Bi the lower bound, upper bound, and expectation of demanded data rate of request ri
∆Bi ∆Bi = BU

i −BL
i the variation of demanded data rate of request ri

cLf , cUf and cf the lower bound, upper bound, and expectation of computing resource consumption of VNF f

∆cf ∆cf = cUf − c
L
f the variation of computing resource consumption of VNF f

xi a binary decision variable indicating whether request ri is admitted or rejected

ρv,a,u,bi,k a binary decision variable denoting that when constructing the routing path between the kth two-VNF sub-chain
hki → hk+1

i , whether the data traffic of request ri traverses from VNF a on node v to VNF b on node u.

yvi,k a binary variable indicating whether VNF hki ∈ Si is placed in cloudlet node v

zv,ui the number of times link e(v, u) is contained in the routing path for request ri
ϕv , Ev and E(Ev) the cost of a unit computing resource on node v, the computing resource usage cost at node v, and the expected

computing resource usage cost at node v
φ(v,u), Ev,u and E(Ev,u) the cost of a unit bandwidth resource on link e(v, u) the bandwidth resource usage cost on link e(v, u), and the

expected bandwidth resource usage cost on link e(v, u)

E , E(E) and ∆E The total admission cost of all admitted requests, the expected total admission cost of all admitted requests, and the
total cost variation of all admitted requests

ζ the adjustable control parameter of cost variation compared with the expected total admission cost to stabilize the total
admission cost

ηi a scheduling for request ri that consists of determining the values of xi and ρv,a,u,bi,k for ri

w and W a state (a feasible solution to the RSFCP problem), and the set of all states

Λw , τ and λw Λw is the expected profit collected from all admitted requests under the state w, and τ is a large positive constant to
guarantee λw = Λw + τ ≥ 0

pw a real value within the range of [0, 1], which is the fraction of horizontal time (assuming the entire time horizon is 1)
that the system stays in state w

p∗w the stationary distribution of the designed Markov chain model

pw the stationary distribution of the Markov chain model with measurement perturbations

p̃w the time fraction distribution in the optimal solution

β and γ both β and γ are positive constants

ψi a random exponentially timer created by the thread of with the mean value γ

qw,w′ A non-negative transition rate between two states w and w′ with w 6= w′ ∀w,w′ ∈W .

θw the perturbation error bound under state w

α(w, j) the probability of the perturbed λw taking the value λw + (j/nw) · θw , where j ∈ {−nw, . . . , nw}, nw is a positive
constant and

∑
j∈{−nw,...,nw} α(w, j) = 1.

Λmax, Λavg and Λavg the value of the optimal solution, the expected profit with the designed Markov chain model, and the expected profit
with the perturbed Markov chain model
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and ρv,a,u,bi,k ,∀ri ∈ R,∀k ∈ {1, . . . , |Si| − 1},∀v ∈ V,∀u ∈
N+(v),∀a ∈ {hki } ∪ Γ,∀b ∈ {hk+1

i } ∪ Γ, a 6= b.
To this end, we combine all ηi,∀ri ∈ R to form a state,

denoted by w, following resource capacity constraints in the
MEC network and the latency constraints of requests in R.

Denote by W the set of all states, i.e., the set of all
feasible solutions to the RSFCP problem. Let Λw be the value
achieved by the optimization objective (20) under a state w
(i.e., the expected profit collected from all admitted requests
under the state w). Because Λw could be negative (i.e, deficit
may exist), we let λw = Λw + τ , ∀w ∈ W where τ is a
large positive constant to guarantee λw ≥ 0. The problem
then is reformulated as the Maximum Weighted Combinatorial
Optimization (MWCO) problem as follows.

Maximize {λw | w ∈W}. (22)

It can be seen that the optimization objective (22) has the
same optimal value as the the following problem.

Maximize
∑
w∈W

pw · λw, (23)

subject to ∑
w∈W

pw = 1, (24)

where pw is a real value within the range of [0, 1], which is the
fraction of horizontal time (assuming the entire time horizon
is 1) that the system stays in state w.

Proposition 1: [5] Given a positive constant β > 0 and a
set of non-negative real variables {γ1, γ2, . . . , γn}, we have

max
i∈[1,n]

γi≤
1

β
ln(

∑
i∈[1,n]

exp(β · γi))≤ max
i∈[1,n]

γi +
lnn

β
. (25)

Following Proposition 1, when β approaches infinity,
lnn

β
= 0, we then have

max
i∈[1,n]

γi = lim
β→∞

1

β
ln(

∑
i∈[1,n]

exp(β · γi)). (26)

As λw is non-negative for any w ∈W , we have

max
w∈W

λw≈
1

β
ln(
∑
w∈W

exp(β · λw)), for a very large β. (27)

Definition 1: [3] Let a be a real vector and b be the dual
of a, for δ : Rn 7→ R, then the conjugate function of δ,
δ∗ : Rn 7→ R is defined in terms of the supremum as

δ∗(b) = sup(bTa− δ(a)). (28)

Proposition 2: [3] The conjugate function of the conjugate
function of a convex function is the function itself.

