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Abstract—With advances in wireless communication technology, more and more people depend heavily on portable mobile devices

for business, entertainments and social interactions. This poses a great challenge of building a seamless application experience across

different computing platforms. A key issue is the resource limitations of mobile devices due to their portable size, however this can be

overcome by offloading computation-intensive tasks from the mobile devices to clusters of nearby computers called cloudlets through

wireless access points. As increasing numbers of people access the Internet via mobile devices, it is reasonable to envision in the near

future that cloudlet services will be available for the public through easily accessible public wireless metropolitan area networks

(WMANs). However, the outdated notion of treating cloudlets as isolated data-centers-in-boxes must be discarded as there are clear

benefits to connecting multiple cloudlets together to form a network. In this paper we investigate how to balance the workload among

cloudlets in an WMAN to optimize mobile application performance. We first introduce a novel system model to capture the response

time delays of offloaded tasks and formulate an optimization problem with the aim to minimize the maximum response time of all

offloaded tasks. We then propose two algorithms for the problem: one is a fast heuristic, and another is a distributed genetic algorithm

that is capable of delivering a more accurate solution compared with the first algorithm, but at the expense of a much longer running

time. We finally evaluate the performance of the proposed algorithms in realistic simulation environments. The experimental results

demonstrate the significant potential of the proposed algorithms in reducing the user task response time, maximizing user experience.

Index Terms—Cloudlet placements, mobile user allocation, task response time minimization, mobile task offloading, mobile cloud computing

Ç

1 INTRODUCTION

IN recent years, advances in mobile computing have
enabled users to experience a plethora of engaging appli-

cations. However as resource demands of newly developed
applications continue to grow, the computing capacity of
mobile devices remain limited, due to their portable size. A
traditional approach to overcoming the resource poverty of
mobile devices is to leverage the rich computing resources in
remote clouds. Amobile device can lighten its workload and
prolong its battery life by offloading computation-intensive
tasks to remote clouds for execution [12]. However, one
significant limitation of offloading tasks to remote clouds
is the distance between users and these remote clouds. Long
delays between the clouds and users can cause lag in applica-
tions with heavy user interactions, upsetting user experien-
ces. To minimize the response time delays of offloaded tasks
to remote clouds, researchers have suggested the use of clus-
ters of computers called cloudlets deployed within user net-
works to support mobile devices, by executing offloaded
tasks on local cloudlets [23], [24], [25], [26], [29].

A cloudlet is a trusted, resource-rich cluster of computers
wirelessly connected to its nearby mobile users [24]. By pro-
viding low-latency access to their rich computing resources,
cloudlets can dramatically improve the performance of
mobile applications. If no cloudlet is available nearby, it is
often assumed that a user can offload its application to
the remote cloud, or run the application on his mobile
device [11], [24]. Although cloudlets are often defined as iso-
lated “data centers in a box”, there are clear benefits to con-
necting multiple cloudlets together to form a network.
A recent study [16], [32], [33] discussed how cloudlets could
be deployed in a public wireless metropolitan area networks
(WMANs), as a complimentary service to Wi-Fi Internet
access. Metropolitan areas usually have a high population
density, meaning that cloudlets will be accessible to a large
number of users. This improves the cost-effectiveness of
cloudlets as they are less likely to be idle. Furthermore, due
to the size of the network,WMAN service providers can take
advantage of economies of scale when offering cloudlet
services through theWMAN, making cloudlet services more
affordable to the general public.

A major problem that WMAN service providers face is
how to allocate user task requests to different cloudlets
so that the workload among cloudlets in the WMAN are
well balanced, thereby shortening the response time delay
of tasks and enhancing user experience in the use of their
service. A typical solution to this problem is to allocate user
requests to their closest cloudlets to minimize the network
delay, however this approach has been demonstrated to be
inadequate in an WMAN setting [16]. Specifically, the vast
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number of users in the network means that the workload at
each individual cloudlet will be highly volatile. If a cloudlet is
suddenly overwhelmed with user requests, the task response
time at the cloudlet will increase dramatically, causing lag
in the user applications and degrading user experiences.
To prevent some cloudlets from being overloaded, it is crucial
to assign user requests to different cloudlets such that the
workload amongst the cloudlets is well balanced, thereby
reducing themaximum response time of offloaded tasks.

In this paper we deal with the QoS-aware load balancing
problem among cloudlets in an WMAN in response to the
dynamic resource demands of user requests, by devising
efficient scheduling algorithms to allocate user requests to
different cloudlets. Specifically, we devise two load balanc-
ing algorithms for cloudlets within an WMAN, to reduce
the maximum response time of offloaded tasks from mobile
users that consists of queuing and processing time delays at
each cloudlet and routing time delays of packets between
users and cloudlets.

The main contributions of this paper are as follows.

� We first introduce a novel system model to capture
the response time delays of offloaded tasks and for-
mulate a novel optimization problem—the cloudlet
load balancing problem (CLBP).

� We then propose a fast heuristic algorithm that deliv-
ers a feasible solution to the problem.We also develop
a distributed genetic algorithm that delivers a more
accurate solution to the problem at the expense of a
longer running time.

� We finally evaluate the performance of the proposed
algorithms in realistic simulation environments. Expe-
rimental results demonstrate the significant potential
of the proposed algorithms in reducing the user task
response time andmaximizing user experience.

The rest of the paper is organized as follows. Section 2
reviews related works. Section 3 introduces the system
model and problem definition. Section 4 gives a detailed
description of the fast heuristic algorithm. Section 5 proposes
the distributed genetic algorithm. Section 6 presents the
simulation results, and the conclusion is drawn in Section 7.

