
1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2927214, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX, 2018 1

Reliability-Aware Virtualized Network Function
Services Provisioning in Mobile Edge Computing

Meitian Huang, Weifa Liang, Senior Member, IEEE , Xiaojun Shen, Senior Member, IEEE , Yu Ma, and
Haibin Kan

Abstract—Along with Network Function Virtualization (NFV), Mobile Edge Computing (MEC) is becoming a new computing paradigm
that enables accommodating innovative applications and services with stringent response delay and resource requirements, including
autonomous vehicles and augmented reality. Provisioning reliable network services for users is the top priority of most network service
providers, as unreliable services or severe service failures can result in tremendous losses of users, particularly for their mission-critical
applications. In this paper, we study reliability-aware VNF instances provisioning in an MEC, where different users request different
network services with different reliability requirements through paying their requested services with the aim to maximize the network
throughput. To this end, we first formulate a novel reliability-aware VNF instance placement problem by provisioning primary and
secondary VNF instances at different cloudlets in MEC for each user while meeting the specified reliability requirement of the user
request. We then show that the problem is NP-hard and formulate an Integer Linear Programming (ILP) solution. Due to the NP-hardness
of the problem, we instead devise an approximation algorithm with a logarithmic approximation ratio for the problem. Moreover, we also
consider two special cases of the problem. For one special case where each request only requests one primary and one secondary VNF
instances, the problem is still NP-hard, and we devise a constant approximation algorithm for it. For another special case where different
VNFs have the same amounts of computing resource demands, we show that it is polynomial-time solvable by developing a dynamic
programming solution for it. We finally evaluate the performance of the proposed algorithms through experimental simulations.
Experimental results demonstrate that the proposed algorithms are promising, and the empirical results of the algorithms outperform their
analytical counterparts as theoretical estimations usually are very conservative.

Index Terms—Reliability-Aware VNF instances provisioning; VNF instance placements; virtualized network function implementation;
approximation algorithms; generalized assignment problems; dynamic programming; Mobile Edge Computing; combinatorial optimization
problems.

F

1 INTRODUCTION

Mobile devices, including smartphones and tablets, have
experienced exponential growth in recent years. This trend
is coupled with the evolution of new mobile applications
with stringent requirements such as real-time and interac-
tive applications. However, executing computation-intensive
applications on mobile devices of portable sizes is heavily
constrained by their limited computing, storage, and battery
capacities. Mobile edge computing (MEC) has emerged,
which brings computation and storage resources, which
are referred to as cloudlets [30], to the edge of mobile net-
works [11]. These cloudlets are co-located with access points
(APs) in the networks and they are accessible by mobile
users via wireless access. A key advantage of deployment
of cloudlets is that the close physical proximity between
cloudlets and users introduces shorter communication delays,
thereby improving the user experience. It thus has been
envisioned that MEC has many promising applications
including in smart cities and smart connected vehicles [6],
[26], [32], [34].

• M. Huang, W. Liang and Y. Ma are with Research School of Computer
Science, The Australian National University, Canberra, ACT 2601,
Australia Emails: Meitian.Huang@anu.edu.au, wliang@cs.anu.edu.au,
Yu.Ma@anu.edu.au

• X. Shen is with the School of Computing and Engineering, University of
Missouri, Kansas City, MO 64110, USA Email: shenx@umkc.edu

• H. Kan is with School of Computer Science, Fudan University, Shanghai
200433, P. R. China Email: hbkan@fudan.edu.cn

Many network service providers recently have started
migrating their infrastructure to take advantage of network
functions virtualization (NFV) [21], [27]. Due to the con-
tinuous advances in computing hardware, it is possible to
replace resource demanding user applications, such as voice
recognition, image processing, and other supporting tasks
for smart cities, with software components that provide the
same capability on top of commodity servers. Each network
function, such as a software-based video transcoder for a
smart city system, runs in a virtual machine, referred to as
a virtualized network function (VNF) instance, hosted in
cloudlets. NFV enables users to offload their tasks to nearby
cloudlets via wireless APs for processing.

While implementing user applications as VNF instances
promises significant flexibility and ease of the management
of networks, it also brings more concerns on the reliability
of running VNF instances. Traditional carrier-grade systems
have been engineered to offer nearly 99.999% (five nines)
reliability and designed to be highly fault-tolerant [14].
Achieving this level of reliability is extremely difficult
for NFV in an MEC environment due to various reasons
including the cloudlets hosting VNF instances are more prone
to errors and failures compared to the dedicated hardware
appliances, and software for implementing VNF instances
may contain bugs [14] and is prone to failures. As a result,
in order to provide reliable VNF services to users while
meeting their requirement of the service and mitigate the
risk of failures, additional VNF instances should be created

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2927214, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX, 2018 2

at other peer cloudlets in the MEC.
In this paper, we consider reliability-aware VNF services

provisioning in an MEC. We assume that each user request
needs a VNF service with a specified reliability requirement.
In order to meet the reliability requirement of the user,
multiple VNF instances need to be placed at different
cloudlets. We distinguish between the single primary VNF
instance and one or multiple secondary VNF instances for
each offloaded user request [17]: the former is an active VNF
instance while the latter are idle ones until the primary
one fails. Moreover, as the usage of network resources
follows pay-as-you-go, there are multiple users competing for
limited network resources, yet the resources at each cloudlet
have capacity constraints. Hence, it needs to be determined
which requests should be admitted, subject to the capacity
constraints on cloudlets.

The novelty of the work in this paper lies in the pro-
visioning of reliability-aware VNF instances for network
function services in MEC, by formulating a novel reliability-
aware VNF instances provisioning problem. Efficient approx-
imation and exact algorithms are proposed for allocating
network resources to accommodate primary and secondary
VNF instances in different cloudlets to meet individual
user reliability requirements. Furthermore, the formulated
optimization problem may be of independent interests as the
Generalized Assignment Problem (GAP) is a special case of
the problem. To the best of our knowledge, there is no prior
study on similarly formulated problems, and this problem,
which generalizes the GAP problem, has wide potential
applications in practice, particularly in the fault-tolerance
domain.

The main contributions of this paper are described as
follows. We study the provisioning of reliability-aware VNF
instances in an MEC to meet individual user reliability
requirements. We first formulate a novel optimization prob-
lem for provisioning multiple VNF instances at different
cloudlets in MEC to meet the reliability requirement of each
request. We then show the NP-hardness of the problem and
formulate an integer linear programming (ILP) solution to
the problem when its size is small, otherwise, we develop
an approximation algorithm with an approximation ratio of
O(logK), where K is the number of cloudlets in the MEC.
Moreover, we also consider two special cases of the problem.
Specifically, we devise a constant approximation algorithm
for a special case of the problem where each request needs
only one primary and one secondary VNF instances. We also
develop a dynamic programming algorithm that delivers an
exact solution to another special case of the problem where
the VNF instances of different types of virtual network func-
tions demand the same amount of computing resources. We
finally evaluate the performance of the proposed algorithms
through experimental simulations. Experimental results
demonstrate that the proposed algorithms are promising and
the empirical results outperform their analytical counterparts
as the theoretical estimations usually are very conservative.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 introduces notions, nota-
tions, and the problem definitions. Section 4 shows the
NP-hardness of the problem. Section 5 provides an ILP
formulation of the problem, while Section 6 devises an
algorithm with a logarithmic approximation ratio for the

problem. Moreover, Section 7 deals with two special cases
of the problem and proposes a constant approximation
algorithm and an exact solution for the two special cases,
respectively. Section 8 evaluates the proposed algorithms
empirically, and Section 9 concludes the paper.

2 RELATED WORK

Several studies on the provisioning of reliable VNF services
have been conducted recently. Existing methods to improve
reliability of NFV are summarized by Han et al. [17]. For
example, Beck et al. [4] conducted one pioneering study
related to survivability of VNF instances in the context of
the VNF resource allocation, by admitting a set of VNF
requests with the aim of reducing the amount of network
resource allocated to VNF chains, while computing resilient
allocations to protect network services from both link and
VNF instance failures. They however did not differentiate
reliability requirements of different requests. Casazza et al. [8]
cast a problem of assigning virtual machines for network
function implementations to servers in order to guarantee the
availability of virtual machines via VNF instance replications.
They considered a geo-distributed data center network in
which there are sufficient resources to accommodate all
user requests. Their objective is to maximize the minimum
availability among all requests by developing heuristics.
Ceselli et al. [9] dealt with the design of edge cloud networks
with the aim to determine where to install cloudlets among
the potential AP sites by developing efficient heuristics. Ding
et al. [12] proposed an approach to enhancing the network
resilience while maximizing cost-efficiency of the network
through improving the ratio of the reliability to the backup
cost of VNF instances. Fan et al. investigated how to map
service function chains to a network with high end-to-end
reliability requirements, by adopting on-site and off-site VNF
instance backups [14], [15]. Their work is one of the first
works on this topic, and recently Li et al. [25] proposed onsite
and off-site backup mechanisms by developing efficient
scheduling algorithms for the problem through adopting
the primal and dual update technique. Kang et al. [23]
studied the tradeoff between the reliability of a network
service, as measured by the probability that the service is
correctly executed, and the computational load of servers.
Engelmann et al. [13] studied the end-to-end service reliability
in data center networks (DCNs). They divided large flows
into several smaller flows yet provided only one backup
flow for reliability guarantee. Moualla et al. [28] considered
the placement of service chains in DCNs, and devised an
algorithm for the placement on the special fat-tree topological
network structure. Kong et al. [24] proposed a mechanism
that employs both backup path protection and VNF instance
replication in order to guarantee the availability of a service
function chain. The proposed mechanism determines the
number of VNF instance replicas required for each VNF in
the SFC, and allocates the replicas to physical nodes on the
primary and backup paths while taking into account the or-
dered dependency among VNFs. Herker et al. [18] introduced
several VNF backup strategies for service function chains,
and analyzed the impact of different data-center architectures
on the service provision. They then proposed cost-per-
throughput algorithms for a given reliability requirement.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2927214, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX, 2018 3

Carpio and Jukan [7] investigated how to improve service
reliability through the joint consideration of replications
and migrations. Qu et al. [29] aimed to minimize the
communication bandwidth usage across the network while
considering the availability requirements, by developing a
heuristic. Aidi et al. [1] recently proposed a framework to
efficiently manage survivability of service function chains
and the backup VNFs. They aimed to determine both the
minimum number and optimal locations of backup VNFs
to protect service function chains. The proposed heuristics
have been empirically demonstrated to deliver near-optimal
solutions.

