
Collaborate or Separate? Distributed Service
Caching in Mobile Edge Clouds

Zichuan Xu†, Lizhen Zhou†, Sid Chi-Kin Chau‡, Weifa Liang‡, Qiufen Xia§∗, and Pan Zhou†
† School of Software, Dalian University of Technology, Dalian, China.

‡ Research School of Computer Science, Australian National University, Canberra, ACT 2601, Australia
§ International School of Information Science & Engineering, Dalian University of Technology, Dalian, China.
¶ School of Cyber Science and Engineering, Huazhong University of Science and Technology, Wuhan, China.

Emails: z.xu@dlut.edu.cn, zhou lizhen@mail.dlut.edu.cn sid.chau@anu.edu.au, wliang@cs.anu.edu.au,
qiufenxia@dlut.edu.cn, panzhou@hust.edu.cn.

∗Corresponding author: Qiufen Xia.

Abstract—With the development of 5G technology, mobile edge
computing is emerging as an enabling technique to promote
Quality of Service (QoS) of network services. In particular, the
response latency of network services can be significantly reduced
by deploying cloudlets at 5G base stations in mobile edge clouds.
Network service providers that usually deploy their services in
remote clouds now shift their services from the remote clouds
to the network edge in the proximity of users. However, the
permanent placement of their services into edge clouds may
not be economic, since computing and bandwidth resources in
edge clouds are limited and relatively expensive. A smart way
is to cache the services that are frequently requested by mobile
users in edge clouds. In this paper, we study the problem of
service caching in mobile edge network under a mobile service
market with multiple network service providers completing for
both computation and bandwidth resources of the edge cloud.
We propose an Integer Linear Program (ILP) and a randomized
rounding algorithm, for the problem without resource sharing
among the network service providers. We also devise a distributed
and stable game-theoretical mechanism for the problem with
resource sharing among the network service providers, with
the objective to minimize the social cost of all network service
providers, by introducing a novel cost sharing model and a
coalition formation game. We analyze the performance of the
mechanism by showing a good guaranteed gap between the
solution obtained and the optimal one, i.e., Strong Price of
Anarchy (SPoA). We finally evaluate the performance of our
algorithms by extensive simulations, and the obtained results
show that the social cost of all players can be reduced significantly
via allowing cooperation among network service providers in
service caching.

Index Terms—Service caching; mobile edge computing; coali-
tion formation; strong price of anarchy; game theory.

I. INTRODUCTION

In the past decade, with the development of cloud tech-
nologies, various multimedia applications are attracting much
attention of many service and infrastructure providers. For
example, various services for Virtual Reality (VR) services
have been deployed in data centers for the real-time processing
of 8K video data collected from VR headsets. Such services
need to consume vast amounts of both computing resource
for rendering and bandwidth resources to receive vast input
video data from headsets. However, they are facing difficulties
in meeting Quality of Services (QoS) requirements of mobile

users, due to not only the large volume of data that needs
to be processed but also the ever-increasingly congested core
networks. The rapid development of mobile edge computing
and 5G technology provides a promising solution to this
problem, by deploying cloudlets on the side close to users
and providing VR services within the proximity of users. The
network service providers can cache their services or partial of
their services into cloudlets of mobile edge clouds such that
the QoS of users is promoted.

In this paper, we consider a fundamental problem of service
caching that allows multiple network services providers to
cache their services from remote data centers to cloudlets
in a mobile edge cloud that is operated by an infrastructure
provider. Network service providers can lease Virtual Machine
(VMs) from the infrastructure provider [29]. Each network
service provider has to bear the cost of using the resources of
its leased VMs in cloudlets. To reduce its cost, the network
service provider may share its leased VMs with other network
service providers.

Service caching in the afore-mentioned mobile edge cloud
with multiple network service providers faces many challenges:
(1) Multiple network service providers in the service market
compete for the limited resources of the edge cloud, and
each of them only cares about their own revenue. It is thus
impossible to centrally coordinate them towards the social
optimum via a centralized mechanism. A distributed mechanism
thus is needed. Specifically, how to design a distributed service
caching mechanism so that each network service provider
has an incentive to participate in the market. How to further
guarantee that the market is stable, and no players can increase
its utility by deviating from its current decision; (2) The
selfish behavior of network service providers gives rise to
outcomes that deviate from a social optimum. A near-optimal
solution with a bounded gap from the social optimum thus
is needed. Specifically, how to design a distributed service
caching mechanism so that each service provider can obtain
non-negative benefits, so that no players can increase its utility
by deviating from its current decision, so as to ensure the
stability of the mechanism, and (3) To further reduce their cost
of service caching, network service providers may choose to

2066
Authorized licensed use limited to: Australian National University. Downloaded on August 09,2020 at 02:17:27 UTC from IEEE Xplore. Restrictions apply.

share their computing and bandwidth resources (that are leased
from the infrastructure provider of the edge cloud) with other
network service providers. Considering the group of network
service providers sharing the same resource as a coalition, it is
challenging to design efficient cost sharing mechanisms for each
coalition that minimizes the system performance degradation
due to sharing; Last but not least, (4) the selection of caching
locations for 5G services, such as VR applications, can have a
significant impact on the latency experienced by users. Naive
caching of services can violate the latency requirement of
users. How to devise strategic caching mechanisms of such
delay-sensitive network services is another challenge.

Although there are studies on content centric networks
(CCN), task offloading, and service placement, they are
fundamentally different with the service caching problem in
mobile edge clouds of this paper. First, the researches on CCN
focused on caching contents in nodes with storage capacities
while they are requested. Services that process those contents
are usually ignored. Second, studies on task offloading and
service placement usually assume that the services are only
deployed in the mobile edge clouds [13], [17], [41], [31], [32],
[33], [34], [36]. This however may not be suitable for service
caching from remote data centers to cloudlets of a mobile edge
cloud with multiple network service providers.

To the best of our knowledge, we are the first to formulate the
problem of service caching from remote clouds to edge clouds
in a service market with multiple network service providers.
We propose a randomized rounding algorithm with a good
approximation ratio with high probability for the problem.
We also propose the very first distributed mechanism with a
guaranteed gap of the obtained solution to the optimal one.

The main contributions of this paper are as follows.
• We formulate the service caching problem in a mobile

edge cloud with and without resource sharing among
multiple network service providers.

• We formulate an Integer Linear Program (ILP) solution
for the problem without resource sharing, and devise a
randomized algorithm with a good approximation ratio
while maintaining moderate resource violations.

• We design a novel coalition formation game for the
problem with resource sharing, with the aim to minimize
the total cost of all network service providers.

• We devise a mechanism for the coalition formation game
with a provable Price-of-Anarchy (PoA), which guarantees
the worst-case performance gap between the obtained
social cost and the optimal one.

• We evaluate the performance of the proposed algorithm
through experimental simulations, and the results show
that the performance of the proposed algorithms outper-
form existing ones.

The remainder of the paper is arranged as follows. Section II
summarizes the state-of-the-arts on this topic. Section III intro-
duces the system model, notations and problem formulation.
Section IV presents the proposed ILP and a randomized approx-
imation algorithm. A mechanism for the coalition formation
game of the delay-sensitive service caching problem is proposed

in Section V. Section VI provides some experimental results
on the performance of the proposed algorithm, and Section VII
concludes the paper.

