
Cost Minimization for Rule Caching in Software
Defined Networking

Huawei Huang, Student Member, IEEE, Song Guo, Senior Member, IEEE, Peng Li,Member, IEEE,

Weifa Liang, Senior Member, IEEE, , and Albert Y. Zomaya, Fellow, IEEE

Abstract—Software-defined networking (SDN) is an emerging network paradigm that simplifies network management by decoupling

the control plane and data plane, such that switches become simple data forwarding devices and network management is controlled by

logically centralized servers. In SDN-enabled networks, network flow is managed by a set of associated rules that are maintained by

switches in their local Ternary Content Addressable Memories (TCAMs) which support high-speed parallel lookup on wildcard patterns.

Since TCAM is an expensive hardware and extremely power-hungry, each switch has only limited TCAM space and it is inefficient and

even infeasible to maintain all rules at local switches. On the other hand, if we eliminate TCAM occupation by forwarding all packets to

the centralized controller for processing, it results in a long delay and heavy processing burden on the controller. In this paper, we strive

for the fine balance between rule caching and remote packet processing by formulating a minimum weighted flow provisioning (MWFP)

problem with an objective of minimizing the total cost of TCAM occupation and remote packet processing. We propose an efficient

offline algorithm if the network traffic is given, otherwise, we propose two online algorithms with guaranteed competitive ratios. Finally,

we conduct extensive experiments by simulations using real network traffic traces. The simulation results demonstrate that our

proposed algorithms can significantly reduce the total cost of remote controller processing and TCAM occupation, and the solutions

obtained are nearly optimal.

Index Terms—Software-defined networking, approximation algorithm, ternary content addressable memories

Ç

1 INTRODUCTION

SOFTWARE defined networking (SDN) is regarded as one
promising next generation network architecture [1], [2],

[3]. By shifting the control plane to a logically centralized
controller, SDN offers programmable functions to dynami-
cally control and manage packets forwarding and process-
ing in switches making it easy to deploy a wide range of
network management policies and new network technolo-
gies, e.g., traffic engineering [4], [5], [6], quality of service
(QoS) [7], [8], security/access control management [9], [10],
[11], failure diagnosis [12] and failover mechanisms[13],
[14], [15].

In SDN, each network flow is associated with a set of
rules, such as packet forwarding, dropping and modifying,
that should be installed at switches in terms of flow table
entries along the flow path. SDN-enabled switches maintain
flow rules in their local TCAMs [16], [17], [18], which sup-
port high-speed parallel lookup on wildcard patterns. A
typically flow setup process [2], [19] between a pair of users,
say users A and B, in SDN contains three steps. 1) User A
sends out packets after connection initialization. Once a

packet arrives a switch without matched flow table entries,
this packet is forwarded to the controller. 2) Upon receiving
the packet, the controller decides whether to allow or deny
this flow according to network management policies. 3) If
the flow is allowed, the controller installs corresponding
rules to all switches along the path, such that consecutive
packets can be processed by the installed rules locally at
switches. Note that switches usually set an expiration time
for rules, which defines the maximum rule maintenance
time when no packet of associated flow arrives.

In practice, network flow shows various traffic patterns.
For example, we show real-time traffic of four network
flows [20] in Fig. 1, where some are burst transmission while
the others have consecutive packet transmissions for a long
time. For consecutive transmission, only the first packet
experiences the delay of remote processing at the controller,
and the rest will be processed by local rules at switches.
However, for burst transmission, the corresponding rules
cached in switches will be removed between two batches of
packets if their interval is greater than the rule expiration
time. As a result, remote packet processing would be
incurred by the first packet of each batch, leading to a long
delay and high processing burden on the controller. A sim-
ple method to reduce the overhead of remote processing is
to cache rules at switches within the lifetime of network
flow, ignoring the rule expiration time. Unfortunately, net-
work devices are equipped with limited-space TCAMs
because they are expensive hardware and extremely power-
hungry. For instance, it is reported that TCAMs are 400
times more expensive [18] and 100 times more power-con-
suming [21] per Mbit than RAM-based storage. Since
TCAM space is shared by multiple flow in networks, it is
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inefficient and even infeasible to maintain all rules at local
switches. This dilemma motivates us to investigate efficient
rule caching schemes for SDN to strive for a fine balance
between network performance and TCAM usage.

The main contributions of our paper are summarized as
follows.

