
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 4, AUGUST 2020 1845

Approximation Algorithms for the Min-Max Cycle
Cover Problem With Neighborhoods

Lijia Deng, Wenzheng Xu , Member, IEEE, Weifa Liang , Senior Member, IEEE, Jian Peng,

Yingjie Zhou , Member, IEEE, Lei Duan , Member, IEEE, and Sajal K. Das , Fellow, IEEE

Abstract— In this paper we study the min-max cycle cover
problem with neighborhoods, which is to find a given number
of K cycles to collaboratively visit n Points of Interest (POIs)
in a 2D space such that the length of the longest cycle among
the K cycles is minimized. The problem arises from many
applications, including employing mobile sinks to collect sensor
data in wireless sensor networks (WSNs), dispatching charging
vehicles to recharge sensors in rechargeable sensor networks,
scheduling Unmanned Aerial Vehicles (UAVs) to monitor disaster
areas, etc. For example, consider the application of employing
multiple mobile sinks to collect sensor data in WSNs. If some
mobile sink has a long data collection tour while the other mobile
sinks have short tours, this incurs a long data collection latency
of the sensors in the long tour. Existing studies assumed that
one vehicle needs to move to the location of a POI to serve it.
We however assume that the vehicle is able to serve the POI
as long as the vehicle is within the neighborhood area of the
POI. One such an example is that a mobile sink in a WSN
can receive data from a sensor if it is within the transmission
range of the sensor (e.g., within 50 meters). It can be seen that
the ignorance of neighborhoods will incur a longer traveling
length. On the other hand, most existing studies only took into
account the vehicle traveling time but ignore the POI service time.
Consequently, although the length of some vehicle tour is short,
the total amount of time consumed by a vehicle in the tour is
prohibitively long, due to many POIs in the tour. In this paper we
first study the min-max cycle cover problem with neighborhoods,
by incorporating both neighborhoods and POI service time into
consideration. We then propose novel approximation algorithms
for the problem, by exploring the combinatorial properties of
the problem. We finally evaluate the proposed algorithms via

Manuscript received June 3, 2019; revised February 22, 2020 and
April 27, 2020; accepted May 31, 2020; approved by IEEE/ACM TRANS-
ACTIONS ON NETWORKING Editor G. Zussman. Date of publication June 16,
2020; date of current version August 18, 2020. The work of Wenzheng
Xu was supported in part by the National Natural Science Foundation of
China (NSFC) under Grant 61602330 and in part by the Sichuan Science
and Technology Program under Grant 2018GZDZX0010, Grant 2018GZ0094,
Grant 2018GZ0093, and Grant 2017GZDZX0003. The work of Weifa Liang
was supported by the Australian Research Council under the Discovery Project
Scheme under Grant DP200101985. The work of Yingjie Zhou was supported
by the NSFC under Grant 61801315. The work of Sajal K. Das was supported
in part by the NSF under Grant CCF-1725755, Grant CNS-1818942, and Grant
CNS-1545050. (Corresponding author: Wenzheng Xu.)

Lijia Deng, Wenzheng Xu, Jian Peng, Yingjie Zhou, and Lei Duan
are with the College of Computer Science, Sichuan University, Chengdu
610065, China (e-mail: denglijia542@163.com; wenzheng.xu3@gmail.com;
jianpeng@scu.edu.cn; yjzhou09@gmail.com; leiduan@scu.edu.cn).

Weifa Liang is with the Research School of Computer Science, The
Australian National University, Canberra, ACT 2601, Australia (e-mail:
wliang@cs.anu.edu.au).

Sajal K. Das is with the Department of Computer Science, Missouri
University of Science and Technology, Rolla, MO 65409 USA (e-mail:
sdas@mst.edu).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TNET.2020.2999630

experimental simulations. Experimental results show that the
proposed algorithms are promising. Especially, the maximum
tour times by the proposed algorithms are only about from 80%
to 90% of that by existing algorithms.

Index Terms— Min-max cycle cover problem with neigh-
borhoods, mobile data collection in WSNs, mobile charging
scheduling in WSNs, multiple UAVs scheduling, approximation
algorithms, traveling salesman problem with neighborhoods.

I. INTRODUCTION

IN THIS paper we study the min-max cycle cover problem
with neighborhoods, which is to find a given number of K

cycles to collaboratively visit n Points of Interest (POIs) in
a two-dimensional Euclidean space [1], [5], [31], [34], [35],
such that the length of the longest cycle among the K cycles is
minimized. In other words, we need to balance the workloads
of the K cycles, without incurring long cycles. The problem
arises from many applications [10], [20], [26], [30]–[32],
[34], [35], [37]. We here briefly introduce its two potential
applications: one is to employ mobile sinks to collect sensory
data in sensor networks; the other is to schedule Unmanned
Aerial Vehicles (UAVs) to monitor a disaster region.

We start with the first application of the problem, that is to
employ mobile sinks to collect sensory data in wireless sensor
networks (WSNs). WSNs have wide applications in smart
cities, data centers, precision agriculture, smart grids, and so
on. A fundamental problem in WSNs is how to efficiently
collect valuable sensing data from sensors. Since sensors may
be sparsely deployed at some strategic locations and may not
be able to communicate with each other directly. An effective
solution to the data collection problem in WSNs is to dispatch
multiple mobile sinks to collect sensing data from sensors [16],
[39], [40]. Fig. 1(a) shows that K = 2 mobile sinks are
employed to collect sensing data along their tours C1 and
C2, respectively. A mobile sink will collect the data from the
sensors in its data collection tour one by one. After finishing
the data collection, the sink will return the base station (BS)
and download the collected data to the BS. It can be seen that if
the data collection tour of some mobile sink is very long, (e.g.,
tour C2 in Fig. 1(a)), there will be a long time delay before
the mobile sink returns to the BS, where the total amount of
time spent by the mobile sink in its tour is dominated by its
traveling time [31]. A long data collection tour incurs a long
data collection latency. However, it is desirable for the BS
to receive as much ‘fresh’ data as possible. For example, in a
sensor network for monitoring the water quality of a reservoir,
where a large area of the reservoir may be contaminated in a
short period [22]. Therefore, the lengths among different data
collection tours must be balanced so that sensing data can be
collected by the BS as soon as possible. Fig. 1(b) demonstrates
two balanced tours.

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Australian National University. Downloaded on August 19,2020 at 00:41:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8396-6825
https://orcid.org/0000-0002-8207-6740
https://orcid.org/0000-0002-1129-0213
https://orcid.org/0000-0001-7254-1832
https://orcid.org/0000-0002-9471-0868

1846 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 4, AUGUST 2020

Fig. 1. The comparison between unbalanced and balanced tour plannings for data collections in WSNs.

We then focus on another application of the min-max cycle
cover problem with neighborhoods in scheduling multiple
Unmanned Aerial Vehicles (UAVs) to monitor disaster areas.
Lightweight drones, such as a DJI phantom 4 Pro, are widely
used in aerial photography, precision agriculture, disaster
rescue, etc [2], [7], [17], [19], [25], [27]. For example, when a
disaster (such as an earthquake or a flooding) occurs, the most
critical issue is to save the people in danger. However, trans-
portation and communication infrastructures in the disaster
zone may have been destroyed already. In this scenario, UAVs
can be used for disaster rescuing, by dispatching them to
fly over the disaster area, taking photos or videos with the
cameras on-board, and transmitting the valuable information
(i.e., photos or videos) to a nearby rescue station [12], [38]
for human decision making. It is desirable to collect the
information of POIs in the disaster area as early as possible,
since rescue operations must be performed very quickly and
efficiently [19]. Therefore, multiple UAVs should be scheduled
to monitor the POIs in a balanced manner.

Notice that there are also many other applications of the
min-max cycle cover problem with neighborhoods, such as
dispatching charging vehicles to recharge sensors in recharge-
able sensor networks [20], [26], [28]–[32], the employment
of autonomous robots for space exploration, undersea work,
marine monitoring, tactile object recognition, facility inspec-
tion, waste managements, etc [18], [33], [35].

Although the min-max cycle cover problem without neigh-
borhoods has attracted a lot of attentions [3], [13], [35], [36],
existing studies did not consider its variants. For example, one
is that they did not consider the neighborhood areas of POIs;
The other is that they did not take the service time of POIs into
account. However, these are critical in practical applications.

We notice that most of existing studies did not consider
the neighborhood areas of POIs. They usually assumed that
a vehicle (e.g., a mobile sink, a charging vehicle or a UAV)
has to move to the location of a POI to serve it. However,
in many applications, the vehicle is able to serve the POI,
even when the vehicle stays at a location in the neighborhood
area of the POI. For example, a mobile sink can collect the
data of a sensor, when the sink is within its communication
range (e.g., within 50 meters of the sensor [24]). The ignorance
of neighborhood areas will incur longer traveling lengths of
vehicles. For example, Fig. 1(b) shows the data collection
tours of two mobile sinks found by existing studies, where
the service neighborhoods of sensors are ignored. In contrast,
a mobile sink is able to receive the data of a sensor when the

sink is within its transmission range. Fig. 1(c) demonstrates
their data collection tours when considering the neighborhoods
of sensors, where a dotted circle represents the communication
area of a sensor [5], [6]. It is clear that the traveling length
of each mobile sink in Fig. 1(c) is much shorter than that
in Fig. 1(b). Shorter data collection tours can reduce not only
the data collection latency but also the energy consumption of
vehicles on traveling.

On the other hand, most existing studies ignored the service
time of POIs. The total time spent by a vehicle in its tour
consists of its traveling time along the tour and service time on
the POIs in the tour. Although existing studies can find tours
for different UAVs with more or less equal traveling lengths,
some tour may contain many POIs than others to be served,
and such the service time on POIs sometimes is comparative
to the vehicle traveling time. For example, in the application
for dispatching charging vehicles to recharge sensors, it takes
substantial amount of time for a vehicle to recharge a sensor
(from 30 minutes to 2 hours) [26], [30]. Therefore, the total
amount of time consumed of one tour by existing studies may
be much longer than that of other tours.

In this paper we study a novel min-max cycle cover problem
with neighborhoods, by incorporating both service neighbor-
hoods and POI service time into consideration. Specifically,
given a positive integer K , the problem is to find K tours to
serve POIs, such that the longest tour time among the K tours
is minimized, where a tour time is composed of the vehicle
traveling time and the service time of POIs in the tour, and
the vehicle can serve a POI when it is at a location in the
neighborhood of the POI.

We consider three different variants of the min-max cycle
cover problem with neighborhoods: (1) A rootless variant,
i.e., each tour does not contain a depot; (2) A single-rooted
variant, i.e., every tour contains a single depot; and (3) a
multi-rooted variant, i.e., different tours must contain different
depots. We will also propose novel approximation algorithms
for each of the three variants.