Lemma 1: When β approaches infinity, the objective func-
tion (22) has the same value as the value of the following
objective function.

Maximize
∑
w∈W

pw · λw −
1

β
·
∑
w∈W

pw · ln pw, (29)

subject to ∑
w∈W

pw = 1. (30)

Proof Denote by

δ(λ) =
1

β
ln(
∑
w∈W

exp(β · λw)), (31)

where λ = [λw | w ∈W ] is a vector of λw under each state,
i.e., a vector of the expected profit collected, added by τ at
each state.

Following Definition 1, the conjugate function of δ(λ) is

δ∗(P )=


1

β
·
∑
w∈W pw · ln(pw), if ∀w ∈W,pw ≥ 0,

and
∑
w∈W pw = 1.

∞ otherwise,
(32)

where P = [pw|w ∈ W ] is a vector of the time fraction
assigned to each state.

As log-sum-exp functions are both closed and convex,
following Proposition 2, the conjugate of δ∗(P ) is δ(λ).

Following Definition 1, we have

δ(λ) = sup
∑
w∈W

pw · λw −
1

β
·
∑
w∈W

pw · ln pw. (33)

Combining (27), (31), and (33), the objective function (22)
has the same value as the value of the objective function (29)
when β approaches infinity. Lemma 1 then follows. �

Following Lemma 1, the approximate value of the objective
function of (22) can be obtained, by solving (29).

Let µ be the Lagrangian multiplier associated with Equa-
tion (30). Let p∗w be the optimal solution to (29). It can be
seen that the Karush-Kuhn-Tucker (KKT) conditions for (29)
are met. We then have

λw −
1

β
· ln(p∗w)− 1

β
+ µ = 0,∀w ∈W,∑

w∈W p∗w = 1,
µ ≥ 0.

(34)

The value of p∗w thus is

p∗w =
exp(β · λw)∑

w′∈W exp(β · λw′)
, ∀w ∈W. (35)

B. Markov chain model design
Let p∗w be the stationary distribution of the designed Markov

chain model that is trained to demonstrate the convergence
to the specific stationary distribution set in advance, i.e.,
p∗w. The authors in [5] showed that there exists at least one
time-reversible Markov chain model in which the stationary
distribution is p∗w. Let qw,w′ be a non-negative transition rate
between two states w and w′ with w 6= w′ ∀w,w′ ∈ W . To
construct a time-reversible Markov chain [5], the following
two conditions must be met: (1) each state could be transited to
any other state; and (2) the detailed balance equation between
states w and w′ should be satisfied.

p∗w · qw,w′ = p∗w′ · qw′,w,∀w,w′ ∈W,w 6= w′. (36)

Authorized licensed use limited to: Australian National University. Downloaded on March 18,2021 at 02:17:10 UTC from IEEE Xplore.  Restrictions apply. 



1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3062650, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. X, XX 2021 9

We first initialize the transition rates among all states as 0s.
Considering (35) and (36), we then design the transition rate
qw,w′ ∀w,w′ ∈W,w 6= w′ as follows.

qw,w′ =
exp(β · λw′)

|R| · γ ·max{exp(β · λw), exp(β · λw′)}
,

qw′,w =
exp(β · λw)

|R| · γ ·max{exp(β · λw), exp(β · λw′)}
,

(37)
where R is the set of user requests and γ is a positive constant
which is set as the mean time to transit from current state to
another state.

C. Markov Based Approximation Algorithm

The implementation details of the Markov based approxima-
tion algorithm are given in Algorithm 1. In particular, the
system controller creates a thread for each request in parallel,
i.e., each thread deals with one request with the aim of the
expected profit optimization. Initially, the dedicated thread for
each request ri randomly makes the acceptance decision (i.e.,
xi) and the routing path decision (i.e., ρv,a,u,bi,k ) to choose a
feasible scheduling for itself. The system controller finally
combines the scheduling of each request to form the current
state w, and calculates the expected profit Λw in state w. Recall
that λw = Λw + τ , where τ is a large positive constant to
guarantee λw ≥ 0.

