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Abstract-Cloud computing built on virtualization technologies 
promises provisioning elastic computing and communication re­
sources to enterprise users. To share cloud resources efficiently, 
embedding virtual networks of different users to a distributed 
cloud consisting of multiple data centers (a substrate network) 
poses great challenges. Motivated by the fact that most enterprise 
virtual networks usually operate on long-term basics and have 
the characteristics of periodic resource demands, in this paper 
we study the virtual network embedding problem by embedding 
as many virtual networks as possible to a substrate network 
such that the revenue of the service provider of the substrate 
network is maximized, while meeting various Service Level Agree­
ments (SLAs) between enterprise users and the cloud service 
provider. For this problem, we propose an efficient embedding 
algorithm by exploring periodic resource demands of virtual 
networks, and employing a novel embedding metric that models 
the workloads on both substrate nodes and communication links 
if the periodic resource demands of virtual networks are given; 
otherwise, we propose a prediction model to predict the periodic 
resource demands of these virtual networks based on their historic 
resource demands. We also evaluate the performance of the 
proposed algorithms by experimental simulation. Experimental 
results demonstrate that the proposed algorithms outperform 
existing algorithms, improving the revenue from 10% to 31 %. 

I. INTRODUCTION 

Enterprises nowadays are embracing a new computing 
paradigm by outsourcing their IT service networks as virtual 
networks to clouds for cost savings. For example, a company 
operating video conferencing services could run on a virtual 
network with a stringent quality of service (QoS) requirement 
by allocating dedicated resources and employing robust routing 
protocols, whereas a university delivering online courses for 
distance education may run a virtual network with guaranteed 
bandwidth for real-time delivery of its online courses. Both 
of such virtual networks can be run on a substrate network 
that consists of multiple data centers. A fundamental problem 
related to these applications is to devise an efficient algorithm 
to accommodate as many virtual networks as possible in the 
substrate network such that the operational cost of the cloud 
service provider is minimized. We refer to this problem as the 
Virtual Network Embedding (VNE) problem, which has been 
extensively studied in the past couple of years [2], [7], [lO]. 

Most existing studies of the VNE problem in literature 
focused on resource provisions by reserving the maximum 
resource demands for each virtual network throughout its whole 
lifetime [6], [8], [22], [27], [25]. Such a resource provision 
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Fig. 1. A motivated example 

scheme however causes up to 85 percent of cloud resources 
under-utilized in most time, resulting in enormous resource 
wastage and economic loss [21]. Fortunately, nearly 90% 
of enterprise IT services exhibit periodic resource demand 
patterns [11]. By making use of this property, the resource 
utilization ratio in the cloud can be substantially improved 
if the demanded resources by different virtual networks can 
shared. We illustrate this observation by an example as shown 
in Fig. 1, where a virtual network A providing office users with 
virtual desktop services usually experiences low-workloads at 
weekends, whereas another virtual network B hosting online 
gaming services has high-workload at weekends due to high 
user demands. If embedding A and B by their maximum 
demands, only one of them can be embedded into the substrate 
network. However, they can be serviced if their time-varying 
resource demands are complementary. Due to the heterogeneity 
of substrate resources and the unknownness of periodic resource 
demands of virtual networks, it poses a great challenge to 
embed as many virtual networks as possible to a substrate 
network to maximize the cloud resource utilization ratio. 

Despite that there are existing works dealing with virtual net-



work embedding, to the best of our knowledge, we are the first 
to explore the periodic resource demands of virtual networks 
and make use of this property to allocate distributed cloud 
resources among virtual networks. In addition, we propose a 
novel embedding metric that models the dynamic workloads of 
both substrate nodes and links in a substrate network. 

The main contributions of this paper are as follows. We 
first propose an embedding algorithm for the VNE problem 
by employing a novel embedding metric that models dynamic 
workloads of cloud resource usages, assuming that the periodic 
resource demands of each virtual network are given. We then 
devise an embedding algorithm without the knowledge of 
periodic resource demands through resource demand prediction. 
We finally evaluate the performance of the proposed algorithms 
by experimental simulations. Experimental results show that the 
proposed algorithms outperform existing algorithms, improving 
the revenue of the cloud service provider from 10% to 31 %. 

The remainder of the paper is organized as follows. Sec­
tion II introduces related work, followed by the system model 
and problem definitions in Section III. Sections IV and V 
propose VNE algorithms with and without the periodic re­
source demands of virtual networks. Section VI evaluates the 
performance of the proposed algorithms through experimental 
simulations. The conclusion is given in Section VII. 