In this paper, we consider reliability-aware VNF service
provisioning in MEC. We distinguish our work from existing
ones as follows. Most existing studies focused on the place-
ment of service function chains in geo-distributed networks
that consists of many powerful data centers. We provide
the very first study of reliability-aware VNF placement
in MEC. We assume that the required network function
service of a user can be implemented by a single, consoli-
dated VNF instance. Additionally, existing studies mainly
focused on end-to-end requirements of requests specified
as the probability of component failures. In this paper, we
differentiate reliability requirements of different users by
providing different numbers of secondary VNF instances to
ensure their reliability requirements, and devised efficient
algorithms with performance guarantees for the problem of
concern.

3 PRELIMINARIES

In this section, we first introduce the system model, notions
and notations. We then define the problem precisely.

3.1 Network model
We consider an MEC environment for a metropolitan re-
gion. Given a wireless metropolitan area network (WMAN)
G = (V,E) consisting of Access Points (APs) and K
cloudlets, where each cloudlet k is co-located with an AP
and they are interconnected by a high-speed optical cable,
yet not all APs have co-located cloudlets, i.e., the number
of cloudlets in the network is far less than the number of
APs. Each cloudlet k has a (residual) computing capacity
Ck. E is the set of links in which a link e ∈ E between
two APs if they are interconnected by an optical cable. We
assume that there are |F| different types of network function
services offered by the network service provider. Denote by
F = {f1, f2, . . . , f|F|} the set of network functions. The
computing resource demand of each VNF instance of a
network function fi ∈ F is ci. Mobile users can access the
network ubiquitously through their nearby APs. Fig. 1 is an
illustrative example of such a network that consists of five
APs and three cloudlets.

3.2 User requests
Denote by R the set of user requests. Each user request
rj ∈ R is defined by a quadruple (fj , Rj , cj , pj), where fj
(∈ F) is the requested type of VNF, Rj is the reliability
requirement of request rj with 0 < Rj ≤ 1, cj is the amount
of computing resource demanded for implementing the VNF

Access Point

Cloudlet

Fig. 1. An MEC consists of five APs and three cloudlets co-located with
APs. User devices access the network through their nearby APs and APs
are interconnected by optical links of the MEC.

instance of fj in a cloudlet, and pj (∈ R+) is the revenue
collected by the service provider if request rj is admitted. In
contrast to some previous studies, we here assume that a user
request can be served by a single VNF instance [22], [33], or a
consolidated VNF instance [20]. This assumption is in align-
ment with real world deployments of VNF instances, such
as Google’s enterprise software-defined networks (SDN) [5],
in which a single general-purpose computer implements
multiple network functions, including network address
translation (NAT), firewall, Intrusion Detection System (IDS),
Dynamic Host Configuration Protocol (DHCP) daemon.

We assume that each request rj needs (nj + 1) VNF
instances of its network function fj , to meet its reliable
service requirement, where nj is calculated by the reliability
requirement of the request. Without loss of generality, we
assume that nj + 1 ≤ K, i.e., the reliability provided by the
system through duplicating the VNF instances to different
cloudlets is no more than the number of cloudlets K in
the system. Among the (nj + 1) VNF instances for request
rj , one of the VNF instances will serve as its primary VNF
instance, and the remaining ni VNF instances will serve as
its secondary VNF instances. Specifically, the value of nj ≥ 0
is determined by the reliability requirement Rj of request
rj , which is a minimum non-negative integer to meet the
following inequality.

Pr(at least one of the (nj + 1) VNF instances is available)

= 1− Pr(fj)nj+1 ·
nj∏
l=0

Pr(Kjl) (1)

= 1− Pr(fj)nj+1 · Pr(K)nj+1 (2)
≥ Rj , (3)

where Pr(fi) is the failure probability of an instance of
network function fi and Pr(Kjl) is the failure probability of
the lth instance of request rj , and step (1) in Eq. (3) follows
because, in order to be functionally identical to the primary
instance, the secondary VNF instances are often running on
the same software version and using the same configuration
as their primary VNF instance, thereby having the same
failure probabilities as the failure probability of the primary

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2927214, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX, 2018 4

VNF instance. Step (2) in Eq. (3) follows we assume that
cloudlets in the system have the same failure probabilities.
This assumption is in alignment with the common industry
practice where network operators keep their equipments to
a limited range so that they can standardize the process and
minimize their OPEX. We also assume that failures of VNF
instance are independent with each other and links (optical
cables) in G are reliable.

As most network functions are stateful, the primary
and secondary VNF instances of a network function need
to synchronize with each other so that there is minimum
interruptions when the primary VNF instance fails. It is
worth noting that the internal state of a VNF instance
often contain sensitive information, e.g., encryption keys.
If synchronization of the internal states of primary and
secondary VNF instances is via the same links as user traffic,
sensitive information may be exposed. Instead, the internal
state of the primary VNF instance should be periodically
distributed to secondary VNF instances over a dedicated
out-of-band, i.e., separate from user traffic, network. The
commonly used Control Plane Network (CPN) [16], [31]
is an excellent candidate for synchronization between the
primary and secondary VNF instances of a network function.

3.3 Problem definition
Given an MEC G = (V,E), a set R of requests, associated
with each request rj ∈ R, there is a payment pj , a network
function fj ∈ F , and a reliability requirement represented
by the number nj (0 ≤ nj < K) of secondary VNF instances
with each of them being placed at a different cloudlet, the
reliability-aware VNF instances provisioning problem is to admit
as many requests inR as possible such that the total revenue
collected by the service provider is maximized, subject to
computing capacity constraint on each cloudlet and the
specified reliability guarantee of each admitted request.

A request rj is admitted if its (nj + 1) VNF instances
are placed at (nj + 1) different cloudlets, and each cloudlet
has sufficient computing resource to meet the computing
resource demand cj of its network function fj , assuming
that max1≤j≤|R|{nj} ≤ K − 1. There are a setR of requests,
each request rj ∈ R needs nj + 1 replicas of its VNF fj ,
and its admission will result in a revenue of pj where each
instance of fj demands the amount cji of computing resource
from each of the nj + 1 cloudlets. The problem is to admit
as many requests in R as possible to maximize the revenue,
subject to the cloudlet computing capacity constraint.

Notice that in this paper we do not explicitly consider
user mobility. However, we assume the users are allowed
to move in the MEC, and they can issue their requests for
services through the APs in which they are located.

Table 1 lists the frequently used notations used in this
paper.

4 NP-HARDNESS

Theorem 1. The reliability-aware VNF instances provisioning
problem in an MEC G(V,E) is NP-complete.

Proof: We show the claim through a reduction from the
well-known NP-complete knapsack problem that is described
as follows. Given n items, each item ai has a weight wi and a

TABLE 1
Table of Symbols

Notations Descriptions

G = (V,E) a WMAN
k ∈ K a cloudlet co-located with an AP
Ck the residual computing capacity of

cloudlet k
F (= f1, f2, . . . , f|F|) the set of network functions offered in

G

fi a network functions offered in G
ci the computing resource demand of net-

work function fi
R the set of user requests

rj = (fj , Rj , cj , pj) ∈ R a user request, where fj (∈ F) is the
requested type of VNF, Rj is the relia-
bility requirement of request rj with
0 < Rj ≤ 1, cj is the amount of
computing resource demanded, and pj
(∈ R+) is the revenue

nj the number of secondary VNF instances
needed for request rj to meet its reliable
service requirement

profit pi with 1 ≤ i ≤ n. There is a bin with capacity W . If an
item aj can be packed into the bin, it brings a profit of pj . The
knapsack problem is to pack as many items as possible such
that the total profit of packed items is maximized, subject to
the bin capacity W .

Given an instance of the knapsack problem, we construct
an instance of the reliability-aware VNF instances provi-
sioning problem as follows. We assume that there are two
cloudlets (K = 2) with each having W computing capacity.
There are n requests, which correspond the n items in the
knapsack problem. We further assume that each request rj
has only one secondary VNF instance, i.e., nj = 1. As each
request implementation has a primary VNF instance. Thus,
there are two VNF instances for each request allocated to two
cloudlets. The computing demand of each of the two VNF
instances of rj is wj . If request rj is admitted, the revenue
brought by its implementation is pj . Then, the reliability-
aware VNF instances provisioning problem is to admit
as many requests as possible such that the total revenue
collected from admitted requests is maximized, subject the
computing capacity constraints on the two cloudlets.

It can be seen that a solution to the latter in turn returns a
solution to the former, while the reduction from an instance
of the knapsack problem to an instance of the reliability-
aware VNF instances provisioning problem takes polynomial
time. Also, verifying the solution of the latter can be easily
done in polynomial time. As the knapsack problem is NP-
complete, the reliability-aware VNF instances provisioning
problem is NP-complete, too.