For each request ri ∈ R, the associated thread randomly
looks for a new feasible scheduling for itself based on current
residual resources in the network to form the next state w′ in
a parallel manner, where w′ is the next state from the current
state w through one transition. λw and λw′ under w and w′

then are calculated. Then a random exponentially timer ψi
for request ri ∈ R is triggered with a mean γ, where γ is
a positive constant. And the timer ψi starts to count down.
Let pw,w′ be the probability that the system transits from
state w to state w′. When the timer ψi for request ri ∈ R
expires, the thread of ri transits to state w′ with probability
of pw,w′ = exp(β·λw′ )

max{exp(β·λw),exp(β·λw′ )}
, and broadcasts a Reset

signal to the rest threads. For the rest threads, upon receiving
the Reset signal, their timers are terminated. Then each thread
of requests looks for a new feasible scheduling for itself in
parallel based on residual resources in the network and the
above steps are repeated until it converges.

D. Algorithm analysis

In the following, we analyze the performance of the pro-
posed algorithm. We also study the impact of perturbations on
the performance of the proposed algorithm.

Lemma 2: Given an MEC network and a set of re-
quests R, there is an Markov based approximation algorithm,
Algorithm 1, which constructs a time-reversible Markov
chain, and the stationary distribution is Equation (35).

Proof As mentioned, we design a Markov chain model and
guarantee that in the constructed Markov chain model, each
state can be transited to any another state. We then show that
the stationary distribution of the designed Markov chain model

Algorithm 1 A Markov Based Approximation Algorithm
Input: An MEC network G = (V,E) and a set of requests

R.
Output: A scheduling of requests in R, s.t., the collected

profit collected is maximized.
1: procedure INITIALIZATION
2: for ri ∈ R do
3: Initialize a thread for ri;
4: The thread computes a feasible scheduling for ri;
5: end for
6: The scheduling for each request ri forms the current

state w, and the expected profit Λw collected from state
w is calculated.

7: Then let λw = Λw + τ , where τ is a large constant to
guarantee λw ≥ 0;

8: Execute TRANSIT(ri), ∀ri ∈ R.
9: end procedure

10: procedure SET TIMER(ri)
11: The thread of ri creates a random exponentially timer

ψi with the mean value γ;
12: The timer ψi starts to count down.
13: end procedure
14: procedure TRANSIT(ri)
15: while It has not converged do
16: The thread of ri randomly chooses a new feasible

scheduling to form next state w′;
17: Execute SET TIMER(ri).
18: if ψi expires then
19: the thread of ri transits to state w′ with prob-

ability of pw,w′ = exp(β·λw′ )
max{exp(β·λw),exp(β·λw′ )}

;
20: Broadcast RESET signals to other threads.
21: Execute TRANSIT(ri).
22: else if ψi does not expire and the thread of ri

receives a RESET signal then
23: Terminate current timer.
24: Execute TRANSIT(ri).
25: end if
26: end while
27: end procedure

is Eq. (35). From Algorithm 1, it can be seen that we ran-
domly select a state w′ ∈W as the next state. And we generate
a random exponentially timer ψi with mean value equal to γ
for each request ri. Furthermore, when the timer expires, the
thread of ri transits from current state w to next state w′ with
the probability of pw,w′ = exp(β·λw′ )

max{exp(β·λw),exp(β·λw′ )}
. Thus,

we are able to calculate the transition rate as follows,

qw,w′=
pw,w′

|R|·γ
=

exp(β ·λw′)
|R|·γ ·max{exp(β ·λw), exp(β ·λw′)}

, (38)

which is mentioned in Eq. (37).
Combining (35) and (37), it can be seen that p∗w · qw,w′ =

p∗w′ · qw′,w,∀w,w′ ∈ W,w 6= w′. The detailed balance
equation of the designed Markov chain model is satisfied, and
the designed Markov chain model is time-reversible, and the
stationary distribution of which is Equation (35) [14]. Hence,
the theorem follows. �

Ideally, if the exact value of λw of each state w,∀w ∈ W
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can be obtained (i.e., the expected profit collected from each
state can be accurately measured), then the designed Markov
chain model will always converge to the preset stationary
distribution p∗w. However, the value of λw is very likely to be
perturbed, and the designed Markov chain model might not
be able to achieve the global optimality, instead a sub-optimal
stationary distribution will be obtained [29].

In this paper, we assume the measurement perturbations
are caused by the uncertainty of resource demands in the
execution of requests, and the expected amounts of resources
may experience perturbations as mentioned in Section III-B.
In the sequel, it is necessary to analyze the impact of measure-
ment perturbations on the solution and to mitigate the impact
of such perturbations on the performance of the proposed
approximation algorithm.

We quantify the perturbation error under a state w ∈ W
as a value ranged from −θw to θw, by introducing θw as a
perturbation error bound, and λw is drawn from 2 · nw + 1
discrete values: λw − θw, . . . , λw − (1/nw)θw, λw, λw +
(1/nw)θw, . . . , λw + θw, where nw is a positive constant.