� To the best of our knowledge, we are the first to
study the rule caching problem with the objective of
minimizing the sum of remote processing cost and
TCAM occupation cost.

� We propose an offline algorithm by adopting a
greedy strategy if the network traffic is given in
advance. We also devise two online algorithms with
guaranteed competitive ratios.

� Finally, we conduct extensive simulations using real
network traffic traces to evaluate the performance of
our proposals. The simulation results demonstrate
that our proposed algorithms can significantly
reduce the total cost of remote controller processing
and TCAM occupation, and the solutions obtained
are nearly optimal.

The reminder of the paper is structured as follows.
Section 2 reviews some related work in table entries sched-
uling in SDN. Section 3 introduces the system model and
problem formulation. An offline algorithm is proposed in
Section 4. Two online algorithms are proposed and analysed
in Section 5. Section 6 demonstrates the performance evalu-
ation results. Finally, Section 7 concludes this paper.

2 RELATED WORK

As one pioneering work of recouping control plane from the
data plane, NOX [9] has been proposed to control data for-
warding based on OpenFlow [1], [22].

Following this line of research, lots of efforts have been
made on rule caching strategies in SDN, which can be classi-
fied into two categories: reactive way [2], [9] and proactive
way [3], [22], [23].

The reactive rule caching has been widely adopted by
existing work [2], [9] because of its efficient usage of TCAM
space. The first packet of each “microflow” is forwarded to
the controller that reactively installs flow entries in
switches. For instance, Ethane [2] controller reactively
installs flow table entries based on the first packet of each

TCP/UDP flow. Recently, Bari et al. [19] use the on-demand
approach to response flow setup requests.

On the other hand, other studies [24], [25] argue that
reactive approach is time-consuming because of remote rule
fetching, leading to heavy overhead in packet processing
[4], [19], [23]. To reduce the response time for packets at
switches without matched rules, proactive approach has
been proposed to install rules in switches before corre-
sponding packets arrive. For example, Benson, et al. [4]
developed a system MicroTE that adapts to traffic fluctua-
tions, with which rules can be dynamically updated in
switches to imposes minimal overhead on network based
on traffic prediction. Kang, et al. [3] have proposed to pre-
compute backup rules for possible failures and cache them
in switches in advance to reduce network recovery time.

In addition, other related literatures [6], [18], [26], [27]
focus on the rules scheduling considering forwarding table
size utilization. For instance, Katta et al. [18] proposed a
abstraction of an infinite switch based on an architecture
that leverages both hardware and software, in which rules
caching space can be infinite. In that case, rules can be
cached in forwarding table as many as possible. This
abstraction saves TCAMs space, but the packet processing
speed in switch is a bottleneck. To efficiently use TCAMs
space, Kanizo et al. [6], Nguyen et al. [26] and Cohen et al.
[27] propose their rules placement scheduling jointly con-
sider the traffic routing in network. However, rules updat-
ing is ignored in their optimization. To the contrast, we
study both the two aspects in our optimization.

The work most related with our paper is DIFANE [23], a
compromised architecture that leverages a set of authority
switches serving as a middle layer between the controller in
control plane and switches in data plane. The endpoints
rules are pre-computed and cached in authority switches.
Once the first packet of a new microflow arrives the switch,
the desired rules are reactively installed, from authority
switches rather than the controller. In this way, the flow
setup time can be significantly reduced. Unfortunately,
caching pre-computed rules all in authority switches con-
sumes large TCAM space. In our work, we still load the
flow rules into switches in a reactive way. However, rule
caching period is controlled by our proposed algorithm by
taking both remote processing and TCAM occupation cost
into consideration.

3 SYSTEM MODEL AND PROBLEM FORMULATION

We consider a discrete time model, where the time horizon
is divided into T time slots of equal length l. A network
flow travels along a set of SDN-enabled switches, each of
which is assigned a set of rules to implement routing or net-
work management functions. For simplicity, in this paper,
we study rule caching at a switch with a set of associated
rules whose maintenance cost is a per second, and our
results can be directly extended to all switches along the
flow path. Note that the set of rules associated with the net-
work flow will be cached or removed as a whole at the
switch. When no matched flow table entries are available at
the switch for the arriving packets, these packets will be
sent to the controller for processing. We model the remote
processing cost at controller as b. The ratio between these

Fig. 1. The sniffed TCP traffic flow [20].
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two kinds of cost is denoted by g, i.e., g ¼ a
b
. We consider

arbitrary traffic pattern of the network flow. The set of time
slots with (at > 0) and without (at ¼ 0) packet transmission
are referred to as valid period and empty period, respec-
tively. All symbols and variables used in this paper are
summarized in Table 1.