2 RELATED WORKS

Offloading mobile applications to a remote cloud to over-
come the limitations of mobile devices has been studied in
the past decade [4], [7], [23], [30], [31]. In general, the model
for application offloading systems in mobile cloud comput-
ing consists of a client component on the mobile device and
a server component on a remote cloud [9], [12]. The client
component is responsible for monitoring network perfor-
mance, predicting computation requirements of mobile
applications, and estimating execution times on both local
devices and the cloud. Using this information, the client
component can decide how many of its tasks are to be off-
loaded. Recent works such as ThinkAir [20], Virtual Smart-
phone [8], and CloneCloud [9] have made use of virtual
machines (VMs) as a platform for task offloading. A VM
image of a mobile device is transferred to the cloud, and
tasks are then remotely executed on the device’s VM in the
cloud, using task offloading operations.

The main drawback of offloading tasks to a remote cloud
is the latency between mobile users and the remote cloud,
which can disrupt user experiences in interactive applica-
tions such as mobile games. Cloudlets overcome this draw-
back by providing low-latency accesses to rich computing
resource locally, which can dramatically improve the per-
formance of mobile applications. Application offloading to
cloudlets generally follows a VM-based approach [15], [24],
where a mobile device rapidly instantiates a compressed
VM image of the application and transfers it to a cloudlet,
and the task then can be executed on the cloudlet. Once a
task has been executed, its result will be returned to its
mobile user. By doing so, cloudlet resources could become
constrained if there is a large number of task requests from
users. Two recent studies [6], [16] presented a system model
where the average response time of tasks at a cloudlet can
be estimated, using queuing theory [19]. They further pro-
posed that a cloudlet can offload some of its tasks to a
remote cloud for execution under extreme loads. Verbelen
et al. [25] proposed a fine grained approach to cloudlet off-
loading, where a mobile application would be dynamically
partitioned at run-time into independent remotely execut-
able components. This approach has the advantage of dis-
tributing its components among multiple cloudlets and
executing them in parallel. Furthermore, the number of off-
loaded components can be dynamically scaled down if the
network connectivity is poor, providing a smoother user
experience. Several recent studies further broadened the
definition of cloudlets to include ad-hoc computers in the
network. Verbelen et al. [25], [26] proposed such a cloudlet
architecture, creating a framework which enables ad-hoc
discovery of nearby devices in the network to share resour-
ces, while Wan et al. [28] proposed an architecture of inte-
grating mobile cloud computing and vehicular cyber-
physical systems.

A fundamental problem for cloudlets in an WMAN is
how to balance the workload among the cloudlets, consider-
ing that workload balance plays a vital role in enhancing
QoS of services and user experiences. Although load balanc-
ing has been extensively studied in centralized data centers,
there are essential differences in load balancing between
cloudlets and centralized clouds. Specifically, in a central-
ized data center, there is a centralized queue for all incoming
user requests, the workload balancing and task allocations
among servers in the data center is performed by a central-
ized scheduler called the hypervisor [10], [34]. In such a sce-
nario, the task transfer delay and processing delay between
servers in the data center is several orders of magnitude less
than the task transfer and processing delays between differ-
ent cloudlets in anWMAN [3], [33], since the bandwidth and
computing resources within a data center is usually abun-
dant. In contrast, in a distributed cloudlet environment, user
requests are admitted by the network through their access
points (APs), and cloudlets are usually co-located at the APs.
Associated with each cloudlet is a queue of waiting tasks,
and the QoS requirements of requests is now an important
concern. Balancing the workload among the waiting queues
at different cloudlets while minimizing the maximum task
response time (delay) among offloaded tasks is challenging.
In addition, due to limited processing capacities of cloudlets,
the wait time delay of a task at a cloudlet is a non-linear
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function of the workload (processing capacity) of the cloud-
let. How to consider such a distributed queuing delay feature
in the workload balance among cloudlets is another chal-
lenge. Furthermore, the transfer delay by redistributing tasks
from one cloudlet to another cloudlet cannot be ignored.
Although there are several studies on load balancing of
cloudlets in WMANs [16], [31], [33], none of these studies
focused on minimizing the maximum task response time
throughworkload balancing among cloudlets.

In this paper, we restrict our definition of a cloudlet to
being a cluster of computers co-located with an Access
Point (AP) in an WMAN. The topic of cloudlet placement
within wireless networks has been explored in [16]
and [32], [33]. For example, the authors in [16] showed
that the strategic placement of a limited number of cloud-
lets in an WMAN can greatly improve the performance of
mobile user devices, and presented an algorithm for the
cloudlet placement problem. In their other studies [32],
[33], the authors formulated a capacitated cloudlet place-
ment problem that places K cloudlets to some potential
locations in an WMAN with the objective to minimize the
average cloudlet access delay between mobile user
requests and the cloudlets serving the requests of the
mobile users under the computing capacity constraints on
different cloudlets. They devised approximation algo-
rithms with guaranteed approximation ratios for the
problem. Although they dealt with the average delay of
offloaded tasks, they didn’t incorporate the queuing time
delay and the work load at each cloudlet into consider-
ation. The authors [17] recently considered QoS-aware
task offloading to WMANs by assuming that different
requests may have different network function service
requirements, for which they developed an efficient heu-
ristic for dynamic request admissions by utilizing existing
instances of virtualized network functions in cloudlets. In
addition, Ceselli et al. [7] studied the problem of cloudlet
placements and the assignment of APs to cloudlets, by
proposing a heuristic algorithm. Their objective is to min-
imize the operational cost of the edge network. Instead,
the objective in this paper is to minimize the maximum
task response time through balancing the workload
among the cloudlets in an WMAN.

It must be mentioned that this study is an extended
version of our previous work in a conference paper [18].
The main differences between this extension and its con-
ference version lie in (1) the development of another algo-
rithm—the distributed genetic algorithm, which delivers
a more accurate solution at the expense of a longer run-
ning time; and (2) another set of experiments to validate
the concepts and evaluate the performance of the pro-
posed algorithms.

3 PRELIMINARIES

In this section we first introduce our system model. We then
define the problem precisely.

