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Abstract—A modern Network Function Virtualization (NFV) service is usually expressed in a service chain that contains a list of

ordered network functions, each can run in one or multiple virtual machines. Although lots of efforts have been devoted to service chain

deployment, the researchers normally consider a simple model of network functions where different service chains have their own

network functions no matter whether some of the network function appliances are interdependent. In this paper, we study the service

chain deployment by exploiting two types of correlations between network functions: the Coordination Effect due to information

exchanges among multiple VMs running the same network function, and the Traffic-Change Effect where the volume of outgoing

traffic is not necessarily equal to the volume of its incoming traffic at each network function because of packet manipulations such as

compression and encryption. These two effects have not been studied simultaneously in the context of service chaining. With

theobjective to maximize the profit measured by the admitted traffic minus the implementation cost, we first formulate a joint

service-function deployment and traffic scheduling (SUPER) problem that is proved to be NP-hard. We then devise an approximation

algorithm based on the Markov approximation technique and analyze its theoretical bound on the convergence time. Simulation results

show that the proposed algorithm outperforms two existing benchmark algorithms significantly.

Index Terms—NFV, service chain, coordination effect, traffic-change effect, markov approximation

Ç

1 INTRODUCTION

TRADITIONALLY, network functions such as firewalls, uni-
fied threat management, and deep packet inspection are

implemented in dedicated hardware appliances. NFV offers a
paradigm enabling network functions to be decoupled from
hardware and executed as software-based virtualized appli-
ances in virtual machines (VMs), which are hosted on off-the-
shelf physical machines (PMs) in datacenters. Thus, NFV
offers great flexibility in realizing network services, such as
network resilience, service assurance, test/diagnostics and
security surveillance. Inspired by the great advantages of
NFV, various design of programmable middleboxes has been
proposed recently [1], [2], [3]. Combining with the software-

defined networking (SDN) [4], NFV significantly simplifies
themanagement of network services [5], [6], [7], [8].

The promises of NFV stemming from its independence
from hardware also pose a new challenge of fully exploiting
the flexibility of optimizing network function deployments.
In practice, a modern network service is usually expressed
in a service chain that is composed of a sequence of network
functions with each running in one or multiple VMs. One
such a service chain example with three network functions:
firewall, intrusion detection system (IDS), and video trans-
coder, is shown in Fig. 1, where multiple VMs are launched
for each network function. Network flows should go
through these network functions in order to accomplish
the service.

Although many existing studies [7], [9], [10], [11] are
devoting to service chain deployments, they considered a
simple model that VMs running the same network function
are independent of each other. However, some recently
emerged network functions impose coordinations among their
VMs. For example, in online distributed intrusion detection
approaches proposed in [12], [13], multiple distributed serv-
ers need to periodically exchange a number of sample data to
detect intrusions cooperatively. Such coordinations lead to an
overhead that would decrease the VM processing rate as
more VMs are launched. In this paper, we call this overhead
as the Coordination Effect, which is taken into account in our
approach while deploying service chains on a cluster of VMs.
As an example shown in Fig. 1, when only one VM (B1 or B2)
is launched for network function B, its processing capability
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is 14 Gb/s. Due to the impact of Coordination Effect, when
launching the second VM for B, the data processing capabili-
ties of both B1 and B2 are reduced from the original 14 Gb/s
to the current 12Gb/s.

To the best of our knowledge, we are the first to consider
the Coordination Effect among multiple VMs launched for a
specific network functionwhen conducting service chaining.
The significant impact on the problem-complexity of such
effect will be further discussed in the proof of Theorem 1.

On the other hand, unlike switches and routers that are
used to interconnect networks, we notice that some network
functions for inspecting and manipulating traffic potentially
change the volume of incoming traffic. For example, a VPN
proxy enlarges traffic rates because of the Internet Protocol
Security (IPsec) header overhead [14], a video transcoder
can change packet size by converting a packet format from
one type to another type, and a firewall drops packets that
violate predefined security policies. We here term this effect
as the Traffic-Change Effect in terms of traffic-changing in a
network function. The ratio of traffic-changing in a network
function of the outgoing volume to its incoming volume is
called the Traffic-Change ratio. The example in Fig. 1 also
illustrates the significant impact of Traffic-Change Effect on
the service chain deployment. As shown, a network flow
with an arriving rate of 30 Gb/s requests a service chain
consisting of three network functions A, B and C. Their cor-
responding VMs can process the traffic at rates of 10 Gb/s,
14 Gb/s, and 20 Gb/s, respectively. To ensure that each
function can serve with a rate of 30 Gb/s, the traditional
deployment scheme that ignored the correlations between
network functions will deploy 3, 3, and 2 VMs for functions
A, B and C, respectively to meet the resource demands.
However, due to the Traffic-Change Effect, the amount of traf-
fic processed by these functions are different. For example,
three VMs of function A are launched to process the incom-
ing traffic at a rate of 30 Gb/s. After filtering out some pack-
ets by the firewall, the total amount of traffic forwarded to
function B is 24 Gb/s. Therefore, the traffic flow injected to
function B can be served by using only 2 VMs B1 and B2

even though their processing rate has been decreased to
12 Gb/s. As a matter of fact, Traffic-Change Effect was men-
tioned in [15], [16], but has been largely ignored when
deploying service chains in cloud datacenter networks.

Furthermore, service chain deployment becomes more
challenging when multiple network flows request different
NFV services simultaneously. For a given number of
requested network functions, we need to determine the
number of VMs deployed for each network function and on
which PMs they should be launched. From the point of view
of NFV service provider, although launching more VMs can
increase NFV service capability by admitting more traffic,
this results in a higher cost of resource utilization. To exploit
a fine tradeoff between service capability and resource
utilization for service providers, we study a joint Service-
fUnction dePloymEnt and tRaffic scheduling (SUPER) prob-
lem with the objective to maximize the profit, which is the
total revenue collected by admitted traffic flow minus the
cost of launched VMs. To efficiently address this problem,
we propose an efficient algorithm based onMarkov approxi-
mationwith performance guarantee in this paper.

