
39th Annual IEEE Conference on Local Computer Networks LCN 2014, Edmonton, Canada

Efficient Virtual Network Embedding Via Exploring
Periodic Resource Demands

Zichuan Xu Weifa Liang Qiufen Xia
Research School of Computer Science

Australian National University, Canberra, ACT 0200, Australia
Email: edward.xu@anu.edu.au.wliang@cs.anu.edu.au.qiufen.xia@anu.edu.au

Abstract-Cloud computing built on virtualization technologies
promises provisioning elastic computing and communication re­
sources to enterprise users. To share cloud resources efficiently,
embedding virtual networks of different users to a distributed
cloud consisting of multiple data centers (a substrate network)
poses great challenges. Motivated by the fact that most enterprise
virtual networks usually operate on long-term basics and have
the characteristics of periodic resource demands, in this paper
we study the virtual network embedding problem by embedding
as many virtual networks as possible to a substrate network
such that the revenue of the service provider of the substrate
network is maximized, while meeting various Service Level Agree­
ments (SLAs) between enterprise users and the cloud service
provider. For this problem, we propose an efficient embedding
algorithm by exploring periodic resource demands of virtual
networks, and employing a novel embedding metric that models
the workloads on both substrate nodes and communication links
if the periodic resource demands of virtual networks are given;
otherwise, we propose a prediction model to predict the periodic
resource demands of these virtual networks based on their historic
resource demands. We also evaluate the performance of the
proposed algorithms by experimental simulation. Experimental
results demonstrate that the proposed algorithms outperform
existing algorithms, improving the revenue from 10% to 31 %.

I. INTRODUCTION

Enterprises nowadays are embracing a new computing
paradigm by outsourcing their IT service networks as virtual
networks to clouds for cost savings. For example, a company
operating video conferencing services could run on a virtual
network with a stringent quality of service (QoS) requirement
by allocating dedicated resources and employing robust routing
protocols, whereas a university delivering online courses for
distance education may run a virtual network with guaranteed
bandwidth for real-time delivery of its online courses. Both
of such virtual networks can be run on a substrate network
that consists of multiple data centers. A fundamental problem
related to these applications is to devise an efficient algorithm
to accommodate as many virtual networks as possible in the
substrate network such that the operational cost of the cloud
service provider is minimized. We refer to this problem as the
Virtual Network Embedding (VNE) problem, which has been
extensively studied in the past couple of years [2], [7], [lO].

Most existing studies of the VNE problem in literature
focused on resource provisions by reserving the maximum
resource demands for each virtual network throughout its whole
lifetime [6], [8], [22], [27], [25]. Such a resource provision

978-1-4799-3780-6/14/$31.00 ©2014 IEEE 90

Fig. 1. A motivated example

scheme however causes up to 85 percent of cloud resources
under-utilized in most time, resulting in enormous resource
wastage and economic loss [21]. Fortunately, nearly 90%
of enterprise IT services exhibit periodic resource demand
patterns [11]. By making use of this property, the resource
utilization ratio in the cloud can be substantially improved
if the demanded resources by different virtual networks can
shared. We illustrate this observation by an example as shown
in Fig. 1, where a virtual network A providing office users with
virtual desktop services usually experiences low-workloads at
weekends, whereas another virtual network B hosting online
gaming services has high-workload at weekends due to high
user demands. If embedding A and B by their maximum
demands, only one of them can be embedded into the substrate
network. However, they can be serviced if their time-varying
resource demands are complementary. Due to the heterogeneity
of substrate resources and the unknownness of periodic resource
demands of virtual networks, it poses a great challenge to
embed as many virtual networks as possible to a substrate
network to maximize the cloud resource utilization ratio.

Despite that there are existing works dealing with virtual net-

work embedding, to the best of our knowledge, we are the first
to explore the periodic resource demands of virtual networks
and make use of this property to allocate distributed cloud
resources among virtual networks. In addition, we propose a
novel embedding metric that models the dynamic workloads of
both substrate nodes and links in a substrate network.

The main contributions of this paper are as follows. We
first propose an embedding algorithm for the VNE problem
by employing a novel embedding metric that models dynamic
workloads of cloud resource usages, assuming that the periodic
resource demands of each virtual network are given. We then
devise an embedding algorithm without the knowledge of
periodic resource demands through resource demand prediction.
We finally evaluate the performance of the proposed algorithms
by experimental simulations. Experimental results show that the
proposed algorithms outperform existing algorithms, improving
the revenue of the cloud service provider from 10% to 31 %.

The remainder of the paper is organized as follows. Sec­
tion II introduces related work, followed by the system model
and problem definitions in Section III. Sections IV and V
propose VNE algorithms with and without the periodic re­
source demands of virtual networks. Section VI evaluates the
performance of the proposed algorithms through experimental
simulations. The conclusion is given in Section VII.