II. RELATED WORK

According to the ‘entity’ that can be cached or offloaded
to edge clouds, existing studies can be classified into three
categories: (1) content/data caching, (2) task/computation
offloading, and (3) service placement and caching.

For content/data caching, most studies focus on efficient and
effective architectures, methods, and algorithms for content
centric networks [2], [21], [38], [39], conventional cloud
networks [14], or cellular networks [3], [23], [12]. For example,
to improve the content caching efficiency, many research efforts
have been devoted to optimize the path selection [19], server
placement [25] and content duplication strategy [4]. Wang [30]
recently studied the problem of data sharing for network
services via enabling data caching in a network. The research
problems of the aforementioned studies only focused on the
placement of contents and data, and the placement of services
used to process such data are not considered.

Closely related to the service caching problem of this paper
is the research on task offloading and service placement [7],
[9], [17], [41], [37], [40]. For task offloading, Misra et al. [17]
recently studied task offloading in a software-defined network,
where Internet-of-Things (IoT) devices are connected to fog
computing nodes by multi-hop IoT access-points (APs). Both
exact and efficient heuristics are proposed. Zhou et al. [41]
studied the joint task offloading and scheduling, by considering
wireless network connections and mobile device mobility. In
addition, the service placement problem is well investigated.
For example, He et al. [9] investigated the problem of joint
service placement and request scheduling in mobile edge
computing systems under communication, computation, and
storage constraints. Zhang et al. [40] studied the problem
of service placement with an objective to minimize service
hosting costs while ensuring critical performance requirements.
Xie et al. [31] studied the dynamic service caching problem
in mobile edge networks with base stations, and develop an
efficient algorithm to improve the performance by utilizing
the cooperative features of base stations in mobile edge
clouds. They jointly considered the service placement and
user association. However, in the above-mentioned studies,
only a network service provider exists without considering
resource sharing among different services by different network
service providers. Most of them do not consider a mobile edge
cloud with both cloudlets and data centers, and ignored the data
updating between cached services and the original services.

III. PRELIMINARY

In this section, we first introduce the system model, notions
and notations. We then define the problems precisely.

A. System Model

We consider a mobile edge network G = (CL ∪ DC, E).
It consists of not only cloudlets (in CL) that are deployed

2067
Authorized licensed use limited to: Australian National University. Downloaded on August 09,2020 at 02:17:27 UTC from IEEE Xplore. Restrictions apply.

within the users’ proximity but also powerful data centers
(in DC) with abundant computing resources in remote areas.
Denote by CLi a cloudlet in CL. E is a set of links that
interconnect cloudlets and data centers in CL ∪ DC, and let
e ∈ E be a link in E. Each cloudlet CLi ∈ CL has a
limited amount of computing resource to implement various
network services, such as data processing for Internet-of-Things
applications. In addition, according to the mechanisms of
most cloud platforms, VMs hosting cached service instances
are usually assigned to an amount of bandwidth resource to
guarantee the data transmission rate from or to the VM. For
example, a “r5.12xlarge” VM instance in Amazon EC2 has
network bandwidth resource of 10 Gbps [1]. Denote by C(CLi)
and B(CLi) the computing and bandwidth capacities of each
cloudlet CLi. Each data center in DC hosts a set of services that
are to be cached in cloudlets. Each network service provider
usually has a stable set of loyal users who would not shift to
other network service providers in the short term [15], if the
overall service quality of the provider is relative stable. The
user association thus is out of the scope of this paper. Fig. 1
illustrates the two-tiered cloud network G.

Cloudlet1

Cached
services

Cloudlet2

Cached
services

Service Caching

Users

Service

Providers

Service caching
request

Remote data

centersService
Caching

Core networks

Mobile edge

networks

Two services
sharing a VM

Coalition1 Coalition2

User request

Cloudlet3 Cloudlet4

Service

Service

Service

Service

Fig. 1. An example of the two-tiered cloud network.

B. Service Caching for Multiple Network Service Providers
We focus on services that are originally deployed in data

centers, such as services for VR applications, which need to
be cached into the edge cloud to improve latency. We consider
a number of network service providers aiming to cache such
services to the cloudlets in CL, with the aim to improve the QoS
of their services. Such caching of services from remote data
centers to local cloudlets is referred to as service caching. Each
network service provider is self-interest and cares about its
own utility when they are caching services. However, different
network service providers may collaborate together to share
resources in a single cloudlet and thus share the cost of using
the resources, as shown in Fig. 1.

Let spl be a network service provider, where 1 ≤ l ≤ L.
Each network service provider spl has a service, denoted by Sl,
which has already been deployed in one of the data centers in
DC. Service Sl is demanded by a set of users. We thus consider
that each service has a set of user requests that needs to be

processed by its service instances. If network service provider
spl caches an instance of Sl into a cloudlet, user requests of Sl

will be re-directed to its cached service instance in the cloudlet.
Otherwise, the original service instance of Sl in a data center
will continue serving its user requests. The cached instance of
Sl in cloudlet CLi may be destroyed and its occupied resource
will be released back to the system. However, the data that is
processed by its cached instance may be needed by the service
in future. The user data processed by a cached service instance
of Sl must be forwarded to its original service instance in a
remote cloud.

Each network service provider spl usually has a preference
of cloudlets to cache its service spl, considering that some
cloudlets have necessary data or software required by Sl. Let
CLl be the set of cloudlets that are preferred by service Sl.
Only the cloudlets in CLl can cache service Sl and such set of
cloudlets for services are given as a priori. The scenario when
each spl has multiple services is discussed in Section VII.

C. Cost Model

Implementing services in cloudlets for network service
providers incurs various resource usage costs. Specifically,
if a cloudlet caches multiple service instances, the cost will
be shared among the cached instances. Ideally, each service
instance is implemented in a single VM of a cloudlet. It however
may share the VM with other service providers if it does not
use the VM at some time. The computing and bandwidth
resource usage costs are defined as follows.

The cached service instances in a cloudlet CLi consumes
its computing resource. Denote by cpl,i be the cost of using a
unit of computing resource in CLi by service Sl, the usage
cost of computing resource usage of service Sl in CLi is
cpl,i · Cvm

i , where Cvm
i is the amount of computing resource

that is allocated to a VM in cloudlet CLi ∈ CLl.
Bandwidth resource is needed to transfer data from/to a

cloudlet. We consider that the cost of bandwidth resource
usage is proportionally shared among the cached instances in
CLi. Let cbl,i be the cost of using a unit of bandwidth resource
of cloudlet CLi by service Sl, then the bandwidth resource
usage cost is cbl,i ·Bvm

i , where Bvm
i is the amount of bandwidth

resource that is allocated to a VM in cloudlet CLi ∈ CLl.
For clarity, the cost of network service provider spl without

sharing a VM with others is referred to as the default cost of
spl. Denote by cl,i the default cost of caching an instance of
service Sl in a VM of cloudlet CLi, then,

cl,i = cpl,i · C
vm
i + cbl,i ·Bvm

i . (1)

Notice that the default cost is the cost of using a VM by service
Sl solely; that is, the VM is not shared with others.

