
Computing Maximum Flows in Undirected
Planar Networks with Both Edge and Vertex

Capacities

Xianchao Zhang1, Weifa Liang2, and Guoliang Chen3

1 School of Software, Dalian University of Technology
Dalian, China, 116620

2 Department of Computer Science, Australian National University
Canberra, ACT 0200, Australia

3 Department of Computer, University of Science and Technology of China
Hefei, China, 230027

xczhang@dlut.edu.cn, wliang@cs.anu.edu.au, glchen@ustc.edu.cn

Abstract. We study the maximum flow problem in an undirected pla-
nar network with both edge and vertex capacities (EVC-network). A
previous study reduces the minimum cut problem in an undirected pla-
nar EVC-network to the minimum edge-cut problem in another planar
network with edge capacity only (EC-network), thus the minimum-cut
or the maximum flow value can be computed in O(n log n) time. Based
on this reduction, in this paper we devise an O(n log n) time algorithm
for computing the maximum flow in an undirected general planar EVC-
network and an O(n) time algorithm for computing the maximum flow in
an undirected (s, t)-planar EVC-network. As a result, the maximum flow
problem in undirected planar EVC-networks is as easy as the problem in
undirected planar EC-networks in terms of computational complexity.

1 Introduction

The maximum flow problem in a flow network with both edge and vertex capaci-
ties (EVC-network) is to find a flow between a pair of vertices such that the value
of the flow is maximized. This is a classical combinatorial optimization problem
with a wide variety of applications [1]. A special case of the problem is that
only the edges in the network have capacities (EC-network), for which extensive
studies have been conducted in the past half centuries, and the best algorithms
are Goldberg and Tarjan’s O(nm log(n2/m)) time algorithm for real capacity [4]
and Goldberg and Rao’s O(min(n2/3, m1/2)m log(n2/m) log Ue) time algorithm
for integral capacity [5], where n is the number of vertices, m is the number of
edges, and Ue is the maximum integral capacity among the edge capacities in
the network.

The problem in planar EC-networks has been addressed, and efficient algo-
rithms have been devised by exploiting the network planarity. In particular,
Hu [9] transformed the minimum (edge-)cut problem in an (s, t)-planar EC-
network into the shortest path problem in the dual network of the network,
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where an (s, t)-planar network is such a planar network that both the source s
and the sink t are on the same face. Hassin [7] observed that Hu’s algorithm
actually computes the maximum flow. Klein et al [11] presented a linear algo-
rithm for the single shortest path problem in planar networks. This leads to an
O(n) time algorithm for the problem in (s, t)-planar EC-networks [11]. It is not
difficult to see that there is an O(n log n) algorithm for the problem in a general
undirected planar EC-network by incorporating the results due to Hassin and
Johnson [8] and Klein et al [11]. Borradaile and Klein [3] provided an O(n log n)
time algorithm for the problem in a general directed planar EC-network.

It is well known that the maximum flow problem in a general EVC-network
can be easily reduced to the maximum flow problem in another EC-network [1].
However, this reduction does not maintain the network planarity if it is applied
to a planar network [2]. As a result, the network’s planarity can not be ex-
ploited if the traditional reduction is applied, and the maximum flow problem in
a planar EVC-network takes O(n2 log n) time or O(n3/2 log n log(max{Ue, Uv})
time for real or integral capacity respectively, where Uv is the maximum integral
capacity among the vertices in the network. Khuler and Naor [10] addressed
the planarity-destruction problem of the traditional reduction. By adding some
edges and vertices to the dual network of a planar EVC-network, they trans-
formed the minimum cut problem in the primal network into the problem of
finding the cut-cycle of the shortest length in the extended dual network, which
can be further transformed into the shortest path problem. Their algorithm,
incorporating with Klein et al ’s [11] shortest path algorithm, can find the min-
imum cut (or the value of the maximum flow) in O(n) time in an (s, t)-planar
EVC-network or in O(n log n) time in a general planar EVC-network. For an
(s, t)-planar EVC-network, they also proposed an algorithm for computing the
maximum flow, which can be implemented in O(n log log n) time by making use
of Han’s sorting algorithm [6]. Inspired by Khuler and Naor’s transformation,
Zhang et al [14] proposed a maintaining-planarity reduction that reduces the
minimum cut problem in an undirected planar EVC-network to the minimum
edge-cut problem in another planar EC-network. However, finding an algorithm
for computing the maximum flow in a general planar EVC-network that takes
the advantage of the network’s planarity was open until a solution in this paper
is proposed.