5 INTEGER LINEAR PROGRAMMING

In this section, we formulate an ILP solution for the problem.
We assume that xj is a boolean variable, where xj = 1
implies that request rj is admitted; otherwise, it will not
be admitted. Furthermore, if rj is admitted, there are
exactly nj + 1 cloudlets with each having the amount cj
of computing resource to meet the computing resource

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2927214, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX, 2018 5

demand by its primary and secondary VNF instances. The
optimization objective thus is

maximize
∑n
j=1 pjxj ,

subject to the following constraints.

|R|∑
j=1

cj · yj,k ≤ Ck, ∀k, 1 ≤ k ≤ K (4)

(nj + 1) · xj =
K∑
k=1

yj,k, ∀rj ∈ R (5)

xj ∈ {0, 1}, ∀rj ∈ R (6)
yj,k ∈ {0, 1}, ∀rj ∈ R, ∀k, 1 ≤ k ≤ K, (7)

where yj,k is a boolean variable, yj,k = 1 if a VNF instance
of request rj is allocated to cloudlet k; yj,k = 0 otherwise.
Constraint (4) says that the total computing demand by the
VNF instances of all different requests rj in any cloudlet k
is no greater than its residual computing resource capacity.
Constraint (5) ensures that the number of secondary VNF
instances at different cloudlets for each admitted request rj
is exactly nj + 1. Constraints (6) and (7) limit the ranges of
boolean variables xj and yj,k to either 0 or 1.

6 APPROXIMATION ALGORITHM FOR THE
RELIABILITY-AWARE VNF INSTANCES PROVI-
SIONING PROBLEM

In this section, we propose an approximation algorithm for
the reliability-aware VNF instances provisioning problem.
We start with cost modeling, and then provide an overview
of the proposed algorithm and details of the algorithm. We
finally analyze the approximation ratio and time complexity
of the proposed algorithm.

6.1 Cost modeling

The approximation algorithm examines the requests in R
one by one. When request rj is considered, the resource
availability of cloudlets affects whether rj can be admitted.
We thus denote by Ck(j) the amount of residual computing
resource at cloudlet k with Ck(0) = Ck.

The key to the approximation algorithm is that we use an
exponential function to model the cost wk(j) of instantiating
a VNF instance of request rj with computing resource
demand cj at cloudlet k, which is defined as follows.

wk(j) =
Ck
cj

(α
1−Ck(j)

Ck − 1), (8)

where α > 1 is a constant to reflect the sensitivity of the
workload at each cloudlet, which will be determined later,
and 1− Ck(j)

Ck
is the utilization ratio of cloudlet k when request

rj is considered. The rationale is that the high utilization a
resource has, the higher the risk associated with the resource
utilization, thus the usage of resources with high utilization
should be discouraged. The proposed exponential function
will guide the resource allocations.

6.2 Algorithm description
We first sort all requests by the ratio of the payment of
each request to the total amount of its computing resource
demand to meet its VNF instance reliability. In other words,
we rank request rj ahead of request ri if pj

(nj+1)cj
≥ pi

(ni+1)ci
for any two requests ri ∈ R and rj ∈ R. For the sake of
convenience, we assume that the sorted request sequence is
r1, r2, . . . , r|R|. We then examine requests in the sequence
one by one to determine whether a request will be admitted
immediately.

For each request rj , we calculate its normalized cost if one
of its VNF instances is instantiated at cloudlet k as follows.

ψk(j) =
wk(j)

Ck
=
α
1−Ck(j)

Ck − 1

cj
. (9)

For each request rj , we identify top-(nj + 1) cloudlets with
the lowest normalized costs, and denote by Kj the set of
cloudlets. We here introduce an admission control policy for
request admissions. That is, if the sum of normalized costs of
the identified top-(nj + 1) cloudlets for request rj is greater
than K, i.e., ∑

k∈Kj ψk(j)

pj
> K, (10)

then request rj will be rejected. Otherwise, it will be admitted,
and its (nj + 1) VNF instances will be placed in the top-
(nj + 1) cloudlets. The algorithm detail for the reliability-
aware VNF instances provisioning problem is given in
Algorithm 1.

Algorithm 1 Approximation algorithm for the reliability-
aware VNF instances provisioning problem
Input: A set of K cloudlets with each having a residual

computing capacity C, a set of requests R with each request
rj = (fj , Rj , cj , pj)

Output: Admit a subset of requests in R that maximizes the
sum of revenues of admitted requests while meeting the
reliability requirement of each admitted request.

1: A ← ∅ /* the set of admitted requests */;
2: Sort requests inR by the ratio of the payment of each request

to the total amount of its computing resource demand to
meet its VNF instance reliability;

3: for each request rj in the sorted order do
4: Calculate the number nj of secondary VNF instances of

its network function by Inequality (3);
5: Assign each cloudlet k a cost by Eq. (9) if rj is admitted;
6: Identify top-(nj+1) cloudlets Cj1 , Cj2 , . . . , Cjnj

, Cj(nj+1)
,

with smallest costs, by a linear time selection algorithm;
7: if there is a cloudlet jk among the nj + 1 identified

cloudlets such that Cjk < cj or the sum of costs of the
(nj + 1) identified cloudlets is greater than K · pj (by
Inequality (10)) then

8: Reject request rj ;
9: else

10: Allocate a VNF instance of request rj to each of the
top-(nj + 1) cloudlets;

11: Update the residual computing capacity of each of these
cloudlets as Cjk ← Cjk−cj for all k with 1 ≤ k ≤ nj+1;

12: A ← A∪ {rj};
13: end if
14: end for
15: return Set A of admitted requests and their primary and

secondary VNF instance placements in cloudlets.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2927214, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX, 2018 6

6.3 Algorithm analysis
In the following, we first provide an upper bound on the
sum of costs of all cloudlets in G after a subset of requests
in R is admitted. We then show a lower bound on the
sum of costs of cloudlets that an optimal solution uses to
admit a request rejected by the proposed algorithm, and
we finally analyze the approximation ratio of the proposed
approximation algorithm.
Lemma 1. Given an MEC G(V,E) and a set of requestsR, de-

note by A the set of requests admitted by Algorithm 1,
then, the sum of costs of all K cloudlets is

K∑
k=1

wk(j) ≤ 2K · logα ·
∑
rj′∈A

pj′ ,

where α is a constant with 2K · Qmax + 2 ≤ α ≤
2Cmin/cmax , Cmin (= min{Ck | 1 ≤ k ≤ K}) is the
minimum cloudlet computing capacity, R is the set of
requests, and Qmax (= max{pj′ · cj′ | rj′ ∈ R}) is the
maximum product of the profit and computing resource
demand among requests.

Please see Appendix A for the proof.
Let D (⊆ R) be the set of requests that are admitted

by an optimal algorithm but rejected by the proposed
approximation algorithm. We now prove a lower bound
on the sum of normalized costs of all cloudlets used to admit
any request in D.
Lemma 2. Let D be the set of requests that are admitted by

an optimal algorithm yet rejected by the approximation
algorithm, and let Koptj′ be the set of (nj′ + 1) cloudlets
to which the optimal algorithm places VNF instances for
request rj′ ∈ D. Then, for any request rj′ ∈ D, we have∑

k∈Kopt
j′
ψk(j

′)

pj′
≥ K, (11)

where α is a constant with 2K · Qmax + 2 ≤ α ≤
2Cmin/cmax , Cmin (= min{Ck | 1 ≤ k ≤ K}) is the
minimum cloudlet computing capacity, and Qmax (=
max{pj′ · cj′ | rj′ ∈ R}) is the maximum product of the
profit and computing resource demand among requests.

Please see Appendix B for the proof.
Theorem 2. Given an MEC G(V,E), K cloudlets in G, and a

set R of requests, there is an approximation algorithm,
Algorithm 1, with an approximation ratio of O(logK)
for the reliability-aware VNF instances provisioning
problem, which takes O(|R| · log |R|+ |R| ·K) time.

Proof: Let Popt and P be the total revenues of admitted
requests by an optimal algorithm and the proposed approx-
imation algorithm for requests in R, respectively, we then
have

K(Popt − P) ≤ K
∑
rj′∈D

pj′ =
∑
rj′∈D

K · pj′

≤
∑
rj′∈D

(
∑

k∈Kopt
j′

wk(j
′)

Ck
), by Lemma 2

≤
∑
rj′∈D

(
∑

k∈Kopt
j′

wk(j)

Ck
) (12)

≤
K∑
k=1

wk(j)
∑
rj′∈D

(
∑

k′∈Kopt
j′

1

Ck′
) (13)

≤
K∑
k=1

wk(j) · 1 (14)

=
K∑
k=1

wk(j) ≤ 2K logα ·
∑
j′∈A

pj′ by Lemma 1. (15)

Notice that Inequality (12) holds because the utilization
of each resource does not decrease and consequently the
cost of any cloudlet k with 1 ≤ k ≤ K does not decrease
with more request admissions. Inequality (13) holds since∑p
i=1

∑q
j=1AiBj ≤

∑p
i=1Ai

∑q
j=1Bj for all Ai ≥ 0 and

Bj ≥ 0. The proof of Inequality (14) proceeds as follows. All
algorithms, including an optimal algorithm for the problem
of concern, the total amount of allocated computing resources
in any cloudlet is no more than the capacity of the cloudlet.

By Inequality (15), we have

Popt
P

=
Popt − P

P
+ 1

≤
2 logα ·

∑
rj′∈A pj

′∑
rj′∈A pj

′
+ 1 ≤ 2 logα+ 1

= O(log(K ·Qmax)), when α = 2K ·Qmax + 2.
= O(logK + logQmax)

= O(logK), as Qmax usually is a constant,

where Qmax is the maximum product of the profit and
computing resource demand among requests, i.e., Qmax =
max{pj′ · cj′ | rj′ ∈ R}.

The running time of Algorithm 1 is dominated by the
time required to sort all requests by their ratio, which takes
O(|R · | log |R|) time. Then, there are |R| iterations, and
within each iteration j, it identifies the top-(nj +1) cloudlets
with the smallest weights using a linear time selection
algorithm. The algorithm thus takes O(|R| · log |R|+ |R| ·K)
time.

7 APPROXIMATION AND EXACT ALGORITHMS FOR
SPECIAL CASES OF THE RELIABILITY-AWARE VNF
INSTANCES PROVISIONING PROBLEM

In this section, we study two special cases of the reliability-
aware VNF instances provisioning problem, and propose a
constant approximation algorithm and an exact algorithm
for the cases, respectively.

