
QoS-Aware Data Replications and Placements for
Query Evaluation of Big Data Analytics

Qiufen Xia†, Weifa Liang† and Zichuan Xu‡
† Research School of Computer Science, Australian National University, Canberra, ACT 2601, Australia

‡ Department of Electronic and Electrical Engineering, University College London, London, UK

qiufen.xia@anu.edu.au, wliang@cs.anu.edu.au, z.xu@ucl.ac.uk

Abstract—Enterprise users at different geographic locations
generate large-volume data and store their data at different
geographic datacenters. These users may also issue ad hoc queries
of big data analytics on the stored data to identify valuable
information in order to help them make strategic decisions.
However, it is well known that querying such large-volume big
data usually is time-consuming and costly. Sometimes, users are
only interested in timely approximate rather than exact query
results. When this approximation is the case, applications must
sacrifice either timeliness or accuracy by allowing either the
latency of delivering more accurate results or the accuracy error
of delivered results based on the samples of the data, rather than
the entire set of data itself. In this paper, we study the QoS-
aware data replications and placements for approximate query
evaluation of big data analytics in a distributed cloud, where
the original (source) data of a query is distributed at different
geo-distributed datacenters. We focus on placing the samples of
the source data with certain error bounds at some strategic
datacenters to meet users’ stringent query response time. We
propose an efficient algorithm for evaluating a set of big data
analytic queries with the aim to minimize the evaluation cost of
the queries while meeting their response time requirements. We
demonstrate the effectiveness of the proposed algorithm through
experimental simulations. Experimental results show that the
proposed algorithm is promising.

I. INTRODUCTION

Cloud service providers, such as Microsoft, Google, and
Facebook are deploying datacenters globally to provide users
ubiquitous access to their cloud services [3], [16], [17], [18].
With more and more people adopting cloud services, large
volume data on user activities and session logs, – referred
to as big data – are being produced at exponential rates.
It is estimated that at least 2.5 quintillion bytes of data
is created per day [10]. Such big data plays a significant
role in enterprises and people’s daily lives, especially within
enterprises, as the analytic results of big data can make the
enterprises better understand their customers and behaviors,
and help them seize their best growth opportunities. Examples
of big-data analytics include querying user logs to make
advertisement decisions, query network logs to detect various
network attacks such as DoS attacks, etc. However, querying
big data is time-consuming and costly. Indeed, a linear scan of
a dataset of PB size (1015 bytes) takes days using a solid state
drive with a read speed of 6GB/s, and takes years if the dataset
is of EB size (1018 bytes) [6]. In addition, big data usually
is distributed in different geo-datacenters, this poses many
challenges in big data analytics that the evaluation of such
a big data analytic query usually needs the source data from
multiple datacenters and these data must be jointly considered.

One important issue related to the challenges is how to ensure
the QoS requirements of users in terms of access delays (the
query response times), given that the query results will be used
in timely decision-making applications.

One promising solution to tackle the mentioned challenges
is Approximate Query Processing (AQP), which evaluates the
queries based on the sample data of the original data, and
returns an approximate result with an error bound in accuracy.
By leveraging sampling technologies, the query response time
can be significantly reduced [2]. To this end, an important
approach is to replicate the samples of a large dataset to mul-
tiple datacenters so that query users can obtain their desired
query results with bounded errors within their specified time
duration. Intuitively, a more accurate query result with a small
error bound usually takes a longer time in data processing and
transmission within the distributed datacenter network, while
an approximate result with a large error bound may take much
less time.

Although data sampling and replications can improve sys-
tem performance, it does not imply that more sample replicas
will lead to better system performance, since the maintenance
of data consistency between data samples and their slave
sample copies in the network does incur cost. To maximize
the benefit by approximate query processing and sample
replications, strategic replicating and placing samples of each
dataset in a distributed cloud is essential by minimizing the
cost of evaluating queries approximately while meeting the
query response times of users. One fundamental problem thus
is how to replicate and place the samples with different error
bounds to different datacenters in the distributed cloud so that
big data queries can be evaluated timely and accurately.

Several studies on data placement have been conducted
in the past [1], [4], [7], [13]. However, most of these stud-
ies considered neither data replications of the generated big
data [1], [7], [13] nor QoS requirements on the access delays
of users [1], [4], [7], [13]. In addition, there are several
studies on query evaluation and data distribution [8], [9], [11].
Although some of them considered the data traffic cost, they
did not incorporate the QoS requirements of users [9], or
data replications and placements [8], [11]. In this paper, we
study data replications and placements of generated big data
in a distributed cloud for big data analytics with the aim to
minimize the query evaluation cost while meeting user QoS
requirements (query response times).