The novelties of the proposed algorithms for the max-
min cycle cover problem with neighborhoods are as follows.
For the rootless variant, we upper bound the total time of a
tour that visits the neighborhoods in several ‘nearby’ optimal
tours, see Lemma 2 in Section 3.3, where the word ‘nearby’
means that the nearest traveling time between two optimal
tours is no greater than a threshold. For the single-rooted
variant, we show the relationship between the longest time
of serving a single node and the value of the optimal solution,

Authorized licensed use limited to: Australian National University. Downloaded on August 19,2020 at 00:41:10 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: APPROXIMATION ALGORITHMS FOR THE MIN-MAX CYCLE COVER PROBLEM 1847

see Lemma 5 in Section 4.2. Finally, for the multi-rooted
variant, we design a novel tree merging technique so that
different rootless tours can be matched to different roots, see
Section 5.2 and Lemma 6 in Section 5.3.

The main contributions of this paper can be summarized
as follows. Different from most existing studies that neither
considered the service neighborhoods nor the service time
of POIs, in this paper we study the min-max cycle cover
problem with neighborhoods by incorporating these two into
consideration. To the best of our knowledge, we propose the
first approximation algorithms for both rootless and single-
rooted min-max cycle cover problems with neighborhoods,
delivering solutions with the longest tour times being (27+�)·
OPTrootless+c1 ·r and 7.75·OPTs+c2 ·r, respectively, where
� is a given constant with 0 < � ≤ 1, OPTrootless and OPTs

are the optimal solutions to the rootless and single-rooted min-
max cycle cover problems, c1 and c2 are positive constants,
r = R

η , R is the neighborhood radius of each POI, and η is the
vehicle travel speed. We also devise an improved approxima-
tion algorithm for the multi-rooted min-max cycle cover prob-
lem with neighborhoods, delivering an approximate solution
with the longest tour time (28+�)·OPTm+c3 ·r while the best
result for the problem so far is (369+ �) ·OPTm + c�3 · r [16],
where OPTm is the optimal solution to the problem, c3 and c�3
are two positive constants with c3 ≤ c�3, � is a given constant
with 0 < � ≤ 1. We finally evaluate the proposed algorithms
via experimental simulations. Experimental results show that
the proposed algorithms are very promising. Especially,
the longest tour times delivered by the proposed algorithms
are only around 80% to 90% of those by existing algorithms.

The rest of the paper is organized as follows. Section II
introduces preliminaries. Section III, IV, and V propose
approximation algorithms for the three variants of the min-
max cycle cover problems with neighborhoods, respectively.
Section VI evaluates the proposed algorithms through exper-
imental simulations. Section VII reviews related work, and
Section VIII concludes the paper.

II. PRELIMINARIES

A. System Model

Let V be a set of n Points of Interest (POIs) in a two-
dimensional Euclidean space, i.e., V = {v1, v2, . . . , vn}.
Denote by (xi, yi) the coordinate of POI vi with 1 ≤ i ≤ n.
The neighborhood area of a POI vi is represented by a disk
D(vi) that centers at vi with a given radius R, where R is
a given non-negative number. That is, D(vi) is the set of
points (including POI v) with the coordinate (x, y) such that
(x − xi)2 + (y − yi)2 ≤ R2, i.e., D(vi) = {v | (x − xi)2 +
(y − yi)2 ≤ R2, and v is a point with the coordinate (x, y)}.
Notice that any two disks D(vi) and D(vj) may overlap with
each other.

To serve the POIs in V , we assume that there are K vehicles
located at K depots s1, s2, . . . , sK , where vehicle k is at
depot sk with 1 ≤ k ≤ K . Notice that in some applications,
multiple vehicles may be located at a single depot. In this case,
the depot can be treated as multiple ‘virtual’ identical depots
and assume that there is only one vehicle located at a ‘virtual’
depot [31].

We assume that a vehicle can serve a POI vi if it stays at
any location in the neighborhood area D(vi) of vi, and it takes
h(vi) time to serve vi with h(vi) ≥ 0. On the other hand, since
the vehicle has to travel to the neighborhood areas of POIs,

Fig. 2. An example of the network model, where there are 12 POIs
v1, v2, . . . , v12 in a 2D space, and the neighborhood of each POI vi is a
disk D(vi) that centers at vi with a given radius R.

we also assume that it takes l(pi, pj) time from locations pi

to pj , where locations pi and pj are in disks D(vi) and D(vj)
of POIs vi and vj , respectively. To serve the POIs in V by the
K vehicles, we need to partition set V into K disjoint subsets
V1, V2, . . . , VK , and each vehicle serves the POIs in Vk , where
1 ≤ k ≤ K . Let nk = |Vk|, then

∑K
k=1 nk = |V | = n.

The service tour Ck of a vehicle for serving POIs in Vk is
defined as follows. Assume that the vehicle will serve POIs
v1, v2, . . . , vnk

in Vk one by one. The vehicle starts from
depot sk, and moves to a location p1 in the neighborhood
area D(v1) to serve POI v1, then travels from p1 to a location
p2 in D(v2) to serve v2, and so on. It finally returns depot
sk after serving vnk

at pnk
. Therefore, the service tour is

Ck = sk → p1 → p2 → · · · → pnk
→ sk, where location pi

is in the neighborhood D(vi) of POI vi with 1 ≤ i ≤ nk. For
example, Fig. 2 shows the service tours of K = 2 vehicles.

Denote by η the traveling speed of each vehicle. Then,
the traveling time of a vehicle between any two locations pi

and pj is l(pi, pj) = d(pi,pj)
η , where d(pi, pj) is the Euclidean

distance between pi and pj . Let r = R
η , where R is the radius

of each disk.
It can be seen that the total time w(Ck) by a vehicle

in tour Ck consists of its service time for POIs in Vk and
its traveling time along tour Ck , which are

∑nk

i=1 h(vi) and∑nk

i=0 l(pi, pi+1), respectively, i.e., w(Ck) =
∑nk

i=1 h(vi) +∑nk

i=0 l(pi, pi+1), where h(vi) is the time spent by the vehicle
for serving vi and l(pi, pi+1) is the traveling time taken by
the vehicle from locations pi to pi+1 and p0 = pnk+1 = sk.

B. Problem Definitions

In a large scale network, there are many POIs to be served.
If only one vehicle is employed, the service waiting time at
some POIs will be prohibitively long. Therefore, it is desirable
to employ multiple vehicles to serve the POIs, such that the
service time can be significantly shortened.

Given K vehicles, a very important problem is how to
assign n POIs to the K vehicles in a balanced way, such
that the longest tour time among the K vehicle tours is
minimized. Otherwise, some vehicles still have many POIs
to be served, resulting in long waiting times for some POIs,
while the other vehicles have only a few POIs to be served.
The problem is termed as the min-max cycle cover problem
with neighborhoods.

We consider three different variants of the problem. (1) A
rootless variant, i.e., each tour does not contain a depot; (2) A
single-rooted variant, i.e., every tour contains the single depot;
and (3) a multi-rooted variant, i.e., different tours must contain
different depots.

Authorized licensed use limited to: Australian National University. Downloaded on August 19,2020 at 00:41:10 UTC from IEEE Xplore. Restrictions apply.

1848 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 4, AUGUST 2020

The rationale behind the three variants is that, an algorithm
for the rootless variant will be served as a subroutine for
the algorithm for the multi-rooted variant. On the other hand,
when the K vehicles are co-located at the same depot (i.e.,
the single-rooted variant), we can explore special combinato-
rial properties of this variant to devise an improved approxi-
mation algorithm than that for the multi-rooted variant.

We start by defining the problem without depots. Given
n POIs v1, v2, . . . , vn in V and K vehicles in a 2D space,
and the travel speed η of each vehicle, denote by D(vi) the
neighborhood of each vi in V with a given radius R. The
rootless min-max cycle cover problem with neighborhoods is to
find K closed tours C1, C2, . . . , CK , such that the maximum
total consumed time among the K tours, i.e., maxK

i=1{w(Ci)},
is minimized, subject to the constraint that one of the K
vehicles must visit at least one location in the neighborhood
D(vi) of each vi in V , i.e., D(vi) ∩ (∪K

k=1V (Ck)) �= ∅ for
each vi in V . That is, our optimization objective is to

min{ K
max
i=1
{w(Ci)}}, (1)

subject to D(vi) ∩ (∪K
k=1V (Ck)) �= ∅, ∀vi ∈ V (2)

The single-rooted min-max cycle cover problem with neigh-
borhoods can be defined similarly, and the only difference
from the rootless case of the problem is that all the K tours
must contain the same depot s.

We finally extend the single depot case to the multiple
depot case, by considering the problem with K vehicles
located at K different depots s1, s2, . . . , sK . We term this
variant as the multi-rooted min-max cycle cover problem with
neighborhoods.

III. APPROXIMATION ALGORITHM FOR THE ROOTLESS

MIN-MAX CYCLE COVER PROBLEM WITH

NEIGHBORHOODS

In this section, we propose a novel approximation algorithm
for the rootless min-max cycle cover problem with neighbor-
hoods.

A. Algorithm Framework

Given n POIs v1, v2, . . . , vn in a 2D space, a radius R, and
K vehicles, we assume that tours C∗

1 , C∗
2 , . . . , C∗

K form an
optimal solution to the rootless min-max cycle cover problem
with neighborhoods. Also, let OPT be the optimal value of
the optimal solution, i.e., OPT = maxK

k=1{w(C∗
k)}.

The basic idea of the proposed algorithm is that, given an
upper bound B on the optimal value OPT (i.e., B ≥ OPT),
the algorithm will find a solution with no more than K tours
such that the maximum tour time among the K tours is no
more than 27B + 108r, where r = R

η , R is the radius of
each disk and η is the travel speed of each vehicle. Then,
the algorithm can find a lower bound OPT � on OPT through
binary search, in the end the algorithm can find K tours with
the maximum tour time 27 ·OPT � + 108r.

Specifically, we start by estimating an upper bound OPTub

on OPT . We find an approximate tour C that contains each
POI in V . Let OPTub = h(V)+ l(C), where h(V) is the time
spent by the vehicle for serving all POIs in V and l(C) is the
traveling time taken by a vehicle for visiting POIs in V along
C. It can be seen that OPT ≤ OPTub.

Given a guess B of OPT (B may be larger or less than
OPT), assume that there is an algorithm for finding tours

such that the consumed time of each tour is no larger than
27B+108r (which will be shown later), the algorithm for the
rootless min-max cycle cover problem with neighborhoods is
presented in Algorithm 1.