II. RELATED WORK 

Most existing solutions to the VNE problem can be classified 
into two categories: static and dynamic resource provisioning. 
Static resource provisioning assumes that the resource demands 
of each virtual network do not change during the lifetime of the 
virtual network, whereas dynamic resource provisioning deals 
with the embedding of virtual networks with dynamic resource 
demands, topologies, and sizes. Most existing studies in litera­
ture focused on static resource provisions [4], [6], [8], [9], [18], 
[22], [25], [27]. For example, Zhu et. al. [27] proposed a VNE 
algorithm for workload balancing by introducing a node/link­
stress concept, and jointly considered the workloads on each 
node and the link incident to it. Chowdhury et. al. [8] devised a 
coordinated node and link mapping by reducing the problem to 
a multi-commodity flow problem under the constraint that each 
virtual node has only several candidate geographical locations. 
Cheng et. al. [6] proposed an embedding algorithm, by using a 
similar idea to the one in Google's PageRank algorithm, where 
both substrate and virtual nodes are ranked according to their 
available resources and the quality of link connections. Lischka 
et. al. [18] devised an online VNE algorithm by utilizing the 
subgraph isomorphism detection with the aim of maximizing 
the revenue-to-cost ratio, where the revenue is the total amount 
of virtual resources requested by virtual networks and the cost 
is the total amount of substrate resources spent in accom­
modating the virtual networks. Other static approaches take 
different perspectives on the VNE problem, e.g., splittable path 
routing [22], embedding one virtual node onto several substrate 
nodes [25], embedding across different substrate networks [14], 
distributed and automatic embedding [15], or avoiding resource 
fragmentation in the substrate network [9]. 
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There are also several studies focusing on dynamic resource 
provisioning by reallocating under-utilized resources to other 
virtual network requests [5], [20], [23], [24], [26]. Zhang et. 

al. [23] re-examined the VNE problem by considering op­
portunistic resource sharing and topology-aware node ranking. 
They assumed each virtual network has basic and maximum 
demands with certain probabilities, Such an assumption is 
not realistic as it is unlikely that users can provide detailed 
resource demands information in advance. The other dynamic 
resource provisioning approaches however perform periodic 
reconfigurations/migrations of implemented virtual networks, 
which may not be feasible due to incurred high migration 
costs or the violations of the agreed SLA requirements [3]. 
For example, Houidi et. al. [16] proposed an adaptive VNE 
algorithm that dynamically identifies new candidate substrate 
resources to cater dynamic topologies and dynamic communi­
cation requirements of virtual networks. Similarly, approaches 
in [5], [26] dealt with evolving virtual networks in terms of 
topologies and resource demands through redeployments of 
embedded virtual networks. Sun et. al. [20] devised virtual 
network migration algorithms to deal with evolving virtual 
networks. Zhang et. al. [24] studied a scenario that both the 
demands of virtual networks and the capacity of a substrate 
network will change over time, which however is not realistic 
either since the capacity of a data center usually does not change 
over time. Unlike previous works on static resource provisions, 
in this paper we deal with dynamic resource provisions for 
virtual networks, by exploring periodic resource demands. The 
essential difference between our work and existing works lies 
in a novel embedding metric that can model the workloads of 
both substrate nodes and substrate links accurately over time. 

III. PRELIMINARIE S 

A. Substrate and virtual networks 

A substrate network is represented by a node-and-edge 
weighted undirected graph GS = (NS,ES) , where NS and ES 
are the sets of substrate nodes and links, respectively. Denote 
by nS a substrate node in NS and eS a link in ES. Each nS 
represents a data center and each eS denotes a communication 
link between the two data centers corresponding to its two 
endpoints. Denote by C (n S) the capacity of computing resource 
in n sand B (eS) the bandwidth capacity on eS• 

A virtual network can be represented by a node-and-edge 
weighted undirected graph GV = (NV, EV) , where NV and 
EV are the sets of virtual nodes and virtual links. Each virtual 
node nV E NV represents a set of virtual machines that host 
specific applications. Each virtual edge eV E EV represents 
a communication link between two virtual nodes. Denote by 
C(nV) and B(eV) the maximum amounts of computing and 

communication resource demands by virtual node nV and 
virtual link eV, respectively. 

Assume that time is divided into equal time intervals. Each 
time interval is further divided into equal numbers of time slots. 

Let i be the current time interval and T the number of time 
slots in each interval. Assume that virtual network requests 



from users arrive in the system one by one, but they are only 
processed in the beginning of the next time slot after their 
arrival. Given a virtual network GV with a duration T ( GV) in the 
granularity of weeks or months, it is embedded to the substrate 
network prior to the expiration of its specified duration. Fig. 2 
gives an example of virtual network embedding. 