The main contributions of this paper are summarized as
follows.

� We study the service chain deployment by consider-
ing two types of correlations jointly: Coordination
Effect among multiple VMs launched for a same net-
work function; and Traffic-Change Effect between dif-
ferent network functions.

� By jointly considering VM deployment and traffic
scheduling, we formulate the defined SUPER prob-
lem as a mixed integer linear programming for the
problem. The NP-hardness of this problem is also
proved.

� We then devise an efficient approximation algorithm
based on the Markov approximation technique. The
theoretical bound on the convergence time of this
proposed algorithm is derived.

� Simulation results demonstrate that the proposed
algorithm outperforms state-of-the-art benchmarks
in terms of both the network profit and the conver-
gence speed.

The remainder of this paper is organized as follows.
Section 2 reviews related work. Section 3 elaborates the sys-
tem model and defines the problem precisely. The Markov
approximation based algorithm is presented in Section 4.
Section 5 conducts the performance evaluations. Finally,
Section 6 concludes the paper.

2 RELATED WORK

Recent research efforts on network service chain can be clas-
sified into three categories. First, several studies [2], [3], [10]
focused on the optimal traffic routing, under a given num-
ber of service chains. For example, Cao et al. [10] studied a
routing steering problem for a set of policy-specific flows
that need to pass through a logical sequence of network
functions in SDN networks.

Second, optimal placements of network functions have
been explored in [17], [18], [19], [20], [21]. For instance,
Liu et al. [19] focused on the optimal placement of middle-
boxes to minimize the end-to-end delay and bandwidth

Fig. 1. An example to illustrate both Coordination Effect and Traffic-
Change Effect, while deploying service chains in a cloud network. The
Coordination Effect refers to the degradation of service capability due to
data exchange among the multiple VM instances launched for a specific
network function. Then, the Traffic-Change ratio refers to the ratio of traf-
fic-changing in a network function between the outgoing and the incom-
ing volumes.
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occupation in service chains. To reduce the expensive optical/
electronic/optical conversions for the packet/optical datacen-
ters, Xia et al. [20] proposed a heuristic algorithm to efficiently
place network functions of each service chain into fewer pods.

Finally, the other group of studies (e.g., [5], [11], [16],
[22]) jointly considered the deployment of computing and
network resources. Particularly, the placement of network
functions and traffic routing is jointly optimized. For exam-
ple, Gember et al. [5] implemented an orchestration layer
for virtual middleboxes by using the SDN technique. The
proposed systematic tool Stratos can provide orchestrations
in separated three steps: horizontal scaling, middlebox
placement and traffic engineering. Kuo et al. [11] recently
studied a joint optimization problem of network function
placement and routing path selection to maximize the
resource occupation. They proposed a dynamic program-
ming algorithm, which handles demands sequentially.
Then, Li et al. [22] designed a system named NFV-RT that
can dynamically allocate the resources in NFV networks,
aiming to maximize the number of admitted requests.
Gu et al. [16] presented a market mechanism design in
terms of dynamic pricing and provisioning of service chains
in a datacenter. By applying an efficient auction mechanism,
they formulate the NFV resource allocation as a social
welfare maximization problem.

In contrast to the mentioned studies, our work is in the
third category, we study a service chain deployment prob-
lem by exploiting two types of correlations between network
functions simultaneously: the Coordination Effect among
multiple VMs for the same specific network function, and
the Traffic-Change Effect between different network functions.
We also notice that [23], [24], [25] are themost related studies
to our work. The ingress/egress bit-rate variations at VNFs
mentioned in [23] and the compression/decompression
factor of flows considered in [24] are in fact Traffic-Change
effects. In addition, [25] mentions state-sharing among the
replicas of a network function. However, all the three studies
do not study the negative effect caused by the coordinations
amongmultiple replicas as we do.

3 PROBLEM STATEMENT AND FORMULATION

3.1 System Model

We consider an NFV cluster that is composed of a set P

of Physical Machines (PMs) that contain virtual machines
to provide NFV services for incoming flows. Thanks to the
advance of networking technology, these machines can
be connected via a well-connected network. Since some
network functions are compute-intensive, NFV services are
usually constrained by computation resource instead of
network transmission. The hardware resource constraint on
each physical machine p 2 P is denoted by Ep.

There are a set D of traffic flows and each flow d 2 Dwith
rate Ad requests NFV services in the form of a service chain
Ud ¼ fu1; u2; . . .g, where u 2 Ud denotes a specific network
function. A network function u 2 Ud can be implemented as
a set V d

u of VMs, and each VM v 2 V d
u can be deployed at

one physical machine p 2 P with the amount of ev resource
occupation. Since network functions provide service
sequentially, we use HprevðvÞ and HnextðvÞ to denote the sets
of VMs in v’s previous and next hops, respectively.

For example, given a service chain fu1; u2; u3g and VM
v 2 V d

u2
, we haveHprevðvÞ ¼ V d

u1
andHnextðvÞ ¼ V d

u3
. In partic-

ular, the data processing capability of a VM v 2 V d
u is

returned by Cd
uð:Þ, which is a customized non-increasing

function over the number of VMs launched for a specific
network function u for flow d. The Traffic-Change ratio of a
VM v is denoted by pv. Before being admitted to enter the
NFV cluster, all flows need to go through an admission server
denoted by v0 that determines the traffic rate of each flow.
The notations used in this paper are summarized in Table 1.

3.2 Problem Definition

3.2.1 Definition of Variables

Wefirst define a binary variable xd
v;p to denote the VMdeploy-

ment for network function u 2 Ud as follows.

xd
v;p ¼ 1; if VM v 2 V d

u is launched at PM p 2 P;
0; otherwise:

�

We then define variable fdv;v0 2 R�0 to denote the traffic
rate from a VM v to its next hop v0 2 HnextðvÞ.