7.1 A constant approximation algorithm for a special
reliability-aware VNF instances provisioning problem
We start dealing with a special case of the reliability-aware
VNF instances provisioning problem where each request has
only one primary and secondary VNF instances, i.e., nj = 1
for all requests rj ∈ R. Even for this special case, it is still
NP-hard, for which we develop a constant approximation
algorithm by a non-trivial reduction to the well-known
Generalized Assignment Problem (GAP) [10], and a solution
to the latter in turn returns a feasible solution to the former.

The Generalized Assignment Problem (GAP) is defined as
follows. Given a set B of K bins with each bin Bk ∈ B

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2927214, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX, 2018 7

having identical capacity of C, a set I of N items, and for
each pair of item Ij ∈ I and bin Bk ∈ B, a profit p(Ij , Bk)
is obtained if item Ij is placed to bin Bk with size s(Ij , Bk),
the GAP is to pack as many as items in set I into the bins
in B such that the total profit is maximized, subject to the
capacity constraint on each bin.

Given an instance of this special reliability-aware VNF
instances provisioning problem, we construct an instance of
the GAP as follows. We first assume that the K cloudlets
are indexed into 1, 2, . . . ,K and K is even. Otherwise, we
assume that there are K + 1 cloudlets, and one cloudlet is
a virtual one that implies that it does not exist. We pair the
K cloudlets into K/2 pairs, let B′1, B

′
2, . . . , B

′
K/2 be the K/2

pair-bins with each having 2C computing capacity as the
instance of the GAP problem. Each request rj ∈ R has a
corresponding item Ij and with resource demand 2cj for its
primary and secondary VNF instances.

If the primary and secondary VNF instances of request
rj ∈ R will be placed into one pair of cloudlets, correspond-
ing to one bin B′k with size 2cj , then the capacity 2C of bin
B′k is no less than the total resource demand 2cj by these
two VNF instances, and this placement will result in a profit
(revenue) p(Ij , B′k) that is defined as

p(Ij , B
′
k) = pj ,

where 1 ≤ j ≤ |R| and 1 ≤ k ≤ K/2.
The size of placing item Ij into B′k is s(Ij , B′k) = 2cj ,

corresponding to the resource demand 2cj of VNF instances
of request rj .

The constructed GAP instance can be solved by invoking
the approximation algorithm due to Cohen et al. [10] with
an approximation ratio of 1

2+ε , where ε is a constant with
0 < ε ≤ 1.

The solution delivered by the approximation algorithm
will be in the form of assigning a set I ′ ⊆ I of requests.
Specifically, each item Ij ∈ I ′ that corresponds to the primary
and secondary VNF instances of request rj are assigned
to cloudlets B2k and B2k+1 if its corresponding item Ij is
assigned to bin B′k with 1 ≤ k ≤ K/2.

We then extend the solution from the even K to the odd
K , for which we create a virtual cloudlet with the same capac-
ity as other cloudlets. Thus, we now have K ′ = K + 1 bins.
They are corresponding K ′/2 pair-bins B′1, B

′
2, . . . , B

′
K+1

2

with each having the computing capacity of 2C. Assume
that the virtual cloudlet is paired with the cloudlet indexed
K . We then apply the approximation algorithm for the GAP
problem due to Cohen et al. [10].

Let I ′ be the approximate solution and I ′1.I ′2, . . . , I ′K′/2
the sets of admitted requests in bins B′1, B

′
2, . . . , B

′
K′/2,

respectively. Let P ′1, P
′
2, . . . , P

′
K′/2 be the profit sum of

requests admitted in their corresponding pair-bins.
Denote by

∑K′/2
i=1 P ′i the total revenue collected by admit-

ting the requests in I ′. The average profit among the K ′/2

pair-bins thus is
∑K′
i=1 P

′
i

K′/2 . Let P ′min = min1≤i≤K′/2{P ′i}. If
P ′K′/2 = P ′min, we discard the requests in B′K′/2 from the
solution, i.e., I ′ = I ′ \ I ′K′/2; otherwise, let P ′i0 = P ′min and
i0 6= K ′/2, we swap the admitted requests between pair-bin
B′i0 and pair-bin B′K′/2, i.e., I ′i0 = I ′K′/2 and I ′K′/2 = I ′i0 .
Then, the solution is I ′ = I ′ \ I ′K′/2. The detailed algorithm
is given in Algorithm 2.

Algorithm 2 An approximation algorithm for the special
reliability-aware VNF instances provisioning problem with
nj = 1 for every request rj ∈ R
Input: A set of K cloudlets with each having a residual

computing capacity C, a set of requests R with each request
rj = (fj , Rj , cj , pj)

Output: Admit a subset I′ of requests in R that maximizes the
sum of revenues of admitted requests while meeting the
reliability of each admitted request.

1: if K is even then
2: Construct an instance of the GAP, where each request

rj ∈ R has a corresponding item Ij and each pair of
cloudlets has a corresponding bin B′

k with bin capacity
cap(B′

k) = 2C with 1 ≤ k ≤ K/2;
3: Find an approximate solution I′ to the GAP problem

using the approximation algorithm due to Cohen et
al. [10];

4: else
5: Construct an instance of the GAP, where each request

rj ∈ R has a corresponding item Ij and each pair of
cloudlets has a corresponding bin B′

k with bin capacity
cap(B′

k) = 2C with 1 ≤ k ≤ K+1
2

, where a virtual cloudlet
(bin) is added to the system, and let K′ = K +1, which is
even;

6: Find an approximate solution I′ to the GAP problem
using the approximation algorithm due to Cohen et
al. [10];

7: P ′
min ←∞;

8: for i← 1 to K′/2 do
9: Calculate P ′

i from I′i;
10: if P ′

i < P ′
min then

11: P ′
min ← P ′

i ; i0 ← i; I′temp ← I′i0 ;
12: end if;
13: end for;
14: if i0 = K′/2 then
15: I′ ← I′ \ I′K′/2;
16: else
17: I′i0 ← I

′
K′/2; I′K′/2 ← I′temp; I′ ← I′ \ I′K′/2;

18: end if;
19: end if;
20: for each item Ij ∈ I′k assigned to bin B′

k with 1 ≤ k ≤ dK/2e
do

21: if k ≤ bK/2c then
22: Instantiate the primary and secondary VNF instances

of fj for request rj in cloudlets 2k − 1 and 2k;
23: end if;
24: end for;
25: return the set of admitted requests and their primary and

secondary VNF instance placements in cloudlets.

Theorem 3. Given an MECG(V,E) that containsK cloudlets
with each having identical residual computing capacity
C, and a set of requests R with each request rj ∈ R
having exactly one secondary VNF instance, there is an
approximation algorithm with an approximation ratio of

1
6+ε′ , Algorithm 2, for this special reliability-aware VNF
instances provisioning problem. The proposed algorithm
takes O(|R|·Kε′ + K

ε′4) time, where ε′ is a constant with
0 < ε′ ≤ 3.

Proof: We first show that the solution delivered by
Algorithm 2 is feasible. Since a pair-bin B′k that corre-
sponds to cloudlets 2k and 2k + 1 has the computing
capacity of 2C, and the size s(Ij , B′k) = 2cj of placing item
Ij (admitting request rj by instantiating its primary and

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2927214, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX, 2018 8

secondary VNF instances into B2k and B2k+1) is equal to
their resource demand 2cj , it follows that the allocation of
VNF instances by solving the GAP problem, i.e., the capacity
constraint on each cloudlet will not be violated.

We then analyze the approximation ratio of Algorithm 2,
by distinguishing it into two cases, depending on whether
the value of K is even or not. If K is even, then the solution
is an approximate solution, which is 1

2+ε times the optimal
by the approximation algorithm in [10]; otherwise (K is odd),
we create a virtual cloudlet indexed as K ′ (= K + 1). Let I ′
be the approximate solution delivered by the approximation
algorithm. As this solution is built upon the assumption that
there areK ′ cloudlets, we in fact have onlyK cloudlets in the
network. Following Algorithm 2, let A be the total profit
of the approximate solution, the minimum profit among the
K ′/2 pairs of cloudlets thus is no greater than A

K′/2 . As we
will remove all admitted requests in the minimum profit
pair-bin from the solution, the resulting profit by the solution
thus is at least A − A

K′/2 = A(1 − 2
K+1) ≥ A/3 due to the

fact that K ≥ 2. Since A ≥ OPT
2+ε , A3 ≥

OPT
6+ε′ , where OPT is

the optimal solution to the problem, and ε′ = 3ε is a constant
with 0 < ε′ ≤ 3.

We finally analyze the running time of Algorithm 2.
The construction of the GAP instance takes O(|R| ·K) time,
while invoking the approximation algorithm due to Cohen
et al. [10] takes O(|R|·Kε′ + K

ε′4) time. The solution delivered
by the proposed algorithm, Algorithm 2, thus is no less
than 1

6+ε′ times the optimal one, where ε′ is a constant with
0 < ε′ ≤ 3.

7.2 A dynamic programming algorithm for another spe-
cial reliability-aware VNF instances provisioning prob-
lem

We then study another special case of the reliability-aware
VNF instances provisioning problem where different VNF
instances of different network functions have the same
amounts of computing resource demands, i.e., ci = cj
for all fi ∈ F and fj ∈ F . For the sake of convenience,
we assume that the computing resource demand by each
network function is one computing unit. We propose an
exact algorithm for the problem through a reduction to a
profit maximization problem (defined later), and the solution
to the latter in turn returns a solution to the former. The
reduction is as follows.

7.2.1 A dynamic programming algorithm

Denote by n the number of requests r1, r2, . . . , rn in
R, which correspond n jobs J1, J2, . . . , Jn. There are K
cloudlets in G, and each can be treated as a bin Bi with
computing capacity Ci, 1 ≤ i ≤ K. The reliability require-
ment of request rj is implemented by placing (nj + 1) VNF
instances to nj + 1 cloudlets with each being allocated a
computing unit at each cloudlet. The implementation of job
Jj will take Uj bins and consume one computing unit in
each of the chosen Uj bins. The profit (revenue) obtained
by implementing job Jj is pj . The profit maximization problem
then is to find a subset A of R (A ⊆ R) such as the sum of
profits of admitted requests in A is maximized, subject to the
computing capacity on each cloudlet in the network.