II. RELATED WORK

Most existing solutions to the VNE problem can be classified
into two categories: static and dynamic resource provisioning.
Static resource provisioning assumes that the resource demands
of each virtual network do not change during the lifetime of the
virtual network, whereas dynamic resource provisioning deals
with the embedding of virtual networks with dynamic resource
demands, topologies, and sizes. Most existing studies in litera­
ture focused on static resource provisions [4], [6], [8], [9], [18],
[22], [25], [27]. For example, Zhu et. al. [27] proposed a VNE
algorithm for workload balancing by introducing a node/link­
stress concept, and jointly considered the workloads on each
node and the link incident to it. Chowdhury et. al. [8] devised a
coordinated node and link mapping by reducing the problem to
a multi-commodity flow problem under the constraint that each
virtual node has only several candidate geographical locations.
Cheng et. al. [6] proposed an embedding algorithm, by using a
similar idea to the one in Google's PageRank algorithm, where
both substrate and virtual nodes are ranked according to their
available resources and the quality of link connections. Lischka
et. al. [18] devised an online VNE algorithm by utilizing the
subgraph isomorphism detection with the aim of maximizing
the revenue-to-cost ratio, where the revenue is the total amount
of virtual resources requested by virtual networks and the cost
is the total amount of substrate resources spent in accom­
modating the virtual networks. Other static approaches take
different perspectives on the VNE problem, e.g., splittable path
routing [22], embedding one virtual node onto several substrate
nodes [25], embedding across different substrate networks [14],
distributed and automatic embedding [15], or avoiding resource
fragmentation in the substrate network [9].

91

There are also several studies focusing on dynamic resource
provisioning by reallocating under-utilized resources to other
virtual network requests [5], [20], [23], [24], [26]. Zhang et.

al. [23] re-examined the VNE problem by considering op­
portunistic resource sharing and topology-aware node ranking.
They assumed each virtual network has basic and maximum
demands with certain probabilities, Such an assumption is
not realistic as it is unlikely that users can provide detailed
resource demands information in advance. The other dynamic
resource provisioning approaches however perform periodic
reconfigurations/migrations of implemented virtual networks,
which may not be feasible due to incurred high migration
costs or the violations of the agreed SLA requirements [3].
For example, Houidi et. al. [16] proposed an adaptive VNE
algorithm that dynamically identifies new candidate substrate
resources to cater dynamic topologies and dynamic communi­
cation requirements of virtual networks. Similarly, approaches
in [5], [26] dealt with evolving virtual networks in terms of
topologies and resource demands through redeployments of
embedded virtual networks. Sun et. al. [20] devised virtual
network migration algorithms to deal with evolving virtual
networks. Zhang et. al. [24] studied a scenario that both the
demands of virtual networks and the capacity of a substrate
network will change over time, which however is not realistic
either since the capacity of a data center usually does not change
over time. Unlike previous works on static resource provisions,
in this paper we deal with dynamic resource provisions for
virtual networks, by exploring periodic resource demands. The
essential difference between our work and existing works lies
in a novel embedding metric that can model the workloads of
both substrate nodes and substrate links accurately over time.

III. PRELIMINARIE S

A. Substrate and virtual networks

A substrate network is represented by a node-and-edge
weighted undirected graph GS = (NS,ES) , where NS and ES
are the sets of substrate nodes and links, respectively. Denote
by nS a substrate node in NS and eS a link in ES. Each nS
represents a data center and each eS denotes a communication
link between the two data centers corresponding to its two
endpoints. Denote by C (n S) the capacity of computing resource
in n sand B (eS) the bandwidth capacity on eS•

A virtual network can be represented by a node-and-edge
weighted undirected graph GV = (NV, EV) , where NV and
EV are the sets of virtual nodes and virtual links. Each virtual
node nV E NV represents a set of virtual machines that host
specific applications. Each virtual edge eV E EV represents
a communication link between two virtual nodes. Denote by
C(nV) and B(eV) the maximum amounts of computing and

communication resource demands by virtual node nV and
virtual link eV, respectively.

Assume that time is divided into equal time intervals. Each
time interval is further divided into equal numbers of time slots.

Let i be the current time interval and T the number of time
slots in each interval. Assume that virtual network requests

from users arrive in the system one by one, but they are only
processed in the beginning of the next time slot after their
arrival. Given a virtual network GV with a duration T (GV) in the
granularity of weeks or months, it is embedded to the substrate
network prior to the expiration of its specified duration. Fig. 2
gives an example of virtual network embedding.

Fig. 2. Virtual network embedding

B. Periodic resource demands

Most enterprise IT services exhibit periodic demand pat­
terns [11]. For instance, an enterprise that provides email
services for a university has weekly resource demand patterns
due to the weekly activity patterns of university users. Although
periodic resource demands of each virtual network typically are
not known when the virtual network request arrives, they can
be predicted by analyzing its resource demand history, using of­
fline profiling and online calibration [19]. Denote by C(nV, i, t)
and B(eV, i, t) the predicted computing and bandwidth resource
demands of a virtual node nV E NV and a virtual link eV E EV
at the tth time slot in interval i. Let C(nV,i,t) be the actual
amount of demanded computing resources of nV at time slot t
of interval i, which is no greater than its maximum resource
demand C(nV). Similarly, the network bandwidth demand of
virtual link eV at time slot t of interval i is represented by
B(eV,i,t) which is no greater than B(eV), for all t with
1 � t � T. The amounts of available resources of substrate
network GS can be derived from the accumulative resources
allocated to all embedded virtual networks in it at time slot t
of interval i. Denote by P(nS, i, t) and P(eS, i, t) the amounts
of available computing and bandwidth resources in node nS and
link eS at time slot t of interval i.
C. Revenue and cost models

The revenue of a cloud service provider received by embed­
ding virtual networks can be defined differently according to
different economic models. Similar to the revenue models in
previous studies [8], [27], [23], the revenue model adopted in
this paper by embedding virtual network GV in a time interval
is defined as the sum of amounts of computing and bandwidth
resources it requested. Denote by JR(GV, i) the revenue of
admitting virtual network GV at time interval i, then

(1)

92

To provide the demanded computing and bandwidth re­
sources to a virtual network GV, the cloud service provider
consumes its resources such as electricity, software and hard­
ware that incur its service costs. Thus, the cost of embedding a
virtual network GV is the sum of amounts of resources allocated
to the virtual network per time interval. Denote by C(GV , i) the
cost of an embedded virtual network GV in interval i, then

T

qGv,i) = L (L C(nV,i,t)
t=l nVENv (2)

+ L L Z::B(eV,i,t)),
eVEEVeSEEs

where Z�: is 1 if virtual link eV E EV is embedded to a path in
GS and eS E ES is a link in the path, and 0 otherwise.