D. Delay and Utility Models

The delays experienced by implementing a user request
in a cached service instance and an original service instance
of service Sl vary significantly. Denote by dDC

l and dl,i the
average delays experienced by users of service Sl if its requests
are served in its original service instance in a data center and

2068
Authorized licensed use limited to: Australian National University. Downloaded on August 09,2020 at 02:17:27 UTC from IEEE Xplore. Restrictions apply.

a cached service instance in cloudlet CLi, respectively. For
each Sl, dDC

l is usually no less than dl,i for each CLi ∈ CL.
The values for such delays can be obtained from historical
information.

The delay experienced by requesting service Sl determines
the utility of network service provider spl, since prohibitive
long delays may cause cost penalties. We thus consider that
the utility of spl is a function of the improved delay of serving
users in cached service instances over that of serving users in
the original instances in data centers.

Let ul be the default utility of network service provider spl
with a default cost, i.e., the VM that caches the service of spl
without sharing with the other service providers, which can be
formulated as

udftl (CLi) = (vl · (dDC
l − dl,i)− cl,i), (2)

if service Sl has a cached instance in a VM of cloudlet CLi ∈
CLl. Notice that vl is a private value of network service provider
spl that represents the utility it can obtain by promoting a unit
delay that is experienced by requests of Sl. Since data centers
are usually located in remote areas, the delay of cached service
instances is far smaller than that of original service instances,
i.e., dl,i � dDC

l . For example, data center access latency via
core network can be 16 times of cloudlet access latency via
LTE [11]. We further consider that the services of each network
service provider is delay-sensitive, and the utility obtained via
shortening delay is higher than resource usage costs. This
means that udftl (CLi) is always positive for any CLi ∈ CLl.

E. Cooperative Game Theory and Coalition Formation

In cooperative games, players may form a group to jointly de-
termine their actions. Such groups of agents are usually referred
to as “coalitions”. We consider network service providers as
players. The network service providers that have their services
cached in the same cloudlet is considered as a ‘coalition’.
By staying in a coalition, they will be allowed to share both
computing and bandwidth resources in the cloudlet, by paying a
payment. Denote by gi a coalition in cloudlet CLi. Specifically,
network service providers in coalition gi will benefit from
resource sharing if they have complementary resource demands.
However, since both computing and bandwidth resources in
each cloudlet are limited, the coalition of the cloudlet thus has
limits on the maximum number of services that can be cached
in it. We refer each coalition as a capacitated coalition. Let
K be the capacity of each coalition, specifying the maximum
number of service providers that can form a coalition.

Denote by pl(gi) the payment that its service provider
spl has to pay by staying in coalition gi. The revenue
via unconditionally collaborate with other network service
providers is referred to as the collaboration utility. Let ucolll (gi)
be the collaboration utility in coalition gi of cloudlet CLi, then,

ucolll (gi) = vl · (dDC
l − dl,i)− pl(gi). (3)

The utility of a service provider spl obtained through
collaborating with other service providers by sharing its VM
is defined as the difference between its collaboration utility

and its default utility. Assume that spl’s default utility can be
maximized in cloudlet CLi′ (∈ CLl). It however may prefer
to cache its service in CLi, if its collaboration utility can
be maximized by sharing a VM with other network service
providers in CLi. Denote by ul(gi) the utility obtained by
network service provider spl by staying in coalition gi, which
can be given as

ul(gi) = ucolll (gi)− udftl (CLl′)

= cl,i′ −
(
pl(gi)− vl · dl,i′ + vl · dl,i)

)
. (4)

Considering that each spl has a default utility with resource
usage cost cl,i′ without sharing, it may choose to share with
others if its utility can be further improved. This means that(
pl(gi) − vl · dl,i′ + vl · dl,i)

)
of Eq. (4) can be minimized.

We refer to such cost as the collaboration cost, denoted by
ccolll (gi), which is defined by

ccolll (gi) = pl(gi)− vl · dl,i′ + vl · dl,i. (5)

F. Problem Definitions

Given a mobile edge network G and a set of services
S = {Sl | 1 ≤ l ≤ L} to be cached in G. Each network
service provider spl thus requires to cache an instance of its
service Sl in its preferred set CL(Sl) of cloudlets. It must be
mentioned that the proposed algorithms in this paper can be
easily extended to the scenario when multiple instances of Sl

can be cached into the edge cloud, as discussed in Section VII.
We consider the following two optimization problems.
Problem 1: The cost-sensitive service caching problem

without share resource of each VM in a cloudlet is to cache
the services of network service providers, such that the total
cost of caching services in S is minimized, while meeting the
capacity constraint of each cloudlet. Note that since each VM
is not shared, the capacity constraint of each cloudlet is the
number of VMs in it. Let M be the capacity of each cloudlet.

To quantify the quality of the solution to Problem 1, we
adopt the concept of approximation ratio that is defined as the
ratio of a feasible solution to the problem to an optimal one.

Problem 2: The cost- and delay-sensitive service caching
problem is to form a collection of stable coalitions (for resource
sharing) of network service providers by caching their service
instances into cloudlets in G, such that their social cost is
minimized, subject to the capacity constraint of each cloudlet.
The social cost is the total collaboration cost of all network
service providers through collaborating with the other network
service providers. Let C be the collection of stable coalitions,
and the social cost can be represented by ccoll(C).

For Problem 2, we aim to design a mechanism that with
good worst-case performance. That is, we define the Strong
Price of Anarchy (SPoA) as the worst case ratio of the social
cost of a stable coalition structure to a social optimum over
any feasible costs. We thus have

SPoA = ccoll(C)/c(C∗), (6)

where c(C∗) is the optimal cost in a social optimum solution.

2069
Authorized licensed use limited to: Australian National University. Downloaded on August 09,2020 at 02:17:27 UTC from IEEE Xplore. Restrictions apply.

IV. EXACT AND APPROXIMATION ALGORITHMS FOR THE
COST-SENSITIVE SERVICE CACHING PROBLEM WITHOUT

RESOURCE SHARING

We here provide exact and approximate solutions to the cost-
sensitive service caching problem without resource sharing.

A. Exact Solution

Let xli be a binary variable that indicates whether service
Sl of network service provider spl is cached in cloudlet CLi.
The problem then can be formulated as an ILP as follows:

ILP : min
∑L

l=1

∑|CL(Sl)|

i=1
xli · cl,i, (7)

subject to,∑|CL(Sl)|

i=1
xli = 1, ∀Sl ∈ S (8)∑L

l=1
xli ≤M, ∀CLi ∈ CL(Sl) (9)

xli ∈ {0, 1}, (10)

where Constraints (8) say that each service Sl has to be cached
into a cloudlet CLi. Constraints (9) ensure the capacity of each
CLi is not violated, i.e., at most M network service providers
can be assigned to a single CLi.

B. Randomized Algorithm

We now describe the algorithm. We first relax Constraint (10)
into

0 ≤ xli ≤ 1. (11)

Then the ILP is relaxed into an LP with the objective shown
in (7), subject to Constraints (8), (9), and (11).