3.1 System Model

We assume that an WMAN service provider has set up K
cloudlets 1; 2; . . . ; Kf g at fixed locations in the WMAN.
The cloudlets are co-located at access points in the network,

and all cloudlets are connected to each other via network
connection. We assume user applications are dynamically
partitioned into discrete offloadable tasks that can be proc-
essed at any of the K cloudlets. Users will offload tasks to a
nearby AP with a cloudlet, and the cloudlet can either
choose to add the task to its own queue or redirect the task
to another cloudlet in the network (See Fig. 1).

We model the cloudlets asM/M/n queues, where cloudlet
i has a number of servers ni with service rate mi, for
i 2 1; 2; . . . ; Kf g. Due to the rapidly changing nature of user
demands, the rate of incoming requests can fluctuate wildly
at each cloudlet over time. As such, we assume that the
incoming user tasks at each cloudlet i arrive randomly
according to the Poisson process with arrival rate �i. The
average wait time of a task in cloudlet i consists of the queu-
ing time and the service time of the task at cloudlet i.
We use Ti, which is a function of a given task arrival rate �,
to calculate the average task wait time at cloudlet i

Ti �ð Þ ¼
C
�
ni;

�
mi

�
nimi � �

þ 1

mi

; (1)

where

Cðn; rÞ ¼
nrð Þc
n!

� �
1

1�r
� �

Pn�1
k¼0

nrð Þk
k! þ nrð Þc

n!

� �
1

1�r
� � : (2)

Eq. (2) is known as Erlang’s C formula [19].
As task arrival rates at different cloudlets can be signifi-

cantly different, some cloudlets may be overloaded while
others may be underloaded. We assume that all cloudlets
are reachable from each other, and each cloudlet can redi-
rect a fraction of its tasks to another cloudlet. We use fði; jÞ
to denote the amount of task flow from cloudlet i to cloudlet
j, for i 6¼ j (see Fig. 2). We thus have the following constraint
on fði; jÞ

fði; jÞ ¼ �fðj; iÞ if i 6¼ j
0 otherwise;

�
8i; j 2 f1; . . . ; Kg (3)

XK
i¼1

XK
j¼1

fði; jÞ ¼ 0; (4)

XK
j¼1

maxffði; jÞ; 0g � �i; 8i 2 f1; . . . ; Kg: (5)

Fig. 1. An WMAN with APs.
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Eq. (3) ensures that for any two cloudlets i and j, the flow
in terms of task rate, from cloudlet i to cloudlet j is the nega-
tive of the flow from cloudlet j to cloudlet i. As the flow of
tasks from any given cloudlet i to itself is zero, we have
fði; jÞ ¼ 0. Eq. (4) ensures that all flow is conserved, while
Eq. (5) ensures that the sum of all outgoing task flows from
cloudlet i (we ignore the incoming flow by summing the
maximum of fði; jÞ and 0 for each cloudlet j) is less than its
incoming task arrival rate �i.

We assume all offloadedpacketswith equal size, and so the
delay incurred in transferring any packet between a pair of
APs through the network is identical. To model such a net-
work delay in the WMAN, denote by c 2 RK�K the network
delay matrix, where entry ci;j represents the shortest possible
communication delay in relaying a task between cloudlet i
and cloudlet j. We assume that the flow of incoming redir-
ected tasks fði; jÞ < 0 at cloudlet i has a delay of�fði; jÞ � ci;j.
We can then calculate the sum TnetðiÞ of all network delays of
incoming tasks fromother cloudlets to cloudlet i as

TnetðiÞ ¼
XK
j¼1

max fðj; iÞ; 0f g � cj;i: (6)

Having Eqs. (1) and (3), the average task response time
DðiÞ of all tasks that are executed on cloudlet i can be calcu-
lated as follows:

DðiÞ ¼ Ti �i

� �þ TnetðiÞ; (7)

where �i is the final incoming task flow that will be proc-
essed at cloudlet i, which is defined as follows:

�i ¼ �i �
XK
i¼1

fði; jÞ: (8)

A summary of system model and algorithm symbol defi-
nitions is given in Table 1.

3.2 Problem Definition

The Cloudlet Load Balancing Problem in an WMAN is
defined as follows. Given a set of cloudlets 1; . . . ; Kf g,
where each cloudlet i with task arrival rate �i and ni servers
with service rate mi for all i 2 f1; 2; . . . ; Kg (for convenience
we henceforth refer to the set of these given network param-
eters as NET ), the problem is to find a set of inter-cloudlet
task flows f ¼ fði; jÞ j i; j 2 f1; 2; . . . ; Kgf g under the con-
straints given in Eqs. (3), (4), and (5), such that the maxi-
mum task response timeDðiÞ is minimized, i.e.,

minmax
f

DðiÞ: (9)

In this paper we propose two algorithms for the problem
that strive for the tradeoff between the solution accuracy
obtained by each algorithm and the running time of the
algorithm.

4 HEURISTIC ALGORITHM

In this section we propose a heuristic for CLBP. The approach
is to identify a balanced task response timeD and then decide
the out-going or in-coming workload of each cloudlet, based
on D. As we reduce the task response time of overloaded
cloudlets by redirecting some of their tasks to underloaded
cloudlets, the task response times of underloaded cloudlets
are increased. By carefully directingworkload (flow) between
cloudlets, the tasks processed among the cloudlets will have
roughly the same response time. To this end, we compute the
task flow from overloaded cloudlets to underloaded cloud-
lets, using a transportation algorithm [14]. This procedure
continues until the given accuracy bound ismet.

4.1 Balancing Task Response Time

To find the balanced task response time D and decide the
amount of outgoing/incoming workload for each cloudlet,
we guess the value of D and iteratively improve it until it is
within a given accuracy bound. We begin by examining the
range of the average task wait time at cloudlets.

Let Tmax¼max1�i�K Ti �ið Þf g and Tmin¼min1�i�K Ti �ið Þf g,
then the value of D is in the range between Tmin and Tmax.
We assignD ¼ TmaxþTmin

2 as its initial value. We then partition
all cloudlets into two disjoint sets, the set Vs of overloaded
cloudlets

Vs ¼ i jTið�iÞ > D
� �

;

Fig. 2. The flow of tasks from cloudlet i to cloudlet j.

