
Making multiple views self-maintainable in a data warehouse

Weifa Liang a,1, Hui Li b,2, Hui Wang c,3, Maria E. Orlowska b,c,*

a Department of Computer Science, Australian National University, Canberra, ACT 0200, Australia
b CRC for Distributed Systems Technology, University of Queensland, St. Lucia QLD 4072, Australia

c Department of Computer Science and Electrical Engineering, University of Queensland, St. Lucia QLD 4072, Australia

Abstract

A data warehouse collects and maintains a large amount of data from several distributed and heterogeneous data

sources. Often the data is stored in the form of materialized views in order to provide fast access to the integrated data,

regardless of the availability of the data sources. In this paper we focus on the following problem: for a given set of

materialized select-project-join (SPJ) views, how can we ®nd and minimize the auxiliary data stored in a data warehouse

in order to make all materialized views in the data warehouse self-maintainable? For this problem we ®rst devise an

algorithm for ®nding such an auxiliary view set by exploiting information sharing among the auxiliary views and

materialized views themselves to reduce the total size of auxiliary views. We then consider how to make the data

warehouse still self-maintainable by minor modi®cations when there is a view addition to or deletion from it by giving

an algorithm for this incremental maintenance purpose. Ó 1999 Elsevier Science B.V. All rights reserved.

Keywords: Multiple materialized view maintenance; Self-maintainability; Data warehousing; Data integration; Algorithm design

1. Introduction

The problem of materialized view maintenance has received increasing attention in the past few
years [8,13,9,14] due to its application to data warehousing. Traditionally, a view is a derived
relation de®ned in terms of base relations. A view is said to be materialized when its content is
stored in a database, rather than computed from the base databases in response to user queries.
Basically, the materialized view maintenance problem is to keep the content of the materialized
views consistent with the content of the base relations when there are updates to the base rela-
tions.

Data warehouses usually store materialized views in order to provide fast access to the data
that is integrated from several distributed data sources [4]. The data sources may be heteroge-
neous and/or remote from the data warehouse. Consequently, the problem of maintaining ma-
terialized views in a data warehouse is di�erent from the traditional view maintenance problem

Data & Knowledge Engineering 30 (1999) 121±134

* Corresponding author. E-mail: maria@csee.uq.edu.au
1 E-mail: wliang@cs.anu.edu.au
2 E-mail: huili@csee.uq.edu.au
3 E-mail: hwang@csee.uq.edu.au

0169-023X/99/$ ± see front matter Ó 1999 Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 9 - 0 2 3 X (9 9) 0 0 0 0 9 - 9

where the views and the base data are stored in the same database. In particular, when a remote
data source has an update, it may be necessary to access the base data from the other data sources
in order to maintain the views derived from these base relations. However, access to the data
sources may not be available at that time, or it may be too expensive and/or time-consuming.
Therefore, a trivial alternative would be to replicate all the source data to the data warehouse.
However, such a solution will incur very large additional storage and maintenance cost. Some-
times, it may be impossible to do so, because the whole space of the data warehouse is not un-
limited [13,9].

In this paper we show that, for a set of select-project-join (SPJ for short) views, it is not nec-
essary to replicate the entire source databases to the data warehouse in order to maintain the
views, especially if some additional data that support the views can be designed and placed in the
data warehouse. We give an algorithm for determining what additional data, called auxiliary views
can be used in the warehouse in order to maintain such a set of SPJ views. The algorithm takes
both the de®nition of the views and view-sharing information into account to reduce the total
space (sizes) of all auxiliary views. Furthermore, we also consider the self-maintainability issue
associated with the evolution of the data warehouse, i.e., through addition to or deletion a ma-
terialized view from the data warehouse, how can we ensure that all the views in the data
warehouse are still `self-maintainable'? Here the self-maintainability of a view is de®ned as: when
a view V together with a set of auxiliary views A0 can be maintained at the data warehouse
without accessing the base data from data sources, the view V, is called self-maintainable.

1.1. Related work

The problem of a single view self-maintainability has been considered in [2,6,11,9,10]. For each
modi®cation type (insertions, deletions and updates), they identify subclasses of SPJ views that
can be maintained using only the view and the modi®cation content. In particular, [2] gives
necessary and su�cient conditions on the view de®nition for the view to be self-maintainable for
updates speci®ed using a particular SQL modi®cation statement. [10] considers maintaining a
materialized view, without accessing the remote sources by ®nding a maximal test, that guarantees
that the view is self-maintainable under a given update to the resources. [6] use the information
about key attributes to determine the self-maintainability of a view with respect to all modi®-
cations of a certain type. [9] considers view self-maintenance by pushing down selection conditions
and projections to the base relations and storing the results in the data warehouse. Later [11]
extends the result of [9] by allowing a semi-join operator to be applied to the auxiliary views. They
also exploit the key referential integrity constraints to further reduce the number of tuples in the
auxiliary views. Based on the work by [11], recently [1] presents an algorithm to generate a
minimal auxiliary view set A such that a data warehouse consisting of auxiliary view set A and a
SPJ view V with aggregations, is self-maintainable. Note that all these previously known self-
maintenance techniques are dealing with a single view only, while in this paper we will consider a
set of views V which is much harder than the single case. The di�erence regarding the self-
maintainability issue between the single view and a set of views is that: in the former case, all the
auxiliary views built is for that single view only, but in the latter case, not only do we need to
explore the information sharing among the auxiliary views, but also do we need to ®nd the in-
formation sharing among the views.