We define a binary variable xt to denote whether a flow
entry is cached at the tth time slot:

xt ¼
1; if rules are cached at the tth time slot;
0; otherwise:

�
The occupation cost can be calculated as follows:

CC ¼ al �
XT
t¼1

xt: (1)

We also define a binary variable yt to indicate whether
remote packet processing is conducted.

yt ¼
1; if rules are remotely fetched in the tth

time slot;
0; otherwise;

8<:
and the corresponding cost can be calculated by:

CF ¼ bl �
XT
t¼1

yt: (2)

With the global information of the given traffic flow, the
minimum weighted flow provisioning (MWFP) problem
can be formulated as follows:

MWFP : min
xt;yt

CTotal ¼ CC þ CF

s.t. xt � xt�1 � yt; t ¼ 2; 3; ::; T;
(3a)

Xt
j¼1

yj � xt; t ¼ 1; 2; ::; T; (3b)

ðxt þ ytÞ � at; t ¼ 1; 2; ::; T; (3c)

xt; yt 2 f1; 0g; t ¼ 1; 2; ::; T: (3d)

The trigger of remote processing is represented by con-
straint (3a): the fetch must be made (yt ¼ 1) if the required
rules are not available at the ðt� 1Þth time slot (xt�1 ¼ 0)
and will be in the catch on the tth time slot (xt ¼ 1). Con-
straint (3b) indicates that the switch needs to fetch rules at
least one time before caching. Constraint (3c) claims that
arriving packets must be processed by local cached rules or
remote controller. Note that the input of this problem are at,
a and b, and the output is the scheduling solution, i.e., xt

and yt, t ¼ 1, 2, ...T .

4 OFFLINE ALGORITHM

In this section, we propose a heuristic algorithm to solve the
offline version of the problem. As shown in Algorithm Off-
line Greedy, we first generate a collection of time slot sets
that represents possible rule cache periods as S ={ {1},{2},. . .,
{T }, {1, 2}, {2, 3}, . . ., {T -1, T }, {1, 2, 3}, {2, 3, 4}, . . ., {T -2, T -1,
T }, . . ., {1, 2, . . ., T -1}, {2, 3, . . .,T }, {1, 2, . . ., T }}. Each set is
assigned a weight according to (4) in line 2

wðSjÞ ¼
blþ al � jSjj; if jSjj > 1;
bl � at; if jSjj ¼ 1; t 2 Sj; 8Sj 2 S:

�
(4)

Then, we select time slot sets for rule caching in an iterative
manner from line 4 to 8. In each iteration, we choose the set
X that minimizes the value of weight wðXÞ divided by num-
ber of elements not yet covered.

Algorithm 1. Offline Greedy Algorithm to solveMWFP

Input: flow indicator set F = {aðtÞ, t2[1, T ]}, and
T ={1, 2, . . ., T }

Output: The collection C of subsets of T
1: generate sample collection S with

S
S2S S = T

2: generate the weight function w: S ! Rþ by invoking (4)
3: C  ;, and R T
4: while R 6¼ ; do
5: X  argminX2S

wðXÞ
jX\Rj

6: C  C [X
7: R R nX
8: end while

Remark 1. The computing complexity of Algorithm 1 is O(T
log T ), if we use binary search tree in line 5 of Algorithm 1.

Proof. In the first, the main loop iterates for O(T ) time. Then,
X in line 5 can be found in O(log m) time while using
binary search tree, where m is the number of sets in

instance S. Because jSj = 1
2 ðT 2 þ T Þ, we obtain the total

computational time OðT Þ� O(logð12 ðT 2 þ T ÞÞ) = O(T )O

(log(T 2)) = O(T )O(2 log T ) = O(T log T ). tu

Theorem 1. Algorithm 1 is (lnT þ 1)-approximation to the
optimal solution of MWFP, where T is the maximum time
slot.