Algorithm 1 Approximation Algorithm for the Root-
less Min-Max Cycle Cover Problem With Neighborhoods
(approAlgNoRoots)

Input: n POIs with their coordinates, the service time h(vi) of
each POI vi, the radius R of each disk, K vehicles, vehicle
travel speed η, and an error threshold � with 0 < � ≤ 1

Output: K tours C1, C2, . . . , CK such that their maximum
tour time is 27 ·OPT + 108r

1: Let lb← 0 and ub← OPTub = h(V) + l(C);
2: Let δ ← �

27 ;
3: while lb(1 + δ) < ub do
4: Let B ← lb+ub

2 ; /* a guess of OPT . */
5: Invoke Algorithm 2 to find, say K �, tours

C1, C2, . . . , CK� with the maximum weight 27B +108r;
6: if K � ≤ K then
7: ub← B; /* the guess B of OPT is too large, reduce

the upper bound ub to B. */
8: else
9: lb← B; /* the guess B of OPT is too small, increase

the lower bound lb to B. */
10: end if
11: end while
12: Let OPT � = ub; /* find a lower bound OPT � on OPT */
13: Invoke Algorithm 2 to find K tours C1, C2, . . . , CK

with their maximum weight 27 ·OPT � + 108r;

B. Algorithm

Given a guess B of OPT , we here find a set of tours
C1, C2, . . . , CK� such that the maximum tour time among the
K � tours is no more than 27B + 108r. We later show that the
number of tours K � is no more than K if B ≥ OPT .

The algorithm consists of three steps. Step one: partition the
set V of POIs into disjoint subsets; Step two: obtain an approx-
imate shortest tour for visiting the neighborhoods of POIs in
each subset; and Step three: split long tours into short tours
with the resulting tour time being no larger than 27B + 108r.

1) Step One: Partition POI Set V Into Disjoint Sub-
sets: Given any two disks D(vi) and D(vj), denote by
l(D(vi), D(vj)) the minimum traveling time between points
in disks D(vi) and D(vj). That is, l(D(vi), D(vj)) =
d(vi,vj)−2R

η if disks D(vi) and D(vj) do not overlap with each
other, where d(vi, vj) is the Euclidean distance between POIs
vi and vj , R is the radius of each disk and η is the travel speed
of the vehicle. Otherwise (D(vi) and D(vj) overlap with each
other), l(D(vi), D(vj)) = 0.

An auxiliary graph G = (V, E) is first constructed, where
V = {v1, v2, . . . , vn}, and there is an edge (vi, vj) in E if the
minimum traveling time between disks D(vi) and D(vj) is no
more than B

2 , i.e., l(D(vi), D(vj)) ≤ B
2 , where 1 ≤ i, j ≤ n.

Assume that there are T connected components
CC1, CC2, . . . , CCT in G, where T ≥ 1. Denote by
V1, V2, . . . , VT the sets of POIs in these T connected
components, respectively. Then,

∑T
t=1 |Vt| = |V |. It can be

Authorized licensed use limited to: Australian National University. Downloaded on August 19,2020 at 00:41:10 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: APPROXIMATION ALGORITHMS FOR THE MIN-MAX CYCLE COVER PROBLEM 1849

Fig. 3. An illustration of the proposed algorithm for the rootless min-max
cycle cover problem with neighborhoods.

seen that, for any two disks D(vi) and D(vj) that centers
at POIs vi and vj , respectively, the minimum traveling time
between them is strictly longer than B

2 if POIs vi and vj are
in two different connected components of G.

2) Step Two: Obtain an Approximate Shortest Tour C�
t for

Visiting the Neighborhoods of POIs in Each Subset Vt: For
each connected component CCt, let Vt = {v1, v2, . . . , vnt}
be the set of POIs in CCt, where nt = |Vt| and 1 ≤ t ≤
T . Recall that (xi, yi) is the coordinate of a POI vi in Vt

and D(vi) is its neighborhood area. The algorithm then finds
an approximate shortest tour C�

t that visits the disks centered
at POIs in Vt by applying an algorithm from [5], such that
w(C�

t) ≤ 6.75 · w(C∗
t) + 20.4r, where C∗

t is a shortest tour.
Let C�

t = p1 → p2 → · · · → pnt → p1, where pi is a
location in the neighborhood D(vi). For example, Fig. 3(a)
shows a tour C�

t for visiting the neighborhoods of 12 POIs.
As a result, the algorithm obtains T tours C�

1, C
�
2, . . . , C

�
T for

the T connected components.
3) Step Three: Split Long Tours Into Short Tours: Having

the T tours C�
1, C

�
2, . . . , C

�
T , if none of them has a tour time

w(C�
t) larger than 27B+108r, it is done. Otherwise, we further

partition those long tours into short tours that the weight of
each short tour is no greater than 27B + 108r as follows.

For each tour C�
t = p1 → p2 → · · · → pnt → p1, we define

the weight of each edge (pi, pi+1) in C�
t as w�(pi, pi+1) =

h(vi)+h(vi+1)
2 + l(pi, pi+1). It can be seen that

w�(C�
t) =

∑

1≤i≤nt

(
h(vi) + h(vi+1)

2
+ l(pi, pi+1))

=
∑

1≤i≤nt

h(vi) +
∑

1≤i≤nt

l(pi, pi+1) = w(C�
t). (3)

Let path P = p1 → p2 → . . . → pnt derived from
C�

t directly. Then, w�(P) ≤ w�(C�
t). Assume that we have

split k paths P1, P2, . . . , Pk from P and the first lk locations
p1, p2, . . . , plk in P are contained in the k paths. Initially,
k = 0 and lk = 0. The (k + 1)th path Pk+1 is plk+1 →
plk+2 → · · · → plk+1 , where the weighted sum w�(Pk+1)
of the edges in Pk+1 is no more than 13.5B + 54r, while
the weighted sum w�(Pk+1 → plk+1+1) of the edges in path
Pk+1 → plk+1+1 is strictly larger than 13.5B + 54r. The
splitting procedure continues until all location nodes in P are
split. Assume that K � paths are obtained from splitting the T
tours C�

1, C
�
2, . . . , C

�
T , where K � ≥ T .

For each obtained path Pk, a tour Ck is constructed from Pk,
by connecting the two end-points of Pk, where 1 ≤ k ≤ K �.

It can be seen that the weight w(Ck) of tour Ck is no more
than 2w�(Pk) ≤ 27B + 108r. Fig. 3(b) shows that three tours
C1, C2, and C3 are split from the tour C�

t in Fig. 3(a). Notice
that although disk D(v5) is visited by both tours C1 and C2

in Fig. 3(b), POI v5 will be served by the vehicle in C1, but
not by the vehicle in C2.

Given any guess B of OPT , the detailed algorithm for
finding, say K �, tours in G with each tour time being no larger
than 27B + 108r is given in Algorithm 2.

Algorithm 2 Algorithm for Finding Tours With Each Tour
Time Being No Larger Than 27B + 108r

Input: n POIs v1, v2, . . . , vn and a guess B of OPT
Output: K � tours C1, C2, . . . , CK� with each tour time being

no larger than 27B + 108r
1: Construct an auxiliary graph G = (V, E), where there is an

edge (vi, vj) in E if the minimum traveling time between
disks D(vi) and D(vj) is no more than B

2 ;
2: Assume that there are T connected components

CC1, CC2, . . . , CCT in G. Denote by V1, V2, . . . , VT the
node sets of the T connected components, respectively;

3: Let P = ∅; /* the set of split paths. */
4: for t← 1 to T do
5: Find an approximate shortest tour C�

t = p1 → p2 →
· · · → pnt → q1 that visits the neighborhood of each
POI in Vt, by applying an algorithm from [5];

6: Split tour C�
t into short subpaths so that the weighted sum

of the edges in each subpath is no greater than 13.5B +
54r, and add these subpaths to P ;

7: end for
8: For each Pk in P , obtain a closed tour Ck from Pk

by connecting the two end points of Pk; Let C =
{C1, C2, . . . CK�}, where K � = |P|.

C. Algorithm Analysis

The key to analyze the approximation ratio of the proposed
algorithm is to show that Algorithm 2 can find no more
than K tours with the maximum weight among the tours no
greater than 27B + 108r if B ≥ OPT .

Recall that C∗
1 , C∗

2 , . . . , C∗
K form an optimal solution to the

problem, and OPT = maxK
i=1{w(C∗

i)}. To this end, we first
show that the POIs served by each optimal tour C∗

i must be
contained in a single connected component CCt at Step 2
of Algorithm 2 if B ≥ OPT , where 1 ≤ t ≤ T . Then,
for each connected component CCt, assume that there are k∗

t
optimal tours contained in CCt, where k∗

t ≥ 1 with 1 ≤ t ≤
T . It is clear that,

∑T
t=1 k∗

t = K . We finally prove that the
number kt of delivered tours from CCt in Algorithm 2 is
no more than k∗

t , i.e., kt ≤ k∗
t . Then, the number of delivered

tours by Algorithm 2 is no more than K , i.e.,
∑T

t=1 kt ≤∑T
t=1 k∗

t = K if B ≥ OPT .
We first show that the POIs served by each optimal tour C∗

i
must be contained in a single connected component CCt.

Lemma 1: The POIs served by each C∗
i among the optimal

K tours must be contained in a single connected component
CCt, where 1 ≤ t ≤ T .

Proof: The proof in contained in Section 1 of the
supplementary materials file. �

Authorized licensed use limited to: Australian National University. Downloaded on August 19,2020 at 00:41:10 UTC from IEEE Xplore. Restrictions apply.

1850 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 4, AUGUST 2020

For each CCt, assume that there are k∗
t of the optimal K

tours contained in CCt. It can be seen that the k∗
t optimal

tours are close to each other, which means that the minimum
traveling time between two of the k∗ optimal tours is no
greater than B

2 . Then,
∑T

t=1 k∗
t = K . Also, denote by C∗

t
the optimal tour for visiting disks that are served in the k∗

t
optimal tours. We bound the total consumed time in C∗

t by
the following lemma.

Lemma 2: The total consumed time w(C∗
t) of C∗

t is no
more than (2k∗

t − 1)B + 8(k∗
t − 1)r if B ≥ OPT , where

r = R
η , R is the radius of each disk and η is the traveling

speed of each vehicle.
Proof: Recall that there are k∗

t optimal tours in CCt.
For the sake of convenience, assume that the k∗

t optimal tours
are C∗

1 , C∗
2 , . . . , C∗

k∗
t
. For each C∗

i , it can be seen that the
minimum traveling time between any two disks visited in C∗

i

is no more than B
2 , by Lemma 1. On the other hand, following

the construction of connected component CCt, there is at least
one disk D(u) visited by C∗

i , and another disk D(v) visited
by another tour C∗

j with j �= i and 1 ≤ i, j ≤ k∗
t , such that

the minimum traveling time l(D(u), D(v)) between them is
no greater than B

2 . For example, Fig. 4(a) shows that there
are k∗

t = 3 optimal tours in a connected component CCt

and Fig. 4(b) demonstrates that the minimum traveling time
l(D(u1), D(v1)) between disk D(u1) in C∗

1 and disk D(v1)
in C∗

2 is no more than B
2 . Similarly, l(D(u2), D(v2)) ≤ B

2 .
Also, assume that line segment uv intersects the two circles
centered at POIs u and v at two points au and bv , respectively.
For example, Fig. 4(b) shows that line segment u1v1 intersects
the circles centered at POIs u1 and v1 at points a1 and
b1, respectively. It can be seen that traveling time l(au, bv)
between points au and bv is equal to l(D(u), D(v)), i.e.,
l(au, bv) = l(D(u), D(v)), if disks D(u) and D(v) do not
overlap with each other; otherwise (disks D(u) and D(v)
overlap), l(D(u), D(v)) = 0 ≤ l(au, av).