Fig. 2. Virtual network embedding 

B. Periodic resource demands 

Most enterprise IT services exhibit periodic demand pat­
terns [11]. For instance, an enterprise that provides email 
services for a university has weekly resource demand patterns 
due to the weekly activity patterns of university users. Although 
periodic resource demands of each virtual network typically are 
not known when the virtual network request arrives, they can 
be predicted by analyzing its resource demand history, using of­
fline profiling and online calibration [19]. Denote by C( nV, i, t) 
and B( eV, i, t) the predicted computing and bandwidth resource 
demands of a virtual node nV E NV and a virtual link eV E EV 
at the tth time slot in interval i. Let C(nV,i,t) be the actual 
amount of demanded computing resources of nV at time slot t 
of interval i, which is no greater than its maximum resource 
demand C(nV). Similarly, the network bandwidth demand of 
virtual link eV at time slot t of interval i is represented by 
B(eV,i,t) which is no greater than B(eV), for all t with 
1 � t � T. The amounts of available resources of substrate 
network GS can be derived from the accumulative resources 
allocated to all embedded virtual networks in it at time slot t 
of interval i. Denote by P( nS, i, t) and P( eS, i, t) the amounts 
of available computing and bandwidth resources in node nS and 
link eS at time slot t of interval i. 
C. Revenue and cost models 

The revenue of a cloud service provider received by embed­
ding virtual networks can be defined differently according to 
different economic models. Similar to the revenue models in 
previous studies [8], [27], [23], the revenue model adopted in 
this paper by embedding virtual network GV in a time interval 
is defined as the sum of amounts of computing and bandwidth 
resources it requested. Denote by JR( GV, i) the revenue of 
admitting virtual network GV at time interval i, then 

(1) 
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To provide the demanded computing and bandwidth re­
sources to a virtual network GV, the cloud service provider 
consumes its resources such as electricity, software and hard­
ware that incur its service costs. Thus, the cost of embedding a 
virtual network GV is the sum of amounts of resources allocated 
to the virtual network per time interval. Denote by C( GV , i) the 
cost of an embedded virtual network GV in interval i, then 

T 

qGv,i) = L ( L C(nV,i,t) 
t=l nVENv (2) 

+ L L Z::B(eV,i,t)), 
eVEEVeSEEs 

where Z�: is 1 if virtual link eV E EV is embedded to a path in 
GS and eS E ES is a link in the path, and 0 otherwise. 

An efficient embedding of the cloud service provider is to 
maximize its revenue while keeping its service cost minimized. 
We thus define the revenue-to-cost ratio T)( GV, i) to quantify the 
efficiency of embedding of virtual network GV at time interval 
i as follows. 

(v.) JR(Gv,i) T) G ,Z = qGv,i)" (3) 

Following the similar definitions given in [22], the accumulated 

revenue, cost, and revenue-to-cost ratio of. virtual network 
GV are defined by 2::T,r:lV)JR(Gv,i'), 2::T,r:lV)qGv,i') and 

2::T,r:1V) T)( GV, i'), respectively. 

D. P roblem definitions 

Given an interval i consisting of T time slots, assume 
that virtual network requests arrive one by one without the 
knowledge of future arrivals. Let 9 (i, t) be the candidate set 
of virtual network requests to be embedded to GS(NS, ES) 
at the tth time slot of interval i. For each virtual network 
GV E 9(i, t) with the given node and link resource demands, 

C(nV,i',t') and B(eV,i',t'), and its duration T(GV), for all i' 
and t' with i � i' < i + T ( GV) and 1 � t' � T, the virtual 

network embedding problem with the knowledge of periodic 

resource demands is to embed as many virtual networks in 
9(i, t) as possible to the substrate network GS such that the 
revenue of the cloud service provider of GS is maximized 
while keeping its service cost minimized, subject to meeting 
the resource demands of each virtual network at each time slot. 
Similarly, the virtual network embedding problem without the 

knowledge of periodic resource demands is to embed as many 
virtual networks in 9(i, t) as possible to the substrate network 
without the knowledge of periodic resource demands, such that 
the revenue is maximized while the cost of all implemented 
virtual networks is minimized, subject to the constraint that 
the resource violation ratio of each virtual network GV is 
controlled within a given threshold a-( GV), where the resource 

violation ratio of GV is the amount of violated resource to 
the amount of total resource demands of GV throughout its 
lifetime. For example, given a virtual network demanding one 
unit of resources at each time slot of its 10-time-slot lifetime, 
its resource violation ratio will be lO%, if it is provided with 
0.5 unit resource for two time slots and one unit for the rest. 



