Minimizing Energy and Maximizing Network Lifetime Multicasting in Wireless Ad Hoc Networks

Weifa Liang Department of Computer Science Australian National University Canberra, ACT 0200, Australia <u>China Tour</u>

<u>0. Overview</u>

1. Introduction

2. Preliminaries

3. Approximation Algorithms

<u>1. Introduction</u>

1.1. Background

Most mobile nodes in a wireless ad hoc network are powered by energy limited batteries, the limited battery lifetime imposes a constraint on the network performance. Therefore, energy efficiency is paramount of importance in the design of routing protocols for the applications in such a network to enhance the network lifetime.

1.2. Problem statement

Given a wireless ad hoc network M = (N,A), a source node *s*, and a destination set $D (\subset N)$, the minimizing energy and maximizing network lifetime multicast problem is to construct a multicast tree rooted at the source and spanning the nodes in D such that the minimum residual battery energy among the nodes is maximized and at the same time the sum of transmission energies at non-leaf nodes is minimized.

1.2. Problem statement (cont.)

Given a constant $0 < \beta \le 1$, we aim to find such a multicast tree that the total transmission energy consumption is minimized under the constraint that the minimum residual battery energy among the nodes is no less than β times of the optimum.

1.3. Our contributions

- An approximation algorithm with an approximation ratio of 4 ln K, if the network is symmetric
- An approximation algorithm with an approximation ratio of $O(K^{\varepsilon})$ otherwise

where *K* is the number of destination nodes, ε is constant with $0 < \varepsilon \leq 1$.

<u>2. Preliminaries</u>

2.1. Wireless communication model

Consider source-initiated multicast sessions. The wireless ad hoc network is modeled by a graph M = (N, A), where N is the set of nodes with |N| = n, a directed edge $\langle u, v \rangle \in A$ if node v is within the transmission range of u. Assume the nodes in M are stationary, and each node is equipped with omnidirectional antennas.

2.1. Wireless communication model (cont.)

In this model each node has a number of power levels. For a transmission from node *u* to node *v*, separated by a distance $d_{u,v}$, to guarantee that *v* is within the transmission range of *u*, the transmission power at node *u* is modeled to be proportional to $d_{u,v}^{\alpha}$, where α is a parameter that typically takes on a value between 2 and 4.

2.1. Wireless communication model (cont.)

A wireless ad hoc network is *symmetric* if there is always a corresponding power level with the same amount of power for two neighboring nodes u and v, i.e., there is a power level with power $d_{u,v}^{\alpha}$ at u and v respectively if u and vare the neighbors.

Otherwise, the network is *asymmetric*.

2.2. Related work

Most existing studies focused on either prolonging the network lifetime or minimizing the total energy consumption of a multicst (broadcast) tree. A few studies have taken into account the above two conflicting objectives

by proposing heuristics.

2.3. The Maximizing Network Lifetime Multicast Problem

The problem is to construct a multicast tree such that the network lifetime is maximized. We show that the maximizing network lifetime broadcast problem (MNLB for short), a special case of the *maximizing network lifetime multicast problem* (MNLM for short), is polynomially solvable, So is MNLM.

2.4. The Minimum Energy Multicast Problem

Symmetric case: An auxiliary, node-weighted, undirected graph $G = (V, E, \omega)$ is constructed as follows.

For each node $v_i \in N$, let $w_{i,1}, w_{i,2}, \ldots, w_{i,l_i}$ be adjustable power at its l_i power levels.

2.4. The Minimum Energy Multicast Problem (cont.)

Algorithm for symmetric networks. It consists of two steps.

- Find an approximate, minimum node-Steiner stree in G
- Transform the found tree into a multicast routing tree in *M*.

2.4. The Minimum Energy Multicast Problem (cont.)

Asymmetric case: An auxiliary, edge-weighted, directed graph $G = (V, E, \omega_1)$ is constructed. A widget $G_i = (V_i, E_i)$ for each node $v_i \in N$ is built, where $V_i = \{s_i, v_{i,1}, v_{i,2}, \dots, v_{i,l_i}\}$ and $E_i = \{\langle s_i, v_{i,l} \rangle \mid 1 \le l \le l_i\}$,

Figure 2: The widget $G_i = (V_i, E_i)$ for node v_i

2.4. The Minimum Energy Multicast Problem (cont.)

Algorithm for asymmetric networks, it consists of

- Find an approximate, minimum directed Steiner tree in G
- Transform the rooted directed tree into a multicast routing tree.