Assume that the optimal tour C∗
i serves POI u at location

pu in D(u) while C∗
j serves POI v at location pv in D(v).

We distinguish it into two cases: (i) Disks D(u) and D(v)
overlap with each other, and (ii) D(u) and D(v) do not
overlap. We show that the traveling time l(pu, pv) between
locations pu and pv is no more than B

2 + 4r as follows.
Case (i) where disks D(u) and D(v) overlap with each

other. It can be seen that the traveling time l(pu, pv) between
locations pu and pv is no more than 4r, see Fig. 4(c), i.e.,

l(pu, pv) ≤ 4r ≤ 4r +
B

2
, as B ≥ 0. (4)

Case (ii) where D(u) and D(v) do not overlap with each
other, see Fig. 4(d). The traveling time l(pu, pv) between pu

and pv is upper bounded by

l(pu, pv)
≤ l(pu, u) + l(u, au) + l(au, av) + l(av, v) + l(v, pv),

by the triangle inequality, e.g., see Fig. 4(d),

≤ r + l(u, au) + l(au, av) + l(av, v) + r,

as pu is in D(u) and pv is in D(v),
= r + r + l(au, av) + r + r,

≤ B

2
+ 4r, as l(au, av) = l(D(u), D(v)) ≤ B

2
(5)

By combining Eq.(4) and Eq.(5), we have l(pu, pv) ≤ 4r+ B
2 .

Fig. 4. An illustration of Lemma 2.

A single tour Ct that visits the disks centered at POIs in
CCt can be obtained, by adding 2(k∗

t − 1) edges with the
weight of each edge is no more than B

2 +4r, as the degree of
each location in Ct is a positive even number. For example,
Fig. 4(e) illustrates a tour Ct by connecting k∗

t = 3 optimal
tours with 2(3− 1) = 4 edges.

The weight of tour Ct is no more than

w(Ct) ≤
k∗

t∑

i=1

w(C∗
i) + 2(k∗

t − 1)(
B

2
+ 4r)

≤ k∗
t ·OPT + 2(k∗

t − 1)(
B

2
+ 4r),

= (2k∗
t − 1)B + 8(k∗

t − 1)r, as OPT ≤ B. (6)

Recall that C∗
t is an optimal tour for visiting the disks centered

at POIs in CCt. We have that w(C∗
t) ≤ w(Ct) ≤ (2k∗

t−1)B+
8(k∗

t − 1)r. The lemma then follows. �
Lemma 3: Algorithm 2 can find no more than K tours

with the maximum weight among the K tours being 27B +
108r if B ≥ OPT .

Proof: Recall that there are k∗
1 , k∗

2 , . . . , k∗
T optimal

tours in the T connected components, respectively. We show
that the number kt of delivered tours from each CCt by
Algorithm 2 is no more than k∗

t . Then,
∑T

t=1 kt ≤∑T
t=1 k∗

t = K . For each CCt, Algorithm 2 can find an
approximate tour C�

t for visiting the disks centered at POIs in
CCt, such that w(C�

t) ≤ 6.75 ·w(C∗
t)+20.4r, by following a

Authorized licensed use limited to: Australian National University. Downloaded on August 19,2020 at 00:41:10 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: APPROXIMATION ALGORITHMS FOR THE MIN-MAX CYCLE COVER PROBLEM 1851

recent work [5], where C∗
t is the optimal tour. Then, the weight

of path P obtained by Algorithm 2 is

w�(P) ≤ w�(C�
t) = w(C�

t),
≤ 6.75 · w(C∗

t) + 20.4r

≤ 6.75((2k∗
t − 1)B + (8k∗

t − 8)r) + 20.4r

≤ (13.5B + 54r)k∗
t , as B ≥ 0 and r ≥ 0. (7)

It can be seen that the number kt of split paths from
path P by Algorithm 2 is no more than � w�(P)

13.5B+54r
 ≤
� (13.5B+54r)k∗

t

13.5B+54r
 ≤ k∗
t . Therefore, the number of tours

delivered by Algorithm 2 is no more than
∑T

t=1 kt ≤∑T
t=1 k∗

t = K , as each tour is constructed from a split path
by connecting its two end-points.

Finally, the weight of each tour Ci by Algorithm 2 is
no more than 2(13.5B+54r) = 27B+108r. The lemma then
follows. �

Theorem 1: Given n POIs with their coordinates, the ser-
vice time h(vi) of each POI vi, the radius R of each disk, K
vehicles and the vehicle travel speed η, there is an approxima-
tion algorithm, i.e., Algorithm 1, for the rootless min-max
cycle cover problem with neighborhoods, which finds no more
than K tours with the maximum tour weight among the tours
being no larger than (27 + �) · OPT + 108r, where � is a
given constant with 0 ≤ � ≤ 1, OPT is the value of an
optimal solution and r = R

η .
Proof: Following Lemma 3, Algorithm 2 can find no

more than K tours with the maximum tour weight no more
than 27 B + 108r if B ≥ OPT . Recall that Algorithm 1
finds an estimate OPT � on the optimal value OPT by a binary
search. When the while loop in Algorithm 1 terminates,
we have ub ≤ (1+δ)lb, which means that we find at least K+1
tours with the guess B (= lb) on the optimal solution, while we
find no more than K tours when B = ub. Following Lemma 3,
we know that lb < OPT ; otherwise (lb ≥ OPT), we can
find no more than K tours with the guess B = lb. Following
Step 12 of Algorithm 1, we know that OPT � = ub ≤
(1+δ)lb < (1+δ)OPT . Therefore, the maximum tour weight
among the found tours at Step 13 of Algorithm 1 is no
more than 27 · OPT � + 108r ≤ 27(1 + δ)OPT + 108r =
(27 + �) · OPT + 108r, where δ = �

27 . The theorem then
follows. �

IV. APPROXIMATION ALGORITHM FOR THE

SINGLE-ROOTED MIN-MAX CYCLE COVER

PROBLEM WITH NEIGHBORHOODS

In this section, we devise a novel approximation algorithm
for the single-rooted min-max cycle cover problem with neigh-
borhoods in a 2D space.

A. Algorithm

The basic idea of the proposed algorithm is that it first finds
a single approximate tour C� for the Traveling Salesman Prob-
lem with Neighborhoods (TSPN), which is to find a shortest
tour, such that each disk centered at a node with a given radius
is visited by the tour. The algorithm then partitions tour C into
K balanced, disjoint subtours C1, C2, . . . , CK .

Unlike the rootless min-max cycle cover problem with
neighborhoods, the single-rooted problem considered in this
section assumes that each found tour must contain a single
depot s.

Fig. 5. An illustration of the proposed algorithm for the single-rooted min-
max cycle cover problem with neighborhoods.

1) Step One: Obtain an Approximate Tour C�: We first
obtain an approximate tour C� = s → p1 → p2 → · · · →
pn → s that visits depot s and the neighborhood of each disk
D(vi), by applying an algorithm from [5], see Fig. 5(a), where
pi is a location in disk D(vi).

2) Step Two: Split the Long Tour Into Short Tours: We split
tour C� into K subtours C1, C2, . . . , CK with each rooted at
depot s. Notice that the split procedure here is totally different
from the one in the previous section (see Algorithm 2
in Section III-B.3). Recall that the total time w(C�)
spent by a vehicle in tour C� consists of its total service time
for the n POIs v1, v2, . . . , vn and its traveling time in tour
C�, which are

∑n
i=1 h(vi) and

∑n
i=0 l(pi, pi+1), respectively.

Then w(C�) =
∑n

i=1 h(vi) +
∑n

i=0 l(pi, pi+1).
We define the weight of edge (pi, pi+1) as w�(pi, pi+1) =

h(vi)+h(vi+1)
2 +l(pi, pi+1). It can be seen that w�(C�) = w(C�)

by Eq.(3).
On the other hand, denote by cmax the longest time for

serving only one POI in tour C, i.e, cmax = maxpi∈P {h(vi)+
2l(pi, s)}, where P = {p1, p2, . . . , pn}, and POI vi is served
at location pi.

We split tour C� into K single-rooted tour C1, C2, . . . , CK

by the edge weight w�(pi, pi+1) and cmax as follows. We first
find K − 1 special locations pl1 , pl2 , . . . , plK−1 in tour C�,
where pli is the last location along tour C such that the total
weight of the path from s to pli along C� is no more than wi =
i
K (w�(C�) − cmax) + cmax

2 , but the total weight of the path
from s to pli+1 is strictly larger than wi, where 1 ≤ i ≤ K−1.

We construct subtours C1, C2, . . . , CK with the K−1 loca-
tions pl1 , pl2 , . . . , plK−1 , where C1 is obtained by connecting
the last location pl1 of path s → p1 → p2 → · · · → pl1 to
depot s, i.e., C1 = s → p1 → p2 → · · · → pl1 → s; Ci

(2 ≤ i ≤ K − 1) is derived from adding path pli−1+1 →
· · · → pli with two edges (s, pli−1+1) and (pli , s), i.e., Ci =
s → pli−1+1 → · · · → pli → s; and the last subtour CK is
obtained by adding path plK−1+1 → · · · → pn → s with one
edge (s, plK−1+1), i.e., CK = s→ plK−1+1 → · · · → pn → s.
For example, Fig. 5(b) shows that tour C� is spit into K = 3
subtours C1, C2, and C3.

The algorithm for the single-rooted min-max cycle
cover problem with neighborhoods is referred to as Algo-
rithm approAlgOneRoot.

B. Algorithm Analysis

In the following, we first prove that the consumed time
of each obtained subtour Ci (1 ≤ i ≤ K) is no more than

Authorized licensed use limited to: Australian National University. Downloaded on August 19,2020 at 00:41:10 UTC from IEEE Xplore. Restrictions apply.

1852 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 4, AUGUST 2020

1
K (w(C�)−cmax)+cmax. We then bound the weight of cmax.
We finally analyze the approximation ratio of the proposed
algorithm.

Lemma 4: Algorithm approAlgOneRoot can find a
solution with no more than K subtours and the consumed time
of each subtour Ci does not exceed 1

K (w(C�)−cmax)+cmax,
where cmax = maxpi∈P {h(vi) + 2 · l(pi, s)}, h(vi) is the
service time of POI vi, pi is the location where vi is served
by a vehicle in the neighborhood of vi, l(pi, s) is the traveling
time between pi and the root s, and 1 ≤ i ≤ K .

Proof: The proof is contained in Section 2 of the supple-
mentary materials file. �

We bound the weight of cmax by the following lemma.
Lemma 5: Assume that tours C∗

1 , C∗
2 , . . . , C∗

K form an opti-
mal solution to the single-rooted min-max cycle cover problem
with neighborhoods. Let OPT be the optimal value of the
problem, i.e., OPT = maxK

i=1{w(C∗
i)}. Then, we have

cmax ≤ OPT+4r, where cmax = maxpi∈P {h(vi)+2l(pi, s)}
with P = {p1, p2, . . . , pn}, pi is in disk D(vi), r = R

η , R
is the radius of each disk and η is the travel speed of each
vehicle.