In this paper we show that the maximum flow in the primal planar EVC-
network can be computed by finding a maximum flow in the auxiliary planar
EC-network introduced in [14], mapping the flow to a pseudo-flow in the primal
EVC-network, and then canceling cycle-flows in the pseudo-flow. Thus, the maxi-
mum flow in a general undirected planar EVC-network can be found in O(n log n)
time. We then provide an O(n) time algorithm for canceling cycle-flows in (s, t)-
planar networks by showing that the maximum flow in an undirected (s, t)-
planar EVC-network can be found in O(n) time. Consequently, the maximum
flow problems in undirected planar EVC-networks are as easy as the problems
in undirected planar EC-networks in terms of computational complexity.
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The rest of the paper is organized as follows. In Section 2 we introduce neces-
sary notations and notions. In Section 3 we show how to compute the maximum
flow in an undirected planar EVC-network. In Section 4 we propose an O(n)
time algorithm for the problem in an undirected (s, t)-planar EVC-network. In
Section 5 we conclude our discussions.

2 Preliminaries

In this section we introduce some notations and concepts which are necessary
for the rest of discussions.

Definition 1. An undirected graph G = (V, E) consists of a set V of vertices
and a set of edges E whose elements are pairs of distinct vertices. Denote n and
m the number of vertices and edges in N . A path in a graph G is a subgraph of
G consisting of a sequence of vertices v1 − v2 − · · · − vr and the edges between
each consecutive pair of vertices in the sequence. A simple path is a path without
any repetition of vertices. A cycle is a simple path v1 − v2 − · · · − vr together
with edge (v1, vr).

Definition 2. An EVC-network N = (G, c, u, s, t) is an undirected graph G =
(V, E) with two specified vertices, the source vertex s and the sink vertex t, respec-
tively, an edge capacity function c : E �→ R+ ∪ {0}, an vertex capacity function
u : V �→ R+ such that u(s) = u(t) = ∞. An AC-network with edge capacity only
is a special one in which the capacities of all vertices are ∞.

Definition 3. A pseudo-flow f in a network N is a function f : V × V → R
such that:

f(i, j) = f(j, i) = 0, (i, j) /∈ E (1)
0 ≤ f(i, j) + f(j, i) ≤ c(i, j) ∀(i, j) ∈ E (2)

∑

k:(k,i)∈E

f(k, i) =
∑

j:(i,j)∈E

f(i, j) ∀i ∈ V \ {s, t} (3)

Formulas (1) and (2) are referred to as the edge-capacity constraint, while For-
mula (3) is referred to as the flow-conservation constraint. The value of a pseudo-
flow f is defined as the net flow f into t, i.e., val(f) =

∑
i:(i,t)∈E f(i, t) −∑

j:(t,j)∈E f(t, j). A path from s to t is referred to as an augmenting path if the
pseudo-flow in each edge of this path is non-zero.

Definition 4. A pseudo-flow f in a flow network N is a flow if it meets:
∑

j:(i,j)∈E

f(i, j) ≤ u(i) ∀i ∈ V − {s, t} (4)

Formula (4) is the vertex-capacity constraint of the flow. A flow f is the maxi-
mum flow if its value val(f) is maximized.
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Definition 5. A path flow fp in a flow network N on the set {P} of all directed
paths from s to t is defined as fp : {P} → R+ ∪ {0}. Specifically, a flow on a
cycle of a non-simple path is called a cycle-flow. A directed path P from s to t
such that fp(P ) ≥ 0 is called an augmenting path.

Theorem 1 ([1]). Flow decomposition theorem: Given a flow network N , every
path flow function has a unique representation as a pseudo-flow (defined on the
edge set). Conversely, every pseudo-flow function in a network can be represented
by at most n + m path-flows, and among them, there are at most m cycle-flows.