IV. ALGORITHM WITH PERIODIC RE SOURCE DEMAND S 

In this section we consider the embedding of virtual networks 
with periodic resource demands. We first embed a virtual 
network GV(NV,EV) to the substrate network GS(NS,ES). 
We then devise an algorithm for embedding multiple virtual 
networks in 9 (i, t) at each time slot t to GS. 

A. Embedding a virtual network 

Given a virtual network GV, an embedding metric is needed 
to evaluate the current workload of GS. Such a metric considers 
not only the amount of available resources but also the utiliza­
tion ratio of the resources of GS. In the following, we first 
define a metric to model the workloads of substrate nodes and 
links. We then devise an algorithm to embed a virtual network 
with static resource demands based on the designed embedding 
metric. We finally extend the embedding algorithm for virtual 
networks with periodic resource demands. 

We start by proposing an embedding metric to evaluate the 
current workload of GS. The embedding ability of a substrate 
node nS in admitting a virtual node is jointly determined by 
the amount of available computing resources and the utilization 
ratio of the computing resources of n s. The marginal gain of the 
embedding ability of nS is diminishing with the increase of its 
utilization ratio, since the larger the proportion of its resources 
is occupied, the higher the risk of SLA violations the substrate 
node nS faces. The embedding ability of a substrate link can be 
defined similarly. We here use an exponential function to model 
the embedding ability of a virtual node or a virtual link. Recall 
that P(nS, i, t) is the amount of available computing resources 
at substrate node nS. Denote by <1?(nS) the embedding metric 
of substrate node nS, then 

P(nS ,i,t) 
<1?(nS) = P(nS, i, t) . a�, (4) 

. d P(nS it) . I where a > 1 IS a constant, an C(";'8) IS a comp ementary 
ratio to the utilization ratio of nS. This exponential metric favors 
allocating each virtual node to one substrate node with a large 
amount of available resources and a low utilization ratio, while 
the metric <1?(eS) of substrate link eS E ES is defined similarly, 

peeS ,i,L) 
<1?(eS) = P(eS, i, t) . b�, (5) 

where b > 1 is a constant and P( eS, i, t) is the amount of 
available bandwidth of eS• Notice that a virtual link eV may 
be mapped to a path p in GS consisting of several substrate 
links. To evaluate the (bandwidth) workload of p, we define 
the 'length' of p as the sum of the lengths of substrate links in 
p. Let d( eS) be the length of each link eS, then, 

d( eS) = 
{oo<I>(�S) 

if <1?( eS) > 0, (6) 
if <1?( eS) = O. 

This implies a shorter substrate link has more available band­
width; otherwise, the link is discouraged to be used. The length 
of path p thus is defined as 

d(p) = L d(eS) .  (7) 
eSEp 
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We continue by devising an algorithm to embed a virtual 
network with static resource demands based on the designed 
embedding metric. Most embedding algorithms for embedding 
a virtual network GV (NV , EV) with static resource demands to 
GS(NS,ES) are as follows. Embed each virtual node in VV to 
a different substrate node NS and each virtual link in EV to 
a path in GS by different embedding metrics [8], [23J, [27J. 
As this problem is notoriously NP-hard [ lOJ, following most 
existing studies, our embedding algorithm proceeds similarly 
by embedding virtual nodes in NV first, followed by embedding 
virtual links in EV. 

We first embed virtual nodes in NV. To this end, we select 
a cluster of substrate nodes for virtual nodes in NV and 
embed each virtual node into a different substrate node in 
the cluster. The cluster is constructed dynamically. In such 
a cluster, each selected substrate node should have not only 
great embedding ability but also a shorter path length to other 
substrate nodes in the cluster, since the shorter the length 
between two selected substrate nodes, the less the bandwidth 
resource will be consumed on the path. Therefore, we first find 
a cluster center with the greatest embedding ability in GS to 
embed a virtual node with the maximum resource demand in 
GV, and then find other substrate nodes (cluster members) one 
by one iteratively with a shorter length to the selected substrate 
nodes, by adopting a similar strategy in [27J. Specifically, to 
find the cluster center to which the first virtual node in GV to 
be mapped, each substrate node nS E NS is assigned a rank 
which is jointly determined by its own embedding ability and 
the accumulative embedding abilities of its incident links. The 
rationale is that the virtual links incident to the virtual node 
will be embedded into the paths including the substrate links 
incident to the mapped substrate node. Let L(nS) be the set 
of substrate links incident to a substrate node nS E NS. The 

rank of nS, N R( nS) , is defined as the product of embedding 
abilities of n s, <1? (n S) , and the em bedding abilities of links in 
L(nS). Then, 

NR(nS) = <1?(nS) . L <1?(eS) .  (8) 
e8EL(ns) 

Similarly, we assign each virtual node nV E NV a rank NR(nV) 
which is defined as the product of its computing resource 
demand and the accumulative bandwidth resource demands of 
its incident virtual links, i.e., 

NR(nV) = C(nV) . L B(eV) .  (9) 
eVEL(nv) 

Let n� and n� be the chosen cluster center and virtual node by 
Eqs. (8) and (9). n� then is embedded into n�. 