An efficient embedding of the cloud service provider is to
maximize its revenue while keeping its service cost minimized.
We thus define the revenue-to-cost ratio T)(GV, i) to quantify the
efficiency of embedding of virtual network GV at time interval
i as follows.

(v.) JR(Gv,i) T) G ,Z = qGv,i)" (3)

Following the similar definitions given in [22], the accumulated

revenue, cost, and revenue-to-cost ratio of. virtual network
GV are defined by 2::T,r:lV)JR(Gv,i'), 2::T,r:lV)qGv,i') and

2::T,r:1V) T)(GV, i'), respectively.

D. P roblem definitions

Given an interval i consisting of T time slots, assume
that virtual network requests arrive one by one without the
knowledge of future arrivals. Let 9 (i, t) be the candidate set
of virtual network requests to be embedded to GS(NS, ES)
at the tth time slot of interval i. For each virtual network
GV E 9(i, t) with the given node and link resource demands,

C(nV,i',t') and B(eV,i',t'), and its duration T(GV), for all i'
and t' with i � i' < i + T (GV) and 1 � t' � T, the virtual

network embedding problem with the knowledge of periodic

resource demands is to embed as many virtual networks in
9(i, t) as possible to the substrate network GS such that the
revenue of the cloud service provider of GS is maximized
while keeping its service cost minimized, subject to meeting
the resource demands of each virtual network at each time slot.
Similarly, the virtual network embedding problem without the

knowledge of periodic resource demands is to embed as many
virtual networks in 9(i, t) as possible to the substrate network
without the knowledge of periodic resource demands, such that
the revenue is maximized while the cost of all implemented
virtual networks is minimized, subject to the constraint that
the resource violation ratio of each virtual network GV is
controlled within a given threshold a-(GV), where the resource

violation ratio of GV is the amount of violated resource to
the amount of total resource demands of GV throughout its
lifetime. For example, given a virtual network demanding one
unit of resources at each time slot of its 10-time-slot lifetime,
its resource violation ratio will be lO%, if it is provided with
0.5 unit resource for two time slots and one unit for the rest.

IV. ALGORITHM WITH PERIODIC RE SOURCE DEMAND S

In this section we consider the embedding of virtual networks
with periodic resource demands. We first embed a virtual
network GV(NV,EV) to the substrate network GS(NS,ES).
We then devise an algorithm for embedding multiple virtual
networks in 9 (i, t) at each time slot t to GS.

A. Embedding a virtual network

Given a virtual network GV, an embedding metric is needed
to evaluate the current workload of GS. Such a metric considers
not only the amount of available resources but also the utiliza­
tion ratio of the resources of GS. In the following, we first
define a metric to model the workloads of substrate nodes and
links. We then devise an algorithm to embed a virtual network
with static resource demands based on the designed embedding
metric. We finally extend the embedding algorithm for virtual
networks with periodic resource demands.

We start by proposing an embedding metric to evaluate the
current workload of GS. The embedding ability of a substrate
node nS in admitting a virtual node is jointly determined by
the amount of available computing resources and the utilization
ratio of the computing resources of n s. The marginal gain of the
embedding ability of nS is diminishing with the increase of its
utilization ratio, since the larger the proportion of its resources
is occupied, the higher the risk of SLA violations the substrate
node nS faces. The embedding ability of a substrate link can be
defined similarly. We here use an exponential function to model
the embedding ability of a virtual node or a virtual link. Recall
that P(nS, i, t) is the amount of available computing resources
at substrate node nS. Denote by <1?(nS) the embedding metric
of substrate node nS, then

P(nS ,i,t)
<1?(nS) = P(nS, i, t) . a�, (4)

. d P(nS it) . I where a > 1 IS a constant, an C(";'8) IS a comp ementary
ratio to the utilization ratio of nS. This exponential metric favors
allocating each virtual node to one substrate node with a large
amount of available resources and a low utilization ratio, while
the metric <1?(eS) of substrate link eS E ES is defined similarly,

peeS ,i,L)
<1?(eS) = P(eS, i, t) . b�, (5)

where b > 1 is a constant and P(eS, i, t) is the amount of
available bandwidth of eS• Notice that a virtual link eV may
be mapped to a path p in GS consisting of several substrate
links. To evaluate the (bandwidth) workload of p, we define
the 'length' of p as the sum of the lengths of substrate links in
p. Let d(eS) be the length of each link eS, then,

d(eS) =
{oo<I>(�S)

if <1?(eS) > 0, (6)
if <1?(eS) = O.