TABLE 1
System and Algorithm Symbols

Symbol Definition

K Number of cloudlets in the network
fði; jÞ The flow of tasks from cloudlet i to cloudlet j.
�i Initial task arrival rate/workload for cloudlet i
mi Service rate of servers at cloudlet i
ni Number of servers at cloudlet i
Ti �ð Þ Task response time at cloudlet iwhen the arrival rate

of tasks is �
ci;j Network delay between AP pi and pj
TnetðiÞ Total network delay of incoming tasks arriving at

cloudlet i given the set of inter cloudlet task flows
di;jj i; j 2 f1; 2; . . . ;Kg

� �
DðiÞ Task response time given the set of inter cloudlet task

flows di;jj i; j 2 f1; 2; . . . ;Kg
� �

NET The set of all given network parameters:
�i; ni; mi; ci;jji; j 2 1; 2; . . . ; K

� �
u Termination quality ofD andDt.
� Accuracy bound for calculating task demand fi

for cloudlet i
N Maximum number of generations
Rmut Rate of gene mutation
Rmig Rate of gene migration
P Gene population size on island
Pmig Population percentage of migrant genes
S Number of survivors in each generation
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and the set Vt of underloaded cloudlets

Vt ¼ j jTjð�jÞ � D
� �

:

For each overloaded cloudlet in i 2 Vs, we decide the
task demand fi of cloudlet i, which is the amount of task
flow that should be redirected from its arrival task flow �i,
such that its task response time is within a given accuracy
� of D

D� Tið�i � fiÞ
		 		 � �; (10)

where � is a given threshold.
For each underloaded cloudlet j 2 Vt, we decide the task

demand fj of cloudlet j, which is the amount of task flow to
arrive at cloudlet j such that its task response time is within
the accuracy � ofD

D� Tjð�j þ fjÞ
		 		 � �: (11)

Once we have calculated fi for each overloaded cloudlet
i 2 Vs and fj for each underloaded cloudlet j 2 Vt, we can
then determine the value of the redirected task flow fði; jÞ
at the minimum cost, in terms of the network delay from
overloaded cloudlets to underloaded cloudlets. Fig. 3 is an
illustrative diagram of the calculation of fi and fj for all i
and jwith 1 � i � jVsj and 1 � j � jVtj.

Because redirecting tasks from overloaded cloudlets
to underloaded cloudlets will incur network delays at
underloaded cloudlets, we should further adjust D such
that the sum of the task response time at each under-
loaded cloudlet j 2 Vt and the incoming network delay
TnetðjÞ of all tasks to cloudlet j is nearly equal to D,
i.e., Tjð�jÞ þ TnetðjÞ � D. Let D0 ¼ maxj2Vt Tjð�jÞ

� �
. If the

difference between D and D0 is within a certain bound of
accuracy u, we are done; otherwise, we need to further
refine D. If D < D0, this means that we must reduce the
amount of outgoing tasks from overloaded cloudlets, and
we need to increase D by reducing fi for each overloaded
cloudlet i 2 Vs. Otherwise, we should increase the amount
of outgoing tasks from overloaded cloudlets, and lower D
to allow overloaded cloudlets to redirect more tasks to
underloaded cloudlets. We choose D 1

2 DþD0
� �

, and
recursively search for D and continue this procedure until
the difference between D and D0 is within the accuracy
bound u.

The rest is to find the minimum latency flow fði; jÞ
when given a balanced task response time D. The detailed
algorithm is given in Algorithm 1.

Algorithm 1. CLBP-Heuristic Algorithm

Input: NET; u; �
Output: fði; jÞ; i; j 2 f1; 2; . . . ;Kg.
1: Tmax  max1�i�K Ti �ið Þf g;
2: Tmin  min1�i�K Ti �ið Þf g;
3: D TmaxþTmin

2 ;

4: Vs  i jTið�iÞ > D
� �

;

5: Vt  j jTjð�jÞ � D
� �

;

6: D
0  1;

7: while jD�D
0j > u do

8: for each i 2 Vs do
9: calculate fi such that D�Tið�i�fiÞ

D

			 			 � �;

10: for each j 2 Vt do

11: calculate fj such that
D�Tjð�jþfjÞ

D

			 			 � �;

12: F fk j k 2 Vs [ Vtf g
13: calculate fði; jÞ for each i; j 2 f1; 2; . . . ;Kg by invoking

Procedure minLatencyFlow Vs; Vt;Fð Þ;
14: for each j 2 Vt do
15: calculate DðjÞ by Eq. (7);
16: D

0  maxj2VtfDðjÞg;
17: D 1

2 ðDþD
0Þ;

4.2 Minimum-Latency Flow

Once we have determined the amount of outgoing or
incoming task flow fk for each cloudlet k, we then deter-
mine for each outgoing task flow from an overloaded cloud-
let i to each incoming task flow of underloaded cloudlet j,
the value of the redirected task flow fði; jÞ. To this end, we
reduce the problem of routing the outgoing task flow from
overloaded cloudlets to underloaded cloudlets to the mini-
mum-cost maximum flow problem in an auxiliary flow
graph G ¼ ðV;EÞ derived from the original network as fol-
lows (see Fig. 4).

We first add a virtual source node s and a virtual sink
node t to V . We then partition the cloudlets into two disjoint
sets: set Vs of overloaded cloudlets and set Vt of under-
loaded cloudlets, based on the given value of D. We add a
directed edge from node s to each node in Vs, and a directed
edge from each node in Vt to node t. This gives us the set of
edges E ¼ fhs; ii j i 2 Vsg [ fhj; ti j i 2 Vtg [ fhi; ji j i 2 Vs; j 2 Vtg.

Fig. 3. Finding optimal outgoing and incoming workload for each cloudlet
in an WMAN.