122 W. Liang et al. / Data & Knowledge Engineering 30 (1999) 121±134

1.2. Our contributions

Our contributions can be summarized as follows. We ®rst devise an algorithm for ®nding an
auxiliary view set A by exploiting information shared among the auxiliary views and views
themselves to reduce the total size of auxiliary views. The algorithm runs in polynomial time. We
then consider how to make the views in the data warehouse still self-maintainable by minor
modi®cations to the set of auxiliary views, when there is a view addition to or deletion from the
data warehouse by presenting an incremental algorithm for this incremetial maintenance purpose.

Remark. We should mention that, even we do use some techniques for the single view in the design
of our algorithm for the multiple views, but the techniques used for single view self-maintain-
ability cannot be extended for multiple views' self-maintainability purpose in an incremental way.
The reason is that in the latter case we need to take the information sharing among the auxiliary
views and the views into account. One may wonder the following naive approach may work. That
is, for each view Vi in the materialized view set V, apply the best e�cient algorithm for a single
view to ®nd a minor auxiliary view set Ai for Vi. Then uniting all these auxiliary view sets to form
an auxiliary view set A � [Vi2VAi for all views in V. Clearly, the views in V along the views in
A now are self-maintainable. However, A is not the most economical one in terms of the space
occupied by these auxiliary views because this approach does not explore possible information
sharing between Ai and Aj.

1.3. Paper outline

The paper is organized as follows. Section 2 introduces notations and assumptions. Section 3
®rst presents algorithms for ®nding the auxiliary view set that is su�cient to maintain a set of SPJ
views, then shows how the SPJ views are maintained using the auxiliary views and the auxiliary
views are self-maintainable. Section 4 deals with the self-maintenance of the views in the data
warehouse by adding/deleting a view from the view set. Conclusions are given in Section 5.

2. Preliminaries

2.1. Self-maintainability

Let V be a set of SPJ views and each view consists of a single projection followed by a single
selection followed by a single cross-product over a set of base relations. It is well known that any
combination of selections, projections and joins can be expressed in this form. Now let us consider
a view V 2V which is de®ned on a set of base relations R � fR1;R2; . . . ;Rng. If there is a change
dR (here dR represents either a series of insertions DR or a series deletions OR, or an update set
to R) to the base relations in R, V may need to be updated accordingly, in order to keep V
consistent with the base relations in R. In doing so, we want to compute dV , the changes to V,
using as little extra information as possible. If dV can be computed using only the contents of the
existing V and dR, then V is self-maintainable. Otherwise, V is not self-maintainable.

In order to make every V in V is self-maintainable, we are interested in ®nding a set of auxiliary
views A which are de®ned on the relations in R such that every V along with the auxiliary views
in A is self-maintainable. Clearly, R itself is such an A. However, our objective is to ®nd more
``economical'' auxiliary views that are much smaller than the base relations, i.e., we will ®nd a

W. Liang et al. / Data & Knowledge Engineering 30 (1999) 121±134 123

minimal A. By ``minimal'', we mean that (i) if any auxiliary view AV 2A is removed from A,
then there exists at least a view V 2V along with the views in AÿfAV g is not self-maintainable;
and (ii) it is impossible to further reduce the number of tuples (therefore, the total space occupied
by the tuples) in any auxiliary view by adding additional selection conditions.

In doing so, we will increase the ``sharing'' information across the original and auxiliary views
and take the restrictions in the de®nition of the views in V into account. Note that this problem
was treated as an open problem in [11]. Here we only give a partial solution for it because we does
not take the key and referential constraints used in [11] into consideration.

2.2. The gluing operation

Before we proceed, we fabricate a new operation on two views derived from the a single re-
lation. We call this operation as gluing operation which will generate a new view. The detail of this
operation is explained as follows.

Consider a relation R. Let X and Y be subsets of the attributes of R. The intersection of X \ Y
may or may not be ;. Let Vi , i � 1; 2, be a view on R where V1 � pX rP1

R and V2 � pY rP2
R. The

gluing operation is to ®nd a view V12 such that (i) V12 is also derived from R and Vi can be derived
from V12; and (ii) there is no other view V 012 � V12 that Vi can be derived from V 012, i.e., V12 is a view
with the minimal number of tuples, i � 1; 2. Clearly, V12 � pX[Y rP12

R where P12 � P1 _ P2. Then,
V1 � pX rP1

V12 and V2 � pY rP2
V12.

We use an example to illustrate the gluing operation. Let R be a relation on the attribute set
fA;B;C;Dg, and let X � fA;Bg and Y � fB;Cg. Assume that R � f�1; 2; 3; 1�; �1; 3; 3; 2�;
�2; 1; 3; 3�; �1; 3; 2; 4�; �1; 2; 4; 2�; �1; 3; 1; 1�; �1; 2; 3; 4�g. De®ne V1 � pfA;BgrD�1R and V2 � pfB;Cg
r�A�1_D�1�R. It is easy to see that V1 � f�1; 2�; �1; 3�g and V2 � f�2; 3�; �3; 3�; �3; 2�; �2; 4�; �3; 1�g.
Let V12 be the result by gluing V1 and V2. Then, V12 � pfA;B;Cgr�A�1_D�1�R. Clearly,
V12 � f�1; 2; 3�; �1; 3; 3�; �1; 3; 2�; �1; 2; 4�; �1; 3; 1�g.