Proof: Recall that cmax is the longest time for serving
any POI vi in V , where vi is served at a location pi in disk
D(vi). Let pi be such a location with h(vi)+2l(pi, s) = cmax.
Denote by p∗i the service location for POI vi in disk D(vi) in
the optimal solution. Then, the traveling time between pi and
p∗i is no larger than 2r, as both pi and p∗i are in disk D(vi).
We then have

cmax = h(vi) + 2l(s, pi),

≤ h(vi) + 2(l(s, p∗i) + l(p∗i , pi)),

≤ h(vi) + 2(l(s, p∗i) + 2r), as l(p∗i , pi) ≤ 2r,

≤ OPT + 4r, as OPT ≥ h(vi) + 2l(s, p∗i). (8)

Therefore, we have cmax ≤ OPT + 4r. �
Theorem 2: Given n POIs v1, v2, . . . , vn in a 2D space,

a radius R, K vehicles located at a depot s initially, and
the travel speed η, there is an approximation algorithm for
the single-rooted min-max cycle cover problem with neigh-
borhoods, and the maximum tour time in its solution is no
more than 7.75 · OPT + 20.4r, where OPT is the optimal
value for the problem and r = R

η .
Proof: Recall that, we have w(C�) ≤ 6.75w(C∗)+ 20.4r

by the work in [5], where w(C�) and w(C∗) are the total
weight of the delivered tour C� and the optimal value of tour
C∗ for the problem, respectively.

Also, recall that OPT is the optimal value for the single-
rooted min-max cycle cover problem with neighborhoods, and
C∗

1 , C∗
2 , . . . , C∗

K form an optimal solution to the problem.
Then, OPT = maxK

i=1{w(C∗
i)}.

Since each tour C∗
i is rooted at depot s, we can con-

struct a single tour CN that covers all neighborhoods
D(v1), D(v2), . . . , D(vn) and s from the K optimal tours
C∗

1 , C∗
2 , . . . , C∗

K , and the total consumed time in tour CN is no
more than w(CN) ≤∑K

i=1 w(C∗
i) ≤ K ·OPT . On the other

hand, since C∗ is the optimal solution to the TSPN problem,
we know that

w(C∗) ≤ w(CN) ≤ K ·OPT. (9)

In the following, we bound the total consumed time in each
split subtour by Algorithm approAlgOneRoot.

K
max
i=1
{w(Ci)}

≤ 1
K

w(C�) + (1− 1
K

)cmax, by Lemma 4,

≤ 1
K

(6.75w(C∗) + 20.4r) + (1− 1
K

)cmax

≤ 1
K

(6.75w(C∗) + 20.4r) + (1− 1
K

)(OPT + 4r),

as cmax ≤ OPT + 4r by Lemma 5,

=
6.75
K

w(C∗) +
20.4r

K
+ (1 − 1

K
)OPT + 4r − 4r

K
,

≤ 6.75
K
·K ·OPT +

16.4r

K
+(1− 1

K
)OPT +4r, by Eq.(9)

≤ 7.75 ·OPT + 20.4r, as K ≥ 1. (10)

The theorem then follows. �

V. APPROXIMATION ALGORITHM FOR THE

MULTI-ROOTED MIN-MAX CYCLE COVER

PROBLEM WITH NEIGHBORHOODS

In this section, we deal with the multi-rooted min-max cycle
cover problem with neighborhoods, which is to find K tours
C1, C2, . . . , CK to collaboratively visit the neighborhoods
D(v1), D(v2), . . . , D(vn) of n POIs v1, v2, . . . , vn in a 2D
space, such that the longest consumed time among the K
tours, i.e., maxK

i=1{w(Ci)}, is minimized, subject to that tour
Ci must contain depot si, where the consumed time of tour
Ci consists of the time for serving the POIs and the traveling
time spent by a vehicle in the tour and 1 ≤ i ≤ K .

A. The Basic Idea

Assume that tours C∗
1 , C∗

2 , . . . , C∗
K form an optimal solution

to the problem, where tour C∗
i contains depot si with 1 ≤

i ≤ K . Denote by OPTm the optimal value of the problem,
i.e., OPTm = maxK

i=1{w(C∗
i)}.

The basic idea of the proposed algorithm is that, given an
upper bound B on OPTm, it first finds K � (≤ K) rootless
tours that only visit disks D(v1), D(v2), . . . , D(vn) of the n
POIs, which means that each tour does not necessarily contain
any depot. It then checks whether there is a matching between
the tours and the depots. If yes, it obtains K � rooted tours,
by connecting each tour to its matched depot; otherwise, it
merges some rootless tours in a novel way, such that less
than K � resulting tours are obtained. This merge procedure
continues until each tour is matched to a depot.

B. Algorithm

Recall that OPT is the optimal value of the optimal
solution for the rootless min-max cycle cover problem with
neighborhoods. It can be seen that the optimal value OPTm

for the multi-rooted version of the problem is no less than
OPT , i.e., OPTm ≥ OPT , since any feasible solution C� =
{C�

1, C
�
2, . . . , C

�
K} can be obtained for the rootless problem,

where C�
i is constructed by shortcutting the depot si in C∗

i .
Given an upper bound B on OPTm, in the following we

show that there are no more than K rooted tours covering all
POIs such that the maximum tour weight among the tours is
no more than 28B + 112r.

Authorized licensed use limited to: Australian National University. Downloaded on August 19,2020 at 00:41:10 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: APPROXIMATION ALGORITHMS FOR THE MIN-MAX CYCLE COVER PROBLEM 1853

Fig. 6. An illustration of the proposed algorithm for the multi-rooted min-
max cycle cover problem with neighborhoods.

We first find K � (≤ K) rootless tours C1, C2, . . . , CK�

with the maximum tour weight being no more than 27B +
108r, by invoking Algorithm 2, since B ≥ OPTm ≥
OPT . Denote by C the set of these K � tours, i.e., C =
{C1, C2, . . . , CK�}.

For each rootless tour Ci, let Ci = p1 → p2 → · · · →
pni → p1, where pk in Ci is the service location for some
POI, and 1 ≤ k ≤ ni. Denote by l(Ci, sj) the minimum
traveling time between tour Ci and depot sj , i.e., l(Ci, sj) =
minni

k=1{ d(pk,sj)
η }, where d(pk, sj) is the Euclidean distance

between location pk and depot sj , and η is the traveling speed
of a vehicle.

We then construct a bipartite graph Gb = (U ∪S, Eb) from
the K � tours and the K depots, see Fig. 6(a), where each
node ui ∈ U represents a tour Ci with 1 ≤ i ≤ K � (ui

is referred to as a tour node), and S is the set of depots,
i.e., S = {s1, s2, . . . , sK}. There is an edge (ui, sj) in Eb

between a tour node ui and a depot sj if the minimum
traveling time l(Ci, sj) between them is no larger than B

2 +2r,
i.e., l(Ci, sj) ≤ B

2 + 2r.
A maximum matching M in graph Gb can be found. We

distinguish our discussion into two cases. Case (i): each tour
node ui (representing tour Ci) is matched to a depot sj in M ;
and Case (ii): there is at least one node ui that has not been
matched with any depot.

For Case (i) where each node ui (or tour Ci) is matched
to a depot sj , we can obtain K � (≤ K) rooted tours
Cr

1 , Cr
2 , . . . , Cr

K� as follows. Recall that Ci = p1 → p2 →
· · · → pni → p1. For the sake of convenience, assume that p1

is the nearest location to depot sj among the ni locations in Ci,
i.e., p1 = argminni

k=1{d(pk, sj)}. Then, l(p1, sj) ≤ B
2 + 2r,

since tour Ci is matched to sj . We obtain a rooted tour Cr
i

from Ci, by replacing the last edge (pni , p1) in Ci with two
edges (pni , sj) and (sj , p1), i.e., Cr

i = p1 → p2 → · · · →
pni → sj → p1. We later show that the weight of tour Cr

i is
no more than 28B + 112r, i.e., w(Cr

i) ≤ 28B + 112r.
For Case (ii) where there is at least one tour node ui in

Gb that does not match to any depot. We merge some of the
K � rootless tours to obtain less than K � resulting tours. The
detailed merge procedure is as follows.

We first find a maximal ui-rooted tree TA in Gb, so that
each path starting at node ui and ending at any leaf node in
TA is an augmenting path, where an augmenting path is such
a path that consists of unmatched edges and matched edges

alternatively [11]. It can be seen that tree TA can be found,
by applying Depth-First Search (DFS) starting from node ui.
Denote by TA = (UA∪SA, EA) the found tree, where UA and
SA are the sets of tour nodes and depots in TA, respectively,
and EA is the set of edges in TA. For example, Fig. 6(b) shows
a found tree TA.

Tree TA has the following two important properties: (i) The
number of tour nodes is one more than the number of depots
in tree TA (i.e., |UA| = |SA|+ 1) and |SA| ≥ 1. For example,
the numbers of tour nodes and depots in Fig. 6(b) are 5 and 4,
respectively. (ii) Assume that the tour nodes in UA represent
n�

U tours C1, C2, . . . , Cn�
U

, where n�
U = |UA|. For each disk

D(v) visited by one of the n�
U tours, assume that D(v) is

visited by an optimal tour C∗
k that contains depot sk, where

D(v) is the disk that centers at POI v. Then, depot sk must
be contained in set SA if B ≥ OPTm.

The aforementioned two properties imply that the disks
visited by the n�

U tours C1, C2, . . . , Cn�
U

are visited by
only n�

S = |SA| (= n�
U − 1 optimal rooted tours for the

problem. We then can find no more than n�
S rootless tours

C�
1, C

�
2, . . . , C

�
n�

S
with each having a weight no more than

27B + 108r, such that the visited disks by the n�
U tours

C1, C2, . . . , Cn�
U

are also visited by the n�
S tours, by invoking

Algorithm 2, due to B ≥ OPTm ≥ OPT . We then
replace the n�

U tours in C with the newly n�
S tours, i.e., let

C� = (C \ {C1, C2, . . . , Cn�
U
})∪ {C�

1, C
�
2, . . . , C

�
n�

S
}. It can be

seen that the number of tours in C� is one less than the number
in C, i.e., |C�| = |C| − 1.

Similar to the construction of bipartite graph Gb, we then
construct another bipartite graph G� = (U � ∪ S, E�) from
the tours in C� and the K depots and see whether each
tour in C� can be matched to a depot in S. If yes, done.
Otherwise, the tour merging procedure continues until each
tour is matched to a depot.

The algorithm for the multi-rooted min-max cycle
cover problem with neighborhoods is referred to as
Algorithm approAlgMultiRoots.