Proof. For each element (time slot) tj 2 T , let Sj be the first
picked set that covers it while applying Algorithm 1, and
uðtjÞ denote the amortized cost of each element in Sj,

uðtjÞ ¼
wðSjÞ
jSj \Rj

:

TABLE 1
Notions and Variables

Notations Description

T maximum time-slot range of consideration
l length of each time slot (seconds)
at a binary indicator that denotes the positive flow rate

in time slot t, t ¼ 1, 2, . . . T
d sum of time slots where ai > 0
D amount of valid periods during [1, T ]
Vi the ith valid period during [1, T ]
Ei the ith empty period during [1, T ]
a occupation cost of caching table entry
b remote processing cost
g g ¼ a

b

xt a binary variable indicating whether cache action
happens in time slot t, t ¼ 1, 2, . . .T

yt a binary variable indicating whether fetch action
happens in time slot t, t ¼ 1, 2, . . .T

CC total cost of cache action during [1, T ]
CF total cost of fetch action during [1, T ]
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Obviously, the cost of Algorithm 1 can be written asP
tj2T uðtjÞ.
Then, let bT ¼ ft1; t2; . . . ; tTg denote the ordered set of

elements in [1,T ] that each is covered. Note that, when tj
is to be covered, apparently we have R � ftj; tjþ1;
. . . ; tTg. We can see that R contains at least (T � jþ 1)
elements. Therefore, the amortized cost in Sj is at most
the average cost of the optimum solution (denoted by
OPT), i.e.,

uðtjÞ ¼
wðSjÞ
jSj \Rj �

OPT

T � jþ 1
:

By summing the uðtjÞ in all time slots, we get:

X
tj2T

uðtjÞ � OPT
1

T
þ 1

T � 1
þ � � � þ 1

2
þ 1

� �
:

That is Greedy � OPT �HðT Þ � OPT � ð1þ lnT Þ, where
HðT Þ is called the harmonic number of T . tu

5 ONLINE ALGORITHMS

In this section, we consider the MWFP problem assuming
that the packet traffic information is not given in advance.
We first present several important observations in the opti-
mal solution, followed by two proposed online algorithms
with low computational complexity to approximate the
optimal solution.

5.1 Typical Actions in Optimal Solutions

By carefully examining the optimal solutions of several
problem instances, we find that there exists several typical
actions as follows.

� Fetch and cache (FNC): for valid periods with at least
two time slots, flow rules are first fetched from the
remote controller, and then they are cached at local
switches.

� Successive fetch (SUF): for a valid period with at least
two time slots, all packets are forwarded to the
remote controller for processing.

� Cache in empty period (CIE): rules are cached in
switches during the empty period between two valid
periods.

� Only Forward (NF ): Packets are processed by the
controller in the empty periods of one time slot.

Above typical actions are illustrated in Fig. 2. The
optimal solutions can be categorized into following three
cases.

� OPT-A: there are only SUF actions in the optimal
solution.

� OPT-B: there are only CIE actions in the optimal
solution.

� OPT-C: both SUF and CIE actions exist in the optimal
solution.

5.2 Online Exactly Match the Flow (EMF) Algorithm

Our first online algorithm, which is referred to as EMF
(Exactly Match the Flow Algorithm), is shown in Algorithm

2. In each time slot, each switch makes a decision, caching
or fetching, according to observed network traffic. When
there are packets arriving in the current time slot, i.e.,
at ¼ 1, if no matched rules are cached, i.e., xt�1 ¼ 0, switch
fetches rules from the controller. Otherwise, we keep cach-
ing them in switches.

Lemma 1. Suppose there are D valid periods (denoted by Vi, i ¼
1, 2, . . ., D) including d valid time slots within ½1; T 	, the total
cost of EMF is

CEMF ¼ blDþ ald: (5)

Proof. In Algorithm 2, flow rules are maintained in switches
only when there are network traffic passing through,
such that TCAM occupation cost can be easily calculated
by ald. Since rule fetching action happens in the begin-
ning of each valid period, we have fetching cost of blD.
By summing them up, the total cost of EMF can be calcu-
lated by (5). tu

Algorithm 2. Online Exactly Match the Flow Algorithm

1: for each time slot t 2 ½1; T 	 do
2: if at=1 and xt�1=0 then
3: fetch flow rules from the controller
4: yt  1, xt  1
5: else if at=1 and xt�1=1 then
6: keep caching entries in switches
7: else if at=0 and xt�1=1 then
8: remove the corresponding flow table entries
9: xt  0
10: end if
11: end for

Lemma 2. When the optimal solution belongs to OPT-A, SUF is
adopted by any valid period Vi, we have g > jVi j�1

jVij ; 8i ¼
1; 2; . . . ; D.

