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Abstract—Today’s computer networks rely on a wide spectrum
of specialized middleboxes to improve network security and
performance. A promising emerging technique to implementing
traditional middleboxes is the consolidated middlebox tech-
nique, which implements the middleboxes as software in virtual
machines in software-defined networks (SDNs), offering econom-
ical, and simplified management for middleboxes. This however
poses a great challenge, that is, how to find a cost-optimal routing
path for each user request such that the data traffic of the request
will pass through the middleboxes in their orders in the service
chain of the request, with the objective to maximize the network
throughput, subject to various resource capacity constraints in
SDNs. In this paper, we study the network throughput maximiza-
tion problem in an SDN under two different scenarios: one is
the snapshot scenario where a set of requests at one time slot is
given, we aim to admit as many requests in the set as possible to
maximize the network throughput; another is the online scenario
in which requests arrive one by one without the knowledge of
future arrivals. Given a finite time horizon consisting of T equal
time slots, the system must respond to the arrived requests in
the beginning of each time slot, by either admitting or reject-
ing the requests, depending on the resource availabilities in the
network. For the snapshot scenario, we first formulate an integer
linear program (ILP) solution, we then devise two heuristics that
strive for fine tradeoffs between the quality of a solution and the
running time of obtaining the solution. For the online scenario,
we show how to extend the proposed algorithms for the snap-
shot scenario to solve the online scenario. We finally evaluate the
performance of the proposed algorithms through experimental
simulations, based on both real and synthetic network topologies.
Experimental results demonstrate that the proposed algorithms
admit more requests than the baseline algorithm and the quality
of the solutions delivered by heuristics is comparable to the exact
solution by the ILP in most cases.

Index Terms—Software-defined networking, network function
virtualization, consolidated middleboxes, throughput maximiza-
tion, routing algorithms, online algorithms, network resource
allocations.
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I. INTRODUCTION

COMPUTER networks nowadays rely on various mid-
dleboxes, including firewall, Intrusion Detection

Systems (IDSs), WAN optimizers, and Deep Packet
Inspections (DPIs), to enhance the performance and
security of different network services [10], [14], [28].
Unfortunately, the management and deployment of these
hardware middleboxes are complex and costly [28]. For
example, statistics indicated that large networks (10k-100k
nodes) spent over a million dollars on deploying and main-
taining hardware middleboxes while medium and small
networks (1k-10k nodes) spent between $5,000 and $50,000
in the last five years [28]. With the advancement of the
Network Function Virtualization (NFV), middleboxes can be
implemented in Virtual Machines (VMs) that run in Physical
Machines (PMs) [9], [26], [28]. The NFVs can be relocated
and instantiated at servers located at different locations in a
network without needs of purchasing and installing expensive
middleboxes. By decoupling network functions from the
hardware platform on which network functions are executed,
NFV has the great potential to lead to significant reductions in
operating expenses (OPEX) and capital expenses (CAPEX) of
network service providers and facilitate the deployment of new
services with increased agility and faster time-to-value [25].
We refer to the software implementation of middleboxes as
the consolidated middleboxes. Along with the technique of
Software-Defined Networking (SDN), consolidated middle-
boxes offer a promising alternative way to provide cheap and
simplified management of middleboxes [12], [27].

In this paper we deal with realizing user requests with
each specifying a sequence of middleboxes in SDNs with
the aim to maximize the network throughput. This problem
poses great challenges. One challenge is that different types of
resources in SDNs have different capacities. For instance, the
forwarding table of an SDN-enabled switch usually is made
by Ternary Content-Addressable Memory (TCAM) to facili-
tate fast, parallel lookups of forwarding rules. TCAM however
is expensive and energy hungry, its capacity thus is restricted
to a few thousand table entries [18]. Meanwhile, the comput-
ing resource of the PM attached to an SDN-enabled switch is
limited too. Another challenge is that all resources in an SDN
are dynamically allocated, causing significant fluctuations in
their consumptions and availabilities. The time-varying nature
of resource demands and consumptions complicates the cost
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modeling of resource usages. In addition, each user request
requires its traffic to traverse a specified sequence of
middleboxes that is referred to the service chain of the
request. In this paper we will address the aforementioned
challenges.

In spite of several studies of consolidated middle-
boxes [5], [12], [26], none of the studies has taken the
forwarding table size into consideration. Almost all existing
solutions adopt a strategy that decomposes the routing path
finding and the service chain execution into two separate sub-
tasks [12], the solutions thus are suboptimal. To the best of our
knowledge, we are the first to formulate a novel routing opti-
mization problem with consolidated middleboxes in SDNs by
jointly taking into account both routing path finding and con-
solidated middlebox placement while meeting different user
QoSs, by providing efficient heuristic solutions.

The main contributions of this paper are as follows. We
consider the network throughput maximization problem of
realizing user requests with service chains in SDNs, sub-
ject to various network resource capacity constraints. We first
formulate an Integer Linear Program (ILP) solution to the
problem when the problem size is small. We then devise a
heuristic by providing a novel cost model to capture resource
consumptions. We also propose a faster heuristic to quickly
respond to user requests, by exploring non-trivial tradeoffs
between the accuracy (quality) of a solution and the run-
ning time of obtaining the solution. Furthermore, we consider
dynamic admissions of user requests where user requests arrive
one by one without the knowledge of future arrivals, by
showing how to extend the proposed algorithms for dynamic
admissions of requests. We finally evaluate the performance
of the proposed algorithms through simulations, based on
real and synthetic network topologies. Experimental results
demonstrate that the proposed algorithms are very promising
compared to a baseline algorithm and the ILP, which delivers
optimal solutions.

The rest of the paper is organized as follows. Section II
will review related work. Section III will introduce the system
model and notations, and define the problem. Section IV will
formulate an ILP solution to the problem. Sections V and VI
will present two heuristic algorithms. Section VII will
devise an online algorithm for dynamic request admissions.
Section VIII will evaluate the performance of the proposed
algorithms through simulations, and Section IX will conclude
the paper.

II. RELATED WORK

While middleboxes are widely used to guarantee secu-
rity and performance of routing traffic in contemporary
computer networks, the deployment of traditional hardware
middleboxes incurs high capital investment and operational
costs [27], [28]. To tackle these issues, recent efforts on
new frameworks and architectures of consolidated mid-
dleboxes [2], [9], [11], [23], [27], have been demonstrated
as promising alternatives to traditional hardware middle-
boxes. For example, Sekar et al. [27] devised an archi-
tecture CoMb that focused on consolidating software-based

implementations of middlebox functions on a shared hard-
ware platform. Qazi et al. [26] developed SIMPLE that
enforces high-level routing policies for middlebox-specific
traffic. Fayazbakhsh et al. [8] proposed FlowTags, because tra-
ditional flow rules do not suffice in the presence of dynamic
modifications performed by middleboxes. Martins et al. [23]
introduced a virtualization platform to improve network
performance by revising existing virtualization technologies
to support the deployment of modular, virtual middleboxes on
lightweight VMs.