The main contributions of this paper are as follows. We first
formulate a novel QoS-aware data replication and placement

IEEE ICC 2017 SAC Symposium Big Data Networking Track

978-1-4673-8999-0/17/$31.00 ©2017 IEEE

problem for big data query evaluation in a distributed cloud
environment. We aim to minimize the evaluation cost of such
queries while meeting user query response time requirements,
where the evaluation cost of a query includes data processing
cost, data storage cost, data transmission cost and data update
cost. We then propose an efficient algorithm for the problem
through a non-trivial reduction. We finally evaluate the perfor-
mance of the proposed algorithm through experimental simu-
lations. The simulation results show that the performance of
the proposed algorithm is promising, reducing the evaluation
cost of queries significantly compared to the other baseline
algorithm. To the best of our knowledge, this is the first time
that the QoS-aware data replication and placement problem for
big data query evaluation in distributed clouds is considered,
and an efficient algorithm is devised.

The remainder of this paper is organized as follows. Sec-
tion II introduces the system model and problem definition,
followed by the proposed heuristic algorithm in Section III.
The performance evaluation of the proposed algorithm is
conducted in Section IV. The related work is presented in
Section V, and the conclusions are given in Section VI.

II. PRELIMINARIES

A. The distributed cloud

We consider a distributed cloud G = (DC, E), which
consists of a set DC of datacenters located at different geo-
graphical locations and inter-connected by a set E of commu-
nication links (or paths). Let DCi ∈ DC be a datacenter and
eij ∈ E a link between two datacenters DCi and DCj . The
computing resource of each datacenter DCi is used to evaluate
queries, while its storage resource is used to store data and the
query results. Denote by A(DCi) and B(DCi) the amount of
available computing resource and the capacity of computing
resource in datacenter DCi ∈ DC, and let rc be the amount of
computing resource allocated to process one unit data. We do
not restrict the capacity of storage resource of datacenters, as
the storage resource usually is abundant and cheap, compared
with the expensive computing resource [13]. The processing,
storage of data at datacenters and the transmission of data
along network links consume various cloud resources and thus
incur costs of the cloud service provider. Denote by cp(DCi)
and cs(DCi) the costs for processing and storing a unit data
at DCi. Denote by ct(i, j) and dt(i, j) the transmission cost
and delay on link eij ∈ E for transferring a unit of data.

B. Big data, repeated approximate queries, and user QoS
requirement

Enterprise users, such as constituent companies, dynam-
ically generate large volume of data from web logs, click
streams, sensors, and many other sources, which is then stored
at their specified datacenters. We refer to the data generated
by a user as the dataset of the user, and term the specified
datacenter for the data storage as the home datacenter of the
data. Let S be the collection of datasets generated by all users,
denote by Sj a dataset in S , where 1 ≤ j ≤ J with J
representing the number of datasets in S , i.e., J = |S|. Denote
by DC(Sj) the datacenter at which dataset Sj is located.

In addition to generating big data, enterprise users also
consume data that are generated by themselves and other users
by querying the data to explore potential business values.
For example, enterprise decision makers may query their
user logs from multiple datasets repeatedly to make timely
advertisement decisions, or exploit the data to gain business
insights on their customers. For example, a user may issue
a query like ‘count the number of customers satisfying the
following condition... with the best possible accuracy within
1 hour’. As timeliness for many queries is more important
than the accuracy of the query solutions, in this paper, we
study approximate queries that help users get a ‘rough picture’
of multiple datasets by delivering an approximate result with
a certain accuracy while meeting their stringent query re-
sponse times. Specifically, we consider repeated approximate
queries, i.e., the approximate queries are associated with
frequencies and the queries issued by the same user based
on relatively stable datasets, i.e., the dataset might experience
minor fluctuations between two consecutive queries. Denote
by Q = {qm | 1 ≤ m ≤ M} the set of approximate queries
in the system, where M is the number of queries, and qm is
a repeated approximate query by a user with frequency fm,
which represents the number of its submissions that query qm
is issued. The evaluation of each approximate query qm may
demand several datasets distributed at different datacenters in
G, and let S(qm) be the collection of datasets demanded by
qm.

As we consider approximate query evaluations within strin-
gent query response times, we refer to the response time of a
query as the QoS of the query, where the query response time
of a query is the evaluation duration of the query between
the query is issued and the query result obtained at its home
datacenter. Denote by dm the maximum tolerable response
time of query qm.

C. Stratified samples and sample replication

To accurately and quickly answer each approximate query
qm, a set of samples of each dataset Sj ∈ S has been created,
following the stratified sampling strategy [5]. A stratified
sample refers to a sample that is not drawn from the whole
dataset in a random way, but separately from a number
of disjoint strata of the dataset in order to ensure a more
representative sample. Each created stratified sample with a
sample size nj,k is referred to as the origin sample of the
dataset, the sample can return the query result with an error
bound εk, where k ∈ Z

+. Following the theory of stratified
sampling [5], the error bound εk of a sample of size nj,k is
inversely proportional to the square root

√
nj,k of its size nj,k.

Therefore, a stratified sample with a larger error bound usually
has a smaller size, thus requires less computing resource to
process and a shorter delay to deliver the result. We further
assume that the origin stratified samples of each dataset Sj

are materialized at the datacenter where Sj is generated.