Proof. Since SUF is adopted in the optimal solution, its cost
must be less than FNC, i.e.,

jVijbl < blþ jVijal

) b <
jVija
jVij � 1

) g >
jVij � 1

jVij
; 8i ¼ 1; 2; . . . ; D:

tu

Theorem 2. When the optimal solution belongs to OPT-A, the
EMF algorithm is ðg þ D

d
Þ-competitive.

Fig. 2. Illustration of typical actions in optimal solution.
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Proof. Since the optimal solution belongs to OPT-A, i.e., all
packets are sent to the controller for processing, it is easy
to see that the total cost of optimal solution is bld. Thus,
the competitive ratio �A is:

b�A ¼
CEMF
bld

¼ adþ bD

bd
¼ g þD

d
:

tu

Lemma 3. When the optimal solution belongs to OPT-B, rules
are always maintained by switches once downloaded, i.e., CIE
is adopted by the period Ei between any two valid periods Vi

and Viþ1, and we have g < 1
jEi j ; 8i ¼ 1; 2; . . . ; D� 1.

Proof. If switches continue to cache rules once they’re
downloaded, the TCAM occupation cost during Ei must
be less than the fetching cost at the beginning of Viþ1, i.e.,

alðjEij þ jViþ1jÞ < blþ jViþ1j � al

) b > ajEij ) g <
1

jEij
; 8i ¼ 1; 2; . . . ; D� 1:

tu

Theorem 3. When the optimal solution belongs to OPT-B,
the EMF algorithm is ð Dþgd

1þgðdþD�1ÞÞ-competitive.

Proof. As shown in Fig. 3, since rules are maintained in
switches once downloaded under OPT-B, its total cost can
be easily calculated by blþ alðdþ

PD�1
i¼1 jEijÞ, where the

first term is the cost of the only fetching that happens in
the beginning of the first valid period, and the second
term is TCAM occupation cost. Combined with Lemma 1,
the competitive ratio is:

b�B ¼
CEMF

blþ alðdþ
PD�1

i¼1 jEijÞ
� bDþ ad

bþ aðdþD� 1Þ

¼ Dþ gd

1þ gðdþD� 1Þ :

tu

Lemma 4. When the optimal solution belongs to OPT-C, there
exists at least one valid period Vi; i 2 ½1; D	 and one empty

period Ej; j 2 ½1; D� 1	, such that jVij�1jVi j < g < 1
jEjj.

Proof. This lemma can be easily proved following similar
analysis in Lemmas 2 and 3. tu

Theorem 4. When the optimal solution belongs to OPT-C,
the EMF algorithm is ð Dþgd

Dþgðd�Dþ2ÞÞ-competitive.

Proof. Without loss of generality, we suppose CIE is
adopted in empty periods fE1; E2; . . . ; Exg, and SUF is
adopted in valid periods fV1; V2; . . . ; Vyg. There are z NF
actions in the optimal solution. The total cost of optimal
solution belongs to OPT-C can be calculated by:

COPT�C ¼ bl D� xþ
Xy
i¼1
ðjVij � 1Þ

" #

þ al dþ
Xx
j¼1
jEjj �

Xy
i¼1
jVij

 !
� alz

¼ blDþ aldþ hðx; y; zÞ;

where

hðx; y; zÞ ¼ al
Xx
j¼1
jEjj � blx

þ bl
Xy
i¼1
ðjVij � 1Þ � al

Xy
i¼1
jVij

" #
� alz:

Referring to Lemma 4, g < 1
jEjj ) a� b < 0 and jVij�1jVij <

g ) bl
Py

i¼1ðjVij � 1Þ � al
Py

i¼1 jVij < 0. Therefore, hðx;
y; zÞ < 0 and the ratio �C > 1.