3. Algorithms for generating auxiliary views

In this section we ®rst adopt a simple algorithm for ®nding an auxiliary view set for a single
view from [9] which will be used as a subroutine in our algorithm. We then introduce our algo-
rithm for ®nding an auxiliary view set for a given view set. In doing so, Firstly, we explore our
algorithmic idea by considering the case where the view set contains only two views. Secondly, the
algorithm for ®nding the auxiliary view set for more than 2 views is presented in Section 3.3.
Finally, we show how to maintain each view in the view set using the auxiliary views only, we also
show how to maintain the auxiliary views themselves.

3.1. Finding auxiliary views for a single view

Given a view V de®ned on a set of base relations R, the objective is to ®nd an auxiliary view set
A such that fV g [A is self-maintainable upon changes to base relations in R without accessing
the base relations. Certainly R is such an A. But the cost in terms of space may be very high. It is
possible to reduce the total storage space occupied by the auxiliary views in A, using the following
local reduction rule on the relations in R.

Local Reduction Rule: This reduction refers to pushing projections and local selection condi-
tions (i.e., select conditions involving attributes from a single relation as opposed to those

124 W. Liang et al. / Data & Knowledge Engineering 30 (1999) 121±134

involving attributes from di�erent relations that are called join conditions) to each base relation
Ri 2 R [1,9,11]. As a result, the number of attributes and tuples in the auxiliary view that replaces
Ri is signi®cantly reduced, compared with the number of attributes and tuples in Ri, because those
tuples in Ri that do not pass local conditions cannot possibly contribute to the tuples in the view.
Hence, they are not needed for the view maintenance and are therefore not needed to be stored in
the auxiliary view.

Without loss of generality, let V � pX rP �Ri1 � Ri2 � . . . � Rik� is a SPJ view where Ril 2 R,
16 l6 k. Then, V can be rewritten as V � p0

X
r0P 0 �pX 1

rP1
Ri1 � pX 2

rP2
Ri2 � . . . � pX k

rPk Rik�, where
p0

X
is the global projection and r0P 0 is the join conditions, pX l

is local projection including both the
preserved projection attributes and the attributes in the join conditions, and rPl is the local se-
lection condition, 16 l6 k. Let

ARil
� pX l

rPlRil : �1�
De®ne ARil

as an auxiliary view of V which is a selection and a projection on relation Ri. Thus,
there is an auxiliary view set A for V which is de®ned as follows: A � fARil

j16 l6 kg. It is not
hard to show that A [fV g is a minimal self-maintainable set [9].

3.2. Finding an auxiliary view set for two views

Having the preparation in the previous section, we start by considering a case where
V � fV1; V2g and R � fR1;R2; . . . ;Rng. Recall that our objective is to generate an auxiliary view
set A such that (i) A [fV1; V2g is self-maintainable; and (ii) the total space occupied by all
auxiliary views is minimal.

The basic idea of our algorithm for it is to decide whether two corresponding auxiliary views
derived from a single base relation are needed to be merged into an auxiliary view or just keep
both the auxiliary views in A. This decision is made by a space cost function.

Procedure Find_Auxiliary_View_Set(V ,A)
/* Input: V is the set of two materialized views. */
/* Output: A is the auxiliary view set such that A [fV1; V2g is self-maintainable. */
1. Find two separate auxiliary view sets X1 � fA1

R1
;A1

R2
; . . . ;A1

Rn
g and X2 � fA2

R1
;A2

R2
; . . . ;A2

Rn
g

for V1 and V2 by local reduction rule.
2. A :� ;; /* the initial auxiliary view set */
3. for i � 1 to n do

Let ARi be the resulting view by applying the gluing operation to A1
Ri

and A2
Ri

and let Ni be the number of tuples of ARi .
Let nij and sij be the number of tuples and bytes per tuple in Aj

Ri
,

let Si be the total number of bytes by the attributes in X \ Y ,
where X and Y are the projection attributes of A1

Ri
and A2

Ri
.

4.
if Ni�si1 � si2 ÿ Si�6 �ni1si1 � ni2si2�

then A :�A [fARig
else A :�A [fA1

Ri
;A2

Ri
g

endif
endfor.

W. Liang et al. / Data & Knowledge Engineering 30 (1999) 121±134 125

We now make some comments about the condition at Step 4 in Find_Auxiliary_View_Set2.
Actually, this condition can be further generalized as Ni�si1 � si2 ÿ Si�6 a�ni1si1 � ni2si2� where a
(P 1) is a constant which is determined by the CPU processing speed and I/O transfer speed.
Because our aim is to minimize the total space occupied by all auxiliary views, if we use separate
auxiliary views A1

Ri
and A2

Ri
for V1 and V2, then there is a possibility that the sum of the space

occupied by both of them is smaller than the space used by ARi . But the maintenance cost (time) to
A1

Ri
and A2

Ri
may be much higher than that to ARi when there is an update to Ri. Simply, we

probably need to update both A1
Ri

and A2
Ri

, which are usually the disk residents. This means that it
takes more I/O time to ®nd their locations in disk and load them to the memory for the updates.
On the other hand, if the space occupied by ARi is not too large, compared with that for both A1

Ri

and A2
Ri

, then the maintenance cost of ARi is reduced dramatically, since we only need to load it to
the memory once. However, the expense of this is that the CPU time for updating ARi and Vi is
increased because the number of tuples in ARi is larger than the number of tuples in either A1

Ri
or

A2
Ri

. Therefore, there is a trade-o� between the maintenance cost and space cost when we choose to
store eitherAj