3.2.2 Problem Constraints

Since each VM will be deployed to one physical machine
only if launched, we have the following constraint

X
p2P

xd
v;p � 1; 8v 2 V d

u ; 8u 2 Ud; 8d 2 D: (1)

TABLE 1
Symbols and Variables

Notation Description

P the set of Physical Machines (PMs)
D a set of given incoming network flows

Ud the policy chain for flow d 2 D, e.g., one
policy chain is shown as fu1; u2; u3g.

Ad traffic rate of arriving flow d 2 D

V d
u the set of VMs launched to run network

function u 2 Ud

Cd
uð:Þ non-increasing function, which returns

the data processing capability of VM v
(v 2 V d

u ), due to the Coordination Effect

ev unit cost of bottleneck-resource (such as
CPU capability) in PMs to deploy VM v

Ep the capacity of bottleneck-resource in
PM p 2 P, hence a PM can support only
a limited num. of VMs

pv the Traffic-Change ratio on VM v 2 V d
u

HprevðvÞ; the set of VMs for the network function in

HnextðvÞ the previous/next hop of u 2 Ud (v 2 V d
u )

xd
v;p binary variable indicating whether VM

v 2 V d
u (u 2 Ud) is deployed at PM p 2 P

fdv;v0 continuous variable denoting the non-
negative traffic rate passing from VM
v 2 V d

u to VM v0 2 HnextðvÞ for flow d 2 D

x ¼ fxd
v;p; 8v2V d

u ;u2Ud;d2D;p2P g, the VM
deployment solution for all traffic flows
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Each physical machine can accommodate a limited num-
ber of VMs due to the constraint of its bottleneck-resource,
such as CPU, memory and storage. Here we only consider
one type of bottleneck resource for all VMs. The formulation
considering the constraints of multiple types of bottleneck
resource can be easily extended. Thus, the resource related
constraint can be written asX

d2D

X
u2Ud

X
v2V d

u

xd
v;p � ev � Ep; 8p 2 P: (2)

If a VM v has been deployed to a physical machine, the
volume of incoming traffic cannot exceed its data process-
ing capability. Thus, we have the following constraintX

v02HprevðvÞ
fd
v0;v �

X
p2P

xd
v;p � Cd

uðzÞ;

8v 2 V d
u ; u 2 Ud; 8d 2 D;

(3)

where z ¼Pp2P
P

�v2V d
u
xd�v;p is the number of launched VMs

running network function u for flow d. Thus, Cd
uðzÞ returns

the data processing capability of each of the multiple VMs
�v 2 V d

u , due to the Coordination Effect. We can see that the

value of function Cd
uð:Þ depends on the assignment of varia-

bles xd
�v;pð�v 2 V d

u ; p 2 PÞ.
Different from traditional switches with only data for-

warding, VMs with a specific functionality can modify
the contents of incoming packets, and the outgoing traffic
volume of a flow may not be equal to its incoming volume.
This is exactly the aforementioned Traffic-Change Effect,
which leads to the following flow-conservation constraintX

v02HprevðvÞ
fd
v0;v ¼ pv �

X
v002HnextðvÞ

fd
v;v00 ;

8v 2 V d
u ; 8u 2 Ud; 8d 2 D;

(4)

where pv represents the Traffic-Change ratio that describes
the traffic scaling factor on VM v.

Furthermore, for each flow d 2 D, the amount of admit-
ted traffic can be calculated byX

v02Hnextðv0Þ
fd
v0;v

0 ¼ Rd; 8d 2 D; (5)

where v0 denotes the admission server, which can be viewed
as the data-source for all flows. Also, the accumulative
amount of admitted traffic cannot exceed the maximum
arriving rate of flow d:

Rd � Ad; 8d 2 D: (6)

3.2.3 Optimization Objective

On one hand, we need to maximize the total amount of
admitted traffic (represented by G) that can be expressed by

G ¼
X
d2D

Rd: (7)

On the other hand, maximizing G requires increasing the
traffic processing rate by launching more VMs. This would
lead to a higher cost, denoted by C, in terms of resource
occupations, which is calculated by

C ¼
X
d2D

X
u2Ud

X
v2V d

u

X
p2P

xdv;p � ev; (8)

where ev is the unit cost of the bottleneck resource to deploy-
ing the VM vmeasured by the bottleneck resource consumed.
Note that, tuning the value of ev varies the weight ofC in the
overall objective. To strive for a better tradeoff between ser-
vice capability and resource occupation, we define the net
profit asL ¼ G�C, andwe formulate the SUPER problem as
aMixed Integer Linear Programming (MILP).

SUPER : max L ¼ G�C

s.t. Constraints ð1Þ to ð6Þ;
xd
v;p 2 f0; 1g; fd

v;v0 � 0; 8v 2 V d
u ; u 2 Ud; 8d 2 D:

3.2.4 NP-Hardness of the Problem

Theorem 1. The SUPER problem is NP-hard.

Proof. We prove the SUPER is NP-hard problem by reduc-
ing from the well-known Bounded Knapsack Problem
(BKP), which is defined as follows. Given a knapsack
with the capacity W , and a set N of item types, each type
of item is with an identical weight wi and an identical
value ai. Each type i 2 N has ci numbers of items. The
problem is to maximize the total value of selected items
to be placed into the knapsack, such that the total weight
of items is no greater than the capacity of the knapsack.