The optimal solution to the LP can be obtained in polynomial
time. It however may not be a feasible solution to the original
problem due to the fraction value of xli. To make the solution
feasible, we need to round the fractional solution to an integer
solution, by utilizing a randomized rounding technique. For
each service Sl, we use Xli to denote an i.i.d event that service
Sl is assigned to cloudlet CLi. We assign service Sl to cloudlet
CLi with probability 1

2xli. The detailed algorithm are is given
in Algorithm 1, which is referred to as ApproRR.
Algorithm 1 ApproRR
Input: G = (CL∪DC, E), a set of L service providers, each service provider

spl needs to cache its service Sl in a cloudlet.
Output: A caching decision for each network service provider.
1: Relax Constraint (10) of ILP into Constraint (11) and obtain an LP;
2: Obtain a fraction solution x by solving the LP;
3: for each service Sl do
4: Choose a single cloudlet CLi for service Sl by setting Xli = 1 with

probability 1
2
xli, no cloudlet is chosen with probability 1− 1

2
xli;

5: if all Xli defines a feasible solution then
6: Zli ← Xli;
7: else
8: Zli ← 0 for all l and i;
9: return Zli;

C. Algorithm Analysis

We now analyze the solution feasibility and approximation
ratio.

Lemma 1: Assuming that M ≥ 12 ln |CL|, the obtained
solution by Algorithm 1 is a feasible solution with the capacity
M of each cloudlet being violated with probability of 1

L2 .

Proof Clearly, each service will be cached in a single cloudlet.
In the following we show that the capacity of each cloudlet is
violated with a small probability. Recall that in algorithm 1,
service Sl is assigned to cloudlet CLi with probability 1

2xli.
This means that Xli = 1 with probability 1

2xli and Xli = 0

with probability 1 − 1
2xli. Let Xi =

∑L
l=1Xli and its

expectation E(Xi) is

E(Xi) =
∑L

l=1
E(Xli). (12)

We first bound the expectation of event Xi. Assume that a
service Sl′ is cached to cloudlet CLi′ . Since all other events
are independent, we have for each cloudlet CLi ∈ CL(Sl) that

E(Xi | Xi′l′ = 1) =
∑L

l=1
E(Xli) =

∑L

l=1

1

2
xli ≤

M

2

Denote by Pr[·] the probability of an event. The capacity
of each cloudlet CLi is violated only if after taking out one
cached service, the remaining number of services cached in
this cloudlet is still at least M . Calculating the probability that
the capacity of each cloudlet is violated is to calculate

Pr[Xi ≥M | Xi′l′ = 1]. (13)

By a Chernoff bound [18] with µ = E(Xi) and δ = 1, we
have

Pr[Xi ≥M | Xi′l′ = 1] = Pr[Xi ≥ 2E(Xi) | Xi′l′ = 1]

≤ exp
(
− E(Xi)

3

)
≤ exp

(
− M

6

)
≤ exp

(
− 12 ln |CL|

6

)
= 1/|CL|2. (14)

Theorem 1: Assuming that M ≥ 12 ln |CL| and L ≥
24 ln |CL|

cmin
, the approximation ratio of algorithm 1 is within twice

of the optimal solution with a high probability of (1− 1
|CL|2),

where cmin = argmini,l cl,i.

Proof We now show the approximation ratio of the proposed
algorithm. Let OPT be the optimal solution of the ILP. Let
Z be the obtained solution of the approximation algorithm.

Recall that Xli is the event that service Sl is cached in
cloudlet CLi. Let c(Xli) be the cost associated with event Xli,
and its expectation is

E(c(Xli)) = E(Xli) · ccoll (gi) = (1/2)xli · cl,i. (15)

Recall that a solution is feasible only when the capacity of
each cloudlet is met, and each service is cached into a single
cloudlet. By a union bound of Inequality (14), the probability
of an infeasible solution, i.e., Zil = 0 for all l and i, is

Pr[Zil = 0 | Xi′l′ = 1] < |CL| · 1

|CL|2
=

1

|CL|
≤ 1

2
. (16)

This means that the lower bound of Pr[Zil = 1 | Xi′l′ = 1] is

Pr[Zil = 1 | Xi′l′ = 1] ≥ 1

2
Pr[Xi′l′ = 1] =

xi′l′

4
. (17)

2070
Authorized licensed use limited to: Australian National University. Downloaded on August 09,2020 at 02:17:27 UTC from IEEE Xplore. Restrictions apply.

Let Y be the social cost of solution Z, we thus have

E(Y) =
∑L

l=1

∑
CLi∈CL(Sl)

Pr[Zil = 1 | Xi′l′ = 1] · cl,i.
(18)

We have

E(Y) =
∑L

l=1

∑
CLi∈CL(Sl)

Pr[Zil = 1 | Xi′l′ = 1] · cl,i

≥ 1

4

∑L

l=1

∑
CLi∈CL(Sl)

xi′l′ · cl,i ≥
1

4
L · cmin. (19)

To show the approximation ratio of the proposed algorithm
with high probability, we instead show that the solution above
the approximation ratio with small probability. Specifically, we
calculate the following probability

Pr[Y ≥ (1 + σ)OPT], (20)

where σ is a constant with σ > 0.
Recall that the fractional solution to LP is a lower bound

of the optimal solution. We have OPT > E(Y). This means

Pr[Y ≥ (1 + σ)OPT] < Pr[Y ≥ (1 + σ)E(Y)], (21)

since the property of the upper tail property of the Chernoff
bound [18]. Then, apply the Chernoff bound with σ = 1, we
have

Pr[Y ≥ 2 ·OPT] < Pr[Y ≥ 2E(Y)]

< e−
1
3E(Y) < e−

1
12L·cmin , due to lnequality (19)

< e−
24 ln |CL|

12 < 1/|CL|2. (22)

Therefore, the approximation ratio of the proposed algorithm
is within 2 with high probability of (1− 1

|CL|2).

V. DISTRIBUTED COALITION FORMATION GAME FOR THE
COST- AND DELAY-SENSITIVE SERVICE CACHING PROBLEM

In the following we propose an efficient distributed mecha-
nism for the delay-sensitive service caching problem, where
each network service provider is allowed to share its VM with
others when the VM is idle.

A. Overview and Pricing Strategy

Since each network service provider has its own value
regarding to the cloudlet that caches its services, it prefers to
make its own decisions. We consider a distributed mechanism
that allows network service providers to make decisions on
which coalitions to join, based on its own value and information.
Each network service provider makes decisions solely on
whether its revenue will be worse-off. If yes, the network
service provider will not join a coalition. The coalition can
decide whether a network service provider is allowed to join.