Ri
, j � 1; 2, or ARi , depending on the ratio between the I/O time and CPU processing

time. Here we just choose that the simple one (i.e., a � 1) that when the space occupied by ARi is
smaller than that by the sum of A1

Ri
and A2

Ri
, ARi is stored in the auxiliary view set. Otherwise Aj

Ri
is

stored in the auxiliary set, j � 1; 2.
If Ni�si1 � si2 ÿ Si� > �ni1si1 � ni2si2� at Step 4, then the net increasing space would be

DSi � Ni�si1 � si2 ÿ Si� ÿ
P2

j�1 nijsij if ARi is kept in the data warehouse.
We should mention that the cost used for generating an auxiliary view set is only computed

once. In some cases, when the base data involved is very large, some sophisticated sampling
techniques may need to be used to examine a small part of the relations in order to give an ap-
proximate estimation of the cost.

3.3. Finding an auxiliary view set for multiple views

Through the previous discussion, we are ready to introduce our algorithm for ®nding an
auxiliary view set A for a set of views V � fV1; V2; . . . ; Vmg with m P 2. The proposed algorithm is
a greedy algorithm which proceeds as follows. Initially, the solution is empty and the cost for this
solution is 0. Let A be the solution of the problem so far such that the views in A [EV are self-
maintainable and minimal, where EV is the set of explored views by the algorithm, which is a
subset of V. Then, each time we pick a view V 2Vÿ EV such that the net increase of the cost of
the new auxiliary view set is minimized, due to the addition V to EV. In doing so, we exploit the
data sharing among the auxiliary views for V and the auxiliary views in the solution. This process
continues until Vÿ EV � ;, i.e., the ®nal solution is obtained. The algorithm is described as
follows.

Procedure Find_Auxiliary_View_Setm(V,A)
/* Input: V is the set of m materialized views, m P 2. */
/* Output: A is the auxiliary view set such that A [V is self-maintainable. */
1.

for i :� 1 to m do
®nd an auxiliary view set Xi � fAi

R1
;Ai

R2
; . . . ;Ai

Rn
g for every Vi

by local reduction rule.

126 W. Liang et al. / Data & Knowledge Engineering 30 (1999) 121±134

endfor;
/* Without loss of generality, we here assume that a view is derived from all Ri in R. */
/* In practice a view may be derived from a subset of the relations in R.*/

2.
Initialization. Let S�X� be the total space by the views in X.
S�Xi0� � minfS�Xi�j i � 1; 2; . . . ;mg.
/* choose the auxiliary set of a view with the minimum space as the initial solution */
A :� Xi0 ; /* A is the auxiliary view set. */
UV :�VÿfVi0g; /* the unexploited view set */
EV :� fVi0g; /* the exploited view set. */
/* Let A � Sn

i�1 ARi , where ARi � fZ1; Z2; . . . ; Zsg is */
/* the auxiliary view set derived from Ri. */

3.
while UV 6� ; do /* choose the next view and add it to the solution */

Choose a Vj 2 UV such that the net increase of space for auxiliary view set is minimal.
Such a Vj can be found by a subroutine Cost_Comput(UV;A, Vj).
/* The procedure Cost_Comput is explained later */
UV :� UVÿfVjg;
EV :� EV [fVjg;
Update A using the auxiliary view set of Vj

endwhile.

Now we turn to select a Vj at Step 3 in Find_Auxiliary_View_Setm. We already knew that A
is the auxiliary view set for all views EV so far, and is self-maintainable, where A � Sn

i�1 ARi and
ARi � fZ1;Z2; . . . ; Zsg is the auxiliary view set derived from Ri.

When UV 6� ;, we choose a view Vj 2 UV and add it to EV such that (i) the net increasing of
the space occupied by the auxiliary view set is minimized, due to the addition of Vj, (i.e., we choose
such a view Vj which incurs the minimum cost increase with respect to the current solution); and
(ii) the new auxiliary view set is also self-maintainable. The basic strategy of our algorithm is that
we treat A as an auxiliary view set, and then decide whether to merge every view in the auxiliary
view set of Vj with the corresponding view in A into a single view according to the cost function.
The selection of Vj is implemented by the following procedure.

Procedure Cost_Comput(UV;A, V);
/* Input: UV and A; */
/* Output: a view V from UV is chosen such that the net space increase of the auxiliary view set
is minimal. */

C�V � :� 1; /* the cost by adding a view V to the solution */
while UV 6� ; do

Let Vj 2 UV be the considered view currently.
C�Vj� :� 0; /* the cost incurred by adding Vj */
for i � 1 to n do

Call Cost_Estimate(Aj
Ri

,ARi , DCji);
/* Cost_Estimate is used to estimate the space cost if Vj is added to the solution, */

W. Liang et al. / Data & Knowledge Engineering 30 (1999) 121±134 127

/* and it will be presented below. */
C�Vj� :� C�Vj� � DCji;

endfor;
/* choose the view which incurs the minimum increase in the cost */
if C�Vj� < C�V � then

V :� Vj;
C�V � :� C�Vj�

endif
endwhile;
return V.