Obviously, we have x � 1, y � 1 and z � 0. We then
consider two extreme cases. In the first case, there exists
multiple CIE actions but only one SUF action. Since there
must be one empty period between these two types of
patterns, CIE actions cover at most D� 2 empty periods,
i.e., x � D� 2. In the second case, there are only one CIE
action and multiple SUF actions. The only one CIE occu-
pies at least two valid periods. As a result, SUF actions
use at most D� 2 valid periods, i.e., y � D� 2. Further-
more, the constitution of y SUF actions occupy y valid
periods, and the other D� y ones are left to CIE and NF
actions, which cover x empty periods and z tiny valid
periods, respectively. If there is only one CIE pattern, in
which all the D� y valid periods are crossed with x
empty periods, we have xmax þ 1þ z=D� y, i.e.,
xþ yþ z � D� 1. Finally, we obtain a feasible region of
hðx; y; zÞ, which is denoted by L ¼ fðx; y; zÞj1 � x �
D� 2; 1 � y � D� 2; z � 0; xþ yþ z � D� 1g, where x,
y and z are all integers. The lower bound of hðx; y; zÞ is
derived as follows.

hðx; y; zÞ ¼ al
Xx
j¼1
jEjj � blxþ ðb� aÞl

Xy
i¼1
jVij

� bly� alz;

� ða� bÞlxþ ðb� aÞl � 2y� bly� alz;

¼ ða� bÞlxþ ðb� 2aÞly� alz;

� ða� bÞlþ ðb� 2aÞl� alðD� 3Þ;
¼ alð2�DÞ:

Therefore, the competitive ratio can be expressed by:

�C �
bDþ ad

bDþ adþ að2�DÞ ¼
Dþ gd

Dþ gðd�Dþ 2Þ :

tu

Fig. 3. Rules are cached in Ei because of CIE action.
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5.3 Online Extra h Time-Slot Caching Algorithm

Our proposed EMF algorithm attempts to minimize the
TCAM occupation cost by caching flow rules only when
there are network traffic passing through switches. How-
ever, it would incur frequent remote processing at the con-
troller under burst packet transmissions. In this subsection,
we study to further reduce total cost by proposing the ECA
(Extra Cache Algorithm (ECA) algorithm that specifies an
expiration time for cached rules. As shown in Algorithm 3,
we specify a parameter h as input. In each time slot, if we
decide to conduct fetching action, the expiration time of
fetched rules, which is denoted by idle_timeout, is set to
hl. We show how to set the value of h to achieve the closest
performance with optimal solution by empirical analysis in
next section.

5.3.1 General Cases of ECA

We let N0 denote the number of empty periods whose
length is less than h. By representing the total number of
empty time slots covered by hwith L, we have the following
theorem.

Algorithm 3. Online Extra Cache Algorithm (ECA)

Input: h
1: for each time slot t 2 ½1; T 	 do
2: if fetch action happens in slot t then
3: idle_timeout hl for all entries to be installed
4: end if
5: t++
6: end for

Theorem 5. The competitive ratios of ECA overOPT-A,OPT-B
and OPT-C are zA = D�N0þgðdþLÞ

d
, zB ¼ D�N0þgðdþLÞ

1þgðdþD�1Þ and

zC ¼ D�N0þgðdþLÞ
Dþgðd�Dþ2Þ , respectively.

Proof. As shown in Fig. 4, compared with an original opti-
mal solution where there is no extended FNC pattern
included, in the ECA solution, if the length of an empty
period is longer than h, the cached rules will be removed
after the expiration time, and they will be refetched at
the beginning of next valid period. The total TCAM occu-
pation cost can be calculated by alðdþ LÞ. Otherwise,
rules are cached at the switch during the empty period,
leading to remote processing cost blðD�N0Þ. Therefore,
the total cost of ECA with h is

CECAðhÞ ¼ blðD�N0Þ þ alðdþ LÞ: (6)

Following the similar analysis in Theorems 2, 3, and 4,
we can easily obtain the competitive ratios of zA ¼
D�N0þgðdþLÞ

d
, zB ¼ D�N0þgðdþLÞ

1þgðdþD�1Þ and zC ¼ D�N0þgðdþLÞ
Dþgðd�Dþ2Þ over

OPT-A, OPT-B, and OPT-C, respectively. tu

5.3.2 Special Case of ECA

Suppose the length (denoted by variable X) of all the empty
periods Ej (j ¼ 1; 2; . . . ; D� 1) are exponentially distribu-

tion with mean value me, i.e., X 
 expð 1
me
Þ, the value of N0

can be calculated by:

N0 ¼ ðD� 1Þ � PrðX � hlÞ ¼ ðD� 1Þð1� e
�hl
me Þ: (7)