Once the coalitions of all cloudlets are formed, to ensure
the stability of the proposed mechanism, i.e., none of the
network service providers in each coalition has an incentive
to deviate from its current coalition. To this end, we propose
a pricing method to ensure the existence of a stable coalition
structure. Specifically, we assume that the payment of network
service provider spl due to resource usage in the cloudlet is

sp1 sp2 sp3

g1 g2 g3

iteration 1(step 1)

{} {} {}
g1 g2 g3

{sp2} {} {sp3}
g1 g2 g3

iteration 2

{sp2} {} {sp1,sp3}

joining request pre-assignment

sp1 sp2 sp3 sp1 sp2 sp3

iteration 1(step 2)

Fig. 2. An example of algorithm Coalition with g1, g2, and g3 three
coalitions and three network service providers, where the capacities of g1, g2,
and g3 are 1, 2, and 2, respectively.
proportional to its default cost (defined in Eq. (1)). Recall that
pl(gi) is the payment of service provider spl if it stays in
coalition gi of cloudlet CLi ∈ CL(Sl), then,

pl(gi) =
cl,i∑

spl′∈gi
cl′,i

c(gi), (23)

where c(gi) is the cost of using the resources in CLi, i.e.,

c(gi) = ci · C(CLi) + cbi ·B(CLi). (24)

B. Mechanism

The basic idea of our algorithm follows the deferred
acceptance algorithm for the stable matching problem [24].
The algorithm iteratively forms a stable coalition structure for
cloudlets. Initially, there are |CL| coalitions with a coalition gi
for each cloudlet CLi ∈ CL. Each network service provider
then identifies the most preferable coalition (i.e., cloudlet) from
set CL(Sl), and sends a ‘joining request’ to the coalition. Each
network service provider usually selects a coalition gi that
could achieve the highest utility by collaborating with other
network service providers in gi. We further consider that there
is an agent of each coalition that speaks for its network service
providers. The agent of gi responses the joining request of each
network service provider. Specifically, it first checks whether
the capacity K of gi will be violated by admitting the network
service provider. If not, it will select one network service
provider that could achieve the minimum social cost. The
selected network service provider will be considered as ‘pre-
assigned’ to coalition gi. In subsequent iterations, the network
service providers that are not pre-assigned to any coalition will
keep sending joining requests to the coalitions that they have
not been considered yet. The agent of each coalition may break
up with network service providers that were pre-assigned to it
in previous iterations, if there is a better choice.

The coalition joining procedure continues until all network
service providers that are pre-assigned to coalitions. The
network service providers of each coalition gi then pays pl(gi)
(Eq. (23)) for staying in coalition gi. Its service Sl is then
cached in cloudlet CLi. The detailed mechanism is given in
algorithm 2, referred to as Coalition. A simple example of
the algorithm is shown in Fig. 2.

C. Mechanism Analysis

We now analyze the economic properties of the proposed
mechanism.

Lemma 2: There exists a stable coalition structure, where
no network service provider can promote its own revenue by
deviating from the current coalition structure.

2071
Authorized licensed use limited to: Australian National University. Downloaded on August 09,2020 at 02:17:27 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Coalition
Input: G = (CL∪DC, E), a set of L service providers, each service provider

spl needs to cache its service Sl in a cloudlet.
Output: A set of coalitions of the service providers where each coalition has

a set of service providers sharing the resources in a cloudlet.
1: while If there is a network service provider that is not pre-assigned to

any coalition do
2: Each spl sends ‘joining request’ to the coalition that is not considered

before and could achieve the highest revenue;
3: The agent of each coalition gi considers the joining requests sent

to itself, and select a network service provider that could achieve
the minimum social cost without violating the capacity of gi and
jeopardizing the revenue of other members in the coalition;

4: The agent of gi may break up with another network service provider
that is already in gi and choose the current network service provider
that sends the joining request, if a lower social cost can be achieved;

5: The network service providers that are ‘pre-assigned’ to each coalition gi
pay a payment of pl(gi) for staying in the coalition;

Proof To show the existence of a stable coalition structure, we
need showing that none of the network service providers prefers
the other coalitions instead of the current one to promote its
revenue. By contradiction, we define a cyclic preference as
sequences (l1, · · · , ls) and g1, · · · , gs, where lk ∈ gk ∩ gk+1

for all k ≤ s− 1, and is ∈ gs ∩ g1, such that

ul1(g1) > ul1(g2), ul2(g2) > ul2(g3), · · · , uls(gs) > uls(g1).

We show that if there is no such a cyclic preference, there
always exists a stable coalition structure [5], [10]. Recall that
different network service providers have different preferred sets
of cloudlets. If every network service provider has a distinct
set of preferred set of cloudlets, each network service provider
stays in a cloudlet of CL(Sl) that has the maximum utility and
will not deviate from its selection. Otherwise, we show that
no cyclic preference exists in the following.

Given a directed graph G = (NK , EK) with nodes in
NK denoting the coalitions and edges in EK denoting the
preference. For two coalitions g1, g2 ∈ NK , we use an edge
〈g1, g2〉 to denote the fact that there exists a network service
provider spl ∈ g1 ∪ g2 such that ul(g1) < ul(g2). This means
that service provider spl ∈ g1 ∪ g2 prefers coalition g2 instead
of coalition g1, as staying in coalition g2 leads to a higher
utility. Otherwise, if there is no such preference, there will not
be an edge from g1 to g2 in the directed graph G. We then
can identify a cyclic preference by finding a directed cycle
in G. This means that G is acyclic and has at least one sink.
In the worst case, a network service provider may consider a
sink as its best choice as it maximizes its utility. Let C be a
maximal subsets of sinks in directed graph G such that any
two distinct coalitions g and g′ are disjoint. Let SP be the
set of service providers that are covered by the coalitions in
C. We then remove all nodes in G that contains some service
provider in SP , and denote by G′ the obtained network.

Let C′ be a coalition structure among the service providers
in NK \ SP . By induction, C′ form a stable coalition structure
as service providers in C′ ∪ C is a stable coalition structure.
Assume that a coalition g1 breaks the status of the mentioned
stable coalitions. We then have g1 ∪ S 6= ∅, since C′ is not
stable. This means that there must exist a service provider
spl ∈ SP such that ul(g1) > ul(g2), where g2 is the coalition

containing spl. Therefore, there should exist an edge 〈g2, g1〉
in G, which contradicts the fact that g2 is a sink node. On the
other hand, if ul(g1) > ul(g2), we have

vl · (dDC
l − dl,1)−

cl,1 · c(g1)∑
spl′∈g

cl′,1
>

vl · (dDC
l − dl,2)−

cl,2 · c(g2)∑
spl′∈g

cl′,2
, (25)

which means

vl · dl,1 +
cl,1 · c(g1)∑
spl′∈g

cl′,1
< vl · dl,2 +

cl,2 · c(g2)∑
spl′∈g

cl′,2

Therefore, if there exists a cyclic preference, we have

vl · dl,1 +
cl,1 · c(g1)∑
spl′∈g

cl′,1
< vl · dl,2 +

cl,2 · c(g2)∑
spl′∈g

cl′,2

< vl · dl,3 +
cl,3 · c(g3)∑
spl′∈g

cl′,3
< · · · < vl · dl,1 +

cl,1 · c(g1)∑
spl′∈g

cl′,1
.

A contradiction that a < a is obtained, where a = vl · dl,1 +
cl,1·c(g1)∑
sp

l′∈g cl′,1
. The lemma then follows.

We then analyze the SPoA of the proposed mechanism.
Theorem 2: The SPoA of the proposed mechanism is

O(K logK).

Proof Showing the SPoA of the mechanism is to estimate the
upper bound of

ccoll(C)/c(C∗) =
L∑

l=1

ccolll (g)/
∑L

l=1
cl(g

∗). (26)

To this end, we first define

α(pl(·)1≤l≤L) = max{
∑K

s=1
ccollls (Hs)/cls(H1)}, (27)

where cls(H1) is the cost of a network service provider that
does not collaborate with anyone else (i.e., the VM that caches
the service of each service provider spl is not shared with other
service providers). H1, · · · , HK are a collection of subsets,
such that each Hs = {spls , · · · , splK}. For clarity, i(Hs) is
used to denote the index of cloudlet that hosts coalition Hs.