This implies a shorter substrate link has more available band­
width; otherwise, the link is discouraged to be used. The length
of path p thus is defined as

d(p) = L d(eS) . (7)
eSEp

93

We continue by devising an algorithm to embed a virtual
network with static resource demands based on the designed
embedding metric. Most embedding algorithms for embedding
a virtual network GV (NV , EV) with static resource demands to
GS(NS,ES) are as follows. Embed each virtual node in VV to
a different substrate node NS and each virtual link in EV to
a path in GS by different embedding metrics [8], [23J, [27J.
As this problem is notoriously NP-hard [lOJ, following most
existing studies, our embedding algorithm proceeds similarly
by embedding virtual nodes in NV first, followed by embedding
virtual links in EV.

We first embed virtual nodes in NV. To this end, we select
a cluster of substrate nodes for virtual nodes in NV and
embed each virtual node into a different substrate node in
the cluster. The cluster is constructed dynamically. In such
a cluster, each selected substrate node should have not only
great embedding ability but also a shorter path length to other
substrate nodes in the cluster, since the shorter the length
between two selected substrate nodes, the less the bandwidth
resource will be consumed on the path. Therefore, we first find
a cluster center with the greatest embedding ability in GS to
embed a virtual node with the maximum resource demand in
GV, and then find other substrate nodes (cluster members) one
by one iteratively with a shorter length to the selected substrate
nodes, by adopting a similar strategy in [27J. Specifically, to
find the cluster center to which the first virtual node in GV to
be mapped, each substrate node nS E NS is assigned a rank
which is jointly determined by its own embedding ability and
the accumulative embedding abilities of its incident links. The
rationale is that the virtual links incident to the virtual node
will be embedded into the paths including the substrate links
incident to the mapped substrate node. Let L(nS) be the set
of substrate links incident to a substrate node nS E NS. The

rank of nS, N R(nS) , is defined as the product of embedding
abilities of n s, <1? (n S) , and the em bedding abilities of links in
L(nS). Then,

NR(nS) = <1?(nS) . L <1?(eS) . (8)
e8EL(ns)

Similarly, we assign each virtual node nV E NV a rank NR(nV)
which is defined as the product of its computing resource
demand and the accumulative bandwidth resource demands of
its incident virtual links, i.e.,

NR(nV) = C(nV) . L B(eV) . (9)
eVEL(nv)

Let n� and n� be the chosen cluster center and virtual node by
Eqs. (8) and (9). n� then is embedded into n�.

Having embedded n� to n�, we then find the other INvl - l
cluster members iteratively. During each iteration, one of un­
embedded virtual nodes in NV is embedded to a substrate node
that has high embedding ability and a shortest length to those
selected substrate nodes in the cluster. To this end, those not
yet selected substrate nodes are ranked by the products of the
inverse of <1?(nS) and the accumulative length from substrate

node nS to all the substrate nodes selected. Denote by K;(nS)
the rank of n s, then,

K;(nS) =

1>(�S)' L d(Pns,ms), (10)
m8EN:el

where N:el is the set of selected substrate nodes in the cluster,
and PnS ,mS is the shortest path between substrate node nS and a
substrate node mS E N:e1. The rank of an yet-to-be embedded
virtual node nV in NV can be defined as follows.

(11)

where N�md denotes the set of virtual nodes that have been
embedded, Pnv,mv is the shortest path between a virtual node
nV and a virtual node mV E N�md' and d(eV) , the length of
virtual edge eV, is defined by B(�V)' A virtual node n v with
the lowest value of K;(nV) will be chosen and embedded to a
substrate node with the lowest value of K;(nS). If there is a
virtual node that has not been embedded after considering all
substrate nodes, GV will be rejected. The embedding of virtual
links in EV can be dealt similarly. Let P be a shortest path
between two substrate nodes for virtual link eV• If P does not
have enough bandwidth to meet the bandwidth demand of eV,
the next shortest path is searched until no such a path is found
and the request is rejected. The detailed procedure is shown in
Algorithm 1.

Algorithm 1: Embedding a virtual network with static

resource demands
Input: Given a virtual network GV (NV, EV), a substrate network

G8(NS, ES), the computing resource demand C(nV) of each
virtual node n v E NV, and the bandwidth resource demand
B(eV) of each virtual link eV E EV

Output: Embedding GV or reject it
II Stage one: embed virtual nodes

1 Find the cluster center n� with the maximum ranking in substrate
network GS by Eq. (8);

2 Find the virtual node n� with the maximum resource demand in virtual
network GV by Eq. (9);

3 Embed virtual node n� to the cluster center n�;
4 N�md f- {n�}; /* the set of embedded virtual nodes*/
5 N:e 1 f- {n�}; /* the set of selected substrate nodes*/
6 Embed the virtual nodes in set NV - N�md to GS iteratively, by

embedding the virtual node with minimum li(nV) to the substrate node
with minimum li(nS) during each iteration;

7 If aU the substrate nodes in NS are explored and there are stiU
non-embedded virtual nodes in EV, reject GV and exit;
II Stage two: embed virtual links

8 for each virtual link eV E EV do
Update the weight of substrate link eS E ES by Eq. (6);

10 Let nf and n� be the substrate nodes that embed the two virtual
nodes connected by e v;

11 Find a shortest path p from node nf to n�;
12 If P cannot satisfy the resource demand B(eV) of virtual link eV,

find next shortest path from nf to n�;
13 If no path can satisfy the demand of eV, reject virtual network GV,

and exit;
14 end
15 Admit virtual network request GV;