BKP : max
X
i2N

ai � xi

s.t.
X
i2N

wi � xi �W and xi 2 f0; 1; . . . ; cig;

where xi represents the number of type-i items.
We now consider a special case of the SUPER problem

where a single physical machine p̂ serves a set D of flows
requesting a single network function û. We further
assume that each VM v 2 V d

û consumes the identical PM
bottleneck-resource ev. With respect to the bottleneck
resource constraint, the SUPER formulation in such a
special case has only one constraint, i.e., the inequality
(2), which can be rewritten as

X
d2D

ev � ŷd � Ep̂; (9)

where ŷd ¼
P

v2V d
û
xd
v;p̂ denotes the number of launched

VMs running û for flow d, and ŷd 2 f0; 1; . . . ; jV d
û jg;

8d 2 D.
Next, to calculate the admitted traffic rate Rd for each

flow d 2 D, we still use the admission server node v0 to
denote the source node for all the admitted flows, which
pass through the VMs for the only network function û.
Then, by Equation (5), we have

Rd ¼
X
v2V d

û

fd
v0;v

; 8d 2 D: (10)

On the other hand, the objective function of SUPER is
rewritten as
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L ¼ G�C

¼
X
d2D

Rd �
X
d2D

X
v2V d

û

xd
v;p̂ � ev;

¼
X
d2D

X
v2V d

û

ðfdv0;v � xd
v;p̂ � evÞ:

(11)

By constraint (3), we know that

fd
v0;v
� xd

v;p̂ � Cd
û

X
�v2V d

û

xd
�v;p̂

0
B@

1
CA; 8v 2 V d

û ; 8d 2 D: (12)

We let fdv0;v ¼ �d � xd
v;p̂ � Cd

ûð
P

�v2V d
û
xd
�v;p̂Þ; 8v 2 V d

û ; 8d 2 D,

where the auxiliary constant coefficient �d 2 ½0; 1�. Then,
Equation (11) can be rewritten as

L ¼
X
d2D

X
v2V d

û

xd
v;p̂ �d � Cd

û

X
�v2V d

û

xd
�v;p̂

0
B@

1
CA� ev

2
64

3
75: (13)

Finally, letting bd ¼ �d � Cd
ûð
P

�v2V d
û
xd
�v;p̂Þ � ev, the objec-

tive of the SUPER problem in Equation (11) can be refor-
mulated as

max
X
d2D

bd � ŷd

s.t. ð9Þ; and ŷd 2 f0; 1; . . . ; jV d
û jg; 8d 2 D:

(14)

Discussion: Taking advantage of bd, we can infer that
if the Coordination Effect were not considered, the term

Cd
ûð
P

�v2V d
û
xd
�v;p̂Þ would be a constant representing the

capability of VM v 2 V d
û , resulting in that bd becomes

a constant, since ev is a constant as well. Further, if bd

were a constant, then the formulation (14) would become

BKP. However, bd is in fact a function of variable xd
�v;p̂

(�v 2 V d
û ), which makes bd a variable, too. Therefore,

formulation (14) is even harder than BKP. Here, we also

can see that such Coordination Effect further complicates

the service chain deployment for the SUPER problem.

Due to the NP-hardness of BKP, we can conclude that
the SUPER problem is NP-hard, too. tu

4 NEAR-OPTIMAL MARKOV-CHAIN BASED

ALGORITHM

A number of approaches [26], [27], [28] have been proposed
to solve the MILP problems. In this section, we propose a
fast approximation algorithm for the SUPER problem based
on the Markov approximation technique [29] that has
been adopted by several works [30], [31], [32], [33], [34].
Algorithm based on the Markov approximation technique
will include the theory of Log-Sum-Exp approximation and
the Markov chain modeling. It should be noticed that the
state definition in the Markov chain, the transition rate
between different states, and the detailed operations behind
each transition need to be devised creatively for different
optimization problems.

Based on the Markov approximation technique [29], one
can build a framework to solving the combinatorial optimi-
zation, where the global optimal solution consists of distrib-
uted decisions on each component of a system. The insight

to adopt this technique in this paper is that the SUPER prob-
lem is in fact a combinatorial optimization. Applying the
Markov approximation, we can find a near-optimal configu-
ration for the holistic system.

4.1 Approximation Algorithm

4.1.1 Log-Sum-Exp Approximation

By carefully examining the SUPER formulation, we find that
once the values of variables xd

v;p are fixed, it becomes a linear
programming that can be easily solved. Letting x ¼ fxd

v;p;
8v 2 V d

u ; 8u 2 Ud; 8d 2 D; 8p 2 Pg denote a feasible deploy-
ment of VMs, we have the SUPER-LP problem shown as
follows:

SUPER-LPðxÞ : max L̂ ¼ GðxÞ �CðxÞ
s.t. ð3Þ; ð4Þ and ð6Þ;
fdv;v0 � 0; 8v 2 V d

u ; v
0 2 HnextðvÞ; 8d 2 D:

We define the set X to represent the space of all possible
solutions to SUPER problem. Then, all the feasible solutions
to SUPER-LP problems are members of X . Let L̂x denote
the maximum profit of SUPER-LP under a given x, the
SUPER problem can be approximated by SUPER-MA as
follows:

SUPER-MA : max
X
x2X

pxL̂x � 1

b

X
x2X

px log px

s.t.:
X
x2X

px ¼ 1;
(15)

where px is the probability of using the VM deployment x,
and b is a positive constant that controls the approximation
accuracy. It is easy to see that the approximation gap
between SUPER and SUPER-MA approaches zero when b

approaches infinity.
According to the Karush-Kuhn-Tucker (KKT) conditions

[35], the optimal solution of the SUPER-MA problem is

p�x ¼
expðbL̂xÞP

x
0 2X expðbL̂x

0 Þ ; 8x 2 X : (16)

If we deploy different configurations in a time-sharing
manner, according to the optimal solution p�x in Equa-
tion (16), then SUPER problem can be solved approximately
with an optimality-loss 1

b
log jXj.

4.1.2 Markov Chain Design

We then design a Markov chain by defining a state space
and transition rates so that an approximate solution can be
obtained if the Markov chain converges in the end.