Denote by C∗ = {g∗1 , · · · , g∗h} the optimal coalition structure
that has a social optimum welfare. Let C be the stable coalition
structure derived from the proposed mechanism. Assume we
have coalition H1

1 = g∗1 . There exists a service provider spl11 ∈
H1

1 and a coalition g11 ∈ C, such that cl11(H
1
1) ≥ ccoll

l11
(g11).

Otherwise, all service providers in H1
1 will form a coalition to

strictly promote their utility, this contradicts the fact that C is
a stable coalition structure as follows.

We assume that there is another coalition H1
2 = H1

1 \{spl11}.
Similarly, we can find a network service provider spl12 ∈ H

1
2

and a coalition g12 ∈ C with spl11 ∈ H1
2 and cl12(H

1
2) ≥

ccoll
l12

(g12). Let g∗t = {splt1 , · · · spltK}, for any g∗t ∈ C∗. If we
continue the aforementioned arguments, we obtain a collection
of sets {Ht

s}, where each Ht
s = {splts , · · · spltK} meets the

condition: for any t ∈ {1, · · ·h} and g∗t = {spit1,···itK}, there

2072
Authorized licensed use limited to: Australian National University. Downloaded on August 09,2020 at 02:17:27 UTC from IEEE Xplore. Restrictions apply.

exists gts ∈ C, such that splts ∈ g
t
s and clts(H

t
s) ≥ ccolllts

(gts).
Therefore, we can bound the SPoA by∑L

l=1 c
coll
l (g)∑L

l=1 cl(g
∗)

=

∑h
t=1

∑K
s=1 c

coll
lts

(gts)∑h
t=1 c(g

∗
t)

≤
∑h

t=1

∑K
s=1 c

coll
lts

(Ht
s)∑h

t=1 c(H
t
1)

≤ max
t

∑K
s=1 c

coll
lts

(Ht
s)

c(Ht
1)

= α(pl(·)1≤l≤L) = max

∑K
s=1 c

coll
ls

(Hs)

cls(H1)

= max
1

cls(H1)

K∑
s=1

(pl(Hs)− vl · dl,i′ + vl · dl,i(Hs))

Let dmax be the maximum difference of delays of caching the
service of spl in any two cloudlets, we then have∑L

l=1 c
coll
l (g)∑L

l=1 cl(g
∗)

< max
1

cls(H1)

K∑
s=1

(
cl,i(Hs) · c(Hs)∑
spl′∈Hs

cl′,i(Hs)

+ vl · dmax).

Without loss of generality, we assume that c(H1) = 1. We have
cl,i(Hs) ≤ c(Hs) ≤ c(H1) = 1, by monotonicity. Assuming
that vmax = argmax1≤l≤L vl, we then have∑L

l=1 c
coll
l (g)∑L

l=1 cl(g
∗)

= Kvmaxdmax ·max
K∑
s=1

(cl,i(Hs) · c(H1)∑K
t=s cl′,i(Ht)

)
.

Let ŝ be the smallest integer such that
∑K

t=ŝ+1 cl,i(Ht) ≤ 1.
If s ≥ ŝ, we have cl,i(Hs)·c(H1)∑K

t=s cl′,i(Ht)
≤ cl,i(Hs). Otherwise, we have

cl,i(Hs)·c(H1)∑K
t=s cl′,i(Ht)

≤ cl,i(Hs)∑K
t=s cl′,i(Ht)

. Thus, we obtain

SPoA

≤ Kvmaxdmax max
(K∑
s=ŝ

cl,i(Hs) +
ŝ−1∑
s=1

cl,i(Hs)∑K
t=s cl′,i(Ht)

)
≤ Kvmaxdmax(2 +

ŝ−1∑
s=1

cl,i(Hs)∑K
t=s cl′,i(Ht)

). (28)

We then show an upper bound of
∑ŝ−1

s=1
cl,i(Hs)∑K

t=s cl′,i(Ht)
by

utilizing the fact that for any positive numbers x, y, x
x+y ≤

log(x+ y)− log x. We thus have

ŝ−1∑
s=1

cl,i(Hs)∑K
t=s cl′,i(Ht)

≤ log(

K∑
s=1

cl,i(Hs))− log(

K∑
s=ŝ

cl,i(Hs))

< logK − log(1) = logK, (29)

since
∑K

s=1 cl,i(Hs) < K and
∑K

s=ŝ cl,i(Hs) ≥ 1. We have

SPoA ≤ Kvmaxdmax(2 + logK) = O(K logK). (30)

VI. SIMULATIONS

In this section, we evaluate the performance of the proposed
algorithms by experimental simulations.

A. Parameter Settings

We consider a two-tiered cloud network with size varying
from 10 to 200 switches, where each network topology is
generated using GT-ITM [8]. Each cloudlet has a computing
capacity in the range 8,000 to 16,000 MHz. The bandwidth
capacity of each cloudlet varies between 100 Mbps and 1,000
Mbps. The computing capacities of each VM is randomly
drawn from [4,000, 8,000] MHz. The bandwidth capacity of
each VM is drawn from the range of [10,100] Mbps. The costs
of using a unit amount of computing resource and bandwidth
resource in a cloudlet are set within [$0.15, $0.22] and [$0.05,
$0.12], respectively. The average delay experienced by a user
in a cached instance of cloudlet is a value between 10 and
50 milliseconds and the average delay experienced in a data
center is a value between 50 and 100 milliseconds. Unless
otherwise specified, we will adopt these default settings in
our experiments. Each value in the figures is the mean of the
results by applying each mentioned algorithm on 80 different
topologies of the mobile edge cloud.

We compare the proposed algorithms with the following two
algorithms: (1) a non-cooperative mechanism (NonCoop): each
service provider does not cooperate with others. It greedily
selects a cloudlet that only maximizes its own utility; (2)
Random, that the service provider randomly selects cloudlets.

B. Performance Evaluation

We first evaluate the performance of the relaxed ILP referred
to as RelaxedILP, algorithms ApproRR, Coalition
against NonCoop and Random, by varying the network size
from 10 to 200 and the fixing the ratio of the number of
cloudlets and the number of switches to 0.3. The results
can be seen in Fig. 3. From Fig. 3 (a) it can be seen that
algorithm Coalition achieves a much lower social cost
than algorithms RelaxedILP, ApproRR, NonCoop and
Random when the network size is varied from 10 to 200.
The reason is that algorithm adopts an efficient cost sharing
mechanism that allows multiple network service providers share
the resource in a cloudlet; instead algorithms RelaxedILP,
ApproRR, NonCoop and Random do not allow resource
sharing. Resource sharing avoids the resource wastage when
some of the services experience low resource utilization. In
other words, algorithm Coalition enables a more flexible
way of using resources of cloudlets in the mobile edge cloud.
From Fig. 3 (b), we can see that algorithm Coalition
obtained the smallest average delay for each request. This
is because algorithm Coalition allows resource sharing in
each coalition with a few network service providers sharing the
same cloudlet and thus reduces the chances of implementing
services in cloudlets instead of data centers. Fig. 3 (c) shows
the running times of the three algorithms, from which it can
be seen that algorithm Coalition only takes slightly longer
time to obtain feasible solutions than algorithms RelaxedILP,
ApproRR, NonCoop and Random.