One fundamental problem under such architecture is
network throughput maximization of realizing user routing
requests with specified service chains while meeting various
resource constraints and user QoS requirements. A few recent
studies investigated this issue [5], [12], which however nei-
ther considered resource constraints such as the forwarding
table size constraint on switches, nor took global optimization,
thereby the solutions delivered are suboptimal specifically,
Charikar et al. [5] assumed that every switch in a network
can perform middlebox functions without considering for-
warding table sizes. Gushchin et al. [12] assumed that the
routing traffic of a request can be split into multiple paths,
and proposed a two-stage local optimization (before and after
the virtual middleboxes). Zhang et al. [33] presented a rout-
ing scheme that reduces TCAM space usage without causing
network congestion. However, they did not consider user
requests with service chain requirements. Kuo et al. [19] stud-
ied a problem of VM placement and path selection, striving
for a tradeoff between link and server usage. This work, how-
ever, is different from ours because they assumed that multiple
requests of the network function can be satisfied using a sin-
gle VM that implements the network function. On the other
hand, Li et al. [20] presented the design and implementa-
tion of a system that dynamically provisions resources to
provide timing guarantees with the objective of maximizing
the number of requests admitted to the cloud, while meet-
ing the deadline requirements of admitted requests. In another
related paper [15], Huang et al. considered a joint optimization
problem of middlebox selection and routing with the objec-
tive to maximize the throughput or a specified set of sessions
in an SDN, and proposed a polynomial algorithm based on
the Markov approximation technique. Cao et al. [4] stud-
ied the problem of policy-aware traffic engineering in SDNs,
by assuming that the traffic has to pass a given sequence
of network functions. Lukovszki et al. [21] recently consid-
ered middlebox placements in a n-node network so that each
source-destination pair in a given set has a path of length at
most L with one middlebox in it, and each middlebox can be
used by at most k pairs. They devised an approximation algo-
rithm with an approximation ratio of O(log min{n, k}) for the
problem, under the assumption that only one VM (or a network
function) is associated with each request, and each server can
accommodate no more than k VMs. Clearly, this assumption is
over-simplified as the length of a service chain of each request
may be far greater than one. Lukovszki and Schmid [22]
achieved several important theoretical results under ideal
assumptions that each server can accommodate only one VM
and different VMs for different network functions consume the
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same amount of computing resource. Xu et al. [32] devised
the very first approximation algorithm for the NFV-enabled
multicasting problem and online algorithm with a competi-
tive ratio for dynamic admissions of NFV-enabled multicast
requests without the knowledge of future request arrivals.

Following the same assumption in [5] and [12], in this
paper we assume that middleboxes are implemented as soft-
ware applications running as VMs in servers or data centers.
Meanwhile, there are many possibilities for resource sharing,
one of which is to use a dedicated VM for each NFV. However,
considering a chain of network functions is often made up of
several functions [28], this approach will clearly not be feasi-
ble as physical resources will easily be depleted, and will be
wasteful of resources since most functions are light-weight and
can therefore be processed by a single VM, e.g., by contain-
ers within the VM [9]. Therefore, we further adopt the idea
of consolidated middleboxes [12], where every flow obtains
all its required functional treatment at a single PM, because
the consolidated middlebox model simplifies traffic routing,
helps reduce the number of routing rules in the switches, and
removes the topology dependence between different middle-
boxes. On the other hand, in contrast to [5], we do not allow
routing traffic via multiple paths from its source to its destina-
tion, because most network functionalities will be applied to
the entire packet flow, e.g., encryption and decryption should
only be applied to an entire message.

III. PRELIMINARIES

A. System Model

We consider a software-defined network represented by a
directed graph G = (V, E), where V is the node set and E
is the edge set. Each node v ∈ V represents an SDN-enabled
switch, while each directed edge 〈u, v〉 ∈ E represents a link
from switch u to switch v. Each switch v ∈ V is equipped
with a Ternary Content-Addressable Memory (TCAM) for-
warding table that can accommodate at most Lv forwarding
rules. A subset of switches in V is connected to physi-
cal machines (PMs) to implement middleboxes as virtual
machines. As such a switch and its attached PM usually are
connected by a high-speed optical link, the latency between
them is negligible. In the rest of this paper, the switches and
their attached PMs will be used interchangeably. Denote by
Vpm (⊆ V) the set of switches that have attached PMs. Without
loss of generality, we assume that each PM attached to a switch
v ∈ Vpm has limited computing resource capacity, denoted by
Cv. If switch v ∈ V \ Vpm, then Cv = 0. Similarly, each link
e ∈ E has a bandwidth capacity Be. We assume that there
is a logically centralized SDN controller for network G that
collects and processes user requests, by installing forwarding
rules into the forwarding tables in switches, assigning the mid-
dleboxes for the requests to PMs, and allocating bandwidth
on links.

B. User Requests

We assume that time is slotted into equal time slots. User
requests are scheduled by the centralized SDN controller in the
beginning of each time slot. Let S(t) be the set of arrived user

requests in time slot t. Each user request has a certain amount
of bandwidth demand to route its traffic in G from a source
switch to a destination switch that passes through a sequence
of middleboxes, and the request also has the end-to-end delay
requirement. Let ri ∈ S(t) be a user request, represented by a
quintuple ri = 〈si, ti, bi, SCi, di〉, where si, ti ∈ V are, respec-
tively, its source and destination switches, bi is its bandwidth
demand, SCi is its service chain, and di ∈ R

+ is its end-to-end
delay constraint. Admission of request ri therefore involves
routing the traffic from the source switch si to the destination
switch ti via a routing path Pi = 〈si, . . . , ti〉 subject to the
specified constraints.

Following the same assumption as in [12], [23], [26],
and [27], we assume that services in SCi are run in a sin-
gle VM and different VMs serving different requests can be
consolidated to a single Physical machine (PM). Specifically,
when the traffic of request ri arrives at the PM hosting the
VM for its service chain SCi, the traffic will be directed to the
VM and the services in SCi are applied in the specified order.
Performing the services in SCi for ri thus will consume the
computing resource of a PM. Denote by C(i, j) the amount of
computing resource needed by SCi in a PM attached to switch
vj ∈ Vpm. Notice that some services in SCi may alter the vol-
ume of the traffic of request ri. For instance, the volume of
traffic increases if encryption is applied to the traffic, while
the volume of traffic decreases if compression is applied to
the traffic. We here define λi ∈ R

+ as the ratio between the
volumes of the traffic of request ri before and after processing
at a PM. Since request ri requires an amount bi of bandwidth
to route its traffic before processing, it needs an amount λi ·bi

of bandwidth to route the processed traffic. The value of λi

for each request ri is given and can be derived from historical
traces of similar requests [6]. In addition, each request ri has a
tolerant end-to-end delay requirement di. Suppose that request
ri is admitted with a routing path Pi from its source si to its
destination ti, and its service chain SCi is implemented on a
PM-attached switch v ∈ Vpm on Pi. Let d(Pi) and d(i, v) be
the network delay experienced by ri via path Pi and the pro-
cessing delay of ri at PM v, respectively. The network delay
d(Pi) is proportional to the number of switches on Pi, and the
average processing delay d(i, v) depends on the complexity
of the service chain SCi which usually is given as a priori.
Then, the end-to-end delay Di of ri via path Pi is the sum of
the network delay of Pi and the processing delay of SCi, i.e.,
d(Pi)+d(i, v). It has to be guaranteed that d(Pi)+d(i, v) ≤ di

for every admitted request ri.

C. Problem Definition

Given an SDN G = (V, E), a subset of switches Vpm (⊆ V)
with each attaching a PM with computing capacity Cv, the
forwarding table capacity Lv for each switch v ∈ V , the band-
width capacity Be for each link e ∈ E, and a set of user
requests S(t) at time slot t, the network throughput maximiza-
tion problem in G is to admit as many user requests in S(t)
as possible such that the number of requests admitted is max-
imized while the end-to-end delay di, bandwidth demand bi,
and computing demand C(i, j) of the service chain SCi of each
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Fig. 1. An example of the SDN G constructed from an instance of the GAP
with four items and four bins.

admitted request ri ∈ S(t) is met, subject to resource capacity
constraints in G.