The defined profit maximization problem can be solved,
using dynamic programming as follows. Without loss of
generality, we assume

C1 ≥ C2 ≥ . . . ≥ CK , (16)

and
U1 ≥ U2 ≥ . . . ≥ Un. (17)

Because each job needs at most one computing unit from
any bin, we assume n ≥ C1, otherwise excessive capacity
larger than n will be useless.

LetWi = |{j |Cj ≥ i}| be the number of bins that have at
least i computing units, for each and every i with 1 ≤ i ≤ n.
Notice that some Wi may be zero. We then have

W1 ≥W2 ≥ . . . ,≥Wn. (18)

Definition: If a job J is selected which needs U com-
puting units, then we assign one computing unit starting
from the bin with the largest remaining capacity in an non-
increasing order of remaining capacities until U computing
units have been assigned. We refer to this scheduling method
as the canonical scheduling.
Theorem 4. All jobs J1, J2, . . . , Jn can be selected if and only

if the following condition is satisfied.

i∑
j=1

Uj ≤
i∑

j=1

Wj for all i with 1 ≤ i ≤ n. (19)

Proof: We prove Claim (19) by induction on the number
of jobs n.

We start with induction basis. When n = 1, there is only
one job that requires U1 computing units. Therefore, if J1
can be selected, we must have U1 ≤W1. On the other hand,
if U1 ≤ W1, then J1 can be selected because its demanded
U1 computing units can be satisfied. We then assume that
Claim (19) holds for all n with 1 ≤ n ≤ h. We finally show
that Claim (19) also holds when n = h+ 1 as follows.

On one hand, suppose that all h+ 1 jobs can be selected.
In this case, since the first h jobs can be selected by the
induction assumption, we have

∑i
j=1 Uj ≤

∑i
j=1Wj for all

i with 1 ≤ i ≤ h. Now, because the first h+ 1 jobs can also
be selected, we then must have

∑h+1
j=1 Uj ≤

∑h+1
j=1 Wj where∑h+1

j=1 Uj is the total number of computing units required by
the h+ 1 jobs and

∑h+1
j=1 Wj is the total number of available

computing units provided by all bins, because any bin with
a capacity larger than h+1 can only contribute at most h+1
computing units.

On the other hand, suppose Claim (19) holds, i.e.,∑i
j=1 Uj ≤

∑i
j=1Wj for all i with 1 ≤ i ≤ h+ 1. We show

that all h+ 1 jobs can be selected by canonically scheduling
J1 and distinguishing two cases: Case A and Case B, to deal
with the remaining h jobs.

Case A: if U1 =W1, then we have
∑i
j=2 Uj ≤

∑i
j=2Wj

for all i with 2 ≤ i ≤ h+ 1. Because there are h remaining
jobs, by the induction assumption, all the remaining h jobs
can be selected.

Case B: if U1 < W1, then not all W1 bins are used, and
there are W1 − U1 bins not used. We relabel the h remaining
jobs by labeling job J2 as J ′1, J3 as J ′2, . . ., and Jh+1 as
J ′h. Accordingly, we have U ′1 = U2, U ′2 = U3, . . ., U ′h =

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2927214, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX, 2018 9

Uh+1. Denote by W ′i the number of bins that have at least
i remaining computing units for all i with 1 ≤ i ≤ n. We
further distinguish Case B into two subcases: (i) W2 ≤ U1;
and (ii) W2 > U1, respectively.

Subcase (i): if W2 ≤ U1, then

W ′1 =W2 +W1 − U1, (20)
W ′2 =W3,

...
W ′h =Wh+1.

We thus have U ′1 = U2 ≤W2 +W1 − U1 =W ′1, because
U1 + U2 ≤W1 +W2. In general, for all i with 2 ≤ i ≤ h, we
have

i∑
j=1

U ′j =
i+1∑
j=2

Uj =
i+1∑
j=1

Uj − U1

≤
i+1∑
j=1

Wj − U1, by Claim (19)

=
i+1∑
j=3

Wj + (W2 +W1 − U1), by Eq. (20)

=
i∑

j=2

W ′j +W ′1 =
i∑

j=1

W ′j (21)

By the induction assumption, all h remaining jobs can be
selected by the bins.

Subcase (ii): Assume that there is a p such that W2 > U1,
W3 > U1, . . ., Wp > U1 but Wp+1 ≤ U1. We then have

W ′1 =W2 + (W1 −W2) =W1,

W ′2 =W3 + (W2 −W3) =W2,

...
W ′p−1 =Wp + (Wp−1 −Wp) =Wp−1, (22)

W ′p =Wp+1 + (Wp − U1), (23)

W ′p+1 =Wp+2,

...
W ′h =Wh+1. (24)

Note that if p = h+ 1, then from Inequality (17) we have
Wj > Uj for all j with 1 ≤ j ≤ h+ 1. Then, all jobs can be
selected. We thus assume that p ≤ h, and this situation is
illustrated in Fig. 2. We now have W ′1 = W1 ≥ W2 > U1 ≥
U2 = U ′1.

For i = 2, . . . , p− 1, we have
i∑

j=1

U ′j =
i+1∑
j=2

Uj ≤
i+1∑
j=2

U1, from inequality (17)

≤
i∑

j=1

Wj , from the assumption of subcase (ii)

≤
i∑

j=1

W ′j . (25)

For i = p, p+ 1, . . . , h, we have
i∑

j=1

W ′j =

p−1∑
j=1

W ′j +W ′p +
i∑

j=p+1

W ′j ,

C
ap

ac
it

y

W1

W2

 W3 = W4

W5
W6

U1

P = 4

bins bin 1 bin 2 bin 5 bin 7 bin 9 bin 11 bin 13

Fig. 2. An illustration of the proof of Theorem 4.

=

p−1∑
j=1

Wj +Wp+1 + (Wp − U1) +
i∑

j=p+1

W ′j , by Eq. (23).

=

p+1∑
j=1

Wj − U1 +
i+1∑

j=p+2

Wj , by Eq. (24).

=
i+1∑
j=1

Wj − U1 ≥
i+1∑
j=1

Uj − U1 =
i+1∑
j=2

Uj =
i∑

j=1

U ′j . (26)

Therefore, by the induction assumption, all h remaining
jobs can be selected by the bins. The theorem thus follows.

We thus can derive the following corollary from Theo-
rem 4.
Corollary 1. Given any subset of jobs {Jj1 , Jj2 , . . . , Jjp} of a

set of jobs {J1, J2, . . . , Jn} with Uj1 ≥ Uj2 ≥ . . . ≥ Ujp ,
jl ∈ {1, 2, . . . , n} and 1 ≤ l ≤ p, each job Jjl demands
Ujl (1 ≤ Ujl ≤ K) bins with one computing unit per bin.
Assume that there are K bins with each bin Bk having
Ck computing units and C1 ≥ C2 ≥ . . . ≥ CK , all the
jobs in the subset is admissible by the K bins if and only
if the following condition is satisfied.

h∑
i=1

Uji ≤
h∑
i=1

Wi, for all h with 1 ≤ h ≤ p. (27)

Recall the admission of a job Jj leads to a profit of pj . Let
U =

∑n
j=1 Uj . Define Li =

∑i
j=1Wj for all i with 1 ≤ i ≤ n.

Denote by P (i, h, Y) the maximum profit from selecting i
jobs from the first h jobs with i ≤ h ≤ n, whose total
number of computing units needed is Y . Clearly 0 ≤ Y ≤∑n
j=1 Uj = U . If there is no solution, then P (i, h, Y) = 0.

The initiation of P (0, h, Y) is 0 for any 1 ≤ h ≤ n and
0 ≤ Y ≤ U . The recurrence is defined as follows.

P (i, h, Y) = max

ph + P (i− 1, h− 1, Z),

if Y = Z + Uh and Y ≤ Lh,
P (i, h− 1, Y), otherwise.

(28)
where ph is the revenue collected if request rh is admitted
and Uh = nh + 1 is the number of VNF instances placed
for request rh, and Z is the total number of computing
units required by the first h − 1 jobs admitted prior to the
admission of job h, i.e., Z =

∑h−1
i=1 Uji . Note that from

Corollary 1, Y ≤ Li is to guarantee that the solution is valid.
Denote by V (i, h, Y) = {j1, j2, . . . , ji} the set of indices

of the selected i jobs that achieves P (i, h, Y) – the maximum

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2927214, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX, 2018 10

profit for this sub-problem. Then, V (i, h, Y) is recursively
defined as follows.

V (i, h, Y) =

{
V (i, h− 1, Y) if P (i, h, Y) = P (i, h− 1, Y),

V (i− 1, h− 1, Z) ∪ {h}.
(29)

The solution to the problem is max{P (i, h, Y) | 1 ≤
i ≤ h ≤ n, 0 ≤ Y ≤ U}. Specifically, given a set R
of requests, a set of K cloudlets with each cloudlet k
accommodating Ck VNF instances, Recurrence (28) can be
used to derive the maximum revenue by admitting a subset
of requests in R. An exact algorithm for the reliability-aware
VNF instances provisioning problem then follows, and the
detailed algorithm is given in Algorithm 3.

Algorithm 3 An exact algorithm for the special reliability-
aware VNF instances provisioning problem
Input: K cloudlets with each cloudlet j accommodating Cj

VNF instances with the same computing resource demand
by different network function instances, a set of requests R
with each request rj = (fj , Ri, cj , pj) ∈ R

Output: Admit a subset of requests in R such that the sum
of revenues of admitted requests is maximized while the
reliability requirement of each admitted request is met.