Fig. 4. Minimum-latency flow.
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Denote by uði; jÞ the capacity of edge i; jh i 2 E. The edge
capacity of each edge from the source node s to a cloudlet
node i 2 Vs is set as uðs; iÞ ¼ fi for each edge s; ih i, and the
edge capacity of each edge from an underloaded cloudlet
node j 2 Vt to the sink node t is set as uðj; tÞ ¼ fj for each
edge hj; ti. The latency cost of each edge from the source
node s to an overloaded cloudlet node i 2 Vs is set as zero,
i.e., cs;i ¼ 0. Similarly, the latency cost of each edge from
each underloaded cloudlet node j 2 Vt to the sink node t is
set as zero, i.e., cj;t ¼ 0. For each edge i; jh i; i; j 6¼ s; t from
an overloaded cloudlet i to an underloaded cloudlet j, its
edge capacity is set as uði; jÞ ¼ min uðs; iÞ; uðj; tÞf g.

Having constructed the flow graph G, it can be seen that
the problem of routing outgoing task flow from overloaded
cloudlets to underloaded cloudlets is reduced to finding
a minimum-cost and maximum-flow in G from s to t, i.e.,

minimize
X
ði:jÞ2E

fði; jÞ � ci;j; (12)

subject to the following constraints:

fði; jÞ � uði; jÞ; 8i; j 2 V (13)

X
i2V nfsg

fðs; iÞ ¼
X

j2V nftg
fðj; tÞ; i 6¼ s or j 6¼ t (14)

X
j2V nfs;tg

fði; jÞ ¼ 0; i 6¼ s or j 6¼ t (15)

where fði; jÞ � ci;j is the amount of network delay incurred
by transferring tasks from cloudlet i to cloudlet j.

This is clearly an instance of the Hitchcock Transporta-
tion Problem [14], and can be solved within O K4

� �
time,

using a Transportation Algorithm [13], [14], where K is the
number of cloudlets. The details are given in Procedure 1.

Procedure 1. minLatencyFlow

Input: Vs; Vt; fk j k 2 Vs [ Vtf g
Output: fi;j; i; j 2 f1; 2; . . . ;Kg.
1: /* Construct the flow network with latency weighted

edges. */
2: V  1; 2; . . . ;Kf g [ s; tf g;
3: E  ;;
4: for each i 2 Vs do
5: E  E [ s; ih if g;
6: uðs; iÞ  fi;
7: cs;i  0;
8: for each j 2 Vt do
9: E  E [ j; th if g;
10: uðj; tÞ  fj;
11: cj;t  0;
12: for each i 2 Vs do
13: for j 2 Vt do
14: E  E [ i; jh if g;
15: uði; jÞ  min uðs; iÞ; uðj; tÞf g;
16: Solve the transportation problem in G using adapted

Hungarian algorithm.

5 DISTRIBUTED GENETIC ALGORITHM

Although later experimental results indicate that the pro-
posed heuristic, Algorithm 1 in the previous section can

deliver a feasible solution quickly, the solution may not be
sufficiently accurate. In this section we devise a distributed
genetic algorithm for CLBP that improves the accuracy of
the solution at the expense of a longer running time. The key
to this distributed algorithm is to perform fine-grain work-
load balancing among cloudlets iteratively through gene
mutations until the solution converges on a given threshold.

5.1 Genetic Algorithm Operations

Genetic algorithms (GAs) have been widely used for combi-
natorial optimization problems. Traditional GAs maintain a
population of solutions encoded as “genes” where only the
fittest genes are bred to produce successively fitter genera-
tions of genes. However, genetic algorithms are often com-
putation intensive and scale poorly. To overcome this, we
design a distributed genetic algorithm for CLBP by leverag-
ing the computing power of cloudlets. We first partition the
cloudlets into overloaded and underloaded cloudlets, using
each cloudlet p 2 f1; . . . ; Kg as a partition reference. We
then solve the CLBP problem using a distributed GA to find
the fittest gene for each partition. We finally select the fittest
gene among all partitions as the solution to the problem.

We begin by discussing the representation of genes. A
gene is simply an encoded version of the task flow matrix f .
While it is possible to use f directly as the gene representa-
tion, it is not the most efficient way. Many potential solu-
tions using f as the gene will contain cloudlets that both
receive and redirect flow, which guarantees that the solution
is sub-optimal. By partitioning the cloudlets into overloaded
and underloaded cloudlets, and representing only the task
flow from overloaded to underloaded cloudlets, the poten-
tial solution space is substantially reduced. This in turn sig-
nificantly reduces the number of iterations to an acceptable
solution. If we sort the cloudlets according to their local task
response times, we can partition the cloudlets using the task
response time of a given cloudlet p as a reference to give us
the sets Vs and Vt of overloaded and underloaded cloudlets
as defined in the previous section. Let gði; jÞ denote the
amount of task flow from cloudlet i 2 Vs to cloudlet j 2 Vt,
for i 6¼ j, where g is a jVsj � jVtj matrix. It can be seen that g
has a one-to-one mapping to the task flow variable f , i.e.,
every gene has a unique corresponding flow matrix.
We have the following constraint on gði; jÞ:

X
j2Vt

gði; jÞ � �i; 8i 2 Vs (16)

X
i2Vs

gði; jÞ < nj � mj; 8j 2 Vt; (17)

where Eq. (16) limits any given cloudlet i 2 Vs from redirect-
ing more tasks than available according to its task arrival
rate, and Eq. (17) limits any given cloudlet j 2 Vt from having
a total incoming task flow of more than nj � mj, as this would
result in an infinite queue time at the cloudlet (see Eq. (1)).

Our initial gene population is constructed by randomly
populating gi with uniformly selected random numbers in
the range ð0; �iÞ. If a randomly generated gene violates one
of the constraints, we randomly decrease values in the rele-
vant row or column until the constraints are met.