We then investigate the impact of the number of cloudlets
on the performance of algorithms RelaxedILP, ApproRR,
Coalition, NonCoop, and Random in a real network

2073
Authorized licensed use limited to: Australian National University. Downloaded on August 09,2020 at 02:17:27 UTC from IEEE Xplore. Restrictions apply.

0 5 0 1 0 0 1 5 0 2 0 0
4 0 0
8 0 0

1 2 0 0
1 6 0 0
2 0 0 0
2 4 0 0

So
cia

l co
st

N e t w o r k s i z e

C o a l i t i o n
R a n d o m
N o n C o o p

R e l a x e d I L P
A p p r o R R

(a) Social cost.

0 5 0 1 0 0 1 5 0 2 0 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5
6 0

Av
era

ge
 de

lay

N e t w o r k s i z e

R e l a x e d I L P
A p p r o R R

C o a l i t i o n
R a n d o m
N o n C o o p

(b) Average delay.

0 5 0 1 0 0 1 5 0 2 0 0
0 . 0 0
0 . 0 6
0 . 1 2
0 . 1 8
0 . 2 4

Ru
nn

ing
 tim

e

N e t w o r k s i z e

 C o a l i t i o n
 R a n d o m
 N o n C o o p
 R e l a x e d I L P
 A p p r o R R

(c) Running time.

Fig. 3. The performance of algorithms Coalition, NonCoop,
RelaxedILP, ApproRR, and Random in networks with sizes varying from
10 to 200.

0 1 0 2 0 3 0 4 0 5 0 6 0
4 0 0
8 0 0

1 2 0 0
1 6 0 0
2 0 0 0
2 4 0 0 R e l a x e d I L P

A p p r o R R
C o a l i t i o n
R a n d o m
N o n C o o p

So
cia

l co
st

N u m b e r o f c l o u d l e t s
(a) Social cost.

0 1 0 2 0 3 0 4 0 5 0 6 01 0
2 0
3 0
4 0
5 0
6 0

Av
era

ge
 de

lay

N u m b e r o f c l o u d l e t s

R e l a x e d I L P
A p p r o R R

C o a l i t i o n
R a n d o m
N o n C o o p

(b) Average delay.

0 1 0 2 0 3 0 4 0 5 0 6 0
0 . 0

0 . 3

0 . 6

0 . 9

Ru
nn

ing
 tim

e

N u m b e r o f c l o u d l e t s

 C o a l i t i o n
 R a n d o m
 N o n C o o p
 R e l a x e d I L P
 A p p r o R R

(c) Running time.

Fig. 4. The performance of algorithms Coalition, NonCoop,
RelaxedILP, ApproRR, and Random in a real network AS1755.

AS1755, by varying the number of cloudlets from 5 to 60. From
Fig. 4, we can see that algorithm Coalition consistently
delivers the lowest social cost compared with that of algo-
rithms RelaxedILP, ApproRR, NonCoop and Random.
In addition, the social costs by algorithms Coalition and
NonCoop are decreasing with the growth of the number of
cloudlets. This is because a higher number of cloudlets make
both algorithms have a higher chance of selecting cloudlets
with lower costs. Also, the bandwidth cost can be reduced as
well, because the cloudlets have a higher probability of being
deployed closer to user requests. Similar trends can be found
in Fig. 4 (b) for the average delay.

We finally investigate the impact of the number of net-
work service providers on the performance of algorithms
RelaxedILP, ApproRR, Coalition, NonCoop, and
Random in a real network AS1755, by varying the number

0 5 1 0 1 5 2 0 2 5
4 0 0
8 0 0

1 2 0 0
1 6 0 0
2 0 0 0
2 4 0 0

So
cia

l co
st

N u m b e r o f s e r v i c e p r o v i d e r s

C o a l i t i o n
R a n d o m
N o n C o o p

R e l a x e d I L P
A p p r o R R

(a) Social cost.

0 5 1 0 1 5 2 0 2 5
1 0
2 0
3 0
4 0
5 0
6 0

Av
era

ge
 de

lay

N u m b e r o f s e r v i c e p r o v i d e r s

R e l a x e d I L P
A p p r o R R

C o a l i t i o n
R a n d o m
N o n C o o p

(b) Average delay.

Fig. 5. The impact of the number of network service providers on the per-
formance of algorithms RelaxedILP, ApproRR, Coalition, NonCoop,
and Random in a real network AS1755.

of network service providers from 2 to 25. Results on the
social cost, the average cost of each user request, and the
running time are shown in Fig. 5. From Fig. 5 (a) shows
that the social cost obtained by algorithms RelaxedILP,
ApproRR, Coalition and NonCoop increases when the
number of network service providers growths from 2 to 5 and
decreases afterwards when the number of network service
providers keeps increasing. The reason is that with more
network service providers being allowed to share resources, the
request processing cost can be reduced. However, the network
bandwidth cost may be increased since to form coalitions some
of them may be assigned to cloudlets further to their requests.
This can also be evidenced in Fig. 5 (b). When the number of
network service providers keeps increasing, the benefit due to
resource sharing traded-off the increase of network bandwidth
cost. Therefore, the social cost decreases if the number of
network service providers grows from 5 to 25.

VII. CONCLUSION

In this paper, we investigated the problem of service caching
in a mobile edge network of a mobile service market with
multiple network service providers. For the cost-sensitive
service caching problem without resource sharing, we proposed
an approximation algorithm via randomized rounding. We also
analyze the approximation ratio of the approximation algorithm.
For the cost- and delay-sensitive service caching problem, we
devised an efficient and stable game-theoretical mechanism and
showed its Strong Price of Anarchy (SPoA). We then evaluated
the performance of our algorithm by simulations, and results
show that the social cost of all network service providers can
be reduced significantly if they collaborate with others.

ACKNOWLEDGEMENT

We appreciate the three anonymous referees for their
constructive comments and valuable suggestions, which helped
us improve the quality and presentation of the paper greatly.
The work by Zichuan Xu and Qiufen Xia is funded by the
National Natural Science Foundation of China (NSFC) with
grant numbers 61802048 and 61802047 and the “Xinghai
scholar” program. The work by Weifa Liang and Sid Chi-
Kin Chau is supported by the Australian Research Council
Discovery Project (no. DP200101985).

2074
Authorized licensed use limited to: Australian National University. Downloaded on August 09,2020 at 02:17:27 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Amazon Pricing. https://aws.amazon.com/emr/pricing/
[2] W. Ali, S. M. Shamsuddin, and A. S. Ismail. A survey of web caching

and prefetching. Int. J. Advance. Soft Comput. Appl, vol. 3, no. 1,
pp.18–44, 2011.

[3] W. Ao and K. Psounis. Distributed caching and small cell cooperation
for fast content delivery. Proc. of MobiHoc, ACM, 2015.

[4] S. Borst, V. Gupta, and A. Walid. Distributed caching algorithms for
content distribution networks. Proc. of IEEE INFOCOM, IEEE, 2010.

[5] C-K Chau and K. Elbassioni. Quantifying inefficiency of fair cost sharing
mechanisms for sharing economy. IEEE Transactions on Control of
Network Systems, Vol. 5, No. 4, pp. 1809–1818, IEEE, 2018.

[6] Y. Gao et al. A multi-objective ant colony system algorithm for virtual
machine placement in cloud computing. Journal of Computer and System
Sciences, Vol. 79, No. 8, pp. 1230-1242, 2013.