Given an SDN G = (V, E), a subset of switches Vpm (⊆
V) with each attaching a PM with computing capacity Cv,
the forwarding table capacity Lv for each switch v ∈ V , the
bandwidth capacity Be for each link e ∈ E, and a given time
horizon T that consists of T equal time slots, assume that the
set of requests arrived at time slot t is S(t) and the duration of
each request ri = 〈si, ti, bi, SCi, di, τi〉 ∈ S(t) in the system is
τi time slots with 1 ≤ τi ≤ τmax, the online network throughput
maximization problem in G is to admit as many user requests
as possible during time horizon T such that the number of
requests admitted is maximized while the end-to-end delay di,
bandwidth demand bi, and computing demand C(i, j) of the
service chain SCi of each admitted request ri ∈ S(t) is met,
subject to resource capacity constraints in G.

D. NP-Hardness

We show that the network throughput maximization
problem is NP-hard by the following lemma.

Lemma 1: The network throughput maximization problem
in a software-defined network G = (V, E) is NP-hard.

Proof: We show that the network throughput maximization
problem in G = (V, E) is NP-hard, by a polynomial reduction
from the generalized assignment problem (GAP) which is a
well-known NP-hard problem [7]. Given an instance of the
GAP in the form of a set of bins B = {b1, . . . , bn}, a set
of items I = {i1, . . . , im}, bin capacities cap: B �→ R

+ and
size : B × I �→ R

+. For each item ij with 1 ≤ j ≤ m and
bin bk with 1 ≤ k ≤ n, we are given a size size(j, k) and a
profit profit(j, k). The problem is to pack a subset U ⊆ I of
items to the bins in B such that the total profit by these items
is maximized. The GAP problem is a well-studied problem.

We first construct an SDN G = (V, E), through adding a
stand-alone switch i for each item i in I , a PM-attached switch
b for each bin b in B , a virtual sink v0 that is serving as the
common destination for all requests, a link from each stand-
alone switch to each PM-attached switch, and a link from
each PM-attached switch to the virtual sink v0. That is, V =
I ∪B ∪{v0} and E = {〈i, b〉 | i ∈ I , b ∈ B}∪{〈b, v0〉 | b ∈ B}.
Fig. 1 shows an example of the constructed SDN G = (V, E).

The forwarding table size at each node in V and the band-
width resource capacity of each link in E are set to infinity.
Moreover, Vpm = B and the computing capacity of each node
m in Vpm is set to cap(m), the capacity of bin m.

We then generate a set of requests S: For each item n ∈
I , we add to S a request ri = 〈si, ti, bi, SCi, di〉, where si

is set to the switch n ∈ V , ti is set to the virtual sink t,
bi = 0, the computing resource demand C(n, m) to process its
service chain at m ∈ Vpm is size(n, m), and di = ∞. Therefore,
routing the set of requests S into network G is an instance of
the network throughput maximization problem. We finish by
noting that the network throughput maximization problem has
a solution of admitting K requests if and only if the GAP with
identical profits has a solution of profit K.

IV. INTEGER LINEAR PROGRAM

In this section, we formulate the network throughput maxi-
mization problem as an Integer Linear Program (ILP), where
xi is a decision variable with value 1 if request ri is admit-
ted and 0 otherwise. zv

i is a decision variable with value 1 if
and only if the traffic of ri is processed by the PM attached
to switch v ∈ Vpm. For brevity, denote by δ+(v) and δ−(v)
the sets of leaving and entering edges of a switch v ∈ V ,
respectively. In addition, to distinguish between traffic before
and after being processed at a PM, we introduce two decision
variables wpre

i (e) and wpost
i (e) with value 1 if and only if link

e carries the unprocessed and processed traffic, respectively.
The detailed description is given in Fig. 2,

Constraint (2) ensures that if and only if a request ri ∈ S(t) is
admitted, it will be processed in exactly one PM. The volume
of the traffic may change after the processing at v, while the
volume is conserved at other non-terminal switches except the
switch v ∈ Vpm where it is processed.

Constraints (3) and (4) capture traffic changing at PM-
attached switches that process traffic of user requests and
traffic conservation at non-terminal switches. Specifically, if
request ri is processed at v ∈ Vpm, then (i) exactly one incom-
ing edge of v carries the unprocessed traffic and none of
the outgoing edges of v carries the unprocessed traffic; and
(ii) exactly one of the outgoing edges of v carries the pro-
cessed traffic, and none of the incoming edges of v carries
the processed traffic. Otherwise, if the traffic of ri is not pro-
cessed by the PM attached to switch v ∈ Vpm but goes through
v, either (i) exactly one incoming edge and one outgoing edge
of v carry the unprocessed traffic, or (ii) exactly one incom-
ing edge and one outgoing edge of v carry the processed
traffic.

Constraints (5) and (8) ensure that no unprocessed traffic
enters any source switch si and no processed traffic leaves the
terminal switch ti.

Constraints (6) and (7) handle the cases where the traffic of
a request vi is processed at the source switch si or the terminal
switch ti.

Constraint (9) enforces that the end-to-end delay require-
ment, which is the sum of the network delay Dn(Pi) and
the processing delay Dp(i, v), of every admitted request
is met, where the network delay Dn(Pi) is calculated by∑

e∈E(wpre
i (e) + wpost

i (e)) and the processing delay Dp(i, v)
is

∑
v∈V zv

i ·Dp(i, v). Since zv
i is 1 only for node v that imple-

ments the consolidated middleboxes for request ri, only the
processing delay at the node v is incurred.



HUANG et al.: EFFICIENT ALGORITHMS FOR THROUGHPUT MAXIMIZATION IN SDNs WITH CONSOLIDATED MIDDLEBOXES 635

Fig. 2. An ILP formulation of the network throughput maximization problem.

Constraint (10) enforces the bandwidth capacity constraint
for each link e ∈ E. Constraint (11) imposes the forward-
ing table capacity constraint for each switch v ∈ V , and
Constraint (12) models the computing capacity constraint of
PMs attached to each switch v ∈ Vpm.

Constraints (13), (14), and (15) restrict the range of decision
variables to 0 and 1 inclusively. Constraint (16) indicates that
if there is no PM at a switch v ∈ V \ Vpm, then it cannot
process any request.

Since the ILP solution is time-consuming, it is only appli-
cable when the problem size is small. The rest of this paper
will develop efficient, scalable solutions to the problem.

V. A HEURISTIC ALGORITHM

In this section, we focus on devising an efficient heuristic
for the problem. We first propose a cost model to capture the
dynamic resource usages in G, and then devise the algorithm

through a reduction that reduces the problem into shortest path
findings in a series of auxiliary graphs derived from G.

A. A Novel Cost Model of Resource Usages and the
Construction of An Auxiliary Graph

Given an SDN G, it contains different types of resources
such as computing resources at servers, TCAM sizes at
switches, and bandwidth resources at links. Designing an
efficient algorithm for the network throughput maximization
problem needs to utilize these resources judiciously, through
the guidance of an efficient cost metric that can accurately cap-
ture the usages and utilizations of different resources. In the
following, we first propose a cost model of resource usages.
We then reduce the problem of concern in G into another
problem of finding shortest paths in a series of auxiliary
graphs G′i that are derived by implementing the service chain
at different servers in G.



636 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 14, NO. 3, SEPTEMBER 2017

Fig. 3. The auxiliary graph construction of G′i from G for the ith request:
(a) the original SDN G = (V, E); and (b) the corresponding auxiliary graph
G′i = (V ′i , E′i) of G.