Denote by P the given number of genes maintained in
the gene population. The fitness of each gene is evaluated
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using our problem objective (defined in Formula (9)) as our
fitness function. We then select only the fittest genes to
survive to the next generation and repopulate the genepool.
Two genes g1 and g2 breed to create an offspring gene g by
taking the mean of each value

gði; jÞ ¼ 1

2
g1ði; jÞ þ g2ði; jÞð Þ:

Denote byS the number of surviving genes thatwill persist
into the next generation.We use the roulette selection to select
S survivors and randomly crossbreed the survivors until the
genepool population has been replenished. Aswe aim tomin-
imize the fitness function, we take the reciprocal of each gen-
e’s fitnessmetricwhen performing roulette selection.

Denote by Rmut the mutation rate of gene offsprings, i.e.,
Rmut is the probability of an offspring gene being selected
for mutation. We follow the mutation procedure given
in [27], which shuffles values from randomly selected col-
umns and rows. We continue to evolve the genepool until
either an accuracy threshold is met or the maximum num-
ber of generations N is reached. In the final generation, the
fittest gene is selected as the task flow between the over-
loaded cloudlets Vs and underloaded cloudlets Vt.

5.2 Distributed Algorithm

As the genetic operations described are performed on indi-
vidual genes, independent of the rest of the population,
these operations can be performed in parallel by the cloud-
lets in the network. However distributed genetic algorithms
are more than just the parallel implementations of tradi-
tional sequential genetic algorithms. Numerous studies [1],
[5], [21], [22] have shown that partitioning a large gene pop-
ulation into local groups called “islands” can encourage effi-
cient selection of successful genetic traits, and generate
better results than a traditional GA. In natural evolution,
individuals rarely have the potential to mate with any part-
ner in the entire population. Instead, breeding tends to be
limited to sub-groups or neighborhoods, allowing the spe-
cies at large to diversify. By limiting the reproductive access
of genes to their local groups (islands), but occasionally
allowing migrations of genes between islands, the genepool
is less likely to stagnate, resulting in fitter genes.

In the proposed distributed algorithm, we treat every
cloudlet in the network as an island node that maintains
and evolves its own genepool, using the genetic operations
described. We further introduce Rmig to denote the migra-
tion rate of genes, where each generation has probability
Rmig of migrating genes to another island, and we denote by
Pmig the percentage of the population that will be migrated.
Genes are selected for migration using the roulette method,

similar to the selection of survivors. In each generation,
islands will also poll the supervisor for in-bound migrant
genes. If there exist inbound migrant genes at the island, the
new genes are placed in the next generation of the genepool
for breeding (for details see Procedure 2). We leave the
task of coordinating the migration of genes across islands to
a cloudlet acting as the supervisor.

Procedure 2. CLBP-DGA-Island(id, Vs, Vt)—Create an
Island for Evolving Gene Population

Input: NET; S; P;Rmut; Rmig; Pmig;N
Output: fði; jÞ; i; j 2 f1; 2; . . . ;Kg.
1: genepool ? ;
2: for i 1 to P do
3: Create a random gene according to Eqs. (18), (19);
4: genepool genepool [ genef g;
5: for gen 1 toN do
6: Sort genes by fitness;
7: Push fittest gene to supervisor;
8: if Random(0,1)< Rmig then
9: Select Pmig � P genes to migrate;
10: Push selected genes to supervisor for migration;
11: Remove selected genes from genepool;
12: genepool0  ? ;
13: Poll supervisor for inboundmigrant genes;
14: if 9 inboundmigrant genes then
15: genepool0  genepool0 [ migrant genesf g;
16: Select S survivor genes from genepool;
17: genepool0  genepool0 [ survivor genesf g;
18: while jgenepool0j < P do
19: Select two parent genes p1 and p2 from genepool0;
20: child crossover(p1, p2);
21: if Random(0,1)< Rmut then
22: mutate(child);
23: genepool0  genepool0 [ childf g;
24: genepool genepool0;

We select one of the cloudlets in the network as the
supervisor to direct and manage the islands. For each cloud-
let p 2 1; . . . ; Kf g, the supervisor partitions the cloudlets
into overloaded and underloaded cloudlets according to p.
It then instantiates an island on each cloudlet to manage
and evolve a genepool. At the end of each generation, each
island asynchronously pushes the fittest gene in the previ-
ous generation to the supervisor as an update. This can be
seen in Fig. 5 where the nodes i, j, and k represent islands
and s represents the supervisor. Island i invokes the push-
update method, and the supervisor saves the gene in
a results table according to the current partition index and
the island’s id. If an island is exporting migrant genes, the
supervisor will select an island destination and handle the
transfer of migrants to the destination. The island destina-
tion is selected via roulette selection based on the fitness of
the gene from each island to ensure that the island with the
least-fit genes is most likely to receive migrant genes. The
migrant genes are then cached with the destination island
as the key, and when the destination island polls the super-
visor for migrants, the supervisor transfers the migrants to
the destination. This is shown in Fig. 5 where island j
migrates a set of genes to the supervisor, island k polls the
supervisor for migrants, and the supervisor transfers the

Fig. 5. Interactions between the supervisor and islands.
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migrant genes to k. Eventually all the islands will be termi-
nated after reaching N generations, and the fittest gene is
saved by the supervisor. After searching the partitions
according to all K cloudlets, the supervisor returns the fit-
test gene of those selected from each partition. The detailed
algorithm is given in Algorithm 2.