We now define the state space of solutions. The transi-
tion rate qx;x0 between any two states x and x0 can be calcu-
lated by

qx;x0 ¼ exp
1

2
bðL̂x0 � L̂xÞ � t

� �
; (17)

where t is a non-negative constant. The transition rate qx;x0
increases with the growth of performance gap between
two states.
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Algorithm 1.MC Based Algorithm to Solve SUPER

Input: D;P
1 /* Initialization */
2 initialize all variables in x to be zero
3 V

d

u ¼ ;
4 for 8u 2 Ud; 8d 2 D do
5 xd

v;p  1, where v 2 V d
u and p 2 P is a physical machine

that can accommodate v

6 V d
u ¼ V d

u � fvg; V
d

u ¼ V
d

u [ fvg
7 update x
8 while the solution does not converge do
9 /* setup timers for all flows */
10 for 8d 2 D do
11 fTþd ; T�d ;Vd;Pdg = SetTimer(d; x)
12 listen to any timer’s expiration
13 /* state transition */
14 if any Tþd expires then
15 for 8ðu; v; pÞ 2 Vd do
16 xd

v;p  1

17 V d
u ¼ V d

u � fvg, V
d

u ¼ V
d

u [ fvg
18 update x
19 if any T�d expires then
20 for 8ðu; v; pÞ 2 Pd do
21 xd

v;p  0

22 V d
u ¼ V d

u þ fvg, V
d

u ¼ V
d

u � fvg
23 update x

4.2 Algorithm Design

In the following we devise a distributed algorithm to imple-
ment the Markov chain with the transition rate (17).
The basic idea is to randomly initialize a feasible deployment
of all flows, and then periodically update the deployment
according to a sophisticated random process, until the solu-
tion to SUPER problem converges. Note that, the computing
tasks for all flows can be amortized by multiple controllers,
since the proposed approach is essentially executed in a dis-
tributedmanner onlywith a few synchronization operations.

In particular, the proposed approach includes a main
algorithm (Algorithm 1) and a supporting function
(Algorithm 2). In the following, we first give the main
algorithm design, and then elaborate how to set random
timers for deployment updates, which is the key to accel-
erate the convergence of this approach.

4.2.1 Main Algorithm

All variables in x to be zero initially. For each network func-
tion requested by flows, we launch one VM on one physical
machine randomly picked with enough resources to accom-
modate the VM, as shown in lines 4-5 of Algorithm 1. Note
that when x is fixed, a solution can obtained by solving a
linear programming SUPER-LP(x). Once an VM v is
deployed to a physical machine, it will be removed from set
V d
u , immediately.
In the while loop between lines 8 and 23 of Algorithm 1,

we iteratively update the deployment until the solution
converges. In each iteration, we set timers for each flow
by invoking function SetTimer(d; x) whose design will be
presented in Algorithm 2. This function returns Tþd and T�d ,
indicating the timers of adding and removing an VM chain,

respectively. Also, the candidate VM chains for adding and
removing are maintained in the returned sets Vd and Pd

(shown in line 11), respectively. After all timers are set, we
start to count down and listen to any timer’s expiration.

Algorithm 2. SetTimer(d; x)

1 x0  ;
2 Vd  ; /�an empty chain for d �/
3 for 8u 2 Ud do
4 p one feasible PM randomly selected from P

5 v an VM in V d
u

6 Vd  Vd [ fðu; v; pÞg
7 if Vd 6¼ ; then
8 for 8ðu; v; pÞ 2 Vd do
9 x0  x0 [ fxd

v;pg
10 ~ P

d2D
QjUdj

i¼1 sd
i

11 Tþd ¼ 1
~ expðt þ 1

2bðLx � Lx0 ÞÞ
12 &d  currently in-use chains by traffic flow d
13 if j&dj � 1 then
14 Pd  a random chain from &d
15 for 8ðu; v; pÞ 2 Pd do
16 x0  x0 n fxd

v;pg
17 r  P

d2D %d
18 T�d ¼ 1

r expðt þ 1
2bðLx0 � LxÞÞ

19 return Tþd , T�d , Vd, and Pd

If timer Tþd expires, we deploy the VMs contained in
candidate set Vd and update sets V d

u and V
d

u, as shown in
lines 14-18 of Algorithm 1. Similarly, the VMs in set Pd are
removed if any timer T�d expires first. This iteration termi-
nates when the deployment x is updated.

4.2.2 Timer Design

The pseudo code of function SetTimer is shown in
Algorithm 2. We first find a set of candidate VMs that can
be deployed for performance enhancement. If such VMs
can be found, we create a new deployment supposing
they are launched on physical machines, and calculate
the timer Tþd , as shown in line 11 of Algorithm 2. Denoted
by ~ the number of possible chains for all traffic flows
and ~ ¼Pd2D

QjUdj
i¼1 s

d
i , where sd

i represents the number
of feasible PMs for the ith network function in Ud.

To calculate another timer T�d , we first find a set Pd of
candidate VMs that can be removed from the current
deployment. The total number of in-use chains for all traffic
flows can be computed as r ¼Pd2D %d, where %d is
the number of chains that are being used by d. Finally,
Algorithm 2 will deliver both timers Tþd and T�d and their
corresponding candidate VM sets Vd and Pd.

For easy understanding, we use an example to illustrate
the details of Algorithm 1 on deploying VMs for network
flows. As shown in Fig. 2, a network flow d1 requires a pol-
icy chain {A, B, C}, and it has been assigned two chains
A1 ! B1 ! C1 and A2 ! B2 ! C1 at the current state x.
Suppose timer Tþd1 now expires, system transits to another
state x0, by adding a new VM chain A3 ! B1 ! C1 for d1,
and update the timers of all flows. Since this new chain
shares the bottleneck VM B1 with the first chain, its achiev-
able processing rate is only 5 Gb/s. In addition, due to the
Coordination Effect among the three VMs running function
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A, the processing rates of both chains 1 and 2 are degraded
to 9 Gb/s. The whole system further transits to a state x00

when Tþd1 first expires, in which a new chain A3 ! B2 ! C2

are launched for d1. Similarly, due to the coordinations
between C1 and C2, the processing rate of both Chains 3 and
4 only has 4 Gb/s.