Given an SDN G = (V, E) and a request ri =
〈si, ti, bi, SCi, di〉, the auxiliary graph G′i = (V ′i , E′i;ωi) for
request i is constructed as follows. For each switch v in V ,
two vertices v′ and v′′ are added to V ′i , and a directed edge
〈v′, v′′〉 is added to E′i. For each link 〈u, v〉 in E, an edge
〈u′′, v′〉 is added to E′i, i.e., V ′i = {v′, v′′ | v ∈ V} and
E′i = {〈v′, v′′〉 | v ∈ V} ∪ {〈u′′, v′〉 | 〈u, v〉 ∈ E}. Intuitively,
each edge 〈v′, v′′〉 in G′i represents switch node v and an edge
〈u′′, v′〉 represents link 〈u, v〉 in G. An example of such an
auxiliary graph is given in Fig. 3.

The cost model of resource usages in G is proposed as fol-
lows. For a given type of resource, the marginal cost of its
usage dramatically inflates with the increase of its utilization
ratio, since the larger proportion of the resource is occupied,
the higher risk the resource capacity will be violated. We there-
fore use an exponential function to model the cost of resource
usage.

Denote by RLv,i the residual capacity of the forwarding
table at v ∈ V and RBe,i the residual bandwidth of link
e = 〈v, u〉 ∈ E when request ri arrives. Then, the weights
of their corresponding edge e′ ∈ E′i in G′i are

ωi(e
′) =

⎧
⎨

⎩

α
1− RLv,i

Lv if e′ = 〈v′, v′′〉 ∈ E′i,

β
1− RB〈v,u〉,i

B〈v,u〉 if e′ = 〈v′′, u′〉 ∈ E′i,
(1)

where α and β are constants with α, β > 1. The larger the
values of α and β, the more the resources with high utiliza-
tions will be discouraged to use, since their marginal costs
will increase with the increase of their utilization ratios.

Notice that the usage cost of computing resource in PMs
has not been incorporated into the auxiliary graph G′i, because
admitting a request ri via a PM-attached switch v ∈ Vpm does
not necessarily consume the computing resource of the PM.
Only if the service chain SCi of ri is realized in it will the
computing resource of its attached PM be consumed.

B. Algorithm

The basic idea behind the proposed algorithm is to reduce
the problem in G into finding the shortest paths in a series of
graphs G′i with 1 ≤ i ≤ |S|. In the following we first consider
a single request admission. We then extend the solution to the
admissions of a set of requests.

The detailed algorithm is described as follows. We first
consider admitting a request ri ∈ S(t) where ri =
〈si, ti, bi, SCi, di〉. We find a shortest path in G′i = (V ′i , E′i)
from si to ti such that its corresponding routing path in G

Fig. 4. Augmenting auxiliary graph G′i on the left to G′i,v on the right for
switch v ∈ Vpm.

meets both its bandwidth demand bi and its end-to-end delay
di and there is a switch v ∈ Vpm attached a PM in the path
with sufficient computing resource to process its service chain
SCi. Specifically, we first remove the edges without adequate
resources from G, and then construct G′i = (V ′i , E′i) from the
resulting graph G.

To include computing resource in PMs for the admission of
request ri, we then augment G′i for each PM-attached switch
v ∈ Vpm and denote by G′i,v = (V ′i,v, E′i,v) the graph obtained
by augmenting G′i for a PM-attached switch v ∈ Vpm. The
only difference between G′i,v and G′i is that the directed edge
〈v′, v′′〉 is removed, and a new node v′′′ and edges 〈v′, v′′′〉 and
〈v′′′, v′′〉 are added to V ′i,v and E′i,v, respectively, as shown in
Fig. 4 (b). Moreover, the weight of edge 〈v′′′, v′′〉 is identical
to the weight of 〈v′, v′′〉 in G′i while the weight of 〈v′, v′′′〉 is

γ
1− RCv

Cv , where γ > 1 is a tuning parameter which usually
is a constant, RCv is the residual computing capacity, and Cv

is the capacity of v. Therefore, if v ∈ Vpm is considered to
process service chain SCi of request ri, routing the traffic of
ri is to find a path Pi(v) in G′i,v that is the concatenation of
a shortest path in G′i,v from si to v and a shortest path in
G′i,v from v to ti. Let l(Pi(v)) and d(Pi(v)) be the length and
delay of Pi(v), i.e., l(Pi(v)) = ∑

e∈Pi(v) ωi(e) and d(Pi(v)) =∑
e∈Pi(v) d(e)+d(i, v), where d(i, v) is the processing duration

of SCi of ri at the PM attached to switch v.
The problem of admitting request ri in G is then reduced

to the problem of finding a shortest path Pi(v) from one of
the augmented auxiliary graphs G′i,v derived from node v with
the minimum length min{l(Pi(v)) | v ∈ Vpm} that meets the
end-to-end delay di. The detailed description of the algorithm
is given in Procedure 1.

We say that the derived “routing path” Pi for request ri at
step 6 in Procedure 1 is a pseudo-routing path or a walk,
i.e., the nodes and links on Pi may appear multiple times, it can
even contain cycles. This is unavoidable for a certain type of
network topologies. In the following, we show the existence
of a simple shortest path Pi in G for request ri if G meets
certain conditions.

Lemma 2: Given a directed weighted graph G = (V, E), a
specific node v, and a request r with source s and destination
t, there is a simple shortest path in G from s to t that passes
through node v if any path in another graph H from nodes v0
to v does not contain any articulation points, where v0 is a
virtual node and edges 〈v0, s〉 and 〈t, v0〉 are two virtual edges
with weights of zeros, and they are added to graph G, i.e.,
H = (V ∪ {v0}, E ∪ {〈v0, s〉, 〈t, v0〉}) is then obtained.
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Procedure 1 Admitting a Single Request ri

Input: an SDN G = (V, E) and the current considering
request ri = 〈si, ti, bi, SCi, di〉

Output: find a routing path Pi = 〈si, . . . , v ∈ Vpm, . . . , ti〉
that satisfies bi, SCi, and di if it exists.

1: Construct the auxiliary graph G′i = (V ′i , E′i;ωi) for G;
2: Psel

i ← ∞; /* a path in an augmented auxiliary graph
with the minimum sum of edge weights */

3: lmin ←∞; /* the minimum length of routing paths */
4: for each PM-attached switch v ∈ Vpm do
5: Construct G′i,v by augmenting G′i;
6: Let Pi(v) be the concatenation of a shortest path in G′i,v

from s′i to v′′′ and a shortest path in G′i,v from v′′′ to t′i;
7: if (d(Pi(v))+ d(i, v) ≤ di) & (l(Pi(v)) ≤ lmin) then
8: Psel

i ← Pi(v);
9: lmin ← l(Pi(v));

10: vmin ← v; /* which PM will be used */
11: end if
12: end for
13: The corresponding pseudo-routing path (walk) Pi in G is

then derived from Psel
i via PM vmin if it exists;

Proof: It is known that v0 is only connected with nodes s
and t in H, if there is an articulation point u in any path from
v0 to v, this implies that any path between s (or t) and node
v must pass through u, thus, if a path in G from s to t must
contain u, then it appears in the path at least twice.

Lemma 2 provides a necessary condition of the existence
of a simple path in G from s to t that passes through v. That
is, such a simple path exists if any path in H from v0 to v
does not contain articulation points. If for any request r and
a specified node v, the condition in Lemma 2 holds, a simple
shortest path in G from s to t via v can be found as follows.

We start with the minimum-cost two edge-disjoint path
problem: Given two nodes s and t in G(V, E), the problem
is to find two edge-disjoint paths between s and t such
that the sum of weighted edges in these two paths is mini-
mum. There is an efficient algorithm for this problem due to
Suurballe [30], and an improved algorithm later is proposed
by Suurballe and Tarjan [31].