The subroutine Cost_Estimate is invoked by Cost_Comput, which is explained in more detail
as following. Let Vj be the view being considered and Xj be the auxiliary view set for Vj only by the
local reduction rule. Recall that Aj

Ri
2 Xj is the initial auxiliary view derived from Ri for Vj solely

and ARi be a set of auxiliary views derived from Ri for all the views in EV. Assume that
ARi � fZ1;Z2; . . . ; Zsg. The aim of Cost_Estimate is to decide whether gluing Aj

Ri
with a view

Zl 2ARi or leave it alone by the cost function.
Let Zl � pW rP Ri and Aj

Ri
� pX j

rPjRi. Let Z 0l � pW [X j
rP 0Ri be the resulting view by gluing Zl with

Aj
Ri

where P 0 � P _ Pj.
Denote by c�Aj

Ri
; Zl� the cost by gluing Aj

Ri
with Zl, 16 l6 s, which is de®ned as follows.

c�Aj
Ri
; Zl� � jZ 0lj � SZ0l

ÿ �jAj
Ri
j � SAj

Ri
� jZlj � SZl�; �2�

where jRj is the number of tuples in R, SR is the number of bytes occupied per tuple in R. Then

Procedure Cost_Estimate(Aj
Ri

,ARi , DCji);
/* Input: Aj

Ri
and ARi ; */

/* Output: The net increase of space by incorporating Aj
Ri

to the auxiliary view set DCji */
1.

U :�ARi ;
DCji � jAj

Ri
j � SAj

Ri
; /* initialization */

2.
while Ui 6� ; do

Let Zl 2 Ui be the auxiliary view considered currently.
if DCji > c�Aj

Ri
; Zl� then

DCji :� c�Aj
Ri
; Zl�;

endif
endwhile;
return DCji.

Step 2 in Cost_Estimate is explained as follows. Compare the minimum cost
minfc�Aj

Ri
;Zl�j16 l6 sg with the cost of Aj

Ri
which is jAj

Ri
j � SAj

Ri
, if the former is smaller, then

DCji � minfc�Aj
Ri
; Zl�j 16 l6 sg, which means ARi needs updating by gluing Aj

Ri
to a Zl with the

minimum cost c�Aj
Ri
; Zl and replace it by the gluing result; otherwise, DCji � jAj

Ri
j � SAj

Ri
, which

means Aj
Ri

will be included to ARi , i.e., ARi �ARi [fAj
Ri
g.

128 W. Liang et al. / Data & Knowledge Engineering 30 (1999) 121±134

Theorem 1. Given a set of views V, let A be the auxiliary view set generated by algorithm
Find_Auxiliary_View_Setm. Then, A can be generated in time O�m2nTCE�, where m and n are
the number of materialized views and the base relations respectively, and TCE is the time for running
Cost_Estimate which is a linear function of the number of auxiliary views derived from a base
relation in the auxiliary view set.

Proof. We now analyze the computational complexity of algorithm Find_Auxilia-
ry_View_Setm. Step 1 takes O�mn� time because it needs O�n� time to generate an auxiliary view
set for each materialized view. Step 2 takes O�m� time. There are m iterations at Step 3 and at each
iteration, it invokes a subroutine Cost_Comput which requires O�mnTCE� time, where TCE is the
time for running Cost_Estimate, which is a linear function of the number of auxiliary views
derived from a base relation in the auxiliary view set so far. Therefore, Step 3 requires O�m2nTCE�
time. �
3.4. Maintaining the materialized views using auxiliary views

A view maintenance expression calculates the e�ects on the view of a certain type of change:
insertions, deletions and updates to a base relation. View maintenance expressions are usually
written in terms of the changes and the base relations [3,5].

In the following we show how to transform a view maintenance expression written in terms of
the changes and the base relations to an equivalent view maintenance expression written in terms
of the changes, the view and the auxiliary views generated by our algorithm.

A SPJ view is expressed as follows.

Vi � pX i
rPi�Ri1 � Ri2 � . . . � Ris�: �3�

Now we use the auxiliary view set to re-write the de®nition of Vi , then

Vi � pX i
rPi�Zj1

� Zj2
� . . . � Zjs�; �4�

where Zjl 2ARil
�A, i.e., if Ai

Ril
2ARil

, then Zjl � Ai
Ril

, otherwise, Zjl is the auxiliary view to
which Ai

Ril
is glued, 16 l6 s.

Now we consider the insertion updates to a base relation Ril . Let DRil be the net e�ect to Ril
which leads to update Vi [12]. Then, the maintenance expression of Vi that uses Ril in its de®nition
can be written as

DVi � pX i
rPi�Zj1

� Zj2
� . . . � DRil � . . . � Zjs�: �5�

Therefore, the content of Vi is Vi [DVi after the insertion update. The deletion case can be dis-
cussed in a similar way, however we omit it here. The modi®cation value update case can be
treated by a deletion followed by an insertion. When an insertion, a deletion, or a modi®cation
update to more than one data resource happens at the same time, this case can be dealt by using
the technique developed in [7]. For the same reason, we will not discuss it further in this paper.

3.5. Maintaining auxiliary views

In the previous section we have shown that the materialized view in V is self-maintainable
using the views in the auxiliary view set found by our algorithm. We now show that the auxiliary
view set itself is also self-maintainable. Thus, all the views in V [A are self-maintainable.

W. Liang et al. / Data & Knowledge Engineering 30 (1999) 121±134 129

Consider an arbitrary auxiliary view Zl 2AR �A and R 2 R, which can be written as follows.