Definition 6. Canceling cycle-flows within a pseudo-flow f in a network N is
to decrease the values of f on edges along some cycles such that there is no
cycle-flows in its path-flow representation. If the path flow representation of a
pseudo-flow f contains no cycle-flows, f is called an acyclic pseudo-flow.

Lemma 1 ([1]). A pseudo-flow is an acyclic pseudo-flow if all its augmenting
paths are simple.

Definition 7. Given a flow network N , a cut C in N is a minimal collection
of vertices and edges whose deletion separates s from t in the resulting network.
A cut consisting of only edges is an edge-cut. The sum of the capacities of the
terms in a cut C is called the capacity of the cut. A minimum cut is a cut of
the minimum capacity among all cuts. A minimum edge-cut is an edge-cut of the
minimum capacity among all the edge-cuts.

Definition 8. A network is said to be planar if it can be embedded on a plane
such that no two edges cross with each other. A planar network partitions the
plane into a number of connected regions, and each of this regions is referred to
as a face. We say the border B(F ) of a face F the set of edges that separate
F from other parts of the plane. Two faces are neighbors if their borders share
some common edges.

3 Computing the Maximum Flow in an Undirected
Planar EVC-Network

In this section we propose an algorithm for computing the maximum flow in
an undirected planar EVC-network N with the aid of an auxiliary planar EC-
network. The auxiliary planar EC-network, denoted as Ne, is constructed as
follows. (1) Given a vertex v ∈ V −{s, t} of degree d in N , replace v with a cycle
consisting of d vertices v1, v2, · · · , vd and d edges (vi, vi+1 mod d), 1 ≤ i ≤ d.
The edge capacity of each of these edges is u(v)/2. (2) The edges in N incident
to v are now linked to the vertices of the cycle v1, v2, · · · , vd one by one in the
same clockwise order as they link to v (Fig. 1). Note that if d = 2, the ”cycle”
formed by v1 − v2 − v1 degenerates to an edge and its capacity is u(v).

Definition 9. Ne is called the extended network of N , and the cycle in Ne

formed by v1, v2 · · · , vd is called the corresponding chain-cycle of v ∈ N .

It is trivial to verify that Ne can be constructed from N in O(n) time.
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Fig. 1. The construction of an extended network
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Fig. 2. (a) The original network N , (b) the extended network Ne with a flow, (c) a
pseudo-flow in N is obtained from the flow in Ne, (d) a flow is derived by canceling
the cycle-flow

Theorem 2. [14] The capacity of the minimum cut N is equal to the capacity
of the minimum edge-cut problem in Ne, i.e., the value of the maximum flow in
N is equal to the value of the maximum flow in Ne.

Our algorithm is based on the above theorem. Let us consider a flow in Ne. If
there is a flow fe in Ne, there is a corresponding function f ∈ N , ∀e ∈ N, f(e) =
fe(ee), where ee is the corresponding edge of e in Ne. It is not difficult to verify
that f follows the edge-capacity and flow-conversation constraints in N , thus,
it is a pseudo-flow. However, f may violate the vertex-capacity constraint in N .
Fig. 2 illustrates such a violation. Fig. 2(a) is a primal network N , where the
value on each edge is its capacity, and the cycled value at each vertex is the
capacity of the vertex. Fig. 2(b) is the extended network Ne of N and there is a
maximum flow on it. Consider vertex v in N or its corresponding chain-cycle in
Ne. The amount of incoming flow to v is 3, exceeding its capacity of 2. Thus, a
pseudo-flow f directly obtained from a flow fe in Ne is not a flow in N . In what
follows we consider how to derive a flow from f .
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Theorem 3. If f is an acyclic pseudo-flow, then f follows vertex capacity con-
straint in N and is a flow.

Proof. Without loss of generality, consider a chain-cycle in Ne, which corre-
sponds a vertex v in N . Since s and t do not fall inside a chain-cycle, we can
draw a line that cross it and separates s from t in the plane. When (a part of)
flow fe goes into the chain-cycle and then out from it, two cases may arise.