To find two edge-disjoint paths in graph G from s to t such
that the cost sum of the two paths is minimum, Suurballe’s
algorithm proceeds as follows. It first finds a shortest path
in G from s to t. It then reverses the direction of the edges
in the shortest path, and finds a shortest path in the resulting
graph from s to t. As a result, two edge-disjoint paths between
s and t are then found through the exclusive union of the
two found paths, and the cost sum of the two paths is the
minimum one [30]. Clearly, this algorithm can be modified to
find two node-disjoint paths between a pair of nodes so that
the cost sum of the two paths is minimum, by adopting the
node splitting technique [30].

We now consider the simple shortest path problem in G
between a pair of nodes s and t that passes through a spec-
ified node v. We reduce this problem in G to the problem
of finding two node-disjoint paths in another graph H′ such

Algorithm 1 A Heuristic for Admitting a Set of Requests S(t)
Input: an SDN G = (V, E) and a set of requests S(t)
Output: Determine which request ri ∈ S(t) to be admitted

and its routing path Psel
i

1: S′ ← S(t); /* the set of requests to be admitted */
2: while S′ �= ∅ do
3: for each request ri ∈ S′ do
4: Find a routing path Psel

i for request ri, by invoking
Procedure 1;

5: if path Psel
i does not exist then

6: S′ ← S′ \ {ri}; /* remove ri from S′ */
7: end if
8: end for
9: Let ri0 be the request with l(Psel

i0
) = minri∈S(t){l(Psel

i )};
10: Admit request ri0 using the routing path Psel

i0
, and

update the resource availabilities of G by deducting the
resources for accommodating Psel

i0
;

11: S′ ← S′ \ {ri0}.
12: end while

that the cost sum of the two paths is minimum. We first con-
struct a directed auxiliary graph H′ = (VH′ , EH′) where VH′ =
{v′, v′′ | v ∈ V} ∪ {v0} and EH′ = {〈u′, v′′〉, 〈v′, u′′〉 | (u, v) ∈
E} ∪ {〈v0, s〉, 〈v0, t〉}, by adding a virtual node v0 and virtual
edges into H′ and assigned both newly added virtual edges
〈v0, s〉 and 〈v0, t〉 with weights of zeros. We then find two
edge-disjoint paths in H′ between v0 and v′ such that the
weighted sum of the paths is minimum. We finally have a
simple path in G from s to t via v that is derived from the
found two node-disjoint paths, by removing the virtual node v0
and its incident two edges. The resulting path between s and t
is a simple path via v and the sum of its weighted edges is the
minimum one.

Having considered a single request admission, in the fol-
lowing we deal with the admissions of a set of requests S(t)
at time slot t, by admitting the requests one by one until no
more requests can be admitted. A non-admitted request in S(t)
is admitted immediately if it has the minimum implementa-
tion cost at that moment. Specifically, given a to-be-admitted
request ri ∈ S(t), Procedure 1 is employed to find a rout-
ing path for ri without committing the admission which means
that the SDN controller does not allocate resources to meet
the demands by this request. A found path Psel

i with the
minimum cost among all remaining requests in S(t) will be
admitted and its demanded resources will be allocated to it, the
residual resource availabilities in G are updated accordingly.
Meanwhile, if Procedure 1 fails to find a path Psel

i for ri,
request ri will be rejected at time slot t. This procedure repeats
until every request in S(t) is either rejected or admitted. The
detailed description is given by Algorithm 1.

C. Algorithm Analysis

In the following, we first show that the solution deliv-
ered by Algorithm 1 is feasible, and then analyze its time
complexity.
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Lemma 3: Given the augmented auxiliary graph G′i,v =
(V ′i,v, E′i,v) derived from G = (V, E) and a switch v ∈ Vpm

for request ri = 〈si, ti, bi, SCi, di〉 ∈ S(t), the concatenation
of a shortest path from s′i to v′′′ and another shortest path in
G′i,v from v′′′ to t′i will result in a valid pseudo-routing path
in G from si to ti with PM-attached switch v in the path.
Alternatively, a simple shortest path from s′i to t′i through v′′′
delivered by applying Suurballe’s algorithm is also a feasible
solution if G meets the condition in Lemma 2.

Proof: Let Pi(v) be the concatenation of a shortest path
from s′i to v′′′ and a shortest path from v′′′ to t′i in G′i,v. For
simplicity, we use a link-derived edge to represent an edge
〈u′′, v′〉 in E′i,v that is derived from edge 〈u, v〉 in E, and a
switch-derived edge to denote an edge 〈v′, v′′〉 in E′i,v that is
derived from switch v ∈ V . We claim that (i) path Pi(v) con-
sists of link-derived and switch-derived edges alternatively;
and (ii) path Pi(v) can satisfy the requirements of request ri,
i.e., the bandwidth demand bi, the forwarding table demand,
the computing resource demand for its service chain SCi, and
the end-to-end requirement di. Claim (i) is obvious because
there is only an outgoing edge for each switch v′, i.e., 〈v′, v′′〉.
Claim (ii) holds because the augmented auxiliary graph G′i,v
is the result of removing the edges and switches in G′i that
cannot meet resource requirements of request ri, and path
Pi(v) is feasible only when its end-to-end delay is no greater
than di.

The feasibility of the simple shortest path via a data center
if it does exist can be proven similarly, omitted.

Theorem 1: Given an SDN G = (V, E) with a set V of
switches and a set E of links, a subset Vpm ⊆ V of switches
with attached PMs, a set of user requests S(t) at time slot t,
there is an algorithm, Algorithm 1, for the network through-
put maximization problem, which delivers a feasible solution
in O(|S(t)|2|V|4) time.

Proof: The solution delivered by Algorithm 1 is feasible
because each auxiliary graph is constructed from the subgraph
of G that only includes the resources with sufficient residual
capacities for the request. Consequently, the routing path in G
derived from the found path in G′i is feasible.

The time complexity of Algorithm 1 is analyzed as fol-
lows. In Procedure 1, the construction and augmentation
of the auxiliary graph G′i take O(|V| + |E|) time, while find-
ing a shortest path in each of the |Vpm| augmented auxiliary
graphs G′i,v takes O(|V|3) time. Procedure 1 thus takes
O(|V|3+|V|+|E|) = O(|V|3) time. For each request ri ∈ S(t),
Procedure 1 is invoked at most |Vpm| times. The number of
requests is O(|S(t)|). If we make use of Suurballe’s algorithm
to find a simple shortest path from s′i to t′i in G′i,v through v′′′,
it takes O(|E′i| + |V ′i | log |V ′i |) = O(|E| + |V| log |V|) time as
the construction of the auxiliary graph H′ and finding shortest
paths in H take no more than that amount of time. The time
complexity of Algorithm 1 thus is O(|S(t)|2|Vpm||V|3) =
O(|S(t)|2|V|4). The theorem holds.

VI. A FASTER HEURISTIC ALGORITHM

Although Algorithm 1 delivers a near optimal solu-
tion empirically, which can be seen in later experimental

evaluations, its running time is quite high and may fail to
respond to user requests on time, considering user requests
arrive one by one without the knowledge of future request
arrivals. In this section we devise a faster heuristic that strives
for the non-trivial trade-off between the accuracy of a solution
and the running time of obtaining the solution.

A. Overview

A key ingredient of this faster heuristic is that a candidate
solution to admit a subset of S(t) of requests is based on the
residual resource capacities of G in the beginning of time slot
t, and there is no updating to these residual capacities when
all requests in S(t) are being considered. Thus, a candidate
solution is identified first. It then further refines the candidate
solution iteratively until no resource capacity violation occurs.