Denote by α(w, j) the probability of the perturbed λw
taking the value λw + (j/nw) · θw, ∀w ∈ W , ∀j =
{−nw, . . . , nw}, and

∑
j∈{−nw,...,nw} α(w, j) = 1.

Lemma 3: Given an MEC network G(V,E), with measure-
ment perturbations, the stationary distribution of the Markov
chain model, denoted by pw, is

pw =
κw · exp(β · λw)∑

w′∈W κw′ · exp(β · λw′)
,∀w ∈W, (39)

where κw =
∑
j∈{−nw,...,nw} α(w, j) · exp(β · ((j · θw)/nw)).

The proof can be found in Appendix-A.
Theorem 2: Given an MEC network G(V,E) and a set of

requests R, without analysis perturbation, there is an Markov
based approximation algorithm, Algorithm 1, its optimality
gap is as follows.

0 ≤ Λmax − Λavg ≤
ln |W |
β

, (40)

where the optimality gap of an algorithm is the absolute
difference between the solution obtained by the algorithm and
the optimal solution of the problem. Λmax = maxw∈W {Λw}
is the value of the optimal solution, Λavg is the expected profit
with the designed Markov chain model and W is the collection
of all states.

The proof can be found in Appendix-B.
Theorem 3: Given an MEC network and a set of requests

R, with analysis perturbation, there is an Markov based
approximation algorithm, Algorithm 1, its optimality gap
is given as follows.

0 ≤ Λmax − Λavg ≤
ln |W |
β

+ θmax, (41)

where Λavg =
∑
w∈W pw · Λw is the expected profit with

the perturbed Markov chain model, and the time fraction
distribution pw, ∀w ∈ W , is the optimal solution under the
perturbation case, and θmax = maxw∈W {θw}.

The proof can be found in Appendix-C.

In the context of Markov Chain, the convergence time is
examined by the mixing time [5].

Definition 2: [5] Let Ht(w) be the probability distribution
of all states in W at time t with the initial state w, p∗ be the
stationary distribution of the Markov Chain, and ε > 0 be a
constant and represent the gap between the converged solution
and the optimal one, then the mixing time of the constructed
Markov Chain is defined as

tmix(ε) := inf{t ≥ 0 : max
w∈W

||Ht(w)− p∗||TV ≤ ε}, (42)

where term ||Ht(w) − p∗||TV is the total variance distance
between Ht(w) and p∗.

Denote by Λmin = minw∈W {Λw} and recall that Λmax =
maxw∈W {Λw}.

Theorem 4: Given an MEC network G(V,E) and a set R of
requests, there is an Markov based approximation algorithm,
Algorithm 1, its convergence time is bounded as follows.

tmix ≥
|R| · γ · exp(β · (Λmin − Λmax))

2 · |W |
· ln 1

2 · ε
,

and

tmix ≤2 · |W |3 · |R| · γ · exp(5 · β · (Λmax − Λmin))

· (ln 1

2 · ε
+

1

2
· (ln |W |+ β · (Λmax − Λmin))).

The proof can be found in Appendix-D.

VI. PERFORMANCE EVALUATION

In this section, the performance of the proposed algorithm
is evaluated by experimental simulations. The impact of pa-
rameters on the performance of the proposed algorithm is
investigated, too.

A. Environment Settings

We generate topologies of MEC networks through a tool
GT-ITM [33]. We consider an MEC network with 100 APs,
and 10 percent of the APs are randomly selected to be
co-located with cloudlets. The capacities of cloudlets are
randomly drawn between 30,000MHz and 60,000MHz [9].
We further assume that there are 20 types of VNFs, and
the expected computing resource demanded by each type of
VNFs is ranged from 40MHz to 600MHz [2]. The length of a
requested SFC is randomly chosen from 2 to 10 [28] and each
VNF instance is randomly drawn from the provisioned VNFs.
The bandwidth capacity of a link is randomly drawn from
2,000Mbps to 20,000Mbps [10]. The transmission latency of
a link is randomly drawn from 2ms to 7ms [23]. The expected
demanded data rate of each request varies from 1 to 10 packets
per millisecond, and the size of each packet is 64KB [22].
The upper bound of the demanded computing resource and
data rate are randomly set as 105%, 110% or 115% of the
expected one, while the lower bound of those are randomly
set as 95%, 90% or 85% of the expected one. Considering the
perturbation, the actual consumed computing resource and data
rate are randomly drawn between the upper bounds and lower
bounds. The actual demanded resource is utilized to calculate
the actual accumulated profit. The processing rate of each VNF
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instance varies from 5 to 20 packets per millisecond [22].
The latency requirement of each request is set from 20ms to
100ms randomly [23]. The computing resource cost on each
cloudlet is randomly drawn from a range between $0.05 to
$0.2 per MHz, while the bandwidth cost on each link varies
from $0.002 to $0.005 per Mbps [36]. Each value in figures is
the mean of the results of 20 topologies randomly generalized
by GT-ITM [33] with the same size. The payment of each
request is randomly drawn from $10 to $30. The parameter
β in the designed Markov Chain is set as 1 and the control
parameter ζ associated with the cost variation is set as 0.1 [8].
The running time of each algorithm is based on a desktop
with a 3.60 GHz Intel 8-Core i7-7700 CPU and 16 GB RAM.
Unless specified, the above parameters are adopted by default.