We now propose an algorithm that embeds a virtual network
GV (NV, EV) with periodic resource demands to GS in an

94

interval i as follows. We construct T + 1 graphs with different
resource demands at different time slots, and pre-embed each
constructed graph by Algorithm 1, where each time interval
consists of T equal time slots. GV is then embedded into GS
according to one of the T + 1 different embeddings that leads
to the maximum revenue-to-cost ratio. Specifically, we first
construct T graphs with each having the resource demands
of GV at time slot t' in interval i' with 1 :s: t' :s: T. Let
GV (t') = (Nt�, En be the node-and-edge weighted graph with
resource demands of GV at time slot t', where N;:' = NV,
E'v = EV, C(nV) = C(nV,i',t') for each nV E N;:' and
B(eV) = B(eV,i',t') for each eV E Et, where 1 :s: t' :s: T
and i :s: i' :s: i + T(GV). Similarly, we use graph G� =

(NV EV) with NV = NV and EV = EV to denote virtual m' m m m
network GV with average resource demands within an interval,
where C(nV) = � "L'{,=1 C(nV,i',t') for each nV E N�
and B(eV) = � "L'{,=lB(eV,i',t') for each eV E E;'",. Let
gp're be the set of above constructed T + 1 graphs, i.e.,
gpre = {GV(t') 11 :s: t' :s: T}U{G�}. Note that an embedding
of a graph in gpre is a feasible embedding only when it can be
embedded into GS and satisfies the resource demands of GV at
each time slot of an interval. Let G�ax be the graph achieving
the maximum revenue-to-cost ratio. Then, virtual network GV
is embedded to the substrate network according to the resource
demands of G�ax ' Detailed algorithm is given by Algorithm 2.

Algorithm 2: Embedding a virtual network with given

periodic resource demands

Input: Given a virtual network GV (NV , EV) at tth time slot of interval
i, the substrate network GS, and the periodic resource demands
of GV

Output: Embedding GV or reject it
1 Construct T + 1 graphs for GV, where each of the first T graphs

represents the resource demand of GV at a time slot of an interval, and
the last graph denotes the average resource demand of an interval;

2 Let Qpre be the set of all the T + 1 graphs, i.e.,
Qpre f- {GV(t') 11:::; t' :::; T} U {G�};

3 Pre-embed each graph in Qpre by Algorithm 1;
4 if Algorithm 1 rejects all graphs in Qpre then

I Reject GV and exit;
6 end
7 Identify an embedding in Step 3 with the maximum revenue-to-cost

ratio, and embed GV according to the embedding;

B. Embedding multiple virtual networks

In this subsection we deal with embedding a set 9 (i, t) of
virtual networks to GS by adopting a greedy strategy. To be
specific, we first choose a virtual network GVl E 9 (i, t) that
leads to the maximum revenue-to-cost ratio and embed GVl to
GS. Let g2(i, t) = g(i, t) - {GVl}. We then choose the next
virtual network with the maximum revenue-to-cost ratio from
g2(i, t) . This procedure continues until gk(i, t) becomes empty
or none of the virtual networks can be embedded. The algorithm
is described in Algorithm 3.

Algorithm 3: Embedding a set of virtual networks with

given periodic resource demands

Input: A set of virtual networks g(i, t) at tth time slot of interval i, the
substrate network GS, and the periodic resource demands of each
virtual network GV E g(i, t)

Output: Identify the set of virtual network requests that are implemented
in g(i, t)

1 while g(i, t) i' 0 or not all virtual networks are marked as unable to be

embedded do

IO

11
12
13
14

Let G�ax be the virtual network that achieves the maximum
revenue-to-cost ratio;
Let 1)max be the maximum revenue-to-cost ratio;
for each virtual network GV E g(i, t) do

Embedding GV by Algorithm 2;
if GV is rejected by Algorithm 2 then
I Mark GV as unable to be embedded;

end
else

Let 1)(GV, i) be the achieved revenue-to-cost ratio through
embedding of GV;
if 1)max < 1)(GV, i) then

I 1)max f- 1)(GV, i);
G�ax +- GV �

end
15 end
16 end
17 Embed G�ax to GS by Algorithm 2;
18 g(i, t) = g(i, t) - {G�ax};
19 end

V. ALGORITHM WITHOUT PERIODIC RE SOURCE DEMAND S

The proposed algorithm so far assumed that the periodic
resource demands of each virtual network are given in advance.
In reality, very few users of virtual networks have such knowl­
edge, this implies that the cloud service provider should be able
to predict the periodic resource demands of virtual networks.
In the following, we propose an algorithm to predict such the
periodic resource demands by analyzing the historic resource
demands of each embedded virtual network.

The basic idea behind the proposed algorithm is to em­
bed a newly-arrived virtual network request according to its
maximum resource demands initially, using Algorithm 2. It
then adjusts the resources allocated to it after a number of
intervals. Let K(GV) be the number of time intervals that the
resource demands of GV are adjusted. The amount of resource
allocated to GV will be adjusted every K(GV) intervals until
the expiration of its duration T(GV) , which means that there
are l;� �:)) J adjustments to its demanded resources of GV.