Having embedded n� to n�, we then find the other INvl - l  
cluster members iteratively. During each iteration, one of un­
embedded virtual nodes in NV is embedded to a substrate node 
that has high embedding ability and a shortest length to those 
selected substrate nodes in the cluster. To this end, those not 
yet selected substrate nodes are ranked by the products of the 
inverse of <1?( nS) and the accumulative length from substrate 



node nS to all the substrate nodes selected. Denote by K;( nS) 
the rank of n s, then, 

K;(nS) = 

1>(�S)' L d(Pns,ms), (10) 
m8EN:el 

where N:el is the set of selected substrate nodes in the cluster, 
and PnS ,mS is the shortest path between substrate node nS and a 
substrate node mS E N:e1. The rank of an yet-to-be embedded 
virtual node nV in NV can be defined as follows. 

(11) 

where N�md denotes the set of virtual nodes that have been 
embedded, Pnv,mv is the shortest path between a virtual node 
nV and a virtual node mV E N�md' and d(eV) , the length of 
virtual edge eV, is defined by B(�V)' A virtual node n v with 
the lowest value of K;(nV) will be chosen and embedded to a 
substrate node with the lowest value of K;(nS). If there is a 
virtual node that has not been embedded after considering all 
substrate nodes, GV will be rejected. The embedding of virtual 
links in EV can be dealt similarly. Let P be a shortest path 
between two substrate nodes for virtual link eV• If P does not 
have enough bandwidth to meet the bandwidth demand of eV, 
the next shortest path is searched until no such a path is found 
and the request is rejected. The detailed procedure is shown in 
Algorithm 1. 

Algorithm 1: Embedding a virtual network with static 

resource demands 
Input: Given a virtual network GV (NV, EV), a substrate network 

G8(NS, ES), the computing resource demand C(nV) of each 
virtual node n v E NV, and the bandwidth resource demand 
B(eV) of each virtual link eV E EV 

Output: Embedding GV or reject it 
II Stage one: embed virtual nodes 

1 Find the cluster center n� with the maximum ranking in substrate 
network GS by Eq. (8); 

2 Find the virtual node n� with the maximum resource demand in virtual 
network GV by Eq. (9); 

3 Embed virtual node n� to the cluster center n�; 
4 N�md f- {n�}; /* the set of embedded virtual nodes*/ 
5 N:e 1 f- {n�}; /* the set of selected substrate nodes*/ 
6 Embed the virtual nodes in set NV - N�md to GS iteratively, by 

embedding the virtual node with minimum li(nV) to the substrate node 
with minimum li(nS) during each iteration; 

7 If aU the substrate nodes in NS are explored and there are stiU 
non-embedded virtual nodes in EV, reject GV and exit; 
II Stage two: embed virtual links 

8 for each virtual link eV E EV do 
Update the weight of substrate link eS E ES by Eq. (6); 

10 Let nf and n� be the substrate nodes that embed the two virtual 
nodes connected by e v; 

11 Find a shortest path p from node nf to n�; 
12 If P cannot satisfy the resource demand B(eV) of virtual link eV, 

find next shortest path from nf to n�; 
13 If no path can satisfy the demand of eV, reject virtual network GV, 

and exit; 
14 end 
15 Admit virtual network request GV; 

We now propose an algorithm that embeds a virtual network 
GV (NV, EV) with periodic resource demands to GS in an 
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interval i as follows. We construct T + 1 graphs with different 
resource demands at different time slots, and pre-embed each 
constructed graph by Algorithm 1, where each time interval 
consists of T equal time slots. GV is then embedded into GS 
according to one of the T + 1 different embeddings that leads 
to the maximum revenue-to-cost ratio. Specifically, we first 
construct T graphs with each having the resource demands 
of GV at time slot t' in interval i' with 1 :s: t' :s: T. Let 
GV (t') = (Nt�, En be the node-and-edge weighted graph with 
resource demands of GV at time slot t', where N;:' = NV, 
E'v = EV, C(nV) = C(nV,i',t') for each nV E N;:' and 
B(eV) = B(eV,i',t') for each eV E Et, where 1 :s: t' :s: T 
and i :s: i' :s: i + T(GV). Similarly, we use graph G� = 