We here introduce two benchmarks against the proposed
algorithm. The first is a greedy algorithm considering the least
latency on links for each request, referred to as Greedy-L.
We consider the set R of requests randomly in sequence. For
request ri ∈ R, we first eliminate the nodes and links with
insufficient resource for its admission through constructing an
auxiliary graph. Greedy-L finds a feasible path with suffi-
cient residual resource and the least latency on links from the
source node to the destination in the auxiliary graph. Then, we
find a feasible placement of the requested SFC on the chosen
routing path, following the computing resource constraint and
latency constraint. A request is rejected if Greedy-L cannot
find a feasible placement for its SFC. The other benchmark is
a greedy algorithm considering the least cost on the links for
each request, referred to as Greedy-C. Similarly, for each
request ri, Greedy-C first finds a feasible routing path with
the least cost on links from the source node to the destination
node in the auxiliary graph with sufficient resource for its
admission. Then, we find a feasible placement of the requested
SFC on the chosen routing path, following the computing
resource constraint and latency constraint. A request is rejected
if Greedy-C cannot find a feasible placement for its SFC.
The average result delivered by each algorithm is calculated
based on 20 topologies of the same size. According to [31],
we assume that the Markov based approximation algorithm
converges if the collected profit does not change more than
0.1% of the value obtained at the current state.

B. Performance evaluation of different algorithms

We first studied the performance of different algorithms,
by varying the number of requests from 100 to 1,000 with
the network size of 100. Figure 3(a) depicts the accumulated
profit with varying number of requests while keeping other
settings unchanged. In addition, the associated running time
is shown in Figure 3(b). It can be seen from Figure 3(a)
that Algorithm 1 outperforms the benchmarks Greedy-L
and Greedy-C in all cases. When the number of requests
is 100, the profits collected by Greedy-L and Greedy-C
are 57.4% and 37.6% of that by Algorithm 1, respectively.
This is because Algorithm 1 has an advantage in lowering
the admission cost when the network has enough resource to
admit all requests. When the number of requests is 1, 000, the
profits collected by Greedy-L and Greedy-C are 51.2%

and 39.8% of that by Algorithm 1, respectively. This is
because Algorithm 1 delivers a more reasonable scheduling
of resource to admit more requests with the limited resource
in a network.
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Fig. 3. Performance of different algorithms by varying the number of requests
from 100 to 1,000 with the network size of 100.
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Fig. 4. Impact of network size on different algorithms by varying the number
of nodes from 50 to 250 with 1, 000 requests.

C. Impact of different parameters on the performance of the
proposed algorithm

We then investigated the impacts of important parameters
on the performance of the proposed algorithm, such as the
network size, the parameter β, the uncertainty of demanded
resource and the control parameter ζ. Recall that β is an
important parameter in designing a Markov chain. And the
control parameter ζ is related to the cost variation.

We started by investigating the impact of network size
on the performance of the proposed algorithm against the
benchmarks Greedy-L and Greedy-C, by varying the
network size from 50 to 250 with 1, 000 requests. Recall
that the number of cloudlets is set as 10% of the network
size. Figure 4(a) depicts the accumulated profit with varying
numbers of network size, while Figure 4(b) depicts the related
running time. It can be seen from Figure 4(a) that when the
network size is 250, the profit collected by Greedy-L is
52.3% of that by Algorithm 1, while the profit collected by
Greedy-C is 38.5% of that by Algorithm 1. This can be
justified that when the network size is large, compared with the
greedy algorithms, Algorithm 1 achieves better utilization
of computing resource and bandwidth resource to avoid the
overloading on links and cloudlets.

We then studied the impact of parameter β on the perfor-
mance of the proposed algorithm, by varying the number of
requests from 100 to 1,000 with the network size of 100.
Figure 5(a) demonstrates the impact of parameter β on the
collected profit of Algorithm 1 while Figure 5(b) demon-
strates the convergence time with different β. With 1,000
requests, when parameter β = 50, the proposed algorithm
achieves the best performance, which is 17.8% higher than that
by the proposed algorithm with parameter β = 1. However,
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in this case, it takes the longest convergence time. The
rationale behind this is that when the value of parameter β is
small, the optimality gap is enlarged by Theorem 2. However,
following the convergence time analysis by Theorem 4, it
consumes much less time to achieve convergence. It implies
that Algorithm 1 demonstrates good flexibility for us to
set parameter β with a reasonable value to achieve a good
trade-off between the performance and convergence time.
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Fig. 5. Impact of parameter β on the proposed algorithm by varying the
number of requests from 100 to 1,000 with the network size of 100.
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Fig. 6. Impact of uncertainty of demanded resource and control parameter ζ
on the proposed algorithm by varying numbers of requests from 100 to 1,000
with the network size of 100.