[7] B. Gao, Z. Zhou, F. Liu, and F. Xu: Winning at the starting line: Joint
network selection and service placement for mobile edge computing.
Proc. of INFOCOM, IEEE, 2019.

[8] GT-ITM. http://www.cc.gatech.edu/projects/gtitm/.
[9] T. He et al. It’s hard to share: joint service placement and request

scheduling in edge clouds with sharable and non-sharable resources. Proc.
of the IEEE 38th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2018.

[10] M. Hoefer, D. Vaz, and L. Wagner. Hedonic coalition formation in
networks. Proc. of AAAI, 2015.

[11] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, and Z. Chen. Quantifying
the impact of edge computing on mobile applications. Proc. of ACM
APSys, ACM, 2016.

[12] B. Jedari and M. Francesco. Auction-based cache trading for scalable
videos in multi-provider heterogeneous networks. Proc. of INFOCOM,
IEEE, 2019.

[13] M. Jia, W. Liang, and Z. Xu. QoS-aware task offloading in distributed
cloudlets with virtual network function services. Proc of MSWiM, ACM,
2017.

[14] V. Kantere et al. Optimal service pricing for a cloud cache. IEEE
Transactions on Knowledge and Data Engineering, Vol. 23, No. 9, pp.
1345-1358, 2011.

[15] T. N. Quach, P. Thaichon, and C. Jebarajakirthy. Internet service providers’
service quality and its effect on customer loyalty of different usage
patterns. Journal of Retailing and Consumer Services, Vol. 29, pp.
104–113, Elsevier, 2016.

[16] S. Mehrotra et al. Network system with cache offload service for flash
storage. U.S. Patent No. 9,940,241. 10 Apr. 2018.

[17] S. Misra and N. Saha. Detour: Dynamic task offloading in software-
defined fog for IoT applications. IEEE Journal on Selected Areas in
Communications, Vol. 37, No. 5, pp. 1159–1166, IEEE, 2019.

[18] M. Mitzenmacher, E. Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press,
2005.

[19] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai network: a platform
for high-performance internet applications. ACM SIGOPS Operating
Systems Review, vol. 44, no. 3, pp. 2–19, 2010.

[20] D. Oppenheimer et al. Service Placement in a Shared Wide-Area Platform.
Proc. of the USENIX Annual Technical Conference, USENIX, 2006.

[21] G. S. Paschos, A. Destounis, L. Vigneri, and G. Iosifidis. Learning to
cache with no regrets. Proc. of INFOCOM, IEEE, 2019.

[22] P. Paul et al. Efficient service cache management in mobile P2P networks.
Future Generation Computer Systems, Vol. 29, No. 6, pp. 1505–1521,
2013.

[23] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas.
Joint service placement and request routing in multi-cell mobile edge
computing networks. Proc. of INFOCOM, IEEE, 2019.

[24] A. E. Roth. Deferred acceptance algorithms: history, theory, practice,
and open questions. International Journal of Game Theory, Vol. 36,
No.3-4, pp. 537–569, Springer, 2008.

[25] S. Scellato, C. Mascolo, M. Musolesi, and J. Crowcroft. Track
globally, deliver locally: improving content delivery networks by tracking
geographic social cascades. Proc. of the 20th international conference
on World wide web. ACM, 2011.

[26] O. Skarlat et al. Towards qos-aware fog service placement. Proc. of the
2017 IEEE 1st international conference on Fog and Edge Computing
(ICFEC), IEEE, 2017.

[27] M. Steiner et al. Network-aware service placement in a distributed cloud
environment. ACM SIGCOMM Computer Communication Review, Vol.
42, No. 4, pp. 73-74, 2013.

[28] J. Tordsson et al. Cloud brokering mechanisms for optimized placement of
virtual machines across multiple providers. Future Generation Computer
Systems, Vol. 28, No. 2, pp. 358-367, 2012.

[29] T. X. Tran, A. Hajisami, P. Pandey, and D. Pompili. Collaborative
mobile edge computing in 5G networks: New paradigms, scenarios, and
challenges. IEEE Communications Magazine, Vol. 55, No. 4, pp. 54–61,
IEEE, 2017.

[30] Y. Wang, S. He, X. Fan, C. XU, and X. Sun. On cost-driven collaborative
data caching: A new model approach. IEEE Transactions on Parallel
and Distributed Systems, Vol. 30, No. 3, pp. 662–676, IEEE, 2018.

[31] Q. Xie, Q. Wang, N. Yu, H. Huang, and X. Jia. Dynamic service caching
in mobile edge networks. Proc. of MASS, IEEE, 2018.

[32] Q. Xia, L. Bai, W. Liang, Z. Xu, L. Yao, and L. Wang. QoS-Aware
Proactive Data Replication for Big Data Analytics in Edge Clouds. Proc
of 48th Intl Conf on Parallel Processing (ICPP19) Workshops, 2019.

[33] Z. Xu, W. Liang, M. Jia, M. Huang, and G. Mao. Task offloading
with network function services in a mobile edge-cloud network. IEEE
Transactions on Mobile Computing, Vol.18, No. 11, pp. 2672–2685,
IEEE, 2019.

[34] Z. Xu, Y. Zhang, W. Liang, Q. Xia, O. F. Rana, A. Galis, G. Wu, and P.
Zhou. NFV-enabled multicasting in mobile edge clouds with resource
sharing. Proc of 48th Intl Conf on Parallel Processing (ICPP19), 2019.

[35] L. Yang et al. Cost aware service placement and load dispatching in
mobile cloud systems. IEEE Transactions on Computers, Vol. 65, No. 5,
pp. 1440-1452, 2015.

[36] B. Yang, W. K. Chai, Z. Xu, K. Katsaros, and G. Pavlou. Cost-efficient
NFV-Enabled mobile edge-cloud for low latency mobile applications.
IEEE Transactions on Network and Service Management, Vol.15, No. 1,
pp.475–488, IEEE, 2018.

[37] S. Zang, W. Bao, P. L. Yeoh, B. Vucetic, and Y. Li. Filling two needs
with one deed: Combo pricing plans for computing-intensive multimedia
applications. IEEE Journal on Selected Areas in Communications, Vol.
37, No. 7, pp. 1518–1533, IEEE, 2019.

[38] G. Zhang, Y. Li, and T. Lin. Caching in information centric networking:
A survey. Computer Networks, vol. 57, no. 16, pp. 3128–3141, Elsevier,
2013.

[39] M. Zhang, H. Luo, and H. Zhang. A survey of caching mechanisms
in information-centric networking. IEEE Communications Surveys &
Tutorials, vol. 17, no. 3, pp. 1473–1499, 2015.

[40] Q. Zhang et al. Dynamic service placement in geographically distributed
clouds. IEEE Journal on Selected Areas in Communications, Vol. 31,
No. 12, pp. 762-772, 2013.

[41] B. Zhou, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya. An online
algorithm for task offloading in heterogeneous mobile clouds. ACM
Trans. Internet Technol., Vol. 18, No. 2, Article 23, ACM, 2018.

2075
Authorized licensed use limited to: Australian National University. Downloaded on August 09,2020 at 02:17:27 UTC from IEEE Xplore. Restrictions apply.