To meet the response time requirement of every approximate
query, some slave samples of each origin sample of dataset Sj

may be created and placed at other datacenters. Data updates
will be performed for each slave sample if there is any update
to its origin sample to make the slave sample consistent with

IEEE ICC 2017 SAC Symposium Big Data Networking Track

its origin sample. We assume that the average data size of an
update operation is ψ · nj,k, where ψ is a constant with 0 <
ψ < 1 [12] and nj,k is the sample size. It is obvious that more
slave samples are in the system, the QoS requirements of users
tend to be satisfied. However, the update and storage costs
on the slave samples will subsequently grow too. Therefore,
creating and placing a proper number of slave samples with
certain error bounds for each origin sample is crucial.

Evaluating an approximate query qm is to abstract inter-
mediate results from the samples of each requested dataset,
and aggregate the obtained intermediate results at the home
datacenter of the query. Let h(qm) be the home datacenter of
qm. Without loss of generality, we assume that the volume of
the approximate query result on each its component sample
of Sj is proportional to the volume of each of the samples,
i.e., β · nj,k for sample Sj,k, where β is a constant with
0 < β ≤ 1 [12]. An approximate query qm may demand mul-
tiple datasets and be evaluated on their samples with different
error bounds, the intermediate results of these samples will
be transmitted from their datacenters to the home datacenter
of qm, the average error bound of a query result is related
to the sizes and error bounds of placed samples, which can
be calculated as follows [19]. For example, assume that its
component sample sizes of the query are nj1,k1

, nj2,k2
and

nj3,k3
with error bounds εk1

, εk2
, and εk3

, respectively. Then,
the average error bound of the approximate query result is
nj1,k1

·εk1
+nj2,k2

·εk2
+nj3,k3

·εk3

nj1,k1
+nj2,k2

+nj3,k3
.

D. Cost model

The cost of approximate query evaluation in a distributed
cloud consists of four component costs. The storage cost is for
storing both origin samples and slave samples of each dataset
in S; the process cost is the cost for evaluating the samples
requested by approximate queries; the update cost refers to the
cost of keeping the slave samples consistent with their origin
samples; and the transmission cost is the cost of data transfer
within the network by transferring the intermediate results
of each query qm from the datacenters where the requested
samples are evaluated to the home datacenter h(qm) of qm,
and transferring the updated data from each origin sample to
its slave samples.

E. Problem definition

Given a distributed cloud G = (DC, E), a set S of datasets,
a set of approximate queries Q = {qm | 1 ≤ i ≤ M} for
big data analytics, each approximate query qm is issued with
a frequency fm, each dataset Sj ∈ S(qm) is generated at
datacenter DC(Sj), a variety of origin samples with different
sample sizes and error bounds for each dataset Sj are stored at
datacenter DC(Sj), the intermediate results evaluated on these
requested datasets will be aggregated at the home datacenter
of qm, and the QoS requirement dm of qm is given in advance.
The QoS-aware data replication and placement problem for
query evaluation of big data analytics in G is to create a set
of slave samples for each origin sample and place the slave
samples at strategic datacenters in G such that the evaluation
cost of all approximate queries is minimized, while meeting
the specified QoS dm of each approximate query qm ∈ Q.

III. A HEURISTIC ALGORITHM

A. Overview
There are two issues to be addressed to the QoS-aware data

replication and placement problem.
One is how many slave samples of each origin sample

requested by a query should be created, and where these slave
samples should be placed in the distributed cloud. Specifically,
the queries in Q have not only different required datasets but
also different QoS requirements, it is necessary to create a
different number of slave samples for each origin sample at
different datacenters; otherwise, some users’ QoSs may be not
satisfied. To address this issue, we jointly place each query and
the samples of its required datasets, to make sure that each
query is evaluated at close datacenters (to meet its delay re-
quirement) where the samples of its required datasets has/will
be placed. To this end, we reduce the problem to the problem
of finding unsplittable minimum-cost multi-commodity flow
in an auxiliary directed graph Gf = (Vf , Ef ;u, c), where the
pair of a query qm and each of its required dataset S(qm)
is referred to as a commodity. Each commodity needs to be
routed to a datacenter, which corresponds to creating a slave
sample of the required dataset at the datacenter or using an
existing slave sample that has been placed at the datacenter
already, and evaluating a query based on the placed sample.

Another issue is which slave sample should be created at a
datacenter for a query, since a dataset required by the query has
several origin samples with different sizes and error bounds,
determining which error bound that each query should be
evaluated is critical to both the quality of the query result and
its evaluation cost. We thus route each commodity (qm, Sj)
by assuming that query qm requires the sample of dataset Sj

with the smallest error bound. If the computing resource of
all datacenters is not enough to evaluate all queries at their
smallest error bounds, the algorithm will greedily select some
queries by increasing their samples’ error bounds, as larger
error bounds indicate smaller sample sizes, leading to less
computing resource to process. This procedure continues until
all commodities are routed successfully.

B. Algorithm
We now describe the detailed algorithm, which consists of

two phases: (1) the construction of the flow graph Gf =
(Vf , Ef ;u, c); and (2) routing samples to datacenters for query
evaluation. We proceed by increasing the error bounds of
samples gradually.