C. Algorithm Analysis

The key to the analysis of the approximation ratio of the
proposed algorithm is to show that the solution delivered by
the algorithm contains no more than K rooted tours, and the
maximum tour weight among the tours is no more than 28B+
112r if B ≥ OPTm.

We first show important properties of tree TA.
Lemma 6: Assume that a tour node ui is not matched to

any depot in the maximum matching M of graph Gb =
(U ∪S, Eb). Construct a maximal ui-rooted tree TA = (UA ∪
SA, EA) in Gb, so that each path from node ui to any leaf node
in tree TA is an augmenting path, where UA ⊆ U , SA ⊆ S,
and EA ⊆ Eb. We have that

(i) each leaf node in TA is matched in M ;
(ii) each leaf node in TA is a tour node, not a depot node;

(iii) there is at least one depot in set SA, i.e., |SA| ≥ 1.
(iv) The number of tour nodes is one more than the number

of depots in tree TA, i.e., |UA| = |SA|+ 1.
(v) Assume that the tour nodes in UA represent n�

U tours
C1, C2, . . . , Cn�

U
, where n�

U = |UA|. For each disk D(v)
visited by one of the n�

U tours, assume that D(v) is
visited by an optimal tour C∗

k that contains depot sk,
where D(v) is the disk that centers at POI v. Then,
depot sk must be contained in set SA if B ≥ OPTm.

Authorized licensed use limited to: Australian National University. Downloaded on August 19,2020 at 00:41:10 UTC from IEEE Xplore. Restrictions apply.

1854 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 4, AUGUST 2020

Proof: It can be seen that the first three claims holds,
see Fig. 6, and their proofs can be found in Section 3 of the
supplementary materials file. In the following we show the
rest claims.

We now show claim (iv) that the number of tour nodes is
one more than the number of depots in tree TA, i.e., |UA| =
|SA|+1. In fact, we show a stronger claim. That is, for any ui-
rooted subtree T �

A = (U �
A∪S�

A, E�
A) of tree TA, such that each

leaf in subtree T �
A is a tour node, we have |U �

A| = |S�
A|+ 1.

We show the claim by an induction on the number of tour
nodes in U �

A as follows.
It is obvious that the claim is true when subtree T �

A consists
of only a single node ui, since ui is tour node and |U �

A| = 1
and |S�

A| = 0.
We assume that the claim holds when there are n�

U tour
nodes in a subtree of TA. We consider the case where there
are n�

U +1 tour nodes in a subtree T �
A = (U �

A∪S�
A, E�

A) of tree
TA, where each leaf in T �

A is a tour node and |U �
A| = n�

U +1.
There must be a leaf node u in T �

A, such that it is matched in
M , since each tour node except ui in TA is matched and there
are at least two tour nodes in T �

A. It can be seen that node u
is matched to its parent node su in T �

A, where su is a depot.
Let u� be the parent of su in tree T �

A, where u� is a tour node.
We construct a graph T �� = (U ��

A ∪ S��
A, E��

A) from tree T �
A, by

removing both nodes u and su, and edges (u, su) and (su, u�)
from T �

A. It can be seen that graph T ��
A is a tree, since node u is

a leaf and su has only one child in tree T �
A, due to the fact that

su can be matched to only one node, i.e., node u. Following
the assumption that claim (iv) holds for a subtree T ��

A of T �
A,

we know that |U ��
A| = |S��

A| + 1. Since U �
A = U ��

A ∪ {u} and
S�

A = S��
A ∪{su}, we have |U �

A| = |U ��
A|+ 1 = |S��

A|+ 1 + 1 =
|S�

A|+1. Claim (iv) then follows, since TA is a subtree of itself.
We finally prove claim (v) that depot sk must be in SA by

contradiction. Suppose that sk is not in SA. Assume that disk
D(v) is visited by a tour C of the n�

U tours, and a node u in
tree TA = (UA ∪SA, EA) represents tour C. Since disk D(v)
is visited by an optimal tour C∗

k that contains depot sk, the
minimum traveling time l(D(v), sk) between disk D(v) and
depot sk must be no more than B

2 , as B ≥ OPTm ≥ w(C∗
k).

Then, the minimum traveling time l(C, sk) between tour C
and depot sk is no larger than B

2 + 2r between node u
(representing tour C) and depot sk in graph Gb. We distinguish
our discussion into three cases. Case (1): depot sk is not
matched to any node in M ; Case (2): depot sk is matched to a
tour node u� in Gb, but u� is not in tree TA, i.e., u� ∈ U \UA;
and Case (3): depot sk is matched to a tour node u� in Gb,
and u� is in tree TA, i.e., u� ∈ UA. In the following, we show
that none of the three cases is possible.

We start with Case (1) by contradiction. Suppose that case
(1) is possible. Consider the alternating path Pui,u from ui to u
in tree TA. It can be seen that node u is matched to its parent
node in TA, and the parent is the last second node in path
Pui,u. Then, path Pui,u → sk in G is also an augmenting path
and both the first node ui and the last node sk are not matched.
A matching M � can be constructed from path Pui,u → sk and
M such that the number of matched edges in M � is one more
than the number in M (i.e., |M �| = |M | + 1), by following
Lemma 1 in [11]. This however contradicts that M is the
maximum matching. Thus, Case (1) is impossible.

We then prove Case (2) that depot sk is matched to a tour
node u� in U \ UA is impossible. A tree T �

A from TA can be
obtained, by adding both edges (u, sk) and (sk, u�). Consider
the augmenting path Pui,u from ui to u in tree TA. It can

be seen that path Pui,u → sk → u� is also an augmenting
path. TA is a proper subtree of T �

A, which contradicts that TA

is the maximal ui-rooted tree in G such that the path from
ui to each leaf is an augmenting path. Therefore, Case (2) is
impossible.

We finally show Case (3) that depot sk is matched to a tour
node u� in UA is impossible. Following the construction of
tree TA. It can be seen that each tour node uj except the tree
root ui is matched to a depot sk� in tree TA. Then, tour node
u� is matched to both depots sk� and sk in M , where sk� is
in tree TA while sk is not in TA. This however contradicts
the definition of a matching, in which tour node u� can be
matched to no more than one depot. Therefore, Case (3) is
also impossible.

By combining the above discussions, the assumption that
sk is not in SA is false. Claim (v) then follows. �

Lemma 7: Algorithm approAlgMultiRoots can
deliver no more than K rooted tours such that the maximum
tour weight is 28B + 112r, if B ≥ OPTm.

Proof: Since B ≥ OPTm ≥ OPT , the proposed
algorithm can find K �(≤ K) rootless tours by invoking
Algorithm 2, and let C = {C1, C2, . . . , CK�} be the set of
the K � tours, where OPT is the optimal value for the rootless
version of the problem. If each tour in C is matched to a depot
we then have a set of no more than K rooted tours in Cr.
Otherwise (at least one tour Ci in C is not matched), following
Lemma 6, the disks visited by the n�

U tours C1, C2, . . . , Cn�
U

are visited by only n�
S = |SA| (= n�

U − 1) optimal rooted
tours for the problem. Then, the proposed algorithm will find
no more than |SA| rootless tours, and the updated rootless
tours in C obtained is no more than K � − 1. If each resulting
rootless tour in C is matched to a depot, done. Otherwise,
we continue to obtain another set of updated rootless tours
and the number of tours is decreased by one. Notice that the
algorithm must stop, as the number of tours in C decreases by
one at least after each time. Therefore, the proposed algorithm
obtains no more than K rooted tours if B ≥ OPTm.

It can be seen that the weight of each rooted tour Cr
i is no

greater than 27B + 108r + 2 · (B
2 + 2r) ≤ 28B + 112r. �

Theorem 3: Given n POIs with their coordinates, the ser-
vice time h(vi) of each POI vi, the radius R of each disk, K
vehicles located at K depots s1, s2, . . . , sK , respectively, and
the travel speed η of each vehicle, there is an approximation
algorithm for the multi-rooted min-max cycle cover problem
with neighborhoods, which finds an approximate solution with
no more than K rooted tours with the maximum tour weight
among the tours no larger than (28+�) ·OPTm+112r, where
� is given constant with 0 < � ≤ 1, OPTm is the value of the
optimal solution and r = R

η .
Proof: Its proof is similar to the one in Theorem 1,

omitted. �

VI. PERFORMANCE EVALUATION

A. Simulation Environment

We consider the application of the min-max cycle cover
problem with neighborhoods in scheduling multiple mobile
sinks to collect sensing data in WSNs. We assume that the
network consists of from 100 to 500 sensors that are deployed
in a 1 km× 1 km square area [30]. We also assume that the
number of mobile sinks K varies from 1 to 5 [31]. To collect
sensing data from a sensor by a mobile sink, the mobile sink
needs to move to a location within the transmission range

Authorized licensed use limited to: Australian National University. Downloaded on August 19,2020 at 00:41:10 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: APPROXIMATION ALGORITHMS FOR THE MIN-MAX CYCLE COVER PROBLEM 1855

R of the sensor, e.g., R = 50 m [24]. The traveling speed
of each mobile sink is η = 1 m/s. Also, the service time
h(v) for collecting data from a sensor v is randomly drawn
from an interval [0, 30] seconds. For the single-rooted min-
max cycle cover problem with neighborhoods, the depot is
located at the center of the monitoring area. On the other
hand, for the multi-rooted min-max cycle cover problem with
neighborhoods, the K depots are randomly deployed in the
network.

To compare the performance of the proposed algo-
rithms approAlgNoRoots, approAlgOneRoot, and
approAlgMultiRoots for rootless, single-rooted, and
multi-rooted min-max cycle cover problems with neighbor-
hoods, we consider existing algorithms as follows.

First, for the rootless min-max cycle cover problem with
neighborhoods, we compare our algorithm against algorithms
rootlessNoNei-metric and rootlessNoNei-Eu
in [35], which deliver 5 + � and 4 + � approximate solutions
to the rootless min-max cycle cover problems without
neighborhoods in a generic metric space and a Euclidean
space, respectively, where � is a given constant with
0 < � ≤ 1.

Second, for the single-rooted min-max cycle cover problem
with neighborhoods, we compare our algorithm against two
existing algorithms: Algorithm singleNoNei that does not
consider neighborhoods in [9]; and Algorithm singleNei
in [16], which considers service neighborhoods and the longest
tour time is (369+�)·OPTs+c·r, where OPTs is the optimal
value of the problem and c is constant.

Finally, for the multi-rooted min-max cycle cover
problem with neighborhoods, we compare our algorithm
against the following three existing algorithms. The first
two are Algorithm multiNoNei-metric in [31] and
Algorithm multiNoNei-Eu in [35], which deliver 7 + �
and 5 + � approximate solutions to the problem without
neighborhoods in a metric space and a Euclidean space,
respectively. The other is Algorithm multiNei in [16],
which takes service neighborhoods into account, and the
longest tour time is 369 ·OPTm + c · r, where OPTm is the
optimal value of the problem.