3. Approximation Algorithms

The algorithm for symmetric networks consists of two stages.

- Stage 1 is to remove those potential links from G that result in the network lifetime less than β times of the optimum if they are used to transform the multicast message.
- Stage 2 is to find an approximate, minimum-energy multicast tree in the subnetwork.

Algorithm Balan_Symm_Multicast_Tree (N, s, D, β) **Step 1. Find** $N_{opt}(M)$ using the auxiliary directed graph G' = (N, A', w). **Step 2.** Construct a node-weighted, auxiliary graph $G = (V, E, \omega')$, where $\omega'(v) = rc(u) - d_{u,v}^{\alpha}$ for each power vertex *v* derived from a mobile vertex *u*,. **Step 3.** An auxiliary graph $G_1 = (V, E', \omega')$ is induced from *G* by removing those power vertices *v* and the edges incident to them if $\omega'(v) < \beta N_{opt}(M)$. Step 4. Another graph $G_2 = (V, E', \omega'')$ is constructed, and each power vertex $v \in V$ in G_2 derived from u is assigned $\omega''(v) = rc(u) - \omega'(v) = d_{u,v}^{\alpha}$. Step 5. Find an approximate, minimum node-Steiner tree T_{app} in G_2 . **Step 6.** Transform T_{app} into a valid multicast tree.

3.1. Symmetric networks (cont.)

Theorem 1 Given a symmetric wireless ad hoc network M = (N,A), a source, a destination set D, and a given constant β with $0 < \beta \le 1$, there is an approximation algorithm for the minimizing energy and maximizing network lifetime multicast problem, which delivers such a solution that the total energy consumption in the tree is within $4 \ln K$ times of the optimum, while the minimum residual battery energy among the nodes in M is no less than β times of the optimum.

3.2. Asymmetric networks

The minimizing energy and maximizing network lifetime multicast problem in asymmetric networks can be dealt similarly. Instead of working in a *node-weighted, undirected* auxiliary graph *G*, an *edge-weighted, directed* auxiliary graph *G* will be used, and each directed edge from a mobile vertex *u* to its power vertex *v* is assigned a weight $\omega'(u, v) = rc(u) - d_{u,v}^{\alpha}$. Algorithm Balan_Asymm_Multicast_Tree (N, s, D, β)

Step 1. Find $N_{opt}(M)$ **using** G' = (N, A', w);

Step 2. Construct an edge-weighted, directed auxiliary graph $G = (V, E, \omega')$, where $\omega'(u, v) = rc(u) - d_{u,v}^{\alpha}$ for each directed edge $\langle v, u \rangle$ derived from a mobile vertex *u*.

Step 3. $G_1 = (V, E', \omega')$ is induced from *G* by removing those directed edges $\langle u, v \rangle$ if $\omega'(u, v) < \beta N_{opt}(M)$.

Algorithm Balan_Asymm_Multicast_Tree (N, s, D, β)

Step 4. Another auxiliary graph $G_2 = (V, E', \omega'')$ whose topology is identical to G_1 is constructed. Assign each directed edge $\langle u, v \rangle$ in G_2 a new weight $\omega''(u, v) = d_{u,v}^{\alpha}$.

Step 5. Find an approximate, minimum directed Steiner tree T_{app} in G_2 rooted at the source.

Step 6. Transform T_{app} **into a valid multicast tree.**

3.2 Asymmetric networks (cont.)

Theorem 2 Given an asymmetric ad hoc wireless network M(N,A), a destination set D, and a constant β with $0 < \beta \le 1$, there is an approximation algorithm for finding a directed multicast tree rooted at the source and spanning the nodes in D. The solution delivered is $O(|D|^{\varepsilon})$ times of the optimum under the constraint that the minimum residual battery energy energy among the nodes is no less than β times of the optimum, where ε is constant with $0 < \varepsilon \le 1$. <u>China Tour</u>

Open Questions