4.3 Algorithm Analysis

We finally analyze the properties of the proposed algorithm.
We first prove that the proposed algorithm can realize
a time-reversible Markov chain with the stationary distribu-
tion shown in (16) through the following three lemmas.

Lemma 1. All the transition rates of the state-hopping in the
devised Markov chain are finite.

Proof. It can be seen that all transition rates are finite
from (17). tu

Lemma 2. The constructed Markov chain is irreducible.

Proof. According to the definition of state space, all configu-
rations are reachable from each other within a finite num-
ber of transitions. Therefore, the constructed Markov
chain is irreducible. tu

Lemma 3. The detailed balance equations [36] hold in the
constructed Markov chain.

Proof. In Algorithm 2, we set the sojourn time of each
configuration to a random variable with an exponential
distribution and the transition probability between two
configurations is independent. We now analyze the tran-
sition rate for adding network service chains.

Let Prx!x0 denote the transition probability from the
current state x to the next state x0 when a timer Tþd
expires (x; x0 2 X ). We define set SxðdÞðx 2 XÞ to maintain
all neighboring states of x. According to Algorithm 2, the
current deployment x can transit to any state x0 2 SxðdÞ
with the equal probability. When the algorithm selects

the next feasible service chain for flow d, there areQjUdj
i¼1 s

d
i choices in total. We thus have jSxðdÞj ¼

QjUdj
i¼1 s

d
i .

The probability Prx!x0 thus is

Prx!x0 ¼
1

jSxðdÞj ; 8x 2 X ; 8x
0 2 SxðdÞ: (18)

Given the current state x, each timer Tþd (8d 2 D)
counts down with a rate

rþ
x;x
0 ðdÞ ¼~ � exp�1 t þ 1

2
bðLx � Lx0 Þ

� �
; (19)

where t is constant and the aggregate rate over all d 2 D is

rx;x0 ¼
X
d2D

rþ
x;x
0 ðdÞ: (20)

The transition rate from x to x0 is then calculated as
follows.

qx;x0 ¼ rx;x0 	 Prx!x0 ¼
X
d2D

rþ
x;x
0 ðdÞ 	 1QjUdj

i¼1 s
d
i

¼ exp
1

2
bðLx0 � LxÞ � t

� �
: (21)

On the other hand, let r�
x
0
;x
ðdÞ denote the count-down

rate of removing a service chain,which can be expressed by

r�
x
0
;x
ðdÞ ¼ r � exp�1 t þ 1

2
bðLx0 � LxÞ

� �
: (22)

The transition rate qx0 ;x can be calculated similarly

qx0 ;x ¼ rx0 ;x 	 Prx0!x ¼
X
d2D

r�
x
0
;x
ðdÞ 	 1

%d

¼ exp
1

2
bðLx � Lx0 Þ � t

� �
:

(23)

Finally, we have p�xqx;x0 ¼ p�
x
0 qx0 ;x; 8x; x0 2 X based on

(21) (23) and (16). Therefore, the detailed balance equations
hold in the designed Markov chain. tu
From Lemmas 1, 2, and 3, we have the following conclu-

sion according to [36].

Corollary 1. Algorithm 1 realizes a time-reversible Markov
chain with the stationary distribution shown in (16).

Next, we analyze the convergence time of the proposed
Algorithm 1. In general, the convergence time of a Markov
chain can be described by the mixing time [29] of Markovan
random field. Let HHtðxÞ denote the probability distribution
space of all states in X at time t if the initial state is x. Recall
that pp� in (16) is the stationary distribution of the con-
structed Markov chain. We then define its mixing time as
follows:

tmixð�Þ ¼ infft � 0 : max
x2X
kHHtðxÞ � pp�kTV � �g; (24)

where � > 0 determines the performance of convergence
and term k:kTV denotes the total variance distance between
the probability distributions HHtðxÞ and the optimal one pp�.
Here the total variance distance can be calculated as
kHHtðxÞ � pp�kTV ¼ 1

2

P
x2X jHHtðxÞ � p�ðxÞj. We further define

Lmax ¼ max8x2XLx, Lmin ¼ min8x2XLx, y ¼ jUdj, and k ¼Q
d2Dð jPjMd

Þy. We then conclude on the mixing time by the

following Theorem.

Theorem 2. The mixing time tmixð�Þ for the Markov chain
constructed in Algorithm 1 is bounded, i.e.,

tmixð�Þ �
exp½t � 1

2bðLmax � LminÞ�
2d

ln
1

2�
; (25)

Fig. 2. Example of transitions.
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and

tmixð�Þ � 2dk2exp
3

2
bðLmax � LminÞ þ t

� �
�

ln
1

2�
þ 1

2
ln kþ 1

2
bðLmax � LminÞ

� �
;

(26)

where the

d ¼
P

d2D jPjy; (a) if system tends to add chains;P
d2D y

Md ; (b) if system tends to remove chains;

�

andMd ¼ minu2Ud jV d
u jð8d2DÞ.

The detailed proof appears in Appendix A.

5 PERFORMANCE EVALUATION

In this section, we first give simulation settings including
the network topology, benchmarks and parameter settings.
We then present numerical simulation results and explana-
tions of the proposed algorithm.

5.1 Simulation Settings

We implement a simulator in Python to emulate a realistic
4-pod fat-tree topology, which consists of 200 PMs in 8 racks.
The default settings of parameters are described as follows
unless otherwise specified.