(NV EV ) with NV = NV and EV = EV to denote virtual m' m m m 
network GV with average resource demands within an interval, 
where C(nV) = � "L'{,=1 C(nV,i',t') for each nV E N� 
and B(eV) = � "L'{,=lB(eV,i',t') for each eV E E;'",. Let 
gp're be the set of above constructed T + 1 graphs, i.e., 
gpre = {GV(t') 11 :s: t' :s: T}U{G�}. Note that an embedding 
of a graph in gpre is a feasible embedding only when it can be 
embedded into GS and satisfies the resource demands of GV at 
each time slot of an interval. Let G�ax be the graph achieving 
the maximum revenue-to-cost ratio. Then, virtual network GV 
is embedded to the substrate network according to the resource 
demands of G�ax ' Detailed algorithm is given by Algorithm 2. 

Algorithm 2: Embedding a virtual network with given 

periodic resource demands 

Input: Given a virtual network GV (NV , EV) at tth time slot of interval 
i, the substrate network GS, and the periodic resource demands 
of GV 

Output: Embedding GV or reject it 
1 Construct T + 1 graphs for GV, where each of the first T graphs 

represents the resource demand of GV at a time slot of an interval, and 
the last graph denotes the average resource demand of an interval; 

2 Let Qpre be the set of all the T + 1 graphs, i.e., 
Qpre f- {GV(t') 11:::; t' :::; T} U {G�}; 

3 Pre-embed each graph in Qpre by Algorithm 1; 
4 if Algorithm 1 rejects all graphs in Qpre then 

I Reject GV and exit; 
6 end 
7 Identify an embedding in Step 3 with the maximum revenue-to-cost 

ratio, and embed GV according to the embedding; 

B. Embedding multiple virtual networks 

In this subsection we deal with embedding a set 9 (i, t) of 
virtual networks to GS by adopting a greedy strategy. To be 
specific, we first choose a virtual network GVl E 9 (i, t) that 
leads to the maximum revenue-to-cost ratio and embed GVl to 
GS. Let g2(i, t) = g(i, t) - {GVl}. We then choose the next 
virtual network with the maximum revenue-to-cost ratio from 
g2(i, t) . This procedure continues until gk(i, t) becomes empty 
or none of the virtual networks can be embedded. The algorithm 
is described in Algorithm 3. 



Algorithm 3: Embedding a set of virtual networks with 

given periodic resource demands 

Input: A set of virtual networks g(i, t) at tth time slot of interval i, the 
substrate network GS, and the periodic resource demands of each 
virtual network GV E g(i, t) 

Output: Identify the set of virtual network requests that are implemented 
in g(i, t) 

1 while g(i, t) i' 0 or not all virtual networks are marked as unable to be 

embedded do 

IO 

11 
12 
13 
14 

Let G�ax be the virtual network that achieves the maximum 
revenue-to-cost ratio; 
Let 1)max be the maximum revenue-to-cost ratio; 
for each virtual network GV E g(i, t) do 

Embedding GV by Algorithm 2; 
if GV is rejected by Algorithm 2 then 
I Mark GV as unable to be embedded; 

end 
else 

Let 1)( GV, i) be the achieved revenue-to-cost ratio through 
embedding of GV; 
if 1)max < 1)( GV, i) then 

I 1)max f- 1)( GV, i); 
G�ax +- GV � 

end 
15 end 
16 end 
17 Embed G�ax to GS by Algorithm 2; 
18 g(i, t) = g(i, t) - {G�ax}; 
19 end 

V. ALGORITHM WITHOUT PERIODIC RE SOURCE DEMAND S 

The proposed algorithm so far assumed that the periodic 
resource demands of each virtual network are given in advance. 
In reality, very few users of virtual networks have such knowl­
edge, this implies that the cloud service provider should be able 
to predict the periodic resource demands of virtual networks. 
In the following, we propose an algorithm to predict such the 
periodic resource demands by analyzing the historic resource 
demands of each embedded virtual network. 

The basic idea behind the proposed algorithm is to em­
bed a newly-arrived virtual network request according to its 
maximum resource demands initially, using Algorithm 2. It 
then adjusts the resources allocated to it after a number of 
intervals. Let K( GV) be the number of time intervals that the 
resource demands of GV are adjusted. The amount of resource 
allocated to GV will be adjusted every K(GV) intervals until 
the expiration of its duration T(GV) , which means that there 
are l;� �:)) J adjustments to its demanded resources of GV. 