The construction of the flow graph Gf = (Vf , Ef ;u, c) is
as follows. Since not only each query needs to be assigned to a
datacenter but also the samples of its required datasets should
be placed, we use a commodity node in Gf to represent a query
qm and each of its demanded datasets, i.e., (qm, Sj), where
Sj ∈ S(qm) is a dataset that query qm demands. Routing this
commodity thus means both the assignment of the query qm
and the placement of the sample of its required dataset Sj .
In other words, to evaluate query qm, we need to route all
the commodity nodes of the query to some datacenters in the
distributed cloud G. Therefore, each datacenter DCi ∈ DC is
treated as a datacenter node DCf

i in Gf , denote by DCf the

set of datacenter nodes. Each datacenter node DCf
i ∈ DCf

IEEE ICC 2017 SAC Symposium Big Data Networking Track

has a virtual datacenter node DC
′f
i , and a directed edge

〈DCf
i , DC

′f
i 〉 from DCf

i to DC
′f
i is added with its capacity

representing the volume of data that can be processed by DCi,
denote by DC′f the set of virtual datacenter nodes. In addition,
a virtual source node s0 and a virtual sink node t0 are added
to Gf , i.e., Vf = {s0} ∪

(⋃
(qm, Sj)

) ∪ DCf ∪ DC′f ∪ {t0},
where Sj ∈ S(qm) and 1 ≤ m ≤ M . There is a directed
edge from the virtual source node s0 to each commodity
node (qm, Sj), its capacity and cost are the volume of Sj and

0 respectively. An edge 〈(qm, Sj), DCf
i 〉 from a commodity

node (qm, Sj) to a datacenter node DCf
i is added to Ef , if

the response time requirement of query qm for evaluating on
a sample at datacenter DCi is satisfied. The capacity of edge

〈(qm, Sj), DCf
i 〉 is the volume of Sj . If a slave sample of Sj

has not been placed at DCi, the cost of edge 〈(qm, Sj), DCf
i 〉

is the sum of the storage cost for storing a unit of data
at datacenter DCi, the update cost for updating a unit of
data along the shortest path with minimum cost between
the datacenter where its origin sample is and DCi, and the
transmission cost for transmitting a unit of intermediate data
along the path with minimum transmission cost from DCi

to the home datacenter h(qm) of qm. Otherwise, the cost of

〈(qm, Sj), DCf
i 〉 is set to the transmission cost for transmitting

a unit of intermediate data along the path with minimum
transmission cost from DCi to h(qm), because the update and
storage costs of Sj have been considered when routing other

commodities. A directed edge 〈DCf
i , DC

′f
i 〉 from a datacenter

node DCf
i to a virtual datacenter node DC

′f
i is added to Ef ,

and its capacity is the amount of data that can be processed
by the available computing resource of datacenter DCi, and
its cost is the process cost of processing a unit of data at DCi.

Similarly, there is a directed edge 〈DC
′f
i , t0〉 from a virtual

datacenter node DC
′f
i to the virtual sink node t0, its capacity

is infinity, and its cost is 0.

An example of the distributed cloud G = (DC, E) and
the constructed graph Gf = (Vf , Ef ;u, c) are illustrated in
Fig. 1, where two approximate queries q1 and q2 are issued.
The evaluation of query q1 requires samples of datasets S1

and S2, while the evaluation of query q2 requires samples
of datasets S1, S2 and S3. The origin samples of datasets
S1, S2 and S3 are located at datacenters DC6, DC7 and
DC4, respectively. The response time requirement of query
q1 for evaluating on the samples of datasets S1 and S2 at
datacenter DC2 cannot be met, so there are no any edges
between the commodity nodes of q1 (i.e., (q1, S1) and (q1, S2)
) and datacenter node DCf

2 . Similarly, there are no any edges
between the commodity nodes of q2 (i.e., (q2, S1), (q2, S2)
and (q2, S3)) and datacenter nodes DCf

1 , DCf
5 , and DCf

6 , as
the response time requirement of query q2 for evaluating on
the samples of the datasets located at datacenter DC1, DC5,
and DC6 cannot be satisfied.

Having constructed the auxiliary flow graph Gf =
(Vf , Ef ;u, c), we now route all commodities in Gf one
by one. As each dataset requested by a query has multiple
stratified samples with different error bounds, we start routing
each commodity node by routing its slave sample with the
smallest error bound (largest sample size), and iteratively find

Fig. 1. An example of the distributed cloud and its auxiliary flow graph, where
query q1 requires the samples of datasets S1 and S2 for its evaluation, while
query q2 requires the samples of datasets S1, S2, and S3 for its evaluation.

the next smallest error bounds, while each further iteration
increases the error bound of the previous iteration until the
QoS requirement is met.