And the total length of the completely covered empty peri-
ods by h can be written as

L1 ¼ ðD� 1Þ � EðX � hlÞ ¼ ðD� 1Þ
Z hl

0

X
1

me

e
X
�me

� �� �
dX

¼ meðD� 1Þ½1� hl

me

þ 1 e
�hl
me

� i
:

�
(8)

On the other hand, the total length in the empty periods
where partially cut by h shall be simply calculated as

L2 ¼ ðD� 1�N0Þ � ðhlÞ ¼ hlðD� 1Þe
�hl
me : (9)

Therefore, the cost of ECAwith parameter h,me and l shall be

CECAðh;me;lÞ ¼ alðdþ L1 þ L2Þ þ blðD�N0Þ

¼ aðdlþ ðD� 1Þmeð1� e
�hl
me ÞÞ

þ blð1þ ð1�DÞe
�hl
me Þ: (10)

Similarly, the competitive ratio of ECA under this special
case can also be derived following the approach in the proof
of Theorem 5. In performance evaluation, we conduct exten-
sive simulations under various network settings to find out
the best value of h leading to closet performance with opti-
mal solution.

6 EVALUATION

We conduct extensive simulations in this section to evaluate
the performance of our proposed algorithms and the
derived competitive ratios.

6.1 Simulation Settings

We adopt network traces [20], with a collection of TCP
packets and ethernet frames captured in a wired hub using
wireshark [28] tool. Each trace file is collected within
around 50 seconds. We first process these trace files by
accumulating the traffic volume of each time slot with
length l. Both proposed algorithms (Greedy, EMF and
ECA) and legacy algorithms (Proactive and Reactive) are
implemented in our simulation. Note that, in the adopted
legacy Proactive algorithm, as discussed in Section 2, rules
are only fetched in the first time slot and cached all the
remaining duration, resulting in a cost of blþ Tal. In con-
trast, the Reactive algorithm triggers remote process at
each time slot with a cost ðbþ aÞdl. To obtain the offline
optimal solutions (denoted by Offline OPT), the commer-
cial solver Gurobi optimizer [29] is used. In each suite of
simulation, we always fix a=10 and the settings of other
parameters are labeled below the figures.

Fig. 4. An example of ECA solution.
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6.2 Evaluation of Offline Algorithm

As shown in Fig. 5, when a ¼ 10 and l ¼ 0:25 s, total cost of
all algorithms decreases as g grows from 0.01 to 10. This is
because under larger g, remote fetching is preferred as it
leads to low cost. It also can be seen from Fig. 5b that the
Reactive strategy products much higher cost compared
with other algorithms, because there are always remote
fetching operations even if g is small. On the other hand,
the Proactive way is competitive to Greedy only when g is
very small, as shown in Fig. 5b, but it generates an even
higher cost than the Reactive strategy, as it shows in Fig. 5c,
once g grows bigger than 0.4. In contrast, our proposed
Greedy algorithm always performs close to the offline opti-
mal cost. Specifically, from Fig. 5c we observe that the costs
of all algorithms converge when g is greater than 2 because
they generate only fetch operations.

We then investigate the influence of time slot length on
the total cost by changing the value of l from 0.1 to 5 s. As
shown in Fig. 6a, total cost increases as the growth of l
under optimal solutions. We observe that some fluctuation
in the performance of our greedy algorithm. That is because
in each iteration of while loop in Algorithm 1, we prefer
tiny valid periods, which may have some time slots already
contained. From Fig. 6b, it also can be seen that Greedy out-
performs the legacy Proactive and Reactive strategies. The

performance ratio of our algorithm and the optimal solution
is shown in Fig. 6c, where the ratio is very close to 1, much
better than the analytical upper bound.

6.3 Evaluation of Online EMF and ECA

Then, the online EMF and ECA algorithms are evaluated
with real network traffic traces under three cases, respec-
tively. Note that, the legacy Proactive and Reactive strate-
gies are only shown in the group of simulations where l
varies. Similar results are obtained by varying parameters g
and h and thus omitted.