Case 1. If the flow fe goes through the chain-cycle from one side of the plane to
the other side (Fig. 3), the amount of the flow through the chain-cycle cannot be
greater than the sum of the capacities of two bottleneck edges in the chain-cycle
(two thick edges in Fig. 3) due to the edge-capacity constraint. Since the capacity
of each edge in the chain-cycle is a half of the capacity of the corresponding
vertex v in N . If the chain-cycle is treated as v, the corresponding pseudo-flow
f satisfies the vertex-capacity constraint at v.

s t

fe(P1)
p

p

fe(P2)

p

fe(P3)

v

Fig. 3. Case 1. Flow runs through a chain-cycle from one side of the plane to the other
side

Case 2. Opposite to case 1, without loss of generality, assume that on the
left half plane, there are two path-flows fp

e (P1) and fp
e (P2) entering the chain-

cycle and one path-flow fp
e (P3) outgoing from the chain-cycle between the two

entering path-flows(Fig. 4). The path-flows fp
e (P1) and fp

e (P2) and the border of
the chain-cycle form a closed region. The path-flow fp

e (P3) must go from inside
the region to outside of the region because it eventually will reach the sink. Thus,
if the chain-cycle is treated as the corresponding vertex v in N , a cycle-flow must
be formed in the corresponding pseudo-flow f(Fig. 4).

The above observations indicate that, if f is an acyclic pseudo-flow, case 2
would not arise, and the vertex capacity constraint will not be violated.

If f is not an acyclic pseudo-flow, we can cancel its cycle-flows to make it acyclic.
Thus a flow in N can be obtained as follows. First, compute a pseudo-flow f
from a flow fe in Ne, followed by cancelling the cycle-flows of f to get an acyclic
pseudo-flow fa. It is easy to verify that fa is a flow in N . Fig. 2 depicts this
procedure. In Fig. 2(c), a pseudo-flow f in N is obtained from the flow in Ne.
Case 2 arises at vertex v and there is a cycle-flow. In Fig. 2(d), the cycle-flow is
canceled and a flow fa in N is obtained.
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Fig. 4. Case 2. Outgoing path-flows from the chain-cycle exist between path-flows
entering into the chain-cycle

Note that canceling cycle-flows does not change the value of a pseudo-flow.
So if fe is a maximum flow in Ne, then fa is a maximum flow in N .

The algorithm is described as follows.

Algorithm Edge Vertex Capacitied Max Flow(N)
Begin
1. Construct the extended network Ne;
2. Compute a maximum flow fe in Ne;
3. Map fe to the edges in N to get a pseudo-flow f ;
4. Cancel cycle flows in f to get a maximum flow fa in N ;
End.

Lemma 2. [13] A pseudo-flow can be converted into an acyclic pseudo-flow of
the same value in O(m log n) time.

Theorem 4. The maximum flow in an undirected planar EVC-network can be
computed in O(n log n) time.

4 An O(n) Algorithm for Undirected (s, t)-Planar
EVC-Networks

In this section, we aim to devise an efficient algorithm by taking advantage of
the special properties of (s, t)-planar networks. For an (s, t)-planar network, we
assume that s and t are laid in the outer face, a new edge (s, t) is introduced with
c(s, t) = 0, the new finite face is denoted by s′, and the outer face is denoted
by t′.

Definition 10. The dual network N ′ = (G′(V ′, E′), l) of a (s, t)-planar network
N is a planar network defined as follows. The dual vertex set V ′ is the set of
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F0

F1F2

a

s

Sticking point

b

P0
P1

P2

F0

F1F2st t

Fig. 5. Check non-simple augmenting path by visiting faces one by one: (a) A non-
simple augmenting path P2 is found, (b) P2 is made simple by removing its traps

faces in N . For each edge (i, j) ∈ E, let i′ be the face to the left of (i, j) when
walking from i to j and j′ be the face to the right, (i′, j′) is the dual edge of (i, j)
in N ′, and its length is l(i′, j′) = c(i, j). For each dual vertex i′ in N ′, the length
of the shortest path from s′ to i′ is called distance of i′, denoted as d(i′).

Given an undirected (s, t)-planar network N and its dual network N ′, a label
function in N ′ h : V ′ �→ R with arbitrary value on each vertex has the following
property.