1: for each request rj ∈ R do
2: Calculate the number nj of secondary VNF instances by

Inequality (3);
3: end for
4: Identify a subsetA of requests inR to maximize the revenue

collected by solving Recurrence (28) for all i, h, and C, and let
a subset A is identified such that the revenue is maximized;

5: Let r′1, r′2, . . . , r′|A| be the sequence of the ordered requests
in the solution obtained in A;

6: for j ← 1 to |A| do
7: Perform nj+1 VNF instance allocations to nj+1 cloudlets,

where nj VNF instances serve as secondary VNFs and
one VNF instance serves as the primary VNF instance for
each admitted request r′j ∈ A.

8: end for

The rest is to analyze the time complexity of
Algorithm 3 by the following theorem.

Theorem 5. Given an MEC G(V,E) and a set of requests R,
assume that each cloudlet k of the K cloudlets in G has
a computing capacity Ck with 1 ≤ k ≤ K, there is an
exact algorithm, Algorithm 3, for the reliability-aware
VNF instances provisioning problem with different VNF
instances have demanded the same amount of computing
resource, which delivers an exact solution within O(K ·
|R|3) time, where K is the number of cloudlets in G.

Proof: The running time of Algorithm 3 is dominated
by solving the recurrence in the dynamic programming and
subsequently VNF instances allocations for each admitted
request, both take O(K · |R|3) time since 0 ≤ i ≤ |R|,
1 ≤ h ≤ |R|. The time complexity for solving Recurrence (28)
is as follows. Consider how to select i jobs from the first h
jobs with i ≤ h, such that the total required computing unit
is Y . Obviously, 0 ≤ W ≤

∑n
j=1 Uj ≤ Kn, as each request

has at most K VNF instances with each placed at one of the
K cloudlets. For each fixed i, h, and W , we find a solution
that has the maximum total profit. Since 1 ≤ i ≤ h ≤ |R|,
there are O(K|R|3) sub-problems need to solve.

8 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms for the reliability-aware VNF instances provision-
ing problem. We also investigate the impact of parameters
on the performance of the proposed algorithms.

8.1 Experimental environment settings

We assume that a MEC G = (V,E) consists of 100 APs, in
which the number of cloudlets K is 10% of the network
size, and the cloudlets are randomly co-located with some
of the APs. Each network topology is generated using the
widely adopted approach due to Barabási and Albert [3].
The computing capacity Ck of each cloudlet is drawn in a
range from 2,000 to 4,000 MHz [19]. The network offers 20
different types of network functions, i.e., |F| = 20, where the
computing resource demand ci of a VNF instance of network
function fi ∈ F is randomly drawn between 40MHz and
400MHz [2]. The number nj of secondary VNF instances
of the network function for request rj is randomly drawn
between 0 and 4, because in the extreme case where the
failure rate of each cloudlet is 10%, allocating four secondary
VNF instances and one primary VNF instance to a request
is able to guarantee a carrier-grade reliability of 99.999%
(five nines). The running time obtained of each mentioned
algorithm is based on a desktop with a 4GHz quad-core Intel
i7 CPU and 16 GB RAM.

We evaluate the proposed algorithms Algorithm 1,
Algorithm 2, Algorithm 3, and the ILP solution, which are
referred to as ALG-1, ALG-2, ALG-3, and ILP, respectively.
Each value in figures is the mean of the results of 30 trials.

8.2 Algorithm performance evaluation for the reliability-
aware VNF instances provisioning problem

We first evaluate the proposed approximation algorithm
Algorithm 1 for the reliability-aware VNF instances pro-
visioning problem against a baseline algorithm Greedy
that adopts a linear cost model. Given a request rj =
(fj , Rj , cj , pj) that needs (nj + 1) VNF instances, algorithm
Greedy places its VNF instances into top-(nj + 1) cloudlets
with the largest residual computing capacity. It takes O(K)
time to identify the top-(nj + 1) cloudlets if a linear-time
selection algorithm is applied. Thus, the running of algorithm
Greedy is O(K · |R|), where K is the number of cloudlets
and R is the set of requests.

Figs. 3 (a)-(b) shows the curves of the total revenues
and the normalized revenues delivered by algorithms ILP,
ALG-1 and Greedy, respectively, where the normalized rev-
enue refers to the average revenue of admitting a request. It
can be observed from these two figures that when the number
of requests is very small, algorithm Greedy achieves a
slightly better performance than algorithm ALG-1. However,
with more and more request arrivals over time, the total
revenue delivered by algorithm ALG-1 increases steadily
while algorithm Greedy grows at a much slower rate. When
the number of requests reaches 1,000, the total revenue of
algorithm Greedy is approximately 70% of that of algorithm
ALG-1. The reason behind is that algorithm ALG-1 is more
conservative: it rejects those requests with high costs by
the admission control policy to alleviate overloading of

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2927214, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX, 2018 11

100 200 300 400 500 600 700 800 9001000
Number of Requests

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

T
o

ta
l

R
ev

en
u
e

in
 D

o
ll

ar
s

ILP
ALG-1
Greedy

(a) Total revenues by different al-
gorithms with different numbers
of requests

100 200 300 400 500 600 700 800 9001000
Number of Requests

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
o

rm
al

iz
ed

 R
ev

en
u

e

ILP
ALG-1
Greedy

(b) Normalized revenues by dif-
ferent algorithms with different
numbers of requests

20 40 60 80 100
Number of Cloudlets

25,000

30,000

35,000

40,000

45,000

50,000

T
o

ta
l

R
ev

en
u

e
in

 D
o

ll
ar

s

ILP
ALG-1
Greedy

(c) Total revenues by different al-
gorithms with different number of
cloudlets

20 40 60 80 100
Number of Cloudlets

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
o

rm
al

iz
ed

 R
ev

en
u

e

ILP
ALG-1
Greedy

(d) Normalized revenues by dif-
ferent algorithms with different
number of cloudlets

Fig. 3. Performance evaluation of the approximation algorithm ALG-1 for the reliability-aware VNF instances provisioning problem

network resources, thereby achieving better performance. We
also evaluate the approximation ratio of algorithm ALG-1
empirically through comparing the total revenue delivered
by algorithm ALG-1 and the optimal one by the optimal
algorithm ILP. It can be seen from Figs. 3 (c)-(d) that the
empirical approximation ratio of algorithm ALG-1 is at most
1.17 in all cases, compared with the analytical approximation
ratio of 20 according to Theorem 2 when K = 100. This
demonstrates that the empirical performance of algorithm
ALG-1 is significantly better than its analytical counterpart.

8.3 Algorithm performance evaluation for special
reliability-aware VNF instances provisioning problems

100 200 300 400 500 600 700 800 9001000
Number of Requests

0

10,000

20,000

30,000

40,000

T
o
ta

l
R

ev
en

u
e

in
 D

o
ll

ar
s

ILP
ALG-1
ALG-2

(a) Total revenues

100 200 300 400 500 600 700 800 9001000
Number of Requests

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
o
rm

al
iz

ed
 R

ev
en

u
e

ILP
ALG-1
ALG-2

(b) Normalized revenues

100 200 300 400 500 600 700 800 9001000
Number of Requests

10

0.1

1

10

100

1,000

10,000

R
u
n
n
in

g
 T

im
e

in
 S

ec
o
n
d
s

ILP
ALG-1
ALG-2

(c) Running time on a logarithmic
scale

Fig. 4. Performance of different algorithms for the special case of the
reliability-aware VNF instances provisioning problem where each request
requires exactly one secondary instance

What follows is to study the performance of the proposed
approximation algorithm ALG-2 against algorithms ALG-1
and ILP for the special case of the problem where every
request needs only one secondary VNF instance. It can be
observed from Figs. 4 (a)-(b) that the total revenue delivered
by algorithm ALG-2 is nearly close to the exact one delivered
by algorithm ILP, while the solution delivered by algorithm
ALG-1 is the worst. Specifically, when the number of requests
is 1,000, the total revenue by algorithm ALG-2 is around 93%
of the optimal solution, which is an 8% improvement over
the one delivered by algorithm ALG-1. It also can be seen
from Fig. 4 (c) that among the three comparison algorithms,

algorithm ALG-1 runs fastest, while algorithm ILP is the
slowest. This demonstrates a non-trivial tradeoff between
the quality of a solution and the running time to deliver the
solution.

We thirdly evaluate the performance of ALG-3 against
ILP and ALG-1 for the special reliability-aware VNF in-
stances provisioning problem where the computing demand
by each network function instance is identical, by varying
the number of requests from 100 to 1,000.

100 200 300 400 500 600 700 800 9001000
Number of Requests

0

10,000

20,000

30,000

40,000

50,000

60,000

T
o
ta

l
R

ev
en

u
e

in
 D

o
ll

ar
s

ILP
ALG-3
ALG-1

(a) Total revenues

100 200 300 400 500 600 700 800 9001000
Number of Requests

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
o
rm

al
iz

ed
 R

ev
en

u
e

ILP
ALG-3
ALG-1

(b) Normalized Revenues

100 200 300 400 500 600 700 800 9001000
Number of Requests

0.1

1

10

100

1,000

10,000

R
u
n
n
in

g
 T

im
e

in
 S

ec
o
n
d
s

ILP
ALG-3
ALG-1

(c) Running time on a logarithmic
scale

Fig. 5. Performance of different algorithms for the special reliability-aware
VNF instances provisioning problem

Figs. 5 (a)-(c) show the total revenue, normalized revenue,
running time of the mentioned algorithms, respectively. It can
be seen from Figs. 5 (a)-(b) that both algorithms ALG-3 and
ILP deliver exact solutions to the problem, while the heuristic
algorithm ALG-1 delivers a very good solution. The total
revenue delivered by algorithm ALG-1 is no less than 80%
of that by algorithms ALG-3 and ILP. Despite the optimal
solutions delivered by both algorithms ALG-3 and ILP, it
can be seen from Fig. 5 (c) that algorithm ILP is very time-
consuming and exhibits poor scalability while algorithm
ALG-3 runs significantly faster. It is observed that when
there are 100 requests, the running time of algorithm ALG-3
is larger than that of algorithm ILP, due to the overhead
of constructing data structures for solving the recurrence
in dynamic programming. However, when the number of
requests reaches 1,000, algorithm ALG-3 takes less than one
minute while algorithm ILP takes more than two hours to
find an optimal solution. Meanwhile, Fig. 5 (c) also indicates

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2927214, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX, 2018 12

that the running time of algorithm ALG-1 is only a small
fraction of algorithm ALG-3, not to mention algorithm ILP.