Algorithm 2. CLBP-DGA-Supervisor Algorithm

Distributed algorithm for cloudlet load balancing problem.
Input:NET; S; P;Rmut; Rmig; N
Output: fði; jÞ; i; j 2 f1; 2; . . . ; Kg.
1: for p 1 toK � 1 do
2: Vs  i j Tið�iÞ > Tpð�pÞ

� �
;

3: Vt  j j Tjð�jÞ � Tpð�pÞ
� �

;
4: for id 1 toK do
5: /* Create an island on each cloudlet. */
6: Invoke Procedure CLBP-DGA-Island(id, Vs, Vt);
7: Search results table for the fittest gene;
8: return the fittest gene;

9: /* Functions invoked by islands */
10: function PUSH-UPDATE (id, gene)
11: /* Save gene in results table where p is the current

partition */
12: results[p][id] gene;

13: function PUSH-MIGRANTS (id;migrants)
14: Select an island id using roulette selection;
15: Cache migrants using id as the key;

16: function POLL-MIGRANTS (id)
17: if cache-has-key(id) then
18: migrants cache-get(id);
19: cache-remove-key(id);
20: returnmigrants;
21: else
22: return ? ;

6 SIMULATION

In this section we evaluate the performance of the proposed
algorithm in simulation environments through experiments.
We begin by explaining the simulation settings. We then eval-
uate the performance of the proposed algorithms in different
networks. We finally investigate the impact of important
parameters on the performance of the proposed algorithms.

6.1 Simulation Environment

We adopt a similar method of network generation as used
in [16] to generate an WMAN. We assume that the positions
of cloudlets in an WMAN follows a scale-free distribution,

and we generate random scale-free cloudlet network topolo-
gies using the Barabasi-Albert Model [2]. Similar to [16], we
assume that network delay is proportional to the physical
distance between APs. As distances between real APs are
essentially random, we assign the network delay between
each pair of directly linked cloudlets randomly according to
the normal distribution: 0:1 � Nð0:15; 0:05Þ � 0:2. This ran-
domizes the delay in the network while preserving triangle
distance inequality, as any pair of nodes with 2 degrees of
separation has an intermediary distance of at least 0.2.

For each cloudlet i, we assign its service rate mi by sam-
pling the Normal distribution Nð5; 2Þ > 0, and the number
of servers ni by sampling the Poisson distribution with a
mean of 3. The task arrival rate �i at cloudlet i is determined
by the Normal distribution 0 < Nð15; 6Þ < mi � ni � 0:25.
Notice that arrival rate �i does not exceed mi � ni, otherwise,
it would cause the queue time at cloudlet i to be infinite,
according to Eq. (1). Unless otherwise stated, the default
number of cloudlets in the networkK ¼ 40.

We refer to the proposed heuristic Algorithm 1 and the
distributed algorithm Algorithm 2 as algorithms Heu-

ristic and Distributed, respectively. For algorithm
Heuristic, let u ¼ 0:1 and � ¼ 0:05. For algorithm Dis-

tributed, let the maximum number of generations
N ¼ 1;000, the population size of each island P ¼ 100, the
rate of gene mutation Rmut ¼ 0:02, the rate of gene migra-
tion Rmig ¼ 0:04, the percentage population of migrant
genes Pmig ¼ 0:02, and the number of survivors per genera-
tion S ¼ 10. All data points in simulations are the average
of 100 trials with independent randomly generated net-
works unless otherwise stated.

6.2 Performance Evaluation of Different Algorithms

Fig. 6 studies the impact of network conditions on the per-
formance of the proposed algorithms. In Fig. 6a, we first
compare the probability distribution of task response times
at cloudlets when no tasks are redirected (isolated cloudlet)
and when tasks at cloudlets are redirected, according to the
proposed heuristic and distributed algorithms. As can be
seen, the heuristic algorithm narrows the range of task
response times between 0.2 and 1.0 seconds, with a median
task response time of 0.5 seconds. The range is larger than
our accuracy bound u ¼ 0:1, which is due in part to network
delay causing a mismatch between outgoing task demand
at overloaded cloudlets, and incoming task demand at
underloaded cloudlets. The distributed algorithm has the
same median task response time of 0.5 seconds, however it
has a tighter range with task response times ranging
between 0.3 and 0.8.

Fig. 6. Impact of network conditions on performance of algorithms Heuristic and Distributed.
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Fig. 6b investigates the maximum task response time of
the proposed algorithms when increasing the network
delays on network edges. Network delay ci;j between cloud-
let i and cloudlet j is generated by randomly sampling the
normal distribution x� 0:05 � Nðx; 0:05Þ � xþ 0:05, where
x is the given average network delay between any two cloud-
lets in the network. Both plots have a roughly linear relation-
ship to increased network delay. However, the maximum
task response time of the heuristic algorithm out-paces the
growth of network delay, i.e., after increasing network delay
by 0.35 seconds, the maximum task response time delivered
by algorithm Heuristic increased by 1 second. In contrast,
the maximum task response time in the solution delivered
by algorithm Distributed only increases by 0.19 seconds.
This slow growth is a result of the genetic optimization per-
formed by algorithm Distributed to balance the cost of
task flow against the cost of locally processing tasks. It can be
seen that algorithm Distributed is more robust compared
to algorithm Heuristic in a heavily congested network.

Fig. 6c examines the maximum task response times of
both proposed algorithms when increasing the average
arrival rate of tasks. Task arrival rate �i for cloudlet i is gen-
erated by sampling the Normal distribution 0 < Nðx; 6Þ
where x is the given average task arrival rate. In this experi-
ment, we do not put a limit on the cloudlet task arrival rate,
allowing some cloudlets to have an infinite task response
time initially. As can be seen, both algorithms deliver the
maximum task response times that dramatically increase
with the growth of cloudlet task arrival rates. The growth of
the maximum task response time is observed to accelerate
when task arrival rate exceeds 12.5 as cloudlets begin
approaching the limit of their processing capability. When
the average task arrival rate exceeds 17.5, both algorithms
deliver the maximum task response times of infinity as the
cloudlets become overwhelmed by the task arrival rate.
It can be seen that the gap between the two proposed algo-
rithms does not increase significantly.

6.3 Impact of Important Parameters on the
Performance of Algorithms

In the following we first investigate the impact of network
size K on the performance of the proposed algorithms.
We then study the impacts of parameters u and � on the per-
formance of algorithm Heuristic. We finally evaluate the
impact of parameters such as the numbers of partitions and
iterations on algorithm Distributed.