Assume that in the beginning of the kth iteration, some
queries have been admitted at error bounds from ε1 to εk−1.
We now show how to admit the rest of queries by routing
the residual commodities in Gf in the kth iteration. We route
each not yet routed commodity (qm, Sj) by assuming that qm
will evaluate on the sample of Sj with an error bound εk. We
rank each commodity (qm, Sj) according to the frequency fm
of qm and the size nj,k of the sample of Sj with the error
bound εk, i.e., the rank of query qm is

∑
Sj∈S(qm) fm · nj,k.

We then route the commodity (qm, Sj) with the lowest rank to
the destination node t0 through a path with minimum cost in

Gf . If a selected routing path passes a datacenter node DCf
i ,

then create a slave sample for the sample at datacenter DCi

and update the capacities of edges in Gf . Since there is at most
one salve sample of a dataset at the same datacenter DCi, the

cost of each edge in set {〈(q′m, Sj), DCf
i 〉 | q′m ∈ Q \ {qm}}

is updated to the transmission cost by q′m.

Notice that some queries may not be admitted after K iter-
ations. To admit all queries, we will increase the error bound
of samples requested by admitted queries. The procedure of
increasing the error bounds of admitted queries continues until
all queries are admitted. The detailed procedure of the heuristic
algorithm is given in Algorithm 1.

C. Algorithm analysis

Theorem 1: Given a distributed cloud G = (DC, E), a set
of approximate queries Q, and the response time requirement
dm of a query qm, there is an algorithm, Heuristic, for
the QoS-aware data replication and placement problem for
query evaluation of big data analytics, which delivers a feasible
solution in O((|Q| · |S|+ |DC|)3) time.

IEEE ICC 2017 SAC Symposium Big Data Networking Track

Algorithm 1 Heuristic
Input: A distributed cloud G = (DC, E), the set of approximate queries Q

with each approximate query qm issued at the frequency of fm, a set of
datasets S with each dataset being generated at datacenter DC(Sj), and
the response time requirement dm of each query qm by evaluating on
some datasets in S.

Output: The placement and replication locations of the slave samples of
datasets in S.

1: Construct an auxiliary flow graph Gf = (Vf , Ef);
2: Rank the queries in Q according to their frequencies and the volume of

their accessed samples in a ascending order;
3: for Each query qm with the minimum rank do
4: Get the available computing resource of each datacenter;
5: for Each origin sample node Sj accessed by query qm do
6: Treat the origin sample as an unsplittable commodity;
7: Find a path pm,j,t0 from the origin sample node to t0 with

minimum accumulated cost of all edges along the path;
8: Check whether the computing capacity of the datacenter is violated

if routing the commodity to the datacenter along path pm,j,t0 ;
9: if The capacity is not violated then

10: Route the commodity along the path pm,j,t0 ;
11: Update the capacities of edges in Gf ;

12: Update the cost of each edge in set {〈(q′m, Sj), DCf
i 〉 | q′m ∈

Q \ {qm}} as the transmission cost by q′m;
13: else
14: Select the sample with a higher error bound as the commodity

to be routed;
15: Repeat step 8 to step 12;
16: end if
17: end for
18: end for
19: return The number and locations of stratified samples with different

error bounds of all datasets.

Proof Let p be a path in the auxiliary graph Gf starting

from s0 and ending at t0, i.e., 〈s0, (qm, Sj), DCf
i , DC

′f
i , t0〉.

Clearly, the response time requirement of qm can be met

as there will not be an edge from (qm, Sj) to DCf
i if the

response time requirement can not be satisfied. We then prove
that flow f along p corresponds to placing a slave sample
of Sj at datacenter DCi and assigning query qm to DCi for
evaluating on the placed slave sample. We consider two cases:
(1) a slave sample of Sj has already been placed at DCi;
and (2) there is no any slave sample of Sj at DCi. For case
(1), since there is at most one slave sample with an error
bound of a dataset at a datacenter, there is no need to create
another identical slave sample for Sj at DCi. This means
that no extra storage and update costs are incurred, and only
processing and transmission costs are incurred. As shown in

Step 12 of algorithm 1, the cost of edge 〈(qm, Sj), DCf
i 〉 is

updated to the transmission cost by query qm for transmitting
a unit of data from its home datacenter h(qm) to DCi, and

the cost of edge 〈DCf
i , DC

′f
i 〉 is the process cost of query

qm by processing the placed sample of Sj . Thus, the flow f
via path p corresponds to the assignment of query qm to DCi

for evaluating on a sample of Sj that has already been placed
in DCi. Similarly, for case (2) we can show that the flow f
via path p corresponds to the placement of a sample of Sj

and the assignment of query qm to DCi for evaluating on the
placed sample.

Algorithm 1 first constructs an auxiliary flow graph
Gf = (Vf , Ef) and then routes each query qm and its required
dataset one by one through a shortest path from s0 to t0. Gf

contains O(|Q||S|+|DC|) nodes and O(|Q||S||DC|) edges, its

construction thus takes O(|Q||S||DC|) time. Finding a shortest
path in Gf for each pair of qm and one of its required dataset
from its commodity node 〈qm, Sj〉 to t0 takes O(|Vf |2),
where |Vf | = O(|Q||S| + |DC|). Thus, the algorithm takes
O(|Q||S| · (|Q||S|+ |DC|)2) time.