Lemma 3. [7] If two functions λ : V × V → R and f : V × V → R are defined
as: λ(i, j)=h(j′)−h(i′), λ(t, s)=h(t′)−h(s′); f(i, j) = max{λ(i, j), 0}, f(t, s) =
max{λ(t, s), 0}, f(s, t) = 0 , then f follows the flow-conservation constraint on
each vertex, and the value of f is h(t′) − h(s′). If function h(·) is the distance
function d(·), and N is an EC-network, then f is a maximum flow.

To compute the maximum flow in an undirected planar EVC-network N , we
first construct the extended Ne and run a shortest path algorithm in the dual
network N ′

e of Ne to compute the maximum flow fmax
e . Meanwhile, for each dual

vertex v′e that is not a face closed by a chain-cycle in Ne, we assign it an index
using the order that it is added to the shortest path tree, and give it a label
with its distance in N ′

e, i.e., h(v′e) = d(v′e). We finally map the index and label
of each such vertex in N ′

e to its corresponding face in N . A flow f in N can be
computed by using the label function h(·) in the way as shown in Lemma 1. It
is trivial to verify that f is a pseudo-flow. In what follows we show how to find
a maximum flow in N .

The proposed algorithm tranverses the faces in N in increasing order of the
indices of the faces, and constructs augmenting paths using the borders of these
faces. Non-simple augmenting paths are then made simple by adjusting face la-
bels. Accordingly, the corresponding flow f is acyclic and the maximum flow is



Computing Maximum Flows in Undirected Planar Networks 585

found. We refer to this algorithm as Make Augmenting Path Simple, which
works as follows. During the process, a face is marked as visited if it has been
visited or its label is updated. A visited face means that it will not be visited
again in the future. An edge or vertex is marked as colored if it is in the aug-
menting path, which will be used to update augmenting paths and to check the
non-simplicity of augmenting paths.

The algorithm visits the faces in N starting from F0, which corresponds to
the dual vertex s′, a simple augmenting path P0 = B(F0) − (s, t) is found, F0
is marked as visited, all the edges and vertices in P0 are marked as colored.
The algorithm then visits the other faces one by one in increasing order of their
indices.

Suppose that Fk has been visited with k ≥ 0, a simple augmenting path
Pj is found, and the edges and vertices in Pj are marked as colored, now it
visits the next face Fk+i which is an unvisited face with the least index. Note
that the neighbors of Fk+i with smaller indices have already been visited, so
some segments of B(Fk+i) are on Pk and have been marked colored. A new
augmenting path Pj+1 is obtained by replacing the colored segments with those
uncolored segments of B(Fk+i). Pj+1 may be non-simple, which can be verified
by traversing B(Fk+i) as follows. If two consecutive edges (x, y) and (y, z) on
B(Fk+i) are not colored while y is colored, then Pj+1 is not simple. Each such
vertex y is marked as a sticking point. Each non-simple sub-path of Pj+1 is called
a trap, and can be easily found by a traversal along Pk that starts from each
sticking point, traversing the uncolored edge incident to it first, and ends at
it. After this is done, the uncolored edges and vertices in B(Fk+i) are marked
colored. Fig. 5(a) gives an illustration of the process, in which when face F2 is
visited, a trap is found.

To make augmenting path Pj+1 simple, all the labels of faces enclosed by the
trap are set to be h(Fk+i), and they are then marked as visited so that they
will be not visited again. This label modification results in that the shared edges
between B(Fk+i) and the trap have zero-flows. In the end, the traps in Pk+1 are
removed from it and a simple augmenting path P ∗

k+1 is obtained (Fig. 5(b)).

Lemma 4. Algorithm Make Augmenting Path Simple runs in O(n) time.

The proof of Lemma 4 is omitted due to the space limitation. In summary, we
have the following theorem.

Theorem 5. Given an undirected (s, t)-planar ENC-network N , there is an op-
timal algorithm for computing the maximum flow, which takes O(n) time.

5 Concluding Remarks

In this paper we considered the general version of the maximum flow problem in
an undirected planar EVC-network, and proposed an O(n log n) time algorithm
for the problem. It is still open to whether there is any efficient algorithm for
the problems in directed planar networks running in the same amount of time.
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