The key is how to adjust the amount of resource allocated
to GV. To this end, we keep a record of the actual resource
demands of GV for its past K(GV) time intervals, and predict its
resource demands at the current time interval i. We then allocate
the amount of resource to GV that equals the predicted value.
Recall that C(nV,i,t) is the predicted computing resource
demand of virtual node n v. It has been shown that such resource
demands follow a linear regression process [17]. We thus derive
C(nV, i, t) by an autoregressive moving average prediction

95

method as follows,

K(G")
C(nV,i,t)= L f3i_kC(nV,i - k,t), (12)

k=l
where f3i-k is a given constant related to the resource demands
at interval i - k, and L���V) f3i-k = 1 with f3i-k � f3i-k-l,
o < f3i-k < 1. This prediction gives an insight that the resource
demands of a virtual network at the current time interval are
related to its demands in its previous K (GV) intervals. The
embedding algorithm is described in Algorithm 4.

Algorithm 4: Embedding a set of virtual networks without

given periodic resource demands

Input: Given a set g(i, t) of virtual networks, the substrate network GS
and the number of time intervals that the resource demand of
each virtual network is adjusted, i.e., K (GV) for each virtual
network GV E g(i, t)

Output: Virtual network embeddings of requests in 9 (i, t)
1 Embed each virtual network GV E g(i, t) according to its maximum

resource demands by Algorithm 1;
2 for each virtual network G�md that has been embedded into GS do

Let i' be the time interval that GV was embedded in GS;
if G�md has stayed in GS for I ;cd:) 1· K(GV) intervals then

By Eq. (12), predict the computing resource demand of each
virtual node nV, C(nV,i,t'), and the bandwidth resource
demand of each virtual link e v, B (e v, i, t'), for current time
interval i, where 1 ::; t' ::; T;

end
end

Reserve C(nV, i, t) amount of computing resource for nV, and
B(eV, i, t) amount of bandwidth resource for eV in next
K(GV) time intervals;

9 /* at the end of interval i */
10 If t = T, log the actual resource demand of each embedded virtual

network, and update the statistic information of the actions selected at
the beginning of interval i;

VI. EXPERIMENTAL STUDY

A. Simulation settings

The substrate network GS is generated by applying GT-ITM
tool [12], which consists of 50 substrate nodes and there is
an edge between each pair of nodes with a probability of
0.1, following similar settings in [8], [22], [27]. The capacity
of each substrate node is randomly assigned a value in the
range of [2,000, 5,000] units (GHz) of computing resources,
and the bandwidth capacity of each substrate link is in the
range of [10, 1,000] units (Mbps) [1], [13]. The number of
virtual nodes of each virtual network varies from 2 to 10,
and there is a virtual link between every two virtual nodes
with a probability of 0.5. The amounts of peak computing
and bandwidth demands of each virtual network are randomly
generated from 2 to 10. The off-peak resource demands are no
more than 80% of the peak resource demands. Parameters a

and b in the embedding metric, Eq. (4), are set to 5, which
will be explained later. The number of time slots of each
interval is T = 7, e.g., 7 days a week. The arrival of virtual
network requests follow the Poisson process with an average
rate of 5 virtual networks per time slot, and the duration

o
.� 0.9 '"'
� u
§ 0.8
0.. � u
� 0.7

(a) The average acceptance ratio over 100 time
slots of algorithm ALG-PERIOD

(c) The acceptance ratio of algorithm
ALG-NO-PERIOD

30���������, (H) ALG-NO-PERIOD o
-0

·�25
� '"'
] '§20
::l u
§ 9 15
u '
� g lO

�
� 5

..... MAX
""'PAGERANK

40 60 80
Time period

100

(e) The accumulated revenue-to-cost ratio of algo­
rithm ALG-NO-PERIOD

36,000

�34,000
::I \::
�32,000
�
�30,000

28,000

(b) The average revenue of embedding the vir­
tual networks over 100 time slots of algorithm
ALG-PERIOD

'- J:l 4,000,r=:r:::;::;�:::::r:;:�2::=;::::S'--�1 o '"' (H)ALG-NO-PERIOD
i:i � MAX
E "Q)3,000 ""'PAGERANK
::I \::
\::";
� 22,000
�'>
::1-0
§ § 1,000
�fE r ���:::::::r <Cal � 40 60 80 100

Time period
(d) The accumulated number of admitted virtual net­
works of algorithm ALG-NO-PERIOD

-0
�3e+06
"3 E2e+06
::l � le+06

(H) ALG-NO-PERIOD
..... MAX
""'PAGERANK

40 60 80
Time period

100

(f) The accumulated revenue of algorithm
ALG-NO-PERIOD

Fig. 3. The performance of algorithms ALG-PERIOD, ALG-NO-PERIOD, MAX and PAGERANK

of each virtual network varies with no more than 50 time
intervals. The length of K(GV) in Algorithm 4 is set to 5. As
the actual resource demands by different virtual networks are
different, virtual networks are classified into three categories:
(1) growing networks whose resource demands increase by 10%
with a probability of 0.3 per interval; (2) shrinking networks
whose resource demands decrease by 5% with probability 0.3;
and (3) stable networks with stable resource demands that
never change. Unless otherwise specified, the default parameter
settings will be adopted in our simulation.