We thirdly evaluated the impact of the uncertainty of
demanded resource on the performance of the proposed algo-
rithm, by varying the number of requests from 100 to 1,000
with the network size of 100. Figure 6(a) depicts the accumu-
lated profit obtained with different uncertainties of demanded
resource. E.g., the uncertainty of demanded resource is ±5%
when the upper bounds of the demanded computing resource
and data rate are set as 105% of the expected value, while the
lower bounds of the demanded computing resource and data
rate are set as 95% of the expected value. The actual consumed
computing resource and data rate are randomly drawn between
the upper bounds and lower bounds. It can be seen from
Figure 6(a) that the proposed algorithm performs better with
lower uncertainty of demanded resource. With 1,000 requests,
when the uncertainty is±20%, Algorithm 1 achieves 84.9%
of the accumulated profit by itself when the uncertainty is
±5%. The reason is that higher uncertainty of demanded
resource not only enlarges the cost variation, but also perturbs
the stationary distribution of the designed Markov chain by
Lemma 3.

We finally studied the impact of the control parameter ζ
on the performance of the proposed algorithm, by varying the
number of requests from 100 to 1,000 with the network size
of 100. Figure 6(b) depicts the cost variation with varying
control parameter ζ. Recall that the control parameter ζ is
used to stabilize the total admission cost as a coefficient of
cost variation. With 1,000 requests, when control parameter

ζ = 1, Algorithm 1 achieves 73.7% of the cost variation
by itself when control parameter ζ = 0.01. It can be seen from
Figure 6(b) that a larger ζ leads to a smaller cost variation, and
the total admission cost becomes more stable with a larger ζ.
The reason is that we assign a higher weight to cost variation
compared with the accumulated cost.

VII. CONCLUSION

In this paper, we studied user service request admissions
with both SFC and latency requirements in an MEC network.
We first formulated a novel RSFCP problem with the aim to
maximize the expected profit of the network service provider
through admitting as many user requests as possible. We
then formulated a QIP exact solution to the problem when
its size is small or moderate. Furthermore, we developed a
Markov based approximation algorithm, which can deliver a
near-optimal solution with a bounded moderate gap for the
problem without measurement perturbation. We also extended
the proposed approach to the measurement perturbation case,
for which we showed that the proposed approximation al-
gorithm is still applicable, and the solution delivered has a
near-optimal gap with a guaranteed error bound. We finally
evaluated the performance of the proposed algorithm through
experimental simulations with practical settings. Experimental
results demonstrated that the proposed algorithm is promising,
and outperforms the mentioned benchmarks. Several potential
topics based on this study can be further explored in the future.
For example, the problem can be extended to an online setting
where requests arrive one by one without the knowledge of
future arrival information. Furthermore, the mobility of mobile
users can also be taken into account when dealing with robust
service provisioning.
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APPENDIX A
PROOF OF LEMMA 3

Proof The core idea of the proof is to first deliver the modified
transition rate with perturbations by treating each state w as
2 ·nw+1 states. With (35) and the detailed balance equations,
the stationary distribution of the Markov chain model with
perturbations can be obtained then.

In the case of perturbation, each state w are then treated
as 2 · nw + 1 states (i.e., wj , ∀j = {−nw, . . . , nw}) with
perturbation error bound θw. Denote by λw,j , the expected
profit collected in state wj added by τ , we have

λw,j=λw+(j/nw)·θw,∀w∈W, ∀j∈{−nw, . . . , nw}. (43)

The modified transition rate qwj ,w′j′
with perturbations is

qwj ,w′j′
=

α(w′, j′) · exp(β · λw′,j′)
|R|·γ ·max{exp(β · λw′,j′), exp(β · λw,j)}

, (44)
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With regard to the detailed balance equations pwj
·

qwj ,w′j′
= pw′j′ · qw′j′ ,wj

, we have

pw0

α(w, 0) · exp(β · λw0
)

=
pw′

j′

α(w′, j′) · exp(β · λw′
j′

)
, (45)

where w0 is state w with no perturbation and α(w, 0) is the
probability that no perturbation exists for state w.