B. Algorithm Performance

We first evaluate the algorithm performance for the rootless
min-max cycle cover problem with neighborhoods. Fig. 7(a)
shows the performance of different algorithms by varying the
network size n from 100 to 500, while keeping the number of
vehicles K at 5, from which it can be seen that the maximum
tour time by each algorithm increases with the growth of the
network size n, as more POIs need to be visited. Fig. 7(a) also
demonstrates that the maximum tour time by the proposed
algorithm approAlgNoRoots is only from 80% to 90%
of that by algorithm rootlessNoNei-Eu. For example,
the maximum tour times by algorithms approAlgNoRoots,
rootlessNoNei-metric and rootlessNoNei-Eu are
about 4,900, 6,200, and 6,000, seconds, respectively, when the
network size n = 500. On the other hand, Fig. 7(b) plots the
performance of the three comparison algorithms by varying
the number of vehicles K from 1 to 5, when n = 500, from
which it can be seen that the maximum tour time by each of the
three algorithms decreases very quickly when more vehicles
are deployed. Fig. 7(b) also shows that the maximum tour time
by the proposed algorithm approAlgNoRoots is about 80%
of those by the other two algorithms.

Fig. 7. Performance of different algorithms for the rootless min-max cycle
cover problem with neighborhoods.

Fig. 8. Performance of different algorithms for the single-rooted min-max
cycle cover problem with neighborhoods.

We then study the performance of different algorithms
for the single-rooted min-max cycle cover problem with
neighborhoods. Fig. 8(a) shows that the maximum tour
time by the proposed algorithm approAlgOneRoot is
much shorter than those by algorithms singleNoNei
and singleNei. For example, the maximum tour times
by algorithms approAlgOneRoot, singleNoNei and
singleNei are 5,800, 6,800, and 6,500 seconds, respec-
tively when n = 500. The rationale behind the algorithm
performance is that, algorithm singleNoNei does not take
the service neighborhoods of POIs into account. On the
other hand, although algorithm singleNei considers such
neighborhoods, it assumes that the K vehicles are initially
located at different depots [16]. In contrast, the proposed
algorithm approAlgOneRoot explores the combinatorial
properties of the optimization problem when the K vehicles
are co-located at a single depot. On the other hand, Fig. 8(b)
plots that the maximum tour time in the solution delivered by
algorithm approAlgOneRoot, which is smaller than that
by the other two algorithms when the number of vehicles K
increases from 1 to 5.

We finally investigate the performance of different algo-
rithms for the multi-rooted min-max cycle cover prob-
lem with neighborhoods. Fig. 9(a) demonstrates that the
maximum tour time in the solution delivered by Algo-
rithm approAlgMultiRoots is about 85%, 88%, and
89% of those by algorithms multiNoNei-metric,
multiNoNei-Eu, and multiNei, respectively, where
Algorithm multiNei takes POI neighborhoods into con-
sideration, while algorithms multiNoNei-metric and
multiNoNei-Eu do not. Fig. 9(b) also shows that the
maximum tour time by Algorithm approAlgMultiRoots
is no more than 84% of those by the other two algorithms.

Authorized licensed use limited to: Australian National University. Downloaded on August 19,2020 at 00:41:10 UTC from IEEE Xplore. Restrictions apply.

1856 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 4, AUGUST 2020

Fig. 9. Performance of different algorithms for the multi-rooted min-max
cycle cover problem with neighborhoods.

VII. RELATED WORK

The min-max cycle cover problem has attracted a lot of
attentions in the past, due to its wide applications. We notice
that most existing studies did not consider the neighborhoods
of POIs [5], [6], [8], [9], [14]–[17], [19], [21], [23], [31],
[34], [35]. For example, for the rootless min-max cycle cover
problem, Xu et al. [31] assumed that one vehicle needs to
move to the location of a sensor to recharge it, and they
studied the problem of dispatching K charging vehicles
to recharge energy-critical sensors such that the length of
the longest charging tour is minimized. They proposed a
5 1

3 -approximation algorithm. Yu and Liu [35] later improved
the approximation ratio to 5 for the problem in general metric
graphs, and to (4 + �) in the Euclidean space, where � is a
given constant with 0 < � ≤ 1. For the single-rooted min-max
cycle cover problem, Frederickson et al. [9] devised a 2.5-
approximation algorithm. For the multi-rooted min-max cycle
cover problem, Xu et al. [31] designed a 7-approximation
algorithm, and Yu and Liu [34] studied the relationship
between rootless and multi-rooted min-max cover problems.
Since a tree can be transformed to a closed tour in a metric
graph such that the weight of the closed tour is no more than
twice the tree weight, the min-max tree cover problem has
also been well studied, which is to find K trees to cover all
nodes such that the weight of the heaviest tree is minimized.
Even et al. [8] proposed a 4-approximation algorithm. Khani
and Salavatipour, et al. [14] later improved the approximation
ratio to 3.

There are extensive studies on the Traveling Salesman
Problem with Neighborhoods (TSPN) in a 2D space, which
is to find a shortest tour, such that each disk centered at a
node with a given radius is visited by the tour. The studies
of the TSPN problem can be further categorized by different
constraints, such as whether any two disks are disjoint with
each other; and whether the radii of different disks are
identical. For the TSPN under the constraints that all disks
have identical radii and their coverage are not overlapping
with each other, for which Dumitrescu and Mitchell [4]
proposed a Polynomial Time Approximation Scheme (PTAS).
For the TSPN under the constraints that any two disks are
disjoint but with different radii, Mitchell [23] devised a
constant approximation algorithm for it. For the TSPN under
the constraints that two disks are allowed to overlap with each
other and the radii of different disks are equal, Dumitrescu
and Mitchell [4] proposed a 7.62-approximation algorithm and
later they further improved the ratio to 6.75 [5]. And finally for
the TSPN under the constraints that two disks may overlap

with each other but their radii are different, Dumitrescu
et al. [6] recently developed a constant approximation
algorithm for it. Furthermore, Ma et al. [21] investigated the
use of a single charging vehicle to charge multiple sensors
simultaneously, such that the vehicle traveling distance is
minimized. On the other hand, Liang et al. [19] recognized that
the photos taken by a UAV at different location have redundant
information. They studied how to dispatch an energy-limited
UAV to monitor a disaster area, such that the non-redundant
information collected in its flying tour is maximized.

There are a few studies on the multi-rooted min-max
cycle cover problem with neighborhoods. For example,
Kim et al. [15], [16] proposed an approximation algorithm for
the problem by ignoring the service times of POIs, where the
longest tour length is (369 + �) · OPTm + c�3 · r, where c�3
is a positive constant. They also considered the use of K
heterogeneous drones to monitor POIs, where both departure
times and flying speeds of different drones are different. They
proposed constant approximation algorithms [17]. Different
from their studies, the proposed algorithm for the multi-rooted
min-max cycle problem with neighborhoods in this paper
considers not only the vehicle traveling time but also the POI
service time. Furthermore, the maximum tour time delivered
by the proposed algorithm is much shorter than that in [15],
[16], which is only (28 + �) · OPTm + c3 · r, while the one
in [15], [16] is (369 + �) ·OPTm + c�3 · r with c3 ≤ c�3, i.e.,
(28 + �) ·OPTm + c3 · r � (369 + �) ·OPTm + c�3 · r.

VIII. CONCLUSION

In this paper we studied the min-max cycle cover problem
with neighborhoods, by incorporating both neighborhoods and
POI service time into consideration. We also proposed novel
approximation algorithms for the problem, by exploring its
combinatorial properties. We finally evaluated the proposed
algorithms via experimental simulations. Experimental results
showed that the proposed algorithms are very promising.
Especially, the longest tour times in the solutions delivered
by the proposed algorithms are only about from 80% to 90%
of those by existing algorithms.

ACKNOWLEDGMENT

The authors would like to thank the three anonymous refer-
ees and the associate editor for their expertise comments and
constructive suggestions, which have helped them to improve
the quality and presentation of the article greatly.

REFERENCES

[1] E. M. Arkin and R. Hassin, “Approximation algorithms for the geometric
covering salesman problem,” Discrete Appl. Math., vol. 55, no. 3,
pp. 197–218, Dec. 1994.

[2] C. A. B. Baker, S. Ramchurn, W. T. Teacy, and N. R. Jennings, “Planning
search and rescue missions for UAV teams,” in Proc. Eur. Conf. Artif.
Intell. (ECAI), 2017, pp. 1777–1782.

[3] L. Bertazzi, B. Golden, and X. Wang, “Min–max vs. Min–sum vehicle
routing: A worst-case analysis,” Eur. J. Oper. Res., vol. 240, no. 2,
pp. 372–381, Jan. 2015.

[4] A. Dumitrescu and J. S. B. Mitchell, “Approximation algorithms for
TSP with neighborhoods in the plane,” J. Algorithms, vol. 48, no. 1,
pp. 135–159, Aug. 2003.

[5] A. Dumitrescu and C. D. Tóth, “The traveling salesman problem for
lines, balls, and planes,” ACM Trans. Algorithms, vol. 12, no. 3,
pp. 1–29, Jun. 2016.

[6] A. Dumitrescu and C. D. Tóth, “Constant-factor approximation for
TSP with disks,” in A Journey Through Discrete Mathematics. Cham,
Switzerland: Springer, 2017, pp. 375–390.

Authorized licensed use limited to: Australian National University. Downloaded on August 19,2020 at 00:41:10 UTC from IEEE Xplore. Restrictions apply.

DENG et al.: APPROXIMATION ALGORITHMS FOR THE MIN-MAX CYCLE COVER PROBLEM 1857

[7] M. Erdelj, E. Natalizio, K. R. Chowdhury, and I. F. Akyildiz, “Help from
the sky: Leveraging UAVs for disaster management,” IEEE Pervasive
Comput., vol. 16, no. 1, pp. 24–32, Jan. 2017.

[8] G. Even, N. Garg, J. Könemann, R. Ravi, and A. Sinha, “Min–max
tree covers of graphs,” Oper. Res. Lett., vol. 32, no. 4, pp. 309–315,
Jul. 2004.

[9] G. N. Frederickson, M. S. Hecht, and C. E. Kim, “Approximation
algorithms for some routing problems,” in Proc. 17th Annu. Found.
Comput. Sci. (FOCS), Oct. 1976, pp. 216–227.

[10] L. Gupta, R. Jain, and G. Vaszkun, “Survey of important issues in UAV
communication networks,” IEEE Commun. Surveys Tuts., vol. 18, no. 2,
pp. 1123–1152, 2nd Quart., 2016.

[11] J. E. Hopcroft and R. M. Karp, “An n5/2 algorithm for maximum
matchings in bipartite graphs,” SIAM J. Comput., vol. 2, no. 4,
pp. 225–231, 1973.

[12] S. Jeong, O. Simeone, and J. Kang, “Mobile edge computing via
a UAV-mounted cloudlet: Optimization of bit allocation and path
planning,” IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2049–2063,
Mar. 2018.