Zl � pSchema�Zl�rP R: �6�
It is clear that Zl is a SPJ view. When there is a sequence of changes to R, the changes are
propagated to the data warehouse. Denote by DR the net e�ect of insertions to R, then the
maintenance expression for Zl is

DZl � pSchema�Zl�rPDR: �7�
Thus, the content of Zl after insertions is Zl [DZl. The deletion as well the modi®cation updates
can be dealt with using a similar approach, but we omit them for further discussion.

In the following we show that the information needed to maintain the original views is also
su�cient to maintain each of their auxiliary views.

Theorem 2. The auxiliary view set A for V generated by algorithm Find_Auxilia-
ry_View_Setm is a minimal, self-maintainable set.

Proof. In order to verify that A is a minimal, self-maintainable set, following [11], we must show
A satis®es the following three properties.
1. A is su�cient to maintain every V 2V;
2. A is self-maintainable;
3. A is a minimal view set which make the above two conditions hold.

We now show that A satis®es the above three properties one by one. We ®rst show that the
maintenance expression propagating insertions/deletions to the base relations onto every V that is
rewritten by substituting for each base relation R with a corresponding auxiliary view
Zl � pW l

rPlR 2AR �A is equivalent to the maintenance expression using the base relations. Let
Vi � pX i

rPi�Ri1 � Ri2 � . . . � Ris� be written in terms of the base relations. Then Vi can be re-
written in terms of the views in the auxiliary view set, i.e., Vi � pX i

rPi�Zj1
� Zj2

� . . . � Zjs� where
Zjl 2ARil

�A for all l, 16 l6 s.
Now, we consider an insertion update DRil . By the de®nition, the changes to Vi is

DVi � pX i
rPi�Ri1 � Ri2 � . . . � DRil � . . . � Ris�. Let U � pX i

rPi�Zj1
� Zj2

� . . . � DZil . . . � Zjs�
where DZil � pW il

rPil
DRil . Our objective is to show that DVi � U . We prove this by contradiction

approach. Assume that there is a tuple t such that t 2 DVi but t 62 U . Since t 2 DVi , then there is at
least a tuple til0 2 Ril0 for every l0 such that til0 �W il0 � 2 Zjl0 , til �W il � 2 pW il

rPil
DRil , i.e., til 2 DZil , and t

is the result of joining ti1 ; ti2 ; . . . ; tis together, 16 l06 s with l 6� l0. From this discussion, it is un-
derstood that t can also be derived by joining ti1 �W i1 �; ti2 �W i2 �; . . . ; tis �W is � together, i.e., t 2 U be-
cause til �W il � 2 DZjl and til0 �W il0 � 2 Zjl0 for every l0 6� l. This contradicts with our initial
assumption. The deletion and modi®cation cases can be dealt similarly, and they are omitted.

We then show that A is self-maintainable. Consider every Zl � pX rP Ri 2ARi . Let DRi be the
set of insertions to Ri, then DZl � pX rPDRi. Thus, the content of Zl after the insertion update is
Zl :� Zl [DZl. The deletion and modi®cation case can be dealt similarly, omitted. By the de®-
nition of self-maintainability, clearly A is self-maintainable.

We ®nally show that A is a minimal set. Let Zl be an auxiliary view derived from Ri. Clearly
Zl 2ARi . Recall that we say that a set A is minimal, which means neither a Zl can be removed

130 W. Liang et al. / Data & Knowledge Engineering 30 (1999) 121±134

from A nor an additional local selection condition can be applied to Zl to further reduce the
number of tuples in Zl. Firstly, we show that each Zl 2A cannot be removed and is useful. If
Zl � Aj

Ri
, then there is at least a view Vj which uses Zl, this means the removal of Zl will lead to the

maintenance of Vj becoming impossible. Otherwise, Zl is the result derived from views
Vi1 ; Vi2 ; . . . ; Vis by gluing the corresponding auxiliary views together. From the de®nition of Vip , it
uses Zl as a component in its de®nition, 16 p6 s. The removal of Zl will make the maintenance of
these views impossible. So, all the auxiliary views in A are useful and cannot be removed. Note
that all views in V cannot be removed either because they are the materialized views. Secondly, we
show that for each Zl 2ARi , the number of tuples in Zl cannot be further reduced by adding the
local selection conditions. If Zl � Aj

Ri
, then Zl is at least used by Vj and the entire local conditions

for Vj have been already added to Zl, so, any further additional local selection condition added to
it may remove some tuples for Vj. Otherwise, Zl is a result derived from the views Vi1 ; Vi2 ; . . . ; Vis by
gluing the corresponding auxiliary views together. In this case we cannot add any additional local
selection condition either, because each such additions will make at least one view Vip lose its
tuples. �

4. Evolution of a self-maintainable data warehouse

In the previous section we considered how to generate a self-maintainable data warehouse for a
given set of views V. Due to the dynamic changes of user query environment, some materialized
views in the warehouse may become useless, while some new views are needed to be materialized.
Under such an environment, how to make the data warehouse remain self-maintainable is very
important.

In this section we deal with this issue by considering to add a new view V to, or delete an
existing view V from, the data warehouse. Suppose we only allow to make ``minor modi®cations''
to the data warehouse. Otherwise, it is quite straightforward to run the algorithm in Section 3
from scratch to generate a new auxiliary view set, using either V [fV g (inserting V) or VÿfV g
(deleting V) as an input. However, the cost of such a process may be very expensive. The reasons
are twofold: one is that we need to generate a new auxiliary view set to replace the current one. In
doing so, the data warehouse needs to communicate with the remote sources heavily which is very
expensive or impossible sometimes, despite just only one view removal from or addition to the
data warehouse. The other is that usually it takes much longer time to generate a new auxiliary
view set, compared to incremetial updates the view in the existing auxiliary view set.