From (35) and (45), we have

pwj =
α(w, j) · exp(β · λwj

)∑
w′∈W

∑
j′∈{−nw,...,nw} ·α(w′, j′) · exp(β · λw′j′ )

,

∀w ∈W, ∀j ∈ {−nw, . . . , nw}. (46)

Denote by κw =
∑
j∈{−nw,...,nw} α(w, j) · exp(β · ((j ·

θw)/nw)), we have

pw =
∑

j∈{−nw,...,nw}

·pwj

=

∑
j∈{−nw,...,nw} α(w, j) · exp(β · λwj

)∑
w′∈W

∑
j′∈{−nw,...,nw} ·α(w′, j′) · exp(β · λw′j′ )

=
κw · exp(β · λw)∑

w′∈W κw′ · exp(β · λw′)
, by (43). (47)

Thus, Lemma 3 follows. �

APPENDIX B
PROOF OF THEOREM 2

Proof We show the optimality gap as follows. Let wmax be
the state to obtain the maximum profit. Let the time fraction
distribution p̃w,∀w ∈ W be the optimal solution. We then
have

p̃w =

{
1, if w = wmax,
0, otherwise.

(48)

As p∗w is the desired stationary distribution calculated in
(35), following Lemma 1, we have∑

w∈W
p∗w · λw −

1

β
·
∑
w∈W

p∗w · ln p∗w

≥
∑
w∈W

p̃w · λw −
1

β
·
∑
w∈W

p̃w · ln p̃w = λmax, (49)

where λmax = maxw∈W {λw}.
Apply Jensen’s inequality [3], we have∑

w∈W
p∗w · ln p∗w = −

∑
w∈W

p∗w · ln
1

p∗w

≥− ln(
∑
w∈W

p∗w ·
1

p∗w
) = − ln |W |. (50)

Combining equations (49) and (50), we have

λavg =
∑
w∈W

p∗w · λw ≤
∑
w∈W

p∗w · λmax = λmax

≤λavg −
1

β
·
∑
w∈W

p∗w · ln p∗w ≤ λavg +
1

β
· ln |W |, (51)

where λavg is the expected value with the designed Markov
chain model.

Thus, we have

0 ≤ λmax − λavg ≤
ln |W |
β

. (52)

Because λw = Λw + τ , ∀w ∈W , we have,

0 ≤ Λmax − Λavg ≤
ln |W |
β

. (53)

The theorem then follows. �

APPENDIX C
PROOF OF THEOREM 3

Proof Recall that κw=
∑
j∈{−nw,...,nw}α(w, j) · exp(β · ((j ·

θw)/nw)), ∀w ∈W , we have

exp(−β · θw) ≤ κw ≤ exp(β · θw). (54)

−θw ≤
lnκw
β
≤ θw. (55)

From Lemma 3, we have,

pw =

exp(β · (λw +
lnκw
β

)∑
w′∈W exp(β · (λw′ +

lnκw′

β
)

,∀w ∈W. (56)

As a result, for λw′′ = λw+ lnκw

β , the stationary distribution
with perturbation pw,∀w ∈ W , works as an optimal solution
in this case.

From Theorem 2, we have,

max
w′′∈W

λw′′ −
∑
w′′∈W

pw′′ · λw′′ ≤
ln |W |
β

. (57)

Let λw′′ = λw + lnκw

β , we have,

max
w∈W

(λw+
lnκw
β

)−
∑
w∈W

(pw ·λw +
lnκw
β

) ≤ ln |W |
β

. (58)

Then,

λmax = max
w∈W

λw ≤ max
w∈W

(λw +
lnκw
β

)

≤
∑
w∈W

(pw · λw +
lnκw
β

) +
ln |W |
β

, by (58),

≤
∑
w∈W

pw · λw + θw +
ln |W |
β

, by (55). (59)

Also,

λavg =
∑
w∈W

pw · λw ≤
∑
w∈W

pw · λmax = λmax

≤ λavg + θw +
ln |W |
β

, by (59),

where λavg is the expected value with the perturbed Markov
chain model.

We thus have

0 ≤ λmax − λavg ≤
ln |W |
β

+ θw ≤
ln |W |
β

+ θmax.

Authorized licensed use limited to: Australian National University. Downloaded on March 18,2021 at 02:17:10 UTC from IEEE Xplore.  Restrictions apply. 



1932-4537 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2021.3062650, IEEE
Transactions on Network and Service Management

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. X, NO. X, XX 2021 14

Because λw = Λw + τ , ∀w ∈W , we have,

0 ≤ Λmax − Λavg ≤
ln |W |
β

+ θmax.