IV. PERFORMANCE EVALUATION

A. Simulation environment

We consider a distributed cloud consisting of 20 datacenters,
there is an edge between each pair of datacenters with a prob-
ability of 0.2 generated by the GT-ITM tool. The computing
capacity of each datacenter is randomly drawn from a value
interval [1, 000, 2, 000] units (GHz) [13]. Each user produces
several Gigabytes of data, we thus emulate the volume of
dataset generated by each user is in the range of [5, 10]
GB [13], and the amount of computing resource assigned to
the processing of 1GB data is a value in the range of [25,
75] GHz. The costs of transmitting, storing and processing 1
GB of data are set within [$0.05, $0.1], [$0.001, $0.0035],
and [$0.05, $0.12], respectively, following typical charges in
Amazon EC2 and S3. The numbers of datasets and queries
in the system are randomly drawn in the range of [50, 100]
and [50, 200], respectively. The frequency of a query and
the number of datasets required by the query are randomly
drawn from intervals [1, 10] and [1, 3]. The QoS requirement
of each query is a value between [500, 1,000] ms. Unless
otherwise specified, we will adopt these default settings in
our experiments. Each value in the figures is the mean of
the results by applying the mentioned algorithm 15 times on
15 different topologies of the distributed cloud. Also, 95%
confidence intervals for mean error bounds are presented.

To evaluate the performance of the proposed algorithm to
the QoS-aware data replication and placement problem for
query evaluation of big data analytics, a benchmark is em-
ployed as an evaluation baseline. Specifically, the benchmark
first selects a set of candidate datacenters for each pair of query
and one of its requested datasets, if the delay requirement
of the query can be met by putting a sample with the
smallest error bound of the dataset at the datacenters. It then
places the sample at the datacenter with the largest available
computing resource. If the datacenter cannot accommodate
more samples, it then picks the next datacenter with the second
largest amount of available computing resource in the set of
candidate datacenters. If the available computing resource of
the set of candidate datacenters cannot accommodate more
samples, the algorithm then increase the error bounds of placed
samples until all samples are placed. For simplicity, we refer
to this benchmark as Benchmark, and refer to the proposed
algorithm Algorithm 1 as Heuristic.

B. Performance evaluation of different algorithms

We now evaluate the proposed algorithm Heuristic
against algorithm Benchmark, in terms of the evaluation
cost (US dollars), and the average error bound achieved by
all queries in the system. It can be seen from Figs. 2(a) that
the evaluation cost, the process cost, the storage cost and the
update cost by algorithm Heuristic are substantially less
than those by algorithm Benchmark. For example, these

IEEE ICC 2017 SAC Symposium Big Data Networking Track

Evaluation

 cost
Process

 cost
Storage

 cost Transmission

cost
Update

cost

0

50

100

150

200
V

al
ue

s
of

 c
os

t
Heuristic
Benchmark

(a) The various costs

Different

algorithms
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
rr

or
 b

ou
nd

Heuristic
Benchmark

(b) The average error bound of all
placed samples in the system

Fig. 2. The performance of different algorithms in terms of evaluation cost,
the process cost, the storage cost, the update cost, and the average bound of
all samples in the system.

costs by Heuristic are only about 91%, 72%, 77%, and
23% of those by algorithm Benchmark. The rational behind
is that algorithm Benchmark places more slave samples
for each origin sample, as it always selects the datacenter
with the highest available computing resource. If a dataset
is required by multiple queries, these queries may need their
required sample to be replicated into multiple datacenters,
depending on the workloads of datacenters at the moment
when each query is evaluated. From Fig. 2(a) it can also be
seen that the transmission cost by algorithm Heuristic is
higher than that by algorithm Benchmark, this is because
algorithm Heuristic places samples with much lower error
bounds that corresponds to samples with large sizes, trans-
mitting these samples with large sizes thus leads to a higher
transmission cost. In addition, we can see from Fig. 2(b) that
the average error bound of all samples placed in the system
by algorithm Heuristic is only 0.05, while the one by
algorithm Benchmark is 0.23, which is much higher than that
by Heuristic. The reason is that algorithm Heuristic
adopts a fine-grained adjustment of error bounds when there
exist queries that cannot be admitted. On the other hand,
algorithm Benchmark places more slave samples for each
origin sample, thus, occupies more computing resource, which
prevents the algorithm from placing slave samples with lower
error bounds that typically have higher computing resource
demands.

C. Impacts of parameters on the algorithm performance
We first evaluate the impact of the maximum error bound

of samples placed in the system in terms of the evaluation
cost and its component costs (US dollars), such as the process
cost, the storage cost, the update cost and the transmission cost
of algorithms Heuristic and Benchmark, by varying the
maximum error bounds of samples from 0.05 to 0.15. From
Fig. 3(a), a clear trade-off between the evaluation cost and the
maximum error bound can be seen. Specifically, the evaluation
costs of algorithms Heuristic and Benchmark decrease
with the increase of the maximum error bound. The rationale
is that with the growth of maximum error bound of samples
that are placed in the system, samples with smaller sizes need
to be processed and transmitted in the system, which can be
evidenced by the results in Fig. 3(b), Fig. 3(c), Fig. 3(d), and
Fig. 3(e), where the process, storage, transmission and update
costs decrease with the increase of the maximum error bound.