6.3.1 Over OPT-A

The total cost under different values of l is shown in Fig. 7a,
where results of all algorithms show as increasing functions
of l. On the other hand, the performance ratio of EMF and
ECA with the optimal solutions decreases as the growth of l
as shown in Fig. 7b. Furthermore, we observe that the per-
formance ratio are always equal to the derived upper
bound. That is because only SUF and NF patterns exist in
the optimal solutions under this case, i.e., packets are
always processed by the remote controller. Finally, we
show the performance ratio under different value of h in
Fig. 7d. We observe that ratio of ECA is same with EMF

Fig. 5. Performance of offline Algorithms while varying g.

Fig. 6. Performance of offline Algorithms while varying l.

Fig. 7. Performance of EMF and ECA over OPT-A.
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when h ¼ 0, and the ratios of EMF never change because of
fixed g and l. In Figs. 7b, 7c, and 7d, EMF outperforms ECA
with closer performance to the optimal solution under most
of settings. We attribute this phenomenon to the fact that
rules are cached at switches for a longer time under ECA.

6.3.2 Over OPT-B

In this case, packets tend to be processed at local switch
because g becomes small. In Figs. 8a and 8b, we have similar
observations with the results under OPT-A case, except
ECA outperforms EMF. This can be attributed to that there
are mainly CIE patterns and few NF patterns under OPT-B
case, and the extra caching durations of ECA cover many
empty periods. Accordingly, the cost of ECA is smaller than
EMF, particularly when g and h become large. Finally, both
algorithms converge to the optimal solution under larger
value of l. In respect of performance ratio, Fig. 8c shows ratio
is decreasing function of g for both ECA and EMF. Because
larger g leads to more short FCN patterns in optimal solu-
tion, which makes ECA and EMF close to optimal solution.
Therefore, their ratios decrease and approach to 1 gradually.
As wementioned above, Fig. 8d shows the benefit of a larger
h in ECA, because more empty periods are covered and
much fetching cost can be saved under OPT-B case.

6.3.3 Over OPT-C

The performance of ECA and EMF is investigated in
Figs. 9 and 10. We observe that ECA and EMF show dis-
tinct performance under different settings. For example,
in Fig. 10a, the cost of ECA is larger than EMF when l ¼
0.2, but it becomes opposite when l is greater than 0.3.
We have similar observations in other figures. Interest-
ingly, in Fig. 9b, we observe that the curve of ECA first
increases, and then decreases when h is greater than 3,
finally converging to 1.28 after h ¼ 4. This is because
when h is small, it only covers few empty periods with
short length, and the advantage of extra caching is not
obvious. As h becomes larger, the number of covered
empty periods grows, leading to reduced total cost. When

all empty periods are covered by large h, the performance
of ECA becomes stable. In Fig. 9d, the ratios of ECA keep
decreasing and then converging because short empty
periods become fewer when l increases to 0.4.

Additionally, in Figs. 7a, 8a and 10a, we can always
observe that the Reactive approach creates extremely high
total cost and the proposed EMF and ECA perform better
than both Proactive and Reactive strategies. This also vali-
dates the efficiency of the proposed online algorithms.

6.4 Evaluation of Special Case of ECA

Finally, we study the performance of ECA when lengths of
empty periods are exponential distribution.We consider ran-
domly generated network trafficwithme ¼ 1.0 and T ¼ 100.

Fig. 8. Performance of EMF and ECA over OPT-B.

Fig. 9. Performance of EMF and ECA over OPT-C while varying g and h.

Fig. 10. Performance of EMF and ECA over OPT-C while varying l.
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As shown in Fig. 11a, ratio of ECA algorithm increases
as h grows from 0 to 10, which shows the same perfor-
mance with Fig. 7d. In Fig. 11b, we have similar observa-
tion with Fig. 9b because of the same reasons. In Fig. 11c,
we set l ¼ 0.5, and performance ratios are always below
the theoretical bound as g and h changes within [0.5, 0.8]
and [0, 10], respectively. The simulation results also sug-
gest that h shall be set to small values no matter how g

changes.

7 CONCLUSION

In this paper, we studied traffic flow provisioning problem
by formulating it as a minimumweighted flow provisioning
problem with objective of minimizing the total cost of
TCAM occupation and remote packet processing. An effi-
cient heuristic algorithm is proposed to solve this problem
when network traffic is given. We further propose two
online algorithms to approximate the optimal solution
when network traffic information is unknown in advance.
Finally, extensive simulations were conducted to validate
the performance of theoretical analysis of the proposed
algorithms, using the real traffic traces.
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