Hence, the theorem follows. �

APPENDIX D
PROOF OF THEOREM 4

Proof By stationary distribution (35), the minimum probabil-
ity among the stationary distribution, denoted by pmin, is:

pmin := min
w∈W

p∗w ≥
exp(β · Λmin)

|W | · exp(β · Λmax)
, by (35),

=
1

|W |
· exp(β(Λmin − Λmax)). (60)

We then adopt the uniformization technique [5]. Denote by
Q = {qw,w′} the transition matrix of the constructed Markov
Chain. Then a Markov Chain Z(m) is constructed with a
transition matrix P = I + Q

σ , where I denotes a unit matrix
and σ denotes the uniform rate parameter. We then assume
that with the Markov Chain Z(n), the system transits its state
following the Poisson process N(t) with rate σ [10]. Denote
by Z(N(t)) the state of the system at time t.

From the transition rate (37), we have, ∀w,w′ ∈W ,

qw,w′ ≤
1

|R| · γ
· exp(β · (Λmax − Λmin)). (61)

And we have∑
w 6=w′

qw,w′ ≤
|W |
|R| · γ

exp(β · (Λmax − Λmin)). (62)

Then we have σ as:

σ =
|W |
|R| · γ

exp(β · (Λmax − Λmin)). (63)

According to the uniformization theorem [15], the Markov
Chain and its counterpart Z(N(t)) with discrete-time manner
share the same probability distribution. Denote by ρ2 the
second eigenvalue of transition matrix P for Z(n). We then
adopt the spectral gap inequality [15], we have,

exp(−σ · (1− ρ2) · t)
2

≤ max
w∈W

||Ht(w)− p∗||TV

≤ exp(−σ · (1− ρ2) · t)
2 · (pmin)

1
2

. (64)

Therefore,
1

σ · (1− ρ2)
· ln 1

2 · ε
≤ tmix(ε)

≤ 1

σ ·(1− ρ2)
·(ln 1

2·ε
+

1

2
·ln 1

pmin
).

(65)

With Cheeger’s inequality [6], we bound ρ2 as follows:

1− 2 · Φ ≤ ρ2 ≤ 1− 1

2
· Φ2, (66)

where Φ is the ”conductance” of P and is defined as follows,

Φ := min
N⊂W,πN∈(0,0.5]

F(N,N c)

πN
, (67)

where πN =
∑
w∈N p

∗
w and F(N,N c) =

∑
w∈N,w′∈Nc p∗w ·

P (w,w′). With (65) and (66), we have,

1

2·σ ·Φ
·ln 1

2·ε
≤ tmix(ε) ≤ 2

σ ·Φ2
·(ln 1

2·ε
+

1

2
·ln 1

pmin
).

(68)

Then, ∀N ′ ⊂W,πN ′ ∈ (0, 0.5], we have

Φ := min
N⊂W,πN∈(0,0.5]

F(N,N c)

πN

≤ 1

πN ′
·

∑
w∈N,w′∈N ′c

p∗w · P (w,w′)

=
1

πN ′
·
∑
w∈N ′

·p∗w ·
∑

w′∈N ′c
P (w,w′) ≤ 1

πN ′
·
∑
w∈N ′

·p∗w = 1

(69)

From (63), (68) and (69), we have the lower bound of tmix(ε)
as follows,

tmix(ε) ≥ 1

2 · σ
· ln 1

2 · ε

=
|R| · γ · exp(β · (Λmin − Λmax))

2 · |W |
· ln 1

2 · ε
. (70)

From the transition rate (37), we have, ∀w,w′ ∈W ,

qw,w′ ≥
1

|R| · γ
· exp(β · (Λmin − Λmax)). (71)

From (67), we have,

Φ ≥ min
N⊂W,πN∈(0,0.5]

F(N,N c) ≥ min
w 6=w′,p(w,w′)>0

F(w,w′)

= min
w 6=w′,p(w,w′)>0

p∗w ·P (w,w′)= min
w 6=w′,p(w,w′)>0

p∗w ·
qw,w′

σ

≥ pmin
σ
· 1

|R|·γ
·exp(β ·(Λmin − Λmax)), by (71). (72)

From (68), we have the upper bound of tmix(ε) as follows,

tmix(ε) ≤ 2

σ · Φ2
· (ln 1

2 · ε
+

1

2
· ln 1

pmin
)

≤ 2 · |R|2 · γ2 · σ · exp(2 · β · (Λmax − Λmin))

p2
min

· (ln 1

2 · ε
+

1

2
· ln 1

pmin
), by (72)

=
2 · |W | · |R| · γ · exp(3 ∗ β · (Λmax − Λmin))

p2
min

· (ln 1

2 · ε
+

1

2
· ln 1

pmin
), by (63)

≤ 2 · |W |3 · |R| · γ · exp(5 · β · (Λmax − Λmin))

· (ln 1

2 · ε
+

1

2
· (ln |W |+ β · (Λmax − Λmin))), by (60).

Hence, the theorem follows. �
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