We then study the impact of the number of datacenters
on the performance of algorithm Heuristic against that of
algorithm Benchmark. From Fig. 4, it can be seen that the

0.05 0.075 0.1 0.125 0.15
The maximum error bounds of samples

0

50

100

150

200

250

300

350

E
va

lu
at

io
n

co
st

Heuristic
Benchmark

(a) The impact on the evaluation
cost

0.05 0.075 0.1 0.125 0.15
The maximum error bounds of samples

0

20

40

60

80

Pr
oc

es
s

co
st

Heuristic
Benchmark

(b) The impact on the process cost

0.05 0.075 0.1 0.125 0.15
The maximum error bounds of samples

0

5

10

15

20

25

30

St
or

ag
e

co
st

Heuristic
Benchmark

(c) The impact on the storage cost

0.05 0.075 0.1 0.125 0.15
The maximum error bounds of samples

0

20

40

60

80

100

120

140

T
ra

ns
m

is
si

on
 c

os
t

Heuristic
Benchmark

(d) The impact on the transmission
cost

0.05 0.075 0.1 0.125 0.15
The maximum error bounds of samples

0

20

40

60

80

100

120

U
pd

at
e

co
st

Heuristic
Benchmark

(e) The impact on the update cost

Fig. 3. Impacts of the maximum error bound of samples on the performance
of algorithms Heuristic and Benchmark.

evaluation costs (US dollars) and their component costs (US
dollars) of both algorithms increase with the growth of the
number of datacenters, while the average error bound of all
evaluated queries by algorithm Benchmark decreases with
the growth of the number of datacenters. The rationale is that
with the growth of the number of datacenters, more computing
resource will be available to accommodate large-volume slave
samples with lower error bounds, thereby increasing the costs
of processing, storage, transmission and updating larger slave
samples. Furthermore, as the network size grows with the
increase of the number of datacenters, queries and their
requested datasets tend to be placed at more datacenters.

V. RELATED WORK

Several studies on data placement and query evaluation have
been conducted in the past [1], [4], [7], [8], [9], [11], [13],
[14], [15], [16], [17], [18]. Most of these studies either did
not consider data replications of generated big data [1], [7],
[8], [11], [13] or ignored the QoS requirement of users [1],
[4], [7], [9], [15], [13], or some of them only considered traffic
cost while neglecting other costs [9].

For example, Baev et. al. [4] considered a problem of
placing replicated data in arbitrary networks to minimize the
total storage and access cost. Golab et al. [7] studied a data
placement problem to determine where to store the data and
where to evaluate data-intensive tasks with a goal to minimize
the data traffic cost. Kayyoor et. al [9] addressed a problem
of minimizing average query span, which is the number of
servers involved in answering a query. They ignored other
costs and QoS requirements of users [4], [7], [9], and did

IEEE ICC 2017 SAC Symposium Big Data Networking Track

10 20 30 40 50
The number of datacenters in the network

0

50

100

150

200

250

300
E

va
lu

at
io

n
co

st
Heuristic
Benchmark

(a) The impact on the evaluation
cost

10 20 30 40 50
The number of datacenters in the network

0

20

40

60

80

Pr
oc

es
s

co
st

Heuristic
Benchmark

(b) The impact on the process cost

10 20 30 40 50
The number of datacenters in the network

0

5

10

15

20

25

30

St
or

ag
e

co
st

Heuristic
Benchmark

(c) The impact on the storage cost

10 20 30 40 50
The number of datacenters in the network

0

50

100

150

200

T
ra

ns
m

is
si

on
 c

os
t

Heuristic
Benchmark

(d) The impact on the transmission
cost

10 20 30 40 50
The number of datacenters in the network

0

20

40

60

80

100

120

U
pd

at
e

co
st

Heuristic
Benchmark

(e) The impact on the update cost

10 20 30 40 50
The number of datacenters in the network

0

0.05

0.1

0.15

0.2

0.25

0.3

E
rr

or
 b

ou
nd

Heuristic
Benchmark

(f) The impact on the average error
bound of all placed samples in the
system

Fig. 4. Impacts of the number of datacenters on the performance of algorithms
Heuristic and Benchmark.

not consider data replications [7]. Agarwal et al. [1] proposed
a data placement mechanism Volley for geo-distributed cloud
services to minimize the user-perceived latency. Xia et. al [13]
considered a big data management problem in distributed
cloud environments to maximize the system throughput while
minimizing the operational cost of service providers. Data
replications and QoS requirements of users have not been
discussed in these two studies [1], [13]. Pu et al. [11] presented
a system for low latency geo-distributed analytics, which used
an heuristic to redistribute datasets among the datacenters prior
to queries’ arrivals, and placed the queries to reduce network
bottlenecks during the query’s execution. Heintz et al. [8]
studied the tradeoff between the delay and errors of obtained
results in streaming analytics in an architecture consisting of a
single center and multiple edge servers. In the two studies [8],
[11], authors did not consider data replications and samples of
datasets. Xia et al. [15] recently investigated the placement of
social networks in distributed clouds to minimize the operation
cost of the service provider.