B. Algorithm

We first find a set of candidate routing paths Pi in G for each
request ri = 〈si, ti, bi, SCi, di〉 ∈ S(t), without considering the
resource capacity constraints of G, where a shortest path from
si to ti is treated as a candidate path of ri as long as it has one
PM-attached switch in Vpm that satisfies bi, SCi, and di. As
the service chain SCi of ri must be served at one of |Vpm| PM-
attached switches, we can find at most |Vpm| candidate shortest
paths for each ri. Notice that we find candidate routing paths
for requests in S(t) on the augmented auxiliary graphs based
on the resource availability of G as of the beginning of time
slot t, through finding a shortest path from s′i to v′′′ and a
shortest path from v′′′ to t′i in G′i,v for each request ri ∈ S(t)
and v ∈ Vpm. Let Pi(vj) = 〈si, . . . , vj, . . . , ti〉 be a found path
in Gi,vj for request ri, whereas vj (∈ Vpm) is a switch that
fulfills the service chain SCi and Pi(vj) meets the resource
and end-to-end delay constraints of ri. Denote by Pi be the
set of candidate paths for request ri, we then have,

Pi = {Pi(vj) | vj ∈ Vpm}. (2)

Having the set of candidate paths Pi for each request ri,
we then pick only one candidate path Pi(vj) in Pi for request
ri in a way such that the cost sum of the selected paths for
all requests is minimized, while ensuring that the computing
capacity of each PM is not violated. In essence, selecting a
path Pi(vj) ∈ Pi to route request ri ∈ S(t) is equivalent to
selecting a PM attached to a switch v ∈ Vpm to implement
SCi for ri. As different PMs may have different computing
capacities, this means that the processing SCi of ri at different
PMs will incur different computing resource demands. We thus
reduce this problem to the GAP, which is defined as follows.
Given a set of items I and a set of bins B , where each bin
b ∈ B has a capacity cap(b), each item i ∈ I has a size
size(i, b), and a profit profit(i, b) if item i is placed in bin b,
the problem is to place a subset of items U (⊆ I ) in bins B
such that the sum of the profits of items in U is maximized
and the sum of sizes of items placed in every bin is no more
than the capacity of the bin.

We now treat each PM-attached switch vj ∈ Vpm as a bin and
each request ri in S(t) as an item, whereas the capacity of each
bin vj is its residual computing capacity, i.e., cap(vj) = LCvj ,
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Fig. 5. An example of a bipartite graph Gb.

the size of an item ri in a bin vj is the computing demand of the
service chain SCi in the PM attached to vj, i.e., size(ri, vj) =
C(i, j), and the profit of placing an item ri in a bin vj is the
reciprocal of the length of the candidate path that fulfills ri on
vj, i.e., profit(i, j) = 1

l(Pi(vj))
.

Having reduced the network throughput maximization
problem to the GAP, we now solve the GAP and each solu-
tion to the GAP yields a solution to the original problem.
Specifically, we use the algorithm proposed by Cohen et al. [7]
that guarantees a (2 − ε)-approximation ratio, where ε is a
constant with 0 < ε ≤ 1, to solve the GAP. Denote by U a
solution found by this algorithm as a placement of a subset
of items in bins. U yields a potential admission of requests in
S(t): for every request ri treated as an item, if it is placed in a
bin representing vj ∈ Vpm, then it is admitted with the routing
path Pi(vj); otherwise, ri is rejected.

Due to the construction of the GAP, admitting requests
in S based on the solution U to the GAP ensures that the
sum of computing demands of requests of which the ser-
vice chains are fulfilled in the same PM will not exceed the
computing capacity of the PM. However, the bandwidth and
forwarding table capacities may be violated, as routing paths
may have overlapping resources. Now, for each request allo-
cated to a bin, its computing demand can be met without
violating the computing capacity of the bin. Some requests
however may violate the bandwidth and forwarding table size
capacities of some links and nodes while routing their traf-
fic. We thus perform adjustments to eliminate such potential
resource violations by selectively rejecting some requests. Let
Psel

i = Pi(vj) = 〈si, . . . , vj, . . . , ti〉 be the path to route the
traffic of request ri according to U, where vj ∈ Vpm. The basic
idea behind the adjustment here is to carefully find such a path
with resource capacity violations iteratively and remove its
request from admission. This procedure continues until there
is no violation of resource capacity. To this end, a bipartite
graph Gb = (Ub, Vb, Eb) is constructed, where Ub is the set
of selected routing paths for all potentially admitted requests,
Vb is the set of edges in ∪ri∈S(t)E(Psel

i ) which each corre-
sponds to a resource in G. There is an edge between a node
Psel

i ∈ Ub and a node e ∈ Vb if e is in Psel
i . The weight of

edge (Psel
i , e) ∈ Eb is the ratio of the demand of ri on that

resource to the sum of those of all requests on that resource,
which represents the contribution of ri to the resource capac-
ity violation of e. An example of such a bipartite graph Gb is
shown in Fig. 5.

To eliminate resource capacity violations, we iteratively
remove one node Psel

i and its incident edges in Gb with the
maximum weighted sum of the incident edges, and update

Algorithm 2 A Faster Heuristic for Routing a Set of Requests
S(t) Into a G
Input: an SDN G = (V, E) and a set of user requests S(t)
Output: Routing decisions for each request ri ∈ S(t)

1: Build an auxiliary graph G′ = (V ′, E′) for G;
2: Initialize P , the set of candidate routing paths in G for all

requests in S(t), to ∅;
3: for each user request ri ∈ S(t) do
4: Pi ← ∅; /* the set of candidate paths for request ri */
5: for each PM-attached switch vj ∈ Vpm do
6: Find a path Pi(vj) for ri via node vj, by invoking

Procedure 1;
7: if Pi(vj) exists then
8: Pi ← Pi ∪ {Pi(vj)};
9: end if

10: end for
11: if Pi is empty then
12: Reject request ri;
13: else
14: P ← P ∪ {Pi};
15: end if
16: end for
17: Construct an instance of the GAP by representing each

request as an item and each node in Vpm as a bin;
18: Solve the GAP instance by invoking the algorithm in [7];
19: Construct a bipartite graph Gb = (Ub, Vb, Eb) that reflects

potential capacity violations;
20: while there are edges in Eb do
21: Update Gb by the removal of such a node in Ub that

has the maximum weighted sum of its incident edges
and its incident edges from Eb.

22: end while

Gb by removing nodes in Vb that their resource overloadings
are avoided due to the removal of node Psel

i . For example,
in Fig. 5, both Psel

1 and Psel
2 violate the computing capacity

constraints of e1, e2, and e3. Since Psel
2 results in more vio-

lations of resource capacity constraints than Psel
1 does, it will

be removed first. This procedure continues until no edge is
left in Eb, a feasible solution will be obtained ultimately. The
detailed description is given in Algorithm 2.

C. Algorithm Analysis

In the following, we show that the solution delivered by
Algorithm 2 is a feasible solution. We then analyze the
time complexity of the proposed algorithm.

Theorem 2: Given an SDN G = (V, E) with a set V of
switches and a set E of links, a subset Vpm ⊆ V of switches
with each attaching with a PM, a set of user requests S(t),
there is an algorithm for the network throughput maximization
problem, Algorithm 2, which delivers a feasible solution in
O(|S(t)||V|3 + |V| · |S(t)|3

ε
) time, where ε is a given constant

with 0 < ε ≤ 1.
Proof: Recall that Algorithm 2 consists of three phases:

(i) find a set of candidate routing paths for each request;
(ii) select only one routing path for each request to meet
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Algorithm 3 Online Algorithm Within a Finite Time
Horizon T
Input: an SDN G = (V, E) and time horizon T
Output: determine which request ri ∈ S(t) to be admitted and

its routing path Psel
i at each time slot t with 1 ≤ t ≤ T .