To simulate the resource availability in the real world,
the bottleneck resource capacity of each PM (Ep) is ran-
domly generated between 0 and 32, which can be viewed as
the available number of CPU-cores equipped in cloud serv-
ers. We also randomly generate 500 network flows with traf-
fic rates distributed in [10, 100] Gb/s according to the
exponential distribution. Without loss of generality, the
Traffic-Change ratio (pv) of each VM v is randomly assigned
between 0.8 and 1.2 for both shrinking and enlarging Traffic-
Change effects. The unit consumption of compute resource
(ev) to deploy each VM v is fixed to 1. To construct the indi-
vidual policy-chain for each flow, we specify five types of
network functions, i.e., Firewall, NAT, Load balancer, DPI
and Video transcoder. The sequence of network functions
in each policy-chain is randomly generated. For each type
of network function, at most jV d

u j numbers of VMs can be
launched. The function Cd

u(.) of each VM’s data processing
capability is specified in each suite of simulation. In addi-
tion, since parameters b and t in Algorithm 1 can be set
freely according to different requirements of near-optimal
performance [29], here they are set to 10 and 0, respectively.
On the other hand, we compare the performance of the

proposed algorithm with the other two benchmark algo-
rithms, which are explained as follows.

� Algorithm MHC [29], [31]: This algorithm is also
based on the Markov approximation technique.
Comparing with our approach, the key difference is
that the state transition rate in MHC is designed as

qx;x0 / exp�1ð�bLx
0 Þ. It adopts the configuration with

best performance ever traced within a specified itera-
tions as the final solution.

� Algorithm Sequential [11]: In this algorithm, demand-
ing flows are served sequentially in a descending
order of their arrival rates.

5.2 Simulation Results

5.2.1 Convergence Property of Algorithm 1

We first study the convergence of the proposed algorithm
on dealing with 100 network flows in 15-iteration execu-
tions, where each iteration consumes 1 ms logical time. The
maximum VM count (i.e., jV d

u j) is fixed at 5. The data proc-
essing capability of each VM v 2 V d

u is uniformly and ran-
domly generated in the range of [10, 20] Gb/s. As shown in
Fig. 3a, we observe that the proposed Algorithm 1 con-
verges to a solution with a profit that is higher than that by
both algorithms MHC and Sequential. Similar phenomenon
can be observed in Fig. 3b which illustrates the throughput
(i.e., the total amount of admitted flows) of all algorithms.

We then study the profit performance of the proposed
algorithm with different numbers of VMs deployed in
Fig. 4a. The profit under the converged solution increases
with the growth of numbers of VMs because more flows
can be admitted with a larger jV d

u j. However, the profit-
improvement becomes saturated of enlarging jV d

u j from 5 to
6 due to limited compute resources of physical machines.
Fig. 4b shows the convergence of all 3 metrics, i.e., the profit,
the throughput and the deployment cost, of the proposed
algorithm under jV d

u j=4. Although both the throughput and
the deployment cost increase when we adjust the deploy-
ment, their gap (i.e., profit) finally converges to stable.

5.2.2 Impact of Flow Amount

We then study the impact of the number of flows on the per-
formance of the profit, throughput and deployment cost, by
setting jDj at four different values: 50, 100, 200 and 500,
respectively. We have jV d

u j=3 and jUdj=3. As shown in
Fig. 5, we observe that both the throughput and deployment
cost increase with the increase on the number of flows.
However, throughput improvement brings more profits as
shown in Fig. 6a. We attribute this phenomenon to the fact

Fig. 3. Algorithm 1 shows convergence and overwhelming performance
over benchmark algorithms, when jV d

u j=5, jDj=100.
Fig. 4. Performance of Algorithm 1 when jDj ¼ 100.
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that more VMs are launched to serve growing numbers of
flows, leading to more traffic admitted.

5.2.3 Impact of Policy-Chain Length

We now vary the length of service chains of flows and show
the results in Fig. 6. The number of flows is fixed at 100. We
observe that both the profit and the throughput decrease
with the growth of the chain length in Figs. 6a and 6b, while
the deployment cost is an increasing function under all
three algorithms as shown in Fig. 6c. That is because more
VMs are launched when the length of service chain becomes
longer, leading to a higher deployment cost. However,
longer service chains increase lead to higher probability
that throughput is constrained by bottleneck VMs with
poor processing capability.

5.2.4 Impact of the Coordination Effect

We finally focus on the impact of the Coordination Effect. In
particular, functionCd

u(.) (8u 2 Ud; 8d 2 D) of each VM’s data
processing capability is set to a linear non-increasing func-
tion, the yielded value of which is inversely proportional to
the number of VMs launched to run each network function
u. In detail, as shown in Fig. 7a, functionCd

u(.) is defined as

Cd
uðzÞ ¼ Kðz � 1Þ þ 20; z ¼ 1; 2; . . . ; jV d

u j; (27)

where 20 (Gb/s) denotes themaximumprocessing capability
for all VMs. As already presented in (3), z indicates the total
number of VMs launched to run the network function u for
flow d. Particularly, as the slope of linear function Cd

uðzÞ, K
determines the varying degree of a network function’s proc-
essing capability when multiple VMs are launched. In this
group of simulation, we study the performance of algorithms
while varying K within {-3, -2, -1, 0}. The other parameters
are set as jUdj ¼ 3, jDj ¼ 100, and jV d

u j ¼ 4.

We evaluate the profit under the converged solution of
our proposed Algorithm 1, as well as the best traced solu-
tions of MHC and Sequential in 15-iteration executions. As
shown in Fig. 7b, the profit performance of all algorithms
demonstrates a linear growth over the slope K varying
from -3 to 0. This is because the processing capability of
VMs becomes larger while K increases, leading to a larger
profit for all algorithms. In addition, the overwhelming per-
formance of our proposed Algorithm 1 is observed again,
comparing with the other two benchmark algorithms.

In summary, the proposed Algorithm 1 can achieve a
profit by 30-50 percent and 100-300 percent higher than that
by algorithms MHC and Sequential, respectively. It outper-
forms the benchmark algorithms in terms of the conver-
gence property as well.