In contrast, we studied the QoS-aware data replication and
placement problem for query evaluation of big data analytics
in distributed cloud environments, where big data are located
at different locations and users have QoS requirements in terms
of query response times, with the objective to minimize the
evaluation cost of all queries while meeting the QoSs of the
users of these queries.

VI. CONCLUSIONS

In this paper, we studied query evaluations of big data ana-
lytics in a distributed cloud, through efficient and effective data
replications and placements to minimize the query evaluation
cost, while meeting the query response time requirements. We
first formulated this problem as the QoS-aware data replication
and placement problem for query evaluation of big data
analytics. We then proposed a fast yet scalable heuristic by
reducing the problem to the unsplittable multicommodity flow
problem. We finally evaluated the performance of the pro-
posed algorithm through experimental simulations. Simulation
results demonstrate that the proposed algorithm is promising.

REFERENCES

[1] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan.
Volley: automated data placement for geo-distributed cloud services.
Proc. of NSDI, USENIX, 2010.

[2] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
BlinkDB: queries with bounded errors and bounded response times on
very large data. Proc. EuroSys’13, IEEE, 2013.

[3] A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource
allocation heuristics for efficient management of data centers for cloud
computing. J. of Future Generation Computer Systems, Vol. 28, No. 5,
pp.755-768, 2012.

[4] I, Baev, R. Rajaraman, and C. Swamy. Approximation algorithms for data
placement problems. SIAM J. on Computing, Vol.38, No.4, pp.1411-1429,
2008.

[5] S. Chaudhuri, G. Das, and V. Narasayya. Optimized stratified sampling
for approximate query processing. Tran. on Database Systems, Vol. 32,
No. 2, pp.1-50, 2007.

[6] W. Fan, F. Geerts, and F. Neven. Making queries tractable on big data
with preprocessing: through the eyes of complexity theory. Proceedings
of the VLDB Endowment, Vol.6, No. 9, pp.685-696, 2013.

[7] L. Golab, M. Hadjieleftheriou, H. Karloff, and B. Saha. Distributed data
placement to minimize communication costs via graph partitioning. Proc.
of SSDBM, ACM, 2014.

[8] B. Heintz, A. Chandra, and R. K. Sitaraman. Trading Timeliness and
Accuracy in Geo-Distributed Streaming Analytics Proc. of SoCC, ACM,
2016.

[9] A. K. Kayyoor, A. Deshpande, and S. Khuller. Data placement and
replica selection for improving co-location in distributed environments.
Computing Research Repository (CoRR), arXiv:1302.4168, 2012.

[10] R. Lu, H. Zhu, X. Liu, J.K. Liu, and J. Shao. Toward efficient and
privacy-preserving computing in big data era. Network, IEEE, Vol. 28,
No. 4, pp.46-50, 2014.

[11] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl,
and I. Stoica. Low latency analytics of geo-distributed data in the wide
area. Proc. of SIGCOMM, ACM, 2015.

[12] S. Rao, R. Ramakrishnan, A. Silberstein, M. Ovsiannikov, and D.
Reeves. Sailfish: a framework for large scale data processing. Proc.
of SoCC, ACM, 2012.

[13] Q. Xia, Z. Xu, W. Liang, and A. Zomaya. Collaboration- and fairness-
aware big data management in distributed clouds. IEEE Trans. on Parallel
and Distributed Systems, Vol.27, No.7, pp.1941-1953, 2016.

[14] Q. Xia, W. Liang, and Z. Xu. Data locality-aware query evaluation for
big data analytics in distributed clouds. To appear in Computer Journal,
2017.

[15] Q. Xia, W. Liang, and Z. Xu. The Operational Cost Minimization
in Distributed Clouds via Community-Aware User Data Placements of
Social Networks. Computer Networks, Vol.112, pp.263-278, 2017.

[16] Z. Xu and W. Liang. Minimizing the operational cost of data centers via
geographical electricity price diversity, Proc. of 6th IEEE International
Conference on Cloud Computing, IEEE, 2013.

[17] Z. Xu and W. Liang. Operational cost minimization for distributed data
centers through exploring electricity price diversity. Computer Networks,
Vol. 83, pp.59-75, Elsevier, 2015.

[18] Z. Xu, W. Liang, and Q. Xia. Electricity cost minimization in distributed
clouds by exploring heterogeneities of cloud resources and user demands.
Proc. of ICPADS’15, IEEE, 2015.

[19] Y. Yan, L. J. Chen, and Z. Zhang. Error-bounded sampling for analytics
on big sparse data. Proc. of the VLDB Endowment, Vol.7, No.13, pp.1508-
1519, 2014.

IEEE ICC 2017 SAC Symposium Big Data Networking Track

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