1: for t← 1 to T do
2: Release all resources occupied by the requests that left

in the end of time slot (t − 1), and recalculate the
residual resources in G;

3: Let S(t) be the set of arrived requests in the beginning
of time slot t;

4: if S(t) �= ∅ then
5: Find a subset S′(t) ⊆ S(t) of requests that are admis-

sible at time slot t, by invoking either Algorithm 1
or Algorithm 2 based on the available resources
in G.

6: end if
7: end for

computing capacities of nodes in Vpm; and (iii) eliminate the
requests that violate bandwidth or forwarding table capacities.
The feasibility of the solution delivered by Algorithm 2
immediately follows from Phase (ii).

The rest is to analyze the time complexity of
Algorithm 2. Phase (i) takes O(|S(t)||V|3) time, because
O(|Vpm|) = O(|V|) shortest paths are found for each request
ri ∈ S(t) in augmented auxiliary graphs and each shortest
path takes O(|V|2) time. The running time of Phase (ii) is
dominated by the time required to solve the GAP, which is
O(|V| · |S(t)|3

ε
) [7]. Phase (iii) takes O(|S(t)|(|V| + |E|)) time,

there are O(|S(t)|(|V| + |E|)) edges in the bipartite graph Gb,
following the construction of the bipartite graph. In the worst
scenario, each request violates the resource capacities on all
switches and links. The theorem thus holds.

VII. ONLINE ALGORITHM

In this section, we study the online network throughput max-
imization problem, by considering dynamic admissions of user
requests within a finite time horizon T . We will make use
of the proposed algorithms in the previous section to solve
this problem. We assume that the system evolves over time.
The time is partitioned into equal time slots, and the user
request admission scheduling proceeds in the beginning of
each time slot. Some implementing requests may also leave the
system, and the resources occupied by them will be released
back to the system in the end of the current time slot. The
released resources will be available in the beginning of the next
time slot. The detailed online algorithm for dynamic request
admissions is given in Algorithm 3.

Theorem 3: Given an SDN G = (V, E) with a set V of
switches and a set E of links, a subset Vpm ⊆ V of switches
with each attaching with a PM, and a finite time horizon
T , there is an algorithm for the online network throughput
maximization problem, Algorithm 3, which delivers a fea-
sible solution in O(

∑T
t=1(|S(t)||V|3 + |V| · |S(t)|3

ε
)) time if

Algorithm 2 is used as its subroutine, where ε is a given
constant with 0 < ε ≤ 1.

Proof: The time complexity of Algorithm 3 per time slot
is the identical to the one for Algorithm 2, omitted.

VIII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms through experimental simulations, using real and
synthetic SDNs. We start with the experimental environments,
we then evaluate the performance of the proposed heuristic
algorithms for the network throughput maximization problem.
We also evaluate the performance of the online algorithms
for the online network throughput maximization problem. We
finally investigate the impact of parameters on the performance
of the proposed algorithms.

A. Experimental Environment

We adopt commonly used, real network topologies includ-
ing GÉANT [23] and several ISP networks from [29] in the
simulations, where GÉANT [23] is a European network con-
sisting of 40 nodes and 122 links. The size of the forwarding
table of each switch is set from 1,000 to 8,000 randomly [18].
The bandwidth of each Internet link varies from 1,000 Mbps to
10,000 Mbps [17]. There are nine PMs for the GÉANT topol-
ogy as set in [12] and the number of PMs in ISP networks
are provided by [26]. The computing capacity of each PM
is from 4,000 to 8,000 MHz [13]. The delay of a link is
between 2 milliseconds (ms) and 5 ms [17], [18]. We consider
five types of middleboxes: Firewall, Proxy, NAT, IDS, and
Load Balancing, and their computing demands are adopted
from [12] and [23]. The running time is obtained based on
a machine with a 3.40GHz Intel i7 Quad-core CPU and
16 GiB RAM. The default accuracy parameter ε in solving
GAP is set to 0.1. Unless otherwise specified, these param-
eters will be adopted in the default setting. Each request
ri = 〈si, ti, bi, SCi, di〉 ∈ S(t) is generated as follows. Given a
network G = (V, E), two nodes in V are randomly drawn as
the source si and the destination ti of request ri. The bandwidth
demand bi is randomly drawn from 10 to 120 Mbps [1] and the
end-to-end delay di is set from 40 ms to 400 ms randomly [24].

We evaluate Algorithm 1 and Algorithm 2 against
a baseline heuristic which is described as follows. Sort all
requests in S(t) in increasing order of their computing resource
demands, and then, for each request ri = 〈si, ti, bi, SCi, di〉 in
S(t), find a shortest path in G from si to a PM-attached switch
v (∈ Vpm) with the minimum number of hops from si and a
shortest path from v to ti. We refer to this minimum-hop-based
baseline as algorithm MH, and algorithm ILP, Algorithm 1
and Algorithm 2 as ILP, ALG-1 and ALG-2, respectively.
Each value in figures is the mean of the results of 30 trials.

B. Performance of Different Algorithms Within
One Time Slot

In the following, we investigate the performance of the
proposed algorithms ILP, ALG-1, ALG-2, and MH in the
GÉANT topology within a single time slot.
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Fig. 6. Performance of different algorithms on the GÉANT within one time slot.

Fig. 7. Performance of different algorithms in the GÉANT by varying the number of switches from 100 to 600, while the number of requests is fixed at
160 per time slot.

Fig. 6 (a) shows the number of requests admitted by differ-
ent algorithms, when the number of requests arrived at a time
slot is in the range from 40 to 160. It can be seen that both
algorithms ALG-1 and MH can admit as many requests as ILP
does if there are less than 100 requests. Otherwise, only algo-
rithm ALG-1 can achieve a comparable throughput as ILP.
This means that the network throughput of algorithm ALG-2
is inferior to algorithm ALG-1, and the gap between their
performance enlarges from nearly zero at |S(t)| = 40 to 21 at
|S(t)| = 160. The reason is that algorithm ALG-2 will reject

more requests with the increase on the number of requests,
as the likelihood of routing paths that algorithm ALG-2
finds for different requests being overlapping and resource
violation soars. Meanwhile, it can be seen that algorithm
MH outperforms algorithm ALG-2 only when the number of
requests is small. Specifically, when there are 160 requests,
the number of requests admitted by algorithm MH is only 60%
of that by algorithm ALG-2 but runs much faster. The reason
behind is that algorithm MH does not guarantee that the rout-
ing path of request ri from its source si to its destination ti
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Fig. 8. Performance of different online algorithms in the GÉNT within a time horizon of 200 time slots, where the number of requests arrives at each time
slot follows a Poisson distribution with a mean of 30.

has the minimum weight, since it finds shortest paths from si

to a PM-attached switch and from that PM-attached switch to
ti separately. Fig. 6 (b) illustrates the amounts of time spent
by different algorithms, from which it can be seen that the
running time of algorithm ILP is several orders of magnitude
of the other mentioned algorithms, while algorithm MH is the
fastest one, and ALG-2 is faster than ALG-1 significantly.
In addition, the running time of algorithm ILP starts rising
when there are more than 80 requests. The reason is that when
the number of requests is small and their resource demands are
relatively small compared to the network capacity, many fea-
sible solutions that achieves the best performance exist, yet as
the resource demands become increasingly considerable rel-
ative to the network capacity, fewer optimal solutions exist,
and thus ILP spends a significant amount of time on search-
ing for such an optimal solution. Fig. 6 also demonstrates
that algorithm ILP suffers poor scalability and cannot finish
within a reasonable amount of time when the problem size is
large.