In the following we ®rst discuss the insertion case, we then deal with the deletion case. The
modi®cation case can be dealt by a deletion followed by an insertion and omitted.

4.1. Adding new materialized views to the data warehouse

We now consider the insertion case. Assume that V [A is self-maintainable initially, now the
question is to how to ensure V [fV g [A0 is still self-maintainable when a new view V is added
to the data warehouse, where A0 is the resulting auxiliary view set which is obtained through
minor modi®cations to A. We discuss this case by the following two subcases.

If either V � Vi and Vi 2V or V can be derived from the existing views in V, then A0 :�A,
i.e., V [fV g [A0 is self-maintainable and we do nothing about it. We re-write the de®nition of V

W. Liang et al. / Data & Knowledge Engineering 30 (1999) 121±134 131

by using the auxiliary views involved. The checking takes polynomial time since the containment
relationships between SPJ queries can be checked in polynomial time.

Otherwise, we proceed by ®rst running the algorithm for the single view V to obtain an aux-
iliary view set Xnew :� fAnew

R1
;Anew

R2
; . . . ;Anew

Rn
g of V. We then run the following procedure to update

the existing materialized auxiliary views in the data warehouse. Assume that ARi � fZ1;
Z2; . . . ; Zsig is the auxiliary view set derived from Ri for all the views in V. The new auxiliary view
set A0 for V [fV g is generated as follows.

Update_Auxi_Set (A, A0, V)
/* Input: A is the original auxiliary view set for V and */
/* V is a new view to be added to V. */
/* Output: A0 is the resulting auxiliary view set after adding V to V */

A0 :�A; /* initial assignment */
for i � 1 to n do

A0 :�A0 ÿARi ; /* delete the auxiliary views derived from Ri */
Call Cost_Estimate(Anew

Ri
,ARi , DCji);

/* update the auxiliary views derived from Ri by incorporating the auxiliary views of V.
/* The de®nition of Cost_Estimate can be seen in Section 3. */
Update ARi according to the result of Cost_Estimate
A0 :�A0 [ARi ;

endfor.

Theorem 3. Assume that a set of SPJ views V and their auxiliary view set A is self-maintainable. Let
A0 be the auxiliary view set generated by adding a new view V to the data warehouse using the above
algorithm, then the set A0 [V [fV g is a minimal, self-maintainable set.

Proof. The proof is similar to the proof of Theorem 1, and it is omitted here. �

Following this, we rewrite the maintenance expression of V in terms of the auxiliary views
which has been described in Section 3.4. The maintenance expressions of those auxiliary views
which glued with the views in Xnew are also needed to be rewritten accordingly.

4.2. Deleting materialized views from the data warehouse

The deletion case can be dealt, using a similar technique for the insertion case. Assume that
V [A is self-maintainable initially, the problem is then how to keep VÿfV g [A0 still self-
maintainable when V is deleted from the warehouse, where A0 is obtained through minor
modi®cations to A.

The naive approach is to do nothing about it. But in the end this leads to many useless auxiliary
views in the data warehouse. A better approach in handling this case is presented below.

If there is a view Vi 2V such that V has been used in the de®nition of Vi , then we take no
action, and A0 :�A. Otherwise, V now becomes useless and V should be removed from the
warehouse. It is easy to remove V. However, to remove some auxiliary views that are no longer
useful seems not to be trivial. We proceed as follows.

132 W. Liang et al. / Data & Knowledge Engineering 30 (1999) 121±134

First, we run the algorithm for the single view V to generate an auxiliary view set
Xold :� fAold

R1
;Aold

R2
; . . . ;Aold

Rn
g for V. Then, we check the usefulness of the views in A one by one.

Assume that Zl 2A is the current considered view. If Zl is the result of gluing Aold
Ri

with some other
views, check all the views V 0 2V which are added to the solution after V during generating the
auxiliary view set A to see whether V 0 uses Zl, if there is such a V 0 using Zl, we do nothing about
Zl. Otherwise, if only V solely uses it, we remove Zl from A, i.e., A0 �AÿfZlg; otherwise the
de®nition of Zl is re-written by the following method.

Initially let Zl � pW rP Ri, where P � Pi1 _ Pi2 _ . . . _ Pip _ Pi and rPij
is the local selection con-

dition to Ri by the de®nition of Vij , 16 ij6 i and 16 j6 p. Let Aold
Ri
� pX j

rPjRi. Then, Zl is rede®ned
as Zl � pW

0rP 0Ri, which is the de®nition of Zl before adding Vi to the solution during the gener-
ation of A, where W 0 is a subset of attributes of Ri which consists of the preserved projection and
those appeared in the join conditions in Vij and P 0 � Pi1 _ Pi2 _ . . . _ Pip , 16 j6 p.

5. Conclusions and future directions

In this paper we have considered the self-maintainability issue of views in data warehousing.
That is, given a set of SPJ views, we have shown how to derive an auxiliary view set such that (i)
the SPJ views and the auxiliary views together are self-maintainable; and (ii) the total space oc-
cupied by the auxiliary views is minimized, by devising a polynomial greedy algorithm for it. As a
result, the auxiliary view set generated by the proposed algorithm occupies reasonable space. We
have also considered the evolution issue of a slef-maintainable data warehouse by presenting
incremetial algorithms for dealing with views' insertion and deletion. It is interesting to investigate
how the key and referential integrity constraints in [11] can be applied to further reduce the size of
the auxiliary views.