8.4 Parameter impacts on algorithm performance
We finally study the impact of important parameters on the
performance of algorithms ALG-1.

In all experiments so far we assumed that the maximum
number nmax of secondary VNF instances of each request
is set at 4. We now investigate the impact of nmax on the
performance of algorithm ALG-1, by varying nmax while
fixing the number of cloudlets at 20. Fig. 6 (a) shows the total
revenue delivered by it when the number of requests grows
from 100 to 1,000. Notice that when the number of requests is
less than 300, the total revenues of different algorithms with
different nmax are nearly identical, meaning the network has
a relatively abundant amount of resources to accommodate
different requests. However, with more requests, the larger
the value of nmax, the smaller the total revenue delivered by
algorithm ALG-1. The reason behind this is that the amount
of available resources in the network and the payments of
requests do not change, yet each request demands more
resources when nmax increases.

We also evaluate the total revenues delivered by algo-
rithm ALG-1 by varying the number of cloudlets K while
fixing the number of requests at 1,000. The results are shown
in Fig. 6 (b). When the number K of cloudlets increases, the
amount of available resources increases accordingly. As a
result, the larger K is, the higher the total revenue delivered
by algorithm ALG-1 is. Meanwhile, for the sameK , the larger
the value of nmax, the lower the total revenue delivered by
ALG-1, because the revenue of a request does not increase
yet the resource demand of the request increases.

100 200 300 400 500 600 700 800 9001000
Number of Requests

0

10,000

20,000

30,000

40,000

50,000

60,000

T
o
ta

l
R

ev
en

u
e

in
 D

o
ll

ar
s

n
max

 = 0

n
max

 = 1

n
max

 = 2

n
max

 = 3

n
max

 = 4

n
max

 = 5

(a) Total revenues by varying
nmax for different numbers of re-
quests

20 40 60 80 100

Number of Cloudlets

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

T
o

ta
l

R
e
v

e
n

u
e
 i

n
 D

o
ll

a
rs n

max
 = 0

n
max

 = 1

n
max

 = 2

n
max

 = 3

n
max

 = 4

n
max

 = 5

(b) Total revenues by varying
nmax for different numbers of
cloudlets

Fig. 6. Performance impact of parameter nmax on algorithm ALG-1

100 200 300 400 500 600 700 800 9001000
Number of Requests

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

T
o
ta

l
R

ev
en

u
e

in
 D

o
ll

ar
s

With Admission Control
Without Admission Control

(a) Total revenues by algorithm
ALG-1 with and without the ad-
mission control policy

100 200 300 400 500 600 700 800 9001000
Number of Requests

0

5,000

10,000

15,000

20,000

25,000

30,000

T
o
ta

l
R

ev
en

u
e

in
 D

o
ll

ar
s

l = 1
l = 2
l = 3
l = 4
l = 5

(b) Total revenues by algorithm
ALG-1 with different α (= 2l ·K)

Fig. 7. Impacts of the admission control policy and the value of α on the
performance of algorithm ALG-1

The rest is to investigate the impacts of both the ad-
mission control policy and the parameter α in Eq. (9) on

the performance of algorithm ALG-1. Fig. 7 (a) shows the
performance of algorithm ALG-1 with and without adopting
the admission control policy. It can be seen that algorithm
ALG-1 achieves a higher revenue if it does not adopt the
admission control policy for the first four hundred requests.
However, with more and more request arrivals, it achieves
a higher revenue in the long term if the admission control
policy is adopted. The rationale is that without any admission
control policy, requests that consume excessive resources
will be admitted if there are sufficient resources for them.
Consequently, such resource allocations will heavily impact
the admissions of future requests. As a result, the total
revenue by algorithm ALG-1 without the admission control
policy is only two-thirds of that by itself with the admission
control policy. Fig 7 (b) plots the performance curves of
algorithm ALG-1 by varying the value of α in Eq. (9) from
21K to 25K, where K is the number of cloudlets in the
network. It can be seen from Fig 7 (b) that the larger the
value of α, the less the total revenue delivered by ALG-1 and
vice versa. This is due to the fact that the larger the value of
α, the higher the cost of using an overloaded resource will
be, leading to more conservative resource usage.

9 CONCLUSION

In this paper, we studied reliability-aware VNF instances
provisioning in MEC, by casting a novel optimization
problem. We first showed that the problem is NP-hard and
formulated an integer linear program solution for it. We
then proposed a logarithmic-approximation algorithm for the
problem. Particularly for a special case of the problem where
each request needs only one secondary VNF instance, we
developed a constant approximation algorithm. Moreover,
we proposed an exact algorithm for another special case
of the problem where resource consumptions of different
VNF instances are identical. We finally evaluated the perfor-
mance of the proposed algorithms through experimental
simulations. Experimental results demonstrated that the
proposed algorithms are promising, and the empirical results
delivered by the proposed algorithms outperform their
analytical counterparts as theoretical estimation usually are
very conservative.

APPENDIX A
PROOF OF LEMMA 1

Proof: Consider a request rj′ ∈ A admitted by the
approximation algorithm. Then, for any cloudlet k with
1 ≤ k ≤ K, we have

wk(j
′ + 1)− wk(j′)

=
Ck
cj′+1

· (α1−Ck(j′+1)

Ck − 1)− Ck
cj′
· (α1−Ck(j′)

Ck − 1)

≤Ck
cj′
· (α1−Ck(j′+1)

Ck − 1)− Ck
cj′
· (α1−Ck(j′)

Ck − 1) (30)

=
Ck
cj′
·
(
α
1−Ck(j′+1)

Ck − α1−Ck(j′)
Ck

)
=
Ck
cj′
· α1−Ck(j′)

Ck (α
Ck(j′)−Ck(j′+1)

Ck − 1)

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2927214, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX, 2018 13

≤Ck
cj′
· α1−Ck(j′)

Ck (α
c
j′
Ck − 1) (31)

=
Ck
cj′
· α1−Ck(j′)

Ck (2
c
j′
Ck

logα − 1)

≤Ck
cj′
· α1−Ck(j′)

Ck (cj′ · logα/Ck) (32)

=α
1−Ck(j′)

Ck · logα. (33)

where Inequality (30) follows because requests are sorted, In-
equality (31) holds because at most cj′ amount of computing
resource is consumed at cloudlet k, and Inequality (32) holds
because 2x − 1 ≤ x with 0 ≤ x ≤ 1.

Recall that Kj′ is the set of cloudlets in which the
proposed approximation algorithm places a VNF instance
of rj′ . We then calculate the sum of costs of cloudlets in G
when admitting request rj′ . Notice that if none of the VNF
instances of rj′ is created at a cloudlet k, the cost of the
cloudlet does not change after the admission of request rj′ .
The difference in the cost sum of all cloudlets before and
after admitting request rj′ thus is

K∑
k=1

(wk(j
′ + 1)− wk(j′)) =

∑
k∈Kj′

(wk(j
′ + 1)− wk(j′))

≤
∑
k∈Kj′

(α
1−Ck(j′)

Ck · logα), by Inequality (33)

= logα
∑
k∈Kj′

(wk(j′)
Ck

+ 1
)

= logα

 ∑
k∈Kj′

wk(j
′)

Ck
+
∑
k∈Kj′

1

≤ logα · ((pj′ ·K) +K) (34)
= logα ·K · (pj′ + 1)

≤ logα ·K · (pj′ + pj′) (35)
=2 logα ·K · pj′ , (36)

where Ineq. (34) follows from the fact that rj′ is admitted
and Ineq. (10), Ineq. (35) follows because pj′ ≥ 1.

The cost sum of all cloudlets after having examined last
request r|R| thus is

K∑
k=1

wk(|R|+ 1) =

|R|∑
j′=1

K∑
k=1

(wk(j
′ + 1)− wk(j′))

=
∑
rj′∈A

K∑
k=1

(wk(j
′ + 1)− wk(j′))

≤
∑
rj′∈A

(2K · pj′ · logα) (37)

= 2K · logα ·
∑
rj′∈A

pj′ ,

where Inequality (37) follows from Inequality (36).

APPENDIX B
PROOF OF LEMMA 2

Proof: Consider a request rj′ that is admitted by the op-
timal algorithm yet rejected by the proposed approximation
algorithm. Since rj′ is admitted by the optimal algorithm, it
means that the optimal algorithm is able to admit rj′ using
a set Koptj′ of cloudlets. There are exactly two cases. Case
1: every cloudlet in Koptj′ has sufficient resources to admit
rj′ ; and Case 2: at least one cloudlet in Koptj′ does not have
sufficient resources to meet the resource demand of rj′ .

In the following we show that Inequality (11) holds in
both of the two cases.

Case 1: If every cloudlet in Koptj′ has sufficient re-
sources to admit rj′ , the proposed approximation algo-
rithm must be able to find a set Kj′ of cloudlets such
that Kj′ can meet the resource demand of request rj′
and for any set including Koptj′ of nj′ + 1 cloudlets. That
is,
∑
k∈Kj′ ψk(j

′) ≤
∑
k∈Kopt

j′
ψk(j

′). Since rj′ is rejected
by the proposed algorithm, the cost sum of cloudlets
in Kopt

j′ when admitting request rj′ is no less than the
given threshold in the admission control policy (10), i.e.,
K · pj′ ≤

∑
k∈Kj′ ψk(j

′) ≤
∑
k∈Kopt

j′
ψk(j

′).