The key is how to adjust the amount of resource allocated 
to GV. To this end, we keep a record of the actual resource 
demands of GV for its past K( GV) time intervals, and predict its 
resource demands at the current time interval i. We then allocate 
the amount of resource to GV that equals the predicted value. 
Recall that C(nV,i,t) is the predicted computing resource 
demand of virtual node n v. It has been shown that such resource 
demands follow a linear regression process [17]. We thus derive 
C(nV, i, t) by an autoregressive moving average prediction 
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method as follows, 

K(G") 
C(nV,i,t)= L f3i_kC(nV,i - k,t), (12) 

k=l 
where f3i-k is a given constant related to the resource demands 
at interval i - k, and L���V) f3i-k = 1 with f3i-k � f3i-k-l, 
o < f3i-k < 1. This prediction gives an insight that the resource 
demands of a virtual network at the current time interval are 
related to its demands in its previous K ( GV) intervals. The 
embedding algorithm is described in Algorithm 4. 

Algorithm 4: Embedding a set of virtual networks without 

given periodic resource demands 

Input: Given a set g(i, t) of virtual networks, the substrate network GS 
and the number of time intervals that the resource demand of 
each virtual network is adjusted, i.e., K (GV) for each virtual 
network GV E g(i, t) 

Output: Virtual network embeddings of requests in 9 (i, t) 
1 Embed each virtual network GV E g(i, t) according to its maximum 

resource demands by Algorithm 1; 
2 for each virtual network G�md that has been embedded into GS do 

Let i' be the time interval that GV was embedded in GS; 
if G�md has stayed in GS for I ;cd:) 1· K(GV) intervals then 

By Eq. (12), predict the computing resource demand of each 
virtual node nV, C(nV,i,t'), and the bandwidth resource 
demand of each virtual link e v, B ( e v, i, t'), for current time 
interval i, where 1 ::; t' ::; T; 

end 
end 

Reserve C(nV, i, t) amount of computing resource for nV, and 
B(eV, i, t) amount of bandwidth resource for eV in next 
K( GV) time intervals; 

9 /* at the end of interval i */ 
10 If t = T, log the actual resource demand of each embedded virtual 

network, and update the statistic information of the actions selected at 
the beginning of interval i; 

VI. EXPERIMENTAL STUDY 

A. Simulation settings 

The substrate network GS is generated by applying GT-ITM 
tool [12], which consists of 50 substrate nodes and there is 
an edge between each pair of nodes with a probability of 
0.1, following similar settings in [8], [22], [27]. The capacity 
of each substrate node is randomly assigned a value in the 
range of [2,000, 5,000] units (GHz) of computing resources, 
and the bandwidth capacity of each substrate link is in the 
range of [10, 1,000] units (Mbps) [1], [13]. The number of 
virtual nodes of each virtual network varies from 2 to 10, 
and there is a virtual link between every two virtual nodes 
with a probability of 0.5. The amounts of peak computing 
and bandwidth demands of each virtual network are randomly 
generated from 2 to 10. The off-peak resource demands are no 
more than 80% of the peak resource demands. Parameters a 

and b in the embedding metric, Eq. (4), are set to 5, which 
will be explained later. The number of time slots of each 
interval is T = 7, e.g., 7 days a week. The arrival of virtual 
network requests follow the Poisson process with an average 
rate of 5 virtual networks per time slot, and the duration 
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Fig. 3. The performance of algorithms ALG-PERIOD, ALG-NO-PERIOD, MAX and PAGERANK 

of each virtual network varies with no more than 50 time 
intervals. The length of K( GV) in Algorithm 4 is set to 5. As 
the actual resource demands by different virtual networks are 
different, virtual networks are classified into three categories: 
(1) growing networks whose resource demands increase by 10% 
with a probability of 0.3 per interval; (2) shrinking networks 
whose resource demands decrease by 5% with probability 0.3; 
and (3) stable networks with stable resource demands that 
never change. Unless otherwise specified, the default parameter 
settings will be adopted in our simulation. 

We evaluated the proposed algorithms for the VNE problem 
against two state-of-the-art existing algorithms. The first one is 
the algorithm in [27] in which the embedding ability of each 
substrate node nS is the amount of available computing resource 
in nS, i.e., <J?( nS) = P( nS, i, t) , it embeds virtual networks 
to GS according to their maximum resource demands, and we 
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refer to it as algorithm MAX. The second one is the PageRank­
based embedding algorithm [6], which first ranks virtual nodes 
and substrate nodes by adopting the PageRank algorithm, and 
then embeds each virtual network by mapping its virtual nodes, 
followed by embedding virtual links to the substrate network, 
which is referred to as P AGE RANK. For simplicity, we use 
algorithms ALG-PERIOD and ALG-NO-PERIOD to denote 
Algorithm 3 and Algorithm 4 with and without the knowledge 
of periodic resource demands, respectively. 