Acknowledgements

We appreciate the three anonymous referees for their invaluable suggestions and comments
which help us improve the paper's quality and presentation.

References

[1] M.O. Akinde, O.G. Jensen, M.H. Bohlen, Minimizing detail data in data warehouses, in: Proceedings of the Sixth International

Conference on Extending Database Technology, LNCS, vol. 1377, Springer, Spain, March 1998, pp. 293±307.

[2] J. Blakeley, N. Coburn, P. Larson, Updating derived relations: detecting irrelevant and autonomously computable updates, ACM

Transactions on Database Systems 14 (3) (1989) 369±400.

[3] L. Colby, T. Gri�n, L. Libkin, I. Mumick, H. Trickey, Algorithms for deferred view maintenance, in: Proceedings of the ACM-

SIGMOD Conference, 1996, pp. 469±480.

[4] IEEE Data Engineering Bulletin, Special Issue on Materialized Views and Data Warehousing, 18(2) (1995).

[5] T. Gri�n, L. Libkin, Incremental maintenance of views with duplicates, in: Proceedings of the ACM-SIGMOD Conference, 1995,

pp. 328±339.

[6] A. Gupta, H. Jagadish, I. Mumick, Data integration using self-maintainable views, in: Proceedings of the Fourth International

Conference on Extending Database Technology, 1996, pp. 140±144.

[7] A. Gupta, I. Mumick, V.S. Subrahmanian, Maintaining views incrementally, in: Proceedings of the ACM-SIGMOD Conference,

1993, pp. 157±166.

W. Liang et al. / Data & Knowledge Engineering 30 (1999) 121±134 133

[8] A. Gupta, I. Mumick, Maintenance of materialized views: problems, techniques, and applications, IEEE Data Engineering

Bulletin (1995) 3±19.

[9] R. Hull, G. Zhou, A framework for supporting data integration using the materialized and virtual approaches, in: Proceedings of

the ACM-SIGMOD Conference, 1996, pp. 481±492.

[10] N. Huyn, E�cient view self-maintenance, in: Proceedings of the 23rd VLDB Conference, Athens, Greece, 1997, pp. 26±35.

[11] D. Quass, A. Gupta, I.S. Mumick, J. Widom, Making views self-maintainable for data warehousing, in: Proceedings of the

International Conference on Parallel and Distributed Information Systems, Miami Beach, FL, 1996, pp. 158±169.

[12] A. Segev, J. Park, Updating distributed materialized views, IEEE Transactions on Knowledge and Data Engineering 1 (2) (1989)

173±184.

[13] Y. Zhuge, H. Garcia-Molina, J. Hammer, J. Widom, View maintenance in a warehousing environment, in: Proceedings of the

ACM-SIGMOD Conference, 1995, pp. 316±327.

[14] Y. Zhuge, H. Garcia-Molina, J.L. Wiener, Consistency algorithms for multi-source warehouse view maintenance, Journal of

Distributed and Parallel Database 6 (1998) 7±40.

Weifa Liang received his Ph.D. degree
in computer science from the Austra-
lian National University in 1998. He
received his M.E. degree in computer
science from University of Science and
Technology of China in 1989 and his
B.S. degree in computer science from
Wuhan University, China in 1984. He
is currently holding a teaching position
in the Department of Computer Sci-
ence at the Australian National Uni-
versity. His research interests include
parallel processing, parallel and dis-

tributed algorithms, computer networking, data warehousing,
query optimisation and graph theory.

Hui Wang is currently a master (by
research) student in computer science
at Department of Computer Science
and Electrical Engineering in the
University of Queensland. She re-
ceived her B.S. degree in mathematics
from Anhui University, China in
1984. Before coming to Australia, as a
software engineer, she has been
worked in an institution in China for
a decade to conduct research and de-
velopment of application software in
the simulation of VLSI circuits. Her

current research interests include design and analysis of data
warehousing, the consistency control of views in data ware-
housing and relational database application.

Maria Orlowska is currently Professor
in Information Systems at the Uni-
versity of Queensland in Australia.
Since 1992 she has also acted as Dis-
tributed Databases Unit Leader in the
Cooperative Research Centre for Dis-
tributed Systems Technology (DSTC).
She graduated with a PhD (Computer
Science) in June 1980 from the Insti-
tute of Applied Mathematics, Techni-
cal University of Warsaw. She is a
trustee of the VLDB Endowment. Her
research expertise lies in the areas of:

theory of Relational Databases, Distributed Databases, various
aspects of Information Systems Design Methodologies (in-
cluding Distributed Systems), enhancement of semantic data
modelling techniques by rigorous factors, transaction process-
ing in distributed systems, concurrency control, Distributed and
Federated Database Systems, and work¯ows technology.

Hui Li is a research scientist of the
Cooperative Research Center for Dis-
tributed Systems Technology of Aus-
tralia and Ph.D. candidate of
University of Queensland. He received
his M.Sc. degree (1993) from South-
west Jiaotong University, and B.Sc.
degree from Nanjing University, both
in Computer Science. His research in-
terests include query processing, dis-
tributed and heterogeneous databases,
object-oriented and object-relational
data model, work¯ow systems, Inter-

net Information Retrieval and expert systems.

134 W. Liang et al. / Data & Knowledge Engineering 30 (1999) 121±134