Case 2: At least one cloudlet in Koptj′ does not have
sufficient available resource to meet the demand of request
rj′ . Thus, there must exist at least one cloudlet k′ such
that its residual computing capacity Ck′(j

′) is less than
the computing demand cj′ . Consequently, the sum of the
normalized costs of cloudlets in Kopt

j′ is greater than Kpj′ :

∑
k∈Kopt

j′

ψk(j
′) ≥ ψk′(j′) =

α
1−Ck′ (j

′)
C
k′ − 1

cj′

>
α
1−

c
j′
C
k′ − 1

cj′
, since Ck(j′) < cj′

≥ α1− 1
logα − 1

cj′
, since α ≤ 2Cmin/cmax ≤ 2Ck′/cj′

=
α
2 − 1

cj′
≥ Kpj′ , since α ≥ 2K ·Qmax + 2 ≥ cj′ · pj′ + 2.

ACKNOWLEDGMENTS

We really appreciate the three anonymous referees and the
associate editor for their expertise comments and construc-
tive suggestions, which have helped us improve the quality
and presentation of the paper greatly.

REFERENCES

[1] S. Aidi, M. F. Zhani, and Yehia Elkhatib. On improving service
chains survivability through efficient backup provisioning. Proc. of
International Conference on Network and Service Management (CNSM),
IEEE, 2018.

[2] Amazon Web Services, Inc. Amazon EC2 instance configura-
tion. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ebs-ec2-config.html, 2018.

[3] A.-L. Barabási and R. Albert. Emergence of scaling in random
networks. Science, Vol. 286, pp. 509–512, 1999.

[4] M. T. Beck, J. F. Botero, and K. Samelin. Resilient allocation of
service function chains. Proc. of IEEE Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), IEEE, 2017.

[5] J. Bailey and S. Stuart FAUCET: Deploying sdn in the enterprise.
ACM Queue, Vol. 14, pp. 54–68, 2016.

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2927214, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XX, 2018 14

[6] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, Sateesh Addepalli Fog
computing and its role in the internet of things. Proc. MCC workshop
on Mobile cloud computing, ACM, 2012.

[7] F. Carpio and A. Jukan Improving reliability of service function
chains with combined vnf migrations and replications https://arxiv.
org/abs/1711.08965, 2018.

[8] M. Casazza, P. Fouilhoux, M. Bouet, and S. Secci. Securing virtual
network function placement with high availability guarantees. Proc.
of IFIP Networking, Lecture Notes in Computer Science, 2017.

[9] A. Ceselli, M. Premoli, and S. Secci. Mobile edge cloud network
design optimization. IEEE/ACM Transactions on Networking, Vol.25,
No.3, pp.1818–1831, 2017.

[10] R. Cohen, L. Katzir, and D. Raz. An efficient approximation for the
generalized assignment problem. Information Processing Letters, Vol.
100, pp. 162–166, Elsevier, 2006.

[11] A. V. Dastjerdi and R. Buyya. Fog computing: Helping the internet
of things realize its potential Computer, Vol. 49, No. 8, pp. 112–116,
IEEE, 2016.

[12] W. Ding, H. Yu, and S. Luo. Enhancing the reliability of services in
nfv with the cost-efficient redundancy scheme. Proc. of ICC, IEEE,
2017.

[13] A. Engelmann and A. Jukan. A reliability study of parallelized vnf
chaining. Proc. of ICC, IEEE, 2018.

[14] J. Fan, C. Guan, Y. Zhao, and C. Qiao. Availability-aware mapping
of service function chains. Proc. of INFOCOM’17, IEEE, 2017.

[15] J. Fan, M. Jiang, and C. Qiao. Carrier-grade availability-aware
mapping of service function chains with on-site backups. Proc. of
IWQoS’17, IEEE, 2017.

[16] R. Govindan, I. Minei, M. Kallahalla, et al. Evolve or die:
High-availability design principles drawn from google’s network
infrastructure. Proc. of SIGCOMM, ACM, 2016.

[17] B. Han, V. Gopalakrishnan, G. Kathirvel, and A. Shaikh. On
the resiliency of virtual network functions. IEEE Communications
Magazine, Vol. 55, pp. 152–157, 2017.

[18] S. Herker, X. An, W. Kiess, S. Beker, A. Kirstaedter. Data-center
architecture impacts on virtualized network functions service chain
embedding with high availability requirements. Proc. of 2015 IEEE
Globecom Workshops (GC Wkshps), IEEE, 2015.

[19] Hewlett-Packard Development Company. L.P. Servers for enter-
prise bladeSystem, rack & tower and hyperscale. http://www8.hp.
com/us/en/products/servers/, 2015.

[20] M. Huang, W. Liang, Z. Xu, and S. Guo. Efficient algorithms
for throughput maximization in software-defined networks with
consolidated middleboxes. IEEE Transactions on Network and Service
Management, Vol.14, No.3, pp.631–645, 2017.

[21] R. Jain and S. Paul. Network virtualization and software defined
networking for cloud computing: a survey. IEEE Communications
Magazine, Vol. 51, No. 11, pp. 24–31, IEEE, 2013.

[22] M. Jia, W. Liang, and Z. Xu. QoS-aware task offloading in
distributed cloudlets with virtual network function services. Proc of
20th ACM International Conference on Modeling, Analysis and Simulation
of Wireless and Mobile Systems (MSWiM), ACM, pp.109–116, 2017.

[23] J. Kang, O. Simeone, and J. Kang. On the trade-off between com-
putational load and reliability for network function virtualization.
IEEE Communications Letters, Vol. 21, pp. 1767–1770, 2017.

[24] J. Kong, I. Kim, X. Wang, Q. Zhang, H. C. Cankaya, W. Xie, T.
Ikeuchi, and J. P. Jue. Guaranteed-availability network function
virtualization with network protection and vnf replication. Proc. of
IEEE Global Communications Conference, IEEE, 2017.

[25] J. Li, W. Liang, M. Huang, and X. Jia. Providing reliability-aware
virtualized network function services for mobile edge computing.
To appear in Proc. of 39th Int’l Conf. on Distributed Computing Systems
(ICDCS’19), July, IEEE, 2019.

[26] P. G. Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A.
Iamnitchi, M. Barcellos, P. Felber, and E. Riviere. Edge-centric
computing: vision and challenges. ACM SIGCOMM Computer
Communication Review, Vol. 45, No. 5, pp. 37–42, ACM, 2015.

[27] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba. Network function virtualization: State-of-the-art and
research challenges. IEEE Communications Surveys & Tutorials, Vol.
18, No. 1, pp. 236–262, IEEE, 2016.

[28] G. Moualla, T. Turletti, and D. Saucez. An availability-aware
sfc placement algorithm for fat-tree data centers. Proc. of IEEE
International Conference on Cloud Networking, IEEE, 2018.

[29] L. Qu, C. Assi, K. Shaban, and M. J. Khabbaz. A reliability-aware
network service chain provisioning with delay guarantees in nfv-
enabled enterprise datacenter networks. IEEE Transactions on Network

and Service Management, Vol 14, pp. 554–568, 2017.
[30] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for

vm-based cloudlets in mobile computing. IEEE Pervasive Computing,
Vol. 8, pp. 1536–1268, 2009.

[31] A. Singh, J. Ong, A. Agarwal, et al. Jupiter rising: A decade of clos
topologies and centralized control in google’s datacenter network.
Communications of the ACM, Vol. 59, pp. 88–97, 2016.

[32] T. Taleb, S. Dutta, A. Ksentini, M. Iqbal, and H. Flinck. Mobile edge
computing potential in making cities smarter. IEEE Communications
Magazine, Vol. 55, No. 3, pp. 38–43, IEEE, 2017.

[33] Z. Xu, W. Liang, M. Jia, M. Huang, and G. Mao. Task offloading
with network function services in a mobile edge-cloud network. To
appear in IEEE Transactions on Mobile Computing, Vol.99, Acceptance
date: October 19, DOI: 10.1109/TMC.2018.2877623, 2018.

[34] S. Yi, C. Li, and Q. Li A survey of fog computing: concepts,
applications and issues. Proc. of Workshop on Mobile Big Data, ACM,
2015.

Meitian Huang received the BSc degree with
the first class Honours in Computer Science at
the Australian National University in 2015. He
currently is studying for his PhD degree in the Re-
search School of Computer Science at the Aus-
tralian National University. His research interests
include software-defined networking, algorithm
design and analysis, and cloud computing.

Weifa Liang (M’99–SM’01) received the PhD
degree from the Australian National University
in 1998, the ME degree from the University of
Science and Technology of China in 1989, and
the BSc degree from Wuhan University, China
in 1984, all in Computer Science. He is cur-
rently a full Professor in the Research School
of Computer Science at the Australian National
University. His research interests include design
and analysis of energy efficient routing protocols
for wireless ad hoc and sensor networks, mobile

edge computing, cloud computing, Network Function Virtualization and
Software-Defined Networking, design and analysis of parallel and dis-
tributed algorithms, approximation algorithms, combinatorial optimization,
and graph theory. He is a senior member of the IEEE.

Xiaojun Shen (SM’02) received the B.S. degree
in numerical analysis from Tsinghua University,
Beijing, China, in 1968, the M.S. degree in com-
puter science from the Nanjing University of
Science and Technology, China, in 1982, and
the Ph.D. degree in computer science from the
University of Illinois at Urbana-Champaign in
1989. He is a full Professor in the School of Com-
puting and Engineering, University of Missouri-
Kansas City. His current research focuses on
fundamental scheduling problems in wired and

wireless computer networks.
Yu Ma received his BSc degree with the first class
Honours in Computer Science at the Australian
National University in 2015. He is currently a PhD
candidate in the Research School of Computer
Science at the Australian National University.
His research interests include Software Defined
Networking, Internet of Things (IoT), and Social
Networking.

Haibin Kan (M’13) received the Ph.D. degree
from Fudan University, Shanghai, China, 1999.
After receiving the Ph.D. degree, he became a
faculty of Fudan University. From June 2002 to
January 2006, he was with the Japan Advanced
Institute of Science and Technology as an Assis-
tant Professor. He went back to Fudan University
in February 2006, where he is currently a full
Professor. His research topics include coding
theory, complexity of computing, and information
security.