We evaluated the proposed algorithms for the VNE problem
against two state-of-the-art existing algorithms. The first one is
the algorithm in [27] in which the embedding ability of each
substrate node nS is the amount of available computing resource
in nS, i.e., <J?(nS) = P(nS, i, t) , it embeds virtual networks
to GS according to their maximum resource demands, and we

96

refer to it as algorithm MAX. The second one is the PageRank­
based embedding algorithm [6], which first ranks virtual nodes
and substrate nodes by adopting the PageRank algorithm, and
then embeds each virtual network by mapping its virtual nodes,
followed by embedding virtual links to the substrate network,
which is referred to as P AGE RANK. For simplicity, we use
algorithms ALG-PERIOD and ALG-NO-PERIOD to denote
Algorithm 3 and Algorithm 4 with and without the knowledge
of periodic resource demands, respectively.

B. Performance evaluation

We first evaluate algorithms ALG-PERIOD and
ALG-NO-PERIOD against algorithms MAX and PAGERANK
in the time of 100 time slots. For the sake of diversity, we
evaluate both average and accumulated performance over the
100 time slots. Fig. 3(a) shows that on average algorithm

0.99r=-----.r--r---y--rr=.::.:!ll =A�L� G== -P� E�R=IO
I

D
=)I �

(a) The impact of a on the acceptance ratio of algorithm
ALG-PERIOD

30 40 SO 60 70 80 90 100
Time period

(b) The impact of a on the acceptance ratio of algorithm
ALG-NO-PERIOD

0.006 1�-p-rr��=====C:===:=:I:��
IG-€l ALG-NO-PERIOD I

.g O.OOS
�
:s 0.004
.�
:'§ 0.003
>
<t)
�0.002 <t) > � 0.001

°1�������������
S I S2 S3 S4 S5

a

(c) The impact of a on the average violation ratio of
algorithm ALG-NO-PERIOD

Fig. 4. The impact of a on the performance of algorithms ALG-PERIOD and ALG-NO-PERIOD

ALG-PERIOD admits around 15% and 30% more requests
than algorithms MAX and P AGERANK do, respectively. Also,
it can be seen from Fig. 3(b) that algorithm ALG-PERIOD
brings 10% and 31 % more revenues than algorithms MAX
and P AGE RANK do. The reason behind is that algorithm
ALG-PERIOD adopts a fine-grained resource allocation
by exploring the periodic resource demands, and a novel
embedding metric by considering the dynamic workloads of
the substrate network, whereas both MAX and P AGE RANK
do not. Furthermore, algorithm P AGERANK is the worst
one among the three of them. Figures 3(c) and 3(d) clearly
depict that algorithm ALG-NO-PERIOD consistently delivers
the highest acceptance ratio and largest admitted number of
virtual network requests among the three algorithms. From
Figure 3(c), we can see that the virtual network acceptance
ratios of algorithms MAX and P AGE RANK oscillate a lot. The
reason is that the number of admitted virtual networks are only
influenced by the amount of available resources in the substrate
network. The ratios fluctuate because of the oscillating amount
of available resources caused by virtual network arrivals and
departures. In addition, it can be seen from Fig. 3(e) that
algorithm ALG-NO-PERIOD has a higher revenue-to-cost
ratio than these of algorithms MAX and P AGERANK. Also, the
revenue delivered by it is much higher than that by algorithms
MAX and P AGERANK, as shown in Fig. 3(f). Notice that
P AGE RANK and MAX deliver similar revenue-to-cost curves
in Figure 3(e) as they both are topology-aware embedding

97

algorithms that avoid mapping virtual links onto long substrate
paths that may cause more resource consumption.

C. Impact of parameters

We then study the impact of parameters a and b in the
embedding metric (Eqs. (4) and (5)) on the performance of the
proposed algorithms ALG-NO-PERIOD and ALG-PERIOD
by varying a (=b) from 1.001 to 55. Figures 4(a) and 4(b)
imply that the larger the value of a, the lower the acceptance
ratio will be. The reason of this is that a larger a means
that each substrate node is very likely reluctant to accept
a virtual node when its utilization rate reaches one as this
probably leads to SLA violations. Specifically, by Eq. (4),
a larger a means that the embedding ability of a substrate
node is lllore inclined to be determined by the exponential

PCn ,�/�,t)
part, a � , thereby underestimating some substrate nodes
with high utilization ratio but large amounts of available re­
sources. Fig. 4(c) plots the resource violations by algorithm
ALG-NO-PERIOD with different values of a. It can be seen
that algorithm ALG-NO-PERIOD has the highest violation ratio
when a = 1.001, and the lowest violated ratio when a = 55.
The algorithm delivers a violation ratio that is lower than 0.5%
when a = 5, but gets a relative high acceptance ratio. This is
the reason that we set a = 5 in our default parameter setting.

We finally investigate the impact of resource adjustment
interval K(GV) on the algorithm performance by varying
K(GV) from 2 to 35. Fig. 5 illustrates that a smaller value of

o
""0'..0
Be ..:::!v

<H> K(G) = 2
<>-<lK(G')=5
�K(Gv)= [0
+-+ K(Gv) = [5
A--A K(G ') = 20
...... K(Gv) = 25
@-<j K(G v) = 30
'h-%KG' =35 E g

1
= .:s 0.9
�

irO.8

-< �
0.
7l�:::!����;��

(I) 0.6 0.5 0.40 20 40 60 80 100
Time period

(al The accumulated acceptance ratio

o
0.006,---,----------,-----,------,----,----------,----,

';::J I<H> ALG-NO-PERIODI e 0.00
= .g 0.004
(I) :§ 0.003
>-�0.002

e � 0.001
-< 0�5��10��1�5�2�0�2�5�3�0�35

K(Gv)

(b 1 The accumulated number of admitted virtual net­
works

Fig. 5. The impact of K(GV) on the performance of algorithm ALG-NO-PERIOD

K(GV) leads to a larger acceptance ratio but a higher violation
ratio. For example, the average violation ratio of all admitted
virtual network requests is 0.52% when K(GV) = 2, and drops
under 0.5% when K(GV) approaches to 5. The reason behind
is that a smaller K (GV) means that more virtual networks will
experience resource adjustments, which probably will lead to
larger violation ratios as an inaccurate adjustment may violate
the resource demand. Notice that the average violation ratio is
below 0.5% when K(GV) = 5 while the accumulated request
acceptance ratio is still relatively high, which is also the reason
that we set K(GV) = 5 in our default parameter setting.