6 CONCLUSION

In this paper, we studied deploying multiple network ser-
vice chains for incoming traffic flows on a cluster of virtual
machines. To maximize the profit of NFV service providers
for serving user flows, we formulated a novel service chain
deployment problem, by considering two types of network
function correlations: the Coordination Effect among VMs
running the same network function and the Traffic-Change
Effect between different network functions. We shown that
this problem is NP-hard and devised an approximation
algorithm for it, based on the Markov Approximation tech-
nique. The convergence time of the proposed algorithm is
also analyzed. Evaluation results through simulations show
that the proposed algorithm converges fast and outper-
forms other benchmarks significantly.
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APPENDIX

PROOF OF THEOREM 2

Proof. Following the framework presented in [37], [38], we
show the lower bound and upper bound of mixing time
as follows.

We already showed that the constructed continuous-
time Markov chain is with a stationary distribution
given by Equation (16). When we add new chains, the

Fig. 5. Performance of algorithms when varying the number of flows
jDj 2{50, 100, 200, 500} under jV d

u j=3, jUdj = 3.

Fig. 6. Performance of algorithms when varying the length of
policy-chain (i.e., jUdj) under jDj ¼ 100, jV d

u j=3.

Fig. 7. Performance of algorithms when varyingK={-3, -2, -1, 0}.
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minimum probability in the stationary distribution is

pmin , min
x2X

p�x �
expðbLminÞ
jXjexpðbLmaxÞ

� 1

k
expð�bðLmax � LminÞÞ

(28)

where k ¼Qd2D
jPj
Md

� �y
, because

P
x02X expðbLx0 Þ �

jXjexpðbLmaxÞ and jXj � k.

We finish this proof by using the uniformization tech-
nique [29]. Denote by Q ¼ fqx;x0 g the transition rate
matrix of the Markov chain, we then construct a discrete-
time Markov chain Z(n) with a probability transition
matrixP ¼ I þ Q

u
, where I is the unitmatrix and u is the uni-

form rate parameter. We consider a system with successive
states from a Markov chain Z(n) and the state of this
systemat discrete time t is denoted byZ(NðtÞ). This system
is an independent Poisson processNðtÞwith rate u.

Note that
P

x 6¼x0 qx;x0 � dexpð12bðLmax � LminÞ � tÞ because
qx;x0 � expð12bðLx0 � LxÞ � tÞ � expð12bðLmax � LminÞ � tÞ,
8x; x0 2 X , and x can transit to at most d ¼Pd2D jPjy other
states. Therefore, u is given as

u ¼ d exp
1

2
bðLmax � LminÞ � t

� �
: (29)

According to the uniformization theorem [38], the
Markov chain and its discrete-time counterpart Z(NðtÞ)
has the same distribution. Further, they also share the
same stationary distribution (16). Let r2 denote the second
largest eigenvalue of transition matrix P for Z(n) and
apply the spectral gap inequality [37] and [38], we have

expð�uð1� r2ÞtÞ
2

� maxx2XkHHtðxÞ � pp�kTV

� expð�uð1� r2ÞtÞ
2ðpminÞ

1
2

:

Therefore,

1

uð1� r2Þ
ln

1

2�
� tmixð�Þ

� 1

uð1� r2Þ
ln

1

2�
þ 1

2
ln

1

pmin

� �
:

(30)

Particularly, r2 can be bounded by Cheeger’s inequal-
ity [37], [38] as

1� 2F � r2 � 1� 1

2
F2; (31)

where F is the “conductance” of P , and defined as
follows:

F , min
N
X ;pN2ð0;1=2�

F ðN;NcÞ
pN

: (32)

Here pN ¼
P

x2N p�x and F ðN;NcÞ ¼Px2N;x02Nc p�xP ðx; x0Þ.
The combination of (30) and (31) yields

1

2uF
ln

1

2�
� tmixð�Þ � 2

uF2
ln

1

2�
þ 1

2
ln

1

pmin

� �
: (33)

The upper bound of F is then derived for any
N 0 
 X ;pðN 0Þ 2 ð0; 1=2�, that is,

F ¼ min
N
X ;pN2ð0;1=2�

F ðN;NcÞ
pN

� 1

pN 0

X
x2N;x02N 0c

p�xP ðx; x0Þ

¼ 1

pN 0

X
x2N 0

p�x �
X
x02N 0c

P ðx; x0Þ
 !

� 1

pN 0

X
x2N 0

p�x

¼ 1:

(34)

The lower bound of tmixð�Þ is then derived by combin-
ing (29), (33) and (34), i.e.,

tmixð�Þ � 1

2u
ln

1

2�

¼ exp½t � 1
2bðLmax � LminÞ�

2d
ln

1

2�
:

(35)

Next, we derive the lower bound of F. When qx;x0 6¼ 0;
8x; x0 2 X , via (17) we know that

qx;x0 ¼ exp
1

2
bðLx0 � LxÞ � t

� �

� exp
1

2
bðLmin � LmaxÞ � t

� �
:

(36)

The combination of (32) and (36) outputs

F � min
N
X ;pN2ð0;1=2�

F ðN;NcÞ

� min
x6¼x0;P ðx;x0Þ> 0

F ðx; x0Þ

¼ min
x6¼x0;P ðx;x0Þ> 0

p�xP ðx; x0Þ

¼ min
x6¼x0;P ðx;x0Þ> 0

p�x �
qx;x0

u

� pmin

u
� exp 1

2
bðLmin � LmaxÞ � t

� �
:

(37)

Finally, combining (33), (28), (29) and (37), we have

tmixð�Þ � 2

uF2
ln

1

2�
þ 1

2
ln

1

pmin

� �

� 2uexpð2t � bðLmax � LminÞÞ
p2min

ln
1

2�
þ 1

2
ln

1

pmin

� �

� 2dk2exp
3

2
bðLmax � LminÞ þ t

� �
�

ln
1

2�
þ 1

2
ln kþ 1

2
bðLmax � LminÞ

� �
:

(38)

This concludes the proof for case (a). Under case (b),
8x; x0 2 X , x may transit to at most d ¼Pd2D y

Md other
states. Following the same routine for case (a), the rest of
proof for case (b) can be conducted similarly. tu
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