[13] M. Khachay and K. Neznakhina, “Polynomial time solvable subclass of
the generalized traveling salesman problem on grid clusters,” in Proc.
Int. Conf. Anal. Images Social Netw. Texts. Cham, Switzerland: Springer,
2017, pp. 346–355.

[14] M. R. Khani and M. R. Salavatipour, “Improved approximation algo-
rithms for the min-max tree cover and bounded tree cover problems,”
Algorithmica, vol. 69, no. 2, pp. 443–460, Jun. 2014.

[15] D. Kim, B. H. Abay, R. N. Uma, W. Wu, W. Wang, and A. O. Tokuta,
“Minimizing data collection latency in wireless sensor network with
multiple mobile elements,” in Proc. 31th IEEE Int. Conf. Comput.
Commun., Mar. 2012, pp. 504–512.

[16] D. Kim, R. N. Uma, B. H. Abay, W. Wu, W. Wang, and A. O. Tokuta,
“Minimum latency multiple data MULE trajectory planning in wire-
less sensor networks,” IEEE Trans. Mobile Comput., vol. 13, no. 4,
pp. 838–851, Apr. 2014.

[17] D. Kim, L. Xue, D. Li, Y. Zhu, W. Wang, and A. O. Tokuta, “On
theoretical trajectory planning of multiple drones to minimize latency
in search-and-reconnaissance operations,” IEEE Trans. Mobile Comput.,
vol. 16, no. 11, pp. 3156–3166, Nov. 2017.

[18] J. C. Latombe, Robot Motion Planning. New York, NY, USA: Springer,
2012.

[19] Y. Liang et al., “Nonredundant information collection in rescue applica-
tions via an energy-constrained UAV,” IEEE Internet Things J., vol. 6,
no. 2, pp. 2945–2958, Apr. 2019.

[20] W. Liang, Z. Xu, W. Xu, J. Shi, G. Mao, and S. K. Das, “Approximation
algorithms for charging reward maximization in rechargeable sensor
networks via a mobile charger,” IEEE/ACM Trans. Netw., vol. 25, no. 5,
pp. 3161–3174, Oct. 2017.

[21] Y. Ma, W. Liang, and W. Xu, “Charging utility maximization in
wireless rechargeable sensor networks by charging multiple sensors
simultaneously,” IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1591–1604,
Aug. 2018.

[22] J. Ma, F. Meng, Y. Zhou, Y. Wang, and P. Shi, “Intelligent water pollu-
tion source identification and localization in wireless sensor networks,”
in Proc. 2nd IEEE Adv. Inf. Manage., Communicates, Electron. Autom.
Control Conf. (IMCEC), May 2018, pp. 1300–1305.

[23] J. S. B. Mitchell, “A constant-factor approximation algorithm for TSP
with pairwise-disjoint connected neighborhoods in the plane,” in Proc.
Annu. Symp. Comput. Geometry (SoCG), 2010, pp. 183–191.

[24] X. Ren, W. Liang, and W. Xu, “Data collection maximization in renew-
able sensor networks via time-slot scheduling,” IEEE Trans. Comput.,
vol. 64, no. 7, pp. 1870–1883, Jul. 2015.

[25] X. Wang, A. Chowdhery, and M. Chiang, “Networked drone cameras
for sports streaming,” in Proc. IEEE 37th Int. Conf. Distrib. Comput.
Syst. (ICDCS), Jun. 2017, pp. 308–318.

[26] C. Wang, J. Li, F. Ye, and Y. Yang, “A mobile data gathering frame-
work for wireless rechargeable sensor networks with vehicle movement
costs and capacity constraints,” IEEE Trans. Comput., vol. 65, no. 8,
pp. 2411–2427, Aug. 2016.

[27] Q. Wu, L. Liu, and R. Zhang, “Fundamental trade-offs in communication
and trajectory design for UAV-enabled wireless network,” IEEE Wireless
Commun., vol. 26, no. 1, pp. 36–44, Feb. 2019.

[28] W. Xu, W. Liang, H. Kan, Y. Xu, and X. Zhang, “Minimizing the
longest charge delay of multiple mobile chargers for wireless recharge-
able sensor networks by charging multiple sensors simultaneously,” in
Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2019,
pp. 881–890.

[29] W. Xu, W. Liang, X. Jia, H. Kan, Y. Xu, and X. Zhang, “Minimizing the
maximum charging delay of multiple mobile chargers under the multi-
node energy charging scheme,” IEEE Trans. Mobile Comput., early
access, Feb. 14, 2020, doi: 10.1109/TMC.2020.2973979.

[30] W. Xu, W. Liang, X. Jia, Z. Xu, Z. Li, and Y. Liu, “Maximizing
sensor lifetime with the minimal service cost of a mobile charger in
wireless sensor networks,” IEEE Trans. Mobile Comput., vol. 17, no. 11,
pp. 2564–2577, Nov. 2018.

[31] W. Xu, W. Liang, and X. Lin, “Approximation algorithms for min-
max cycle cover problems,” IEEE Trans. Comput., vol. 64, no. 3,
pp. 600–613, Mar. 2015.

[32] W. Xu, W. Liang, X. Lin, and G. Mao, “Efficient scheduling of
multiple mobile chargers for wireless sensor networks,” IEEE Trans.
Veh. Technol., vol. 65, no. 9, pp. 7670–7683, Sep. 2016.

[33] Y. Yan and Y. Mostofi, “Co-optimization of communication and motion
planning of a robotic operation under resource constraints and in
fading environments,” IEEE Trans. Wireless Commun., vol. 12, no. 4,
pp. 1562–1572, Apr. 2013.

[34] W. Yu and Z. Liu, “Better approximability results for min–max
tree/cycle/path cover problems,” J. Combinat. Optim., vol. 37, no. 2,
pp. 563–578, Feb. 2019.

[35] W. Yu and Z. Liu, “Improved approximation algorithms for some min-
max and minimum cycle cover problems,” Theor. Comput. Sci., vol. 654,
pp. 45–48, Nov. 2016.

[36] W. Yu, Z. Liu, and X. Bao, “New approximation algorithms for
the minimum cycle cover problem,” in Proc. Int. Workshop Frontiers
Algorithmics. Cham, Switzerland: Springer, 2018, pp. 81–95.

[37] Y. Zeng and R. Zhang, “Energy-efficient UAV communication with
trajectory optimization,” IEEE Trans. Wireless Commun., vol. 16, no. 6,
pp. 3747–3760, Jun. 2017.

[38] C. Zhan, Y. Zeng, and R. Zhang, “Energy-efficient data collection in
UAV enabled wireless sensor network,” IEEE Wireless Commun. Lett.,
vol. 7, no. 3, pp. 328–331, Jun. 2018.

[39] Y. Zhang, S. He, and J. Chen, “Near optimal data gathering in recharge-
able sensor networks with a mobile sink,” IEEE Trans. Mobile Comput.,
vol. 16, no. 6, pp. 1718–1729, Jun. 2017.

[40] R. Zhang, J. Peng, W. Xu, W. Liang, Z. Li, and T. Wang, “Utility
maximization of temporally correlated sensing data in energy harvesting
sensor networks,” IEEE Internet Things J., vol. 6, no. 3, pp. 5411–5422,
Jun. 2019.

Lijia Deng received the B.Sc. degree in computer
science from Hainan University, China, in 2017.
He is currently pursuing the master’s degree in com-
puter science with Sichuan University. His research
interests include wireless sensor networks, algorithm
design and analysis, and approximation algorithms.

Wenzheng Xu (Member, IEEE) received the B.Sc.,
M.E., and Ph.D. degrees in computer science from
Sun Yat-sen University, Guangzhou, China, in 2008,
2010, and 2015, respectively. He was a Visitor
with the Australian National University and the
Chinese University of Hong Kong. He is currently
an Associate Professor with Sichuan University.
His research interests include wireless ad hoc and
sensor networks, mobile computing, approximation
algorithms, combinatorial optimization, online social
networks, and graph theory.

Authorized licensed use limited to: Australian National University. Downloaded on August 19,2020 at 00:41:10 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TMC.2020.2973979

1858 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 4, AUGUST 2020

Weifa Liang (Senior Member, IEEE) received
the B.Sc. degree from Wuhan University, China,
in 1984, the M.E. degree from the University of
Science and Technology of China in 1989, and the
Ph.D. degree from Australian National University
in 1998, all in computer science. He is currently
a Full Professor with the Research School of Com-
puter Science, Australian National University. His
research interests include the design and analysis of
energy-efficient routing protocols for wireless ad hoc
and sensor networks, mobile edge computing and

cloud computing, software-defined networking, online social networks, design
and analysis of parallel and distributed algorithms, approximation algorithms,
combinatorial optimization, and graph theory.

Jian Peng received the B.A. and Ph.D. degrees from
the University of Electronic Science and Technology
of China (UESTC) in 1992 and 2004, respectively.
He is currently a Professor with the College of
Computer Science, Sichuan University. His current
research interests include wireless sensor networks,
big data, and cloud computing.

Yingjie Zhou (Member, IEEE) received the Ph.D.
degree from the School of Communication and
Information Engineering, University of Electronic
Science and Technology of China (UESTC), China,
in 2013. He was a Visiting Scholar with the
Department of Electrical Engineering, Columbia
University, New York. He is currently an Assistant
Professor with the College of Computer Science,
Sichuan University (SCU), China. His current
research interests include network measurement,
behavioral data analysis, resource allocation, and
neural networks.

Lei Duan (Member, IEEE) received the B.Sc. and
Ph.D. degrees in computer science from Sichuan
University in 2003 and 2008, respectively. He was a
Visiting Ph.D. Student with the Department of Com-
puter Science and Engineering, Wright State Uni-
versity, from 2007 to 2008, and a Visiting Scholar
with the School of Computing Science, Simon Fraser
University, from 2012 to 2013. He is currently a
Professor with the School of Computer Science,
Sichuan University. His research interests include
data mining, knowledge management, evolutionary

computation, bioinformatics, and health-informatics.

Sajal K. Das (Fellow, IEEE) is currently the Chair
of Computer Science Department and the Daniel St.
Clair Endowed Chair with the Missouri University of
Science and Technology, USA. His current research
interests include the theory and practice of wireless
sensor networks, big data, cyber-physical systems,
smart healthcare, distributed and cloud computing,
security and privacy, biological and social networks,
applied graph theory, and game theory. He directed
numerous funded projects in these areas totaling
over $15M and published extensively with more

than 600 research articles in high-quality journals and refereed conference
proceedings. He serves as the founding Editor-in-Chief for the Pervasive
and Mobile Computing Journal and an Associate Editor for the IEEE
TRANSACTIONS ON MOBILE COMPUTING, ACM Transactions on Sensor
Networks, and so on. He is a Co-Founder of the IEEE PerCom, the IEEE
WoWMoM, and ICDCN conferences, and served on numerous conference
committees as a general chair, a program chair, or a program committee
member.

Authorized licensed use limited to: Australian National University. Downloaded on August 19,2020 at 00:41:10 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