VII. CONCLU SION

In this paper we considered the virtual network embedding
problem in a substrate network by developing novel embedding
algorithms through incorporating a novel embedding metric,
assuming that the periodic resource demands of each virtual
network are given; otherwise, we devised an algorithm to
predict the resource demands of virtual networks. We also
evaluated the performance of the proposed algorithms through
experimental simulations, and experimental results demonstrate
that the proposed algorithms are promising and outperform
existing heuristics.

ACKNOWLEDGEMENT

The researches of Zichuan Xu and Qiufen Xia are partially
supported by China Scholarship Council (CSC).

REFERENCE S

[l] H. Ballani et al. Towards predictable datacenter networks. Proc. ACM
SIGCOMM, 2011.

[2] M. Bari et al. Data center network virtualization : a survey. Communica­
tions Surveys &Tutorials, Vol. 15, No. 2, pp. 909-928, IEEE, 2013.

[3] R. Bradford et al. Live wide-area migration of virtual machines including
local persistent state. Proc. ACM VEE, 2007.

[4] N. F. Butt, M. Chowdhury, and R. Boutaba. Topology-awareness and
reoptimization mechanism for virtual network embedding. Proc. IFfP
NEIWORKING, Springer, 2010.

[5] Z. Cai et al. Virtual network embedding for evolving networks. Proc.
IEEE GLOBECOM, 2010.

[6] X. Cheng et al. Virtual network embedding through topology-aware node
ranking. ACM SIGCOMM Computer Communication Review, Vol. 41, No.
2, pp. 38-47, 2011.

[7] N. M. M. K. Chowdhury and R. Boutaba. A survey of network virtualiza­
tion. Computer Networks, Vol. 54, pp. 862-876, Elsevier, 2010.

98

[8] N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba. Virtual
network embedding with coordinated node and link mapping. Proc. IEEE
INFO COM, 2009.

[9] I. Fajjari et al. Vnr algorithm: a greedy approach for virtual networks
reconfiguration. Proc. IEEE GLOBECOM, 2011.

[l0] A. Fischer et al. Virtual network embedding: a survey. Communications
Surveys & Tutorials, Preprint, IEEE, 2013.

[ll] D. Gmach et al. Workload analysis and demand prediction of enterprise
data center applications. Proc. IEEE IISWC, 2007.

[12] GT-ITM. http: //www.cc . gatech. edu/pro jects/ gtitm/.
[13] c. Guo et al. Second Net: a data center network virtualization architecture

with bandwidth guarantees. Proc. ACM CONEXT, 2010.
[14] I. Houidi et al. Virtual network provisioning across multiple substrate

networks. Computer Networks, Vol. 55, pp.1O 11-1023, Elsevier, 2011.
[15] I. Houidi, W. Louati, and D. Zeghlache. A distributed and autonomic

virtual network mapping framework. Proc. IEEE ICAS, 2008.
[l6] I. Houidi et al. Adaptive virtual network provisioning. Proc. ACM VISA,

2010.
[17] A. Kansal et al. Virtual machine power metering and provisioning. Proc.

ACM SoCC, 2010.
[18] J. Lischka and H. Karl. A virtual network mapping algorithm based on

subgraph isomorphism detection. Proc. ACM VISA, 2009.
[19] P. Padala et al. Adaptive control of virtualized resources in utility

computing environments. Proc. ACM EUROSYS, 2007.
[20] G. Sun et al. Adaptive provisioning for evolving virtual network request

in cloud-based data centers. Proc. IEEE GLOBECOM, 2012.
[21] U. S. Department of Energy. Creating energy efficient data centers. 2007.
[22] M. Yu et al. Rethinking virtual network embedding: substrate support for

path splitting and migration. ACM SIGCOMM Computer Communication
Review, Vol. 38, No. 2, pp. 17-29, 2008.

[23] S. Zhang et al. An opportunistic resource sharing and topology-aware
mapping framework for virtual networks. Proc. IEEE INFO COM, 2012.

[24] S. Zhang and X. Qiu. A novel virtual network mapping algorithm for
cost minimizing. Journal of Selected Areas in Telecommunications, Vol.
02, No. 01, pp. 1-9, 2011.

[25] S. Zhang, J. Wu, and S. Lu. Virtual network embedding with substrate
support for parallelization. Proc. IEEE GLOBECOM, 2012.

[26] Y. Zhou et al. Incremental re-embedding scheme for evolving virtual
network requests. IEEE Communication Letters, Vol. 17, No. 5, pp. 1016-
1019,2013.

[27] Y. Zhu and M. Ammar. Algorithms for assigning substrate network
resources to virtual network components. Proc. IEEE INFO COM, 2006.