We now evaluate the performance of different algorithms if
the number of requests arrived follows a Poisson distribution
with the mean between 40 and 160. The results of the four
mentioned algorithms are summarized in Fig. 6 (c)-(d), from
which it can be seen that the similar behavior patterns are
present in Fig. 6 (a)-(b). For instance, it can be seen that the
number of requests admitted by algorithm ALG-1 is identical
to that by algorithm ILP when the number of requests is no
more than 70. Meanwhile, the number of admitted requests by
algorithm ALG-2 is on a par with that of algorithm ALG-1,
and it outperforms algorithm MH by 40% when there are more
than 120 requests in the set. Similarly, algorithm ILP is the
slowest one while algorithm MH is the fastest one. In particular,
when the mean of the number of requests is set at 140, the
running time of algorithm ILP is more than 1,000 times of
that of algorithm ALG-1, whilst algorithm ALG-1 is more
than six times slower than algorithm ALG-2. Although the
running time of algorithm MH is the fastest, the number of
requests admitted by it is the smallest one.

We finally evaluate the performance of different algorithms
by varying the network size. As publicly available topolo-
gies such as [17] and [29] have limited sizes, we adopt the
widely used Barabási-Albert model [3] to generate networks

of different sizes. Namely, we vary the number of switches in
an SDN from 100 to 600 while fixing the number of requests
at 160. The results are depicted in Fig. 7.

It can be seen that from Fig. 7 (a) that algorithms ALG-1
and ALG-2 achieve the similar throughput, while algorithm
MH admits only no more than half the requests admitted by
either of the two heuristics. Fig. 7 (b) reveals that algorithm
ALG-2 runs much faster than algorithm ALG-1. In contrast
to high admission ratios delivered by algorithms ALG-1 and
ALG-2, algorithm MH admits less than one half as many as
requests as the other two algorithms, neutralizing its advantage
of having the lowest running time among all three algorithms
indicated in Fig. 7 (b). Fig. 7 (b) also reveals that algorithm
ALG-2 runs much faster than algorithm ALG-1, e.g., algo-
rithm ALG-1 spends 61,208 ms on admitting 160 requests to
a network with 600 switches, while algorithm ALG-2 takes
only 2,106 ms.

C. Performance of Online Algorithms

We now consider a time horizon that consists of 200 time
slots, under which we evaluate the performance of the online
versions of the proposed algorithms, assuming that the number
of requests at each time slot follows a Poisson distribution with
a mean of 30, and each admitted request spans from 1 to 10
time slots randomly.

The results are summarized in Fig. 8. It can be seen from
Fig. 8 (a) that algorithm MH has the lowest network throughput
among the mentioned algorithms. On the other hand, algo-
rithms ALG-1 and ALG-2 utilize resources more efficiently,
and hence admit much more requests than that of algorithm
MH by 150% and 50%, respectively. It can also be seen from
Fig. 8 (b) that the running time of algorithm MH is negligi-
ble compared with those of algorithms ALG-1 and ALG-2.
It must be noticed that this running time comes at the cost of
admitting much fewer requests. Although the running time of
algorithm ALG-2 is less than that of algorithm ALG-1, the
gap between them becomes smaller. Specifically, algorithm
ALG-2 is only half of the running time of algorithm ALG-1
while it has only 10% of the running time of algorithm ILP.
The main reason is that the additional time incurred from con-
structing an instance of the GAP cannot be ignored when the
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Fig. 9. The accumulative number of admitted requests and the running time of different online algorithms based on algorithms ALG-1, ALG-2 and MH for
a time horizon of 200 time slots in ISP networks.

Fig. 10. The accumulative number of admitted requests and running time of different online algorithms based on algorithms ALG-1, ALG-2, and MH with
different maximum durations of requests when the network is of the GÉANT.

number of requests is relatively small, which will be offset
when the number of requests is greater.

The rest is to evaluate algorithms ALG-1, ALG-2, and
MH in three network topologies from [29]: AS-4755 is a
network with 121 switches and 296 links, AS-1755 with 172
switches and 762 links, and AS-3967 with 212 switches and
886 links.

The results are illustrated in Fig. 9, from which it can be
seen that in terms of the performance, algorithm ALG-1 is
the best while algorithm MH is the worst. The performance
gap between algorithm ALG-1 and algorithm ALG-2 is small

compared to that in the GÉANT, since the size of these three
networks is larger than that of the GÉANT, and routing paths
delivered by algorithm ALG-2 for different requests at each
time slot are less likely to overlap. In AS-4755, the differ-
ence on requests admitted by algorithms ALG-1 and ALG-2
is less than 500, while algorithm MH admits no more than 40%
the number of requests by the other two algorithms. On the
other hand, the performance of algorithm MH in both AS-1755
and AS-3967 improves due to the larger resource capacity of
the network. The accumulative running time of these three
algorithms when admitting requests into different networks are
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shown in Fig. 9 (d)-(f). The results in both Fig. 9 (d) and (e) are
similar: the running time of algorithm MH is slightly smaller
than that of algorithm ALG-2, and algorithm ALG-1 is much
slower than both algorithms ALG-1 and MH. However, we
notice from Fig. 9 (f) that algorithm ALG-2 is faster than algo-
rithm MH, since algorithm ALG-2 only needs to find shortest
paths in a graph once.

D. Impact of Request Durations on the Performance of
Different Online Algorithms

We finally evaluate the impact of the maximum duration
of requests on the performance of different online algorithms
based on algorithms ALG-1, ALG-2, and MH, by varying
the maximum duration from 5 time slots to 25 time slots.
The results are presented in Fig. 10. From Fig. 10 (a)-(b)
we can see that the longer the maximum duration, the fewer
requests admitted by all mentioned algorithms, because longer
durations result in less available resources in the network.
Fig. 10 (a)-(c) show that when the maximum duration of
requests is five time slots, algorithm ALG-2 admits as many
requests as algorithm ALG-1, yet algorithm MH only admits
half the number of requests as the two heuristics. We also see
that an increase in the request durations has a greater impact
on algorithms ALG-2 and MH than that on algorithm ALG-1,
as algorithm ALG-1 is more exhaustive. In addition, it can
also be seen from Fig. 10 (d)-(f) that longer durations are
associated with less running time, because if other parameters
keep unchanged and request durations become longer, more
resources will be fully occupied and accordingly, the auxiliary
graphs will have fewer vertices and edges, shortening opera-
tions on the auxiliary graphs and reducing the running time
of all algorithms.

IX. CONCLUSION

In this paper, we studied the admissions of user requests
with each having a sequence of network functions in an SDN
so that the network throughput can be maximized, subject to
the constraints of forwarding table capacity, network band-
width capacity, and computing resource capacity at PMs. We
first formulated an ILP solution when the problem size is
small. We then devised two heuristic algorithms that strive
for a fine tradeoff between the solution accuracy and the run-
ning time to obtain the solutions. We also investigated the
dynamic admissions of requests within a finite time hori-
zon by extending the proposed algorithms to solve dynamic
request admissions. We finally evaluated the performance of
the proposed algorithms through simulations, using real and
synthetic network topologies. Experimental results demon-
strated that both proposed algorithms admit more requests than
a baseline algorithm, and the quality of solutions delivered
is on a par with that of optimal solutions yet the proposed
algorithms are significantly faster.
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