B. Performance evaluation 

We first evaluate algorithms ALG-PERIOD and 
ALG-NO-PERIOD against algorithms MAX and PAGERANK 
in the time of 100 time slots. For the sake of diversity, we 
evaluate both average and accumulated performance over the 
100 time slots. Fig. 3(a) shows that on average algorithm 
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ALG-PERIOD admits around 15% and 30% more requests 
than algorithms MAX and P AGERANK do, respectively. Also, 
it can be seen from Fig. 3(b) that algorithm ALG-PERIOD 
brings 10% and 31 % more revenues than algorithms MAX 
and P AGE RANK do. The reason behind is that algorithm 
ALG-PERIOD adopts a fine-grained resource allocation 
by exploring the periodic resource demands, and a novel 
embedding metric by considering the dynamic workloads of 
the substrate network, whereas both MAX and P AGE RANK 
do not. Furthermore, algorithm P AGERANK is the worst 
one among the three of them. Figures 3( c) and 3( d) clearly 
depict that algorithm ALG-NO-PERIOD consistently delivers 
the highest acceptance ratio and largest admitted number of 
virtual network requests among the three algorithms. From 
Figure 3( c), we can see that the virtual network acceptance 
ratios of algorithms MAX and P AGE RANK oscillate a lot. The 
reason is that the number of admitted virtual networks are only 
influenced by the amount of available resources in the substrate 
network. The ratios fluctuate because of the oscillating amount 
of available resources caused by virtual network arrivals and 
departures. In addition, it can be seen from Fig. 3(e) that 
algorithm ALG-NO-PERIOD has a higher revenue-to-cost 
ratio than these of algorithms MAX and P AGERANK. Also, the 
revenue delivered by it is much higher than that by algorithms 
MAX and P AGERANK, as shown in Fig. 3(f). Notice that 
P AGE RANK and MAX deliver similar revenue-to-cost curves 
in Figure 3(e) as they both are topology-aware embedding 
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algorithms that avoid mapping virtual links onto long substrate 
paths that may cause more resource consumption. 

C. Impact of parameters 

We then study the impact of parameters a and b in the 
embedding metric (Eqs. (4) and (5)) on the performance of the 
proposed algorithms ALG-NO-PERIOD and ALG-PERIOD 
by varying a (=b) from 1.001 to 55. Figures 4(a) and 4(b) 
imply that the larger the value of a, the lower the acceptance 
ratio will be. The reason of this is that a larger a means 
that each substrate node is very likely reluctant to accept 
a virtual node when its utilization rate reaches one as this 
probably leads to SLA violations. Specifically, by Eq. (4), 
a larger a means that the embedding ability of a substrate 
node is lllore inclined to be determined by the exponential 

PCn ,�/�,t) 
part, a � , thereby underestimating some substrate nodes 
with high utilization ratio but large amounts of available re­
sources. Fig. 4(c) plots the resource violations by algorithm 
ALG-NO-PERIOD with different values of a. It can be seen 
that algorithm ALG-NO-PERIOD has the highest violation ratio 
when a = 1.001, and the lowest violated ratio when a = 55. 
The algorithm delivers a violation ratio that is lower than 0.5% 
when a = 5, but gets a relative high acceptance ratio. This is 
the reason that we set a = 5 in our default parameter setting. 

We finally investigate the impact of resource adjustment 
interval K( GV) on the algorithm performance by varying 
K(GV) from 2 to 35. Fig. 5 illustrates that a smaller value of 
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Fig. 5. The impact of K(GV) on the performance of algorithm ALG-NO-PERIOD 

K( GV) leads to a larger acceptance ratio but a higher violation 
ratio. For example, the average violation ratio of all admitted 
virtual network requests is 0.52% when K( GV) = 2, and drops 
under 0.5% when K( GV) approaches to 5. The reason behind 
is that a smaller K ( GV) means that more virtual networks will 
experience resource adjustments, which probably will lead to 
larger violation ratios as an inaccurate adjustment may violate 
the resource demand. Notice that the average violation ratio is 
below 0.5% when K( GV) = 5 while the accumulated request 
acceptance ratio is still relatively high, which is also the reason 
that we set K(GV) = 5 in our default parameter setting. 

VII. CONCLU SION 

In this paper we considered the virtual network embedding 
problem in a substrate network by developing novel embedding 
algorithms through incorporating a novel embedding metric, 
assuming that the periodic resource demands of each virtual 
network are given; otherwise, we devised an algorithm to 
predict the resource demands of virtual networks. We also 
evaluated the performance of the proposed algorithms through 
experimental simulations, and experimental results demonstrate 
that the proposed algorithms are promising and outperform 
existing heuristics. 
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