Fig. 7 examines the impact of the number of cloudlets K
on the performance of the proposed algorithms. Fig. 7a

studies the maximum task response time delivered by
different algorithms. As can be seen, the maximum task
response time by both algorithms decrease sharply with the
growth on the number of cloudlets K. However, algorithm
Distributed quickly reaches a plateau at around 80
cloudlets. After that, any further addition does not result in
further improvement to the maximum task response time.
It is observed that after the network has a sufficient number
of cloudlets, the queuing time at cloudlets become negligi-
ble and the cost of network delay outweighs the benefits of
offloading tasks to new cloudlets. Fig. 7b shows the running
time of the proposed algorithms, by varying the number of
cloudlets. Notice that the plot uses a logarithmic scale for
the running time, where the running time of an algorithm
was obtained based on a machine with a 3.40 GHz Intel i7
Quadcore CPU and 16 GiB RAM. As algorithm Distrib-

uted makes use of concurrent processing, we measure
its running time by taking the sum of the longest running
genetic island (simulated using Java threads) in each parti-
tion. We conclude from these comparisons that although
the distributed algorithm consistently delivers better solu-
tions than that of the heuristic algorithm especially in con-
gested networks, its running time makes it impractical for
many networks.

Fig. 8 plot the two accuracy measures adopted in algo-
rithm Heuristic: u and �, where u determines how close
the maximum task response time of underloaded cloud-
lets (after network flow) is to the chosen D task response
time before the solution is acceptable, while � controls
the accuracy of the cloudlet task demand fi for each
cloudlet i.

Fig. 8a illustrates the maximum task response time deliv-
ered by algorithm Heuristic, by varying the value of the
accuracy threshold u. As u increases, the termination condi-
tion of the algorithm becomes more lax, and the number of
incremental refinements of D is reduced. This results in the
increase of the maximum task response time.

Fig. 8b studies the maximum task response time deliv-
ered by algorithm Heuristic by varying the accuracy
bound �. As � increases, the error margin of task demand at
each cloudlet also increases, resulting in the algorithm redi-
recting the correct amount of flow for a given balanced task
response timeD.

Fig. 8c shows the running time of the algorithm increases
with the growth of u. Clearly, the curve is asymptotic as u

approaches zero, and as u increases, the running time con-
verges towards 0.6 milliseconds. While the results pre-
sented here are not conclusive, there is clearly a tradeoff

Fig. 7. Impact of network sizeK on the performance of algorithms Heuristic and Distributed.
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between the running time and the accuracy of the maximum
task response time delivered by the algorithm.

Fig. 9 investigates the impact of cloudlet partitions, the
effects of population size and migration rate on the perfor-
mance of algorithm Distributed. Fig. 9a shows the maxi-
mum task response time given by the fittest gene generated
from each cloudlet partition in algorithm Distributed.
The cloudlet partitions are numbered according to the size
of overloaded cloudlets Vs in the partition. When the cloud-
let partition has a low number of overloaded cloudlets, task
flow is limited and optimal load balancing cannot be fully
achieved resulting in a high maximum task response time.
Cloudlet partitions with more overloaded cloudlets pro-
duce results with a lower maximum task response time,
until we reach the optimal partition at 20 overloaded cloud-
lets. After this point, an increase in overloaded cloudlets
within a partition results in a higher maximum task
response time, as there are fewer underloaded cloudlets to
offload tasks to. Between cloudlet partitions 15 and 30, the
variation in the maximum task response time is minor, and
a near optimal maximum task response time can be found
by optimizing on any cloudlet partition found in this range.

Fig. 9b examines the maximum task response time for
three different population sizes per island. We can see that a
larger population size leads to a faster convergence as well
as a lower task response time. However, there appears to be
diminished returns as we increase the population. The
improvement gained between a population size of 20 and 60
ismuch greater than between a population size of 60 and 100.

Fig. 9c examines the maximum task response time for
different migration rates. We can see that a lower migration
rate leads to a lower task response time, but a slower con-
vergence. The lower migration rate allows each genetic

island to develop new solutions independently, leading to
larger diversity of genes in the global population. The
higher migration rate converges significantly faster but ulti-
mately delivers a higher task response time, compared to
lower migration rates.

To conclude, the solution delivered by algorithm Dis-

tributed can reduce the maximum task response time
significantly, while its running time is much longer in com-
parison with that by algorithm Heuristic. Although the
results of algorithm Heuristic are promising, a key issue
is that algorithm Heuristic cannot accurately estimate
the network delay for an underloaded cloudlet making it
difficult for underloaded cloudlets to meet the target bal-
anced task response time D. This is particularly the case
when network delay between cloudlets is highly variable
due to congestion. Because of this, algorithm Heuristic

may terminate prematurely before an accurate solution is
reached. On the other hand, while algorithm Distributed

consistently delivers a more accurate solution, its running
time is several orders of magnitude larger than that of algo-
rithm Heuristic, which can be a significant issue for
large-scale networks.

Clearly, algorithms Distributed and Heuristic have
complimentary qualities, and there are some potential
approaches to combining their strengths. An example of this
is to encode the solution generated by algorithm Heuristic

as a gene, and include it in the initial gene population of algo-
rithm Distributed. As a result, the optimization process
can be speeded up and converges towards an acceptable
solution in significantly fewer generations than if algorithm
Distributed were to start with a completely randomly
generated gene population, significantly reducing the run-
ning time of algorithm Distributed.

Fig. 9. The impact of important parameters on the performance of algorithm Distributed.

Fig. 8. The impact of important parameters on the performance of algorithm Heuristic.
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7 CONCLUSION

Cloudlets are an important technology that provides per-
formance improvements to mobile applications. As wire-
less Internet availability continues to grow, public
available and easy-to-access cloudlets will be vital to the
future of mobile computing. In this paper we studied the
problem of QoS-aware cloudlet load balancing in an
WMAN. We proposed two efficient algorithms for balanc-
ing the workload among cloudlets to minimize the
maximum task response time. We also evaluate the perfor-
mance of the proposed algorithms through experimental
simulation. The simulation results demonstrated that the
proposed algorithms are promising.
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