
Capacitated Cloudlet Placements in Wireless
Metropolitan Area Networks

Zichuan Xu†, Weifa Liang†, Wenzheng Xu‡†, Mike Jia†, and Song Guo¶

†Research School of Computer Science, The Australian National University, Canberra, ACT 0200, Australia
‡College of Computer Science, Sichuan University, Chengdu, 610065, P. R. China

¶School of Computer Science and Engineering, The University of Aizu, Aizu-Wakamatsu City, Fukushima 965-8580, Japan
Email: edward.xu@anu.edu.au, wliang@cs.anu.edu.au, wenzheng.xu3@gmail.com, u5515287@anu.edu.au, sguo@u-aizu.ac.jp

Abstract—In this paper we study the cloudlet placement
problem in a large-scale Wireless Metropolitan Area Network
(WMAN) that consists of many wireless Access Points (AP-
s). Although most existing studies in mobile cloud computing
mainly focus on energy savings of mobile devices by offloading
computing-intensive jobs from them to remote clouds, the access
delay between mobile users and the clouds usually is large and
sometimes unbearable. Cloudlet as a new technology is capable
to bridge this gap, and has been demonstrated to enhance the
performance of mobile devices significantly while meeting the
crisp response time requirements of mobile users. In this paper
we consider placing multiple cloudlets with different computing
capacities at some strategic local locations in a WMAN to reduce
the average cloudlet access delay of mobile users at different APs.
We first formulate this problem as a novel capacitated cloudlet
placement problem that places K cloudlets to some locations in
the WMAN with the objective to minimize the average cloudlet
access delay between the mobile users and the cloudlets serving
their requests. We then propose a fast yet efficient heuristic.
For a special case of the problem where all cloudlets have the
identical computing capacity, we devise a novel approximation
algorithm with a guaranteed approximation ratio. In addition,
We also consider allocating user requests to cloudlets by devising
an efficient online algorithm for such an assignment. We finally
evaluate the performance of the proposed algorithms through
experimental simulations. The simulation results demonstrate
that the proposed algorithms are promising and scalable.

I. INTRODUCTION

In recent years, mobile devices have undergone a trans-
formation from bulky gadgets with limited functionalities to
indispensable everyday accessories. Advances in mobile hard-
ware technology have led to an explosive growth in mobile ap-
plication markets. Although mobile applications are becoming
increasingly computational-intensive, the computing capacity
of mobile devices remains limited, due to the considerations
of weight, size, battery life, ergonomics, and heat dissipation
of portable mobile devices [17]. A powerful approach to
enhancing the performance of mobile applications is enabling
mobile devices to access rich resources in remote clouds, by
mitigating the workload on the mobile devices [10], [22].

Although clouds have rich computing and storage re-
sources, they typically are far away from mobile users. Com-
munication delays between the clouds and their mobile users
thus can be long and unpredictable. This is problematic for
these mobile applications in which a crisp response time
is critical to their users, such as augmented reality, speech
recognition, navigation, language translation, etc [17], [19].
To reduce this long access delay, cloudlets were proposed
as an alternative solution [17] to powerful clouds. Cloudlet-
s are resource-rich server clusters co-located with wireless

Access Points (APs) in a local network, and mobile users
can offload their tasks to local cloudlets for processing [5],
[17].As cloudlets are self-managing, with few requirements
other than power and Internet connectivity, they can be de-
ployed in existing networks, leading them to be viewed as
‘data-centers in a box’. The physical proximity between mobile
users and cloudlets means that the cloudlet access delay on
task offloading is greatly reduced, compared to remote clouds,
thereby significantly improving user experiences.

Most existing studies focused mainly on offloading tasks of
mobile users to cloudlets for energy savings of mobile devices,
assuming that the cloudlets have already been placed [4], [6],
[10], [11], [22]. Little attention has ever been paid to cloudlet
placements and the impact of different placements on mobile
users. The cloudlet placement is imperative to fully utilize
the capacity of cloudlets and thus reduce the average cloudlet
access delay of mobile users. The locations of cloudlets are
critical to the delay tolerance of mobile users, especially in
a large-scale Wireless Metropolitan Area Network (WMAN)
that consists of hundreds, even thousands of Access Points
(APs), where mobile users access the cloudlets through their
local APs. Due to the large size of the WMAN, poor cloudlet
placements will result in a long access delays between mobile
users and their cloudlets, and the load imbalance among
cloudlets, i.e., some of the cloudlets are overloaded while
others are underutilized and even idle. Therefore, strategic
placement of cloudlets in a WMAN will significantly improve
the performance of various mobile applications such as the
average cloudlet access delay, etc.

In this paper, we focus on the cloudlet placement problem
in a large-scale WMAN deployed in a metropolitan area, where
a service provider (usually the local government) is planning to
deploy K cloudlets with different computing capacities at some
strategic AP locations for mobile user access, the objective
is to minimize the average cloudlet access delay between
mobile users and the cloudlets serving the user requests. To
the best of our knowledge, we are the first to tackle this
cloudlet placement problem. The challenge associated with
such placements are that given K ≥ 1 cloudlets to be
placed in a large-scale WMAN, which cloudlets should be
placed to which locations, and which user requests should be
assigned to which cloudlets so that the average cloudlet access
delay among the mobile users is minimized? As the problem
considered is NP-hard, is there an approximation algorithm
with a guaranteed approximation ratio for it? In this paper we
will address the challenges and answer the question.

There are several placement problems including cache
placements and server placements that have been extensively
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studied in the past [15], [21]. For example, the cache placement
problem is to choose K replicas or hosting services among N
potential sites with identical capacities, such that the latency
experienced by users is minimized [21], which usually is
reduced to the capacitated K-median problem. Due to the NP-
hardness of the latter, there are approximation algorithms for
unsplittable and splittable versions of the problem [3], [14],
where ‘unsplittable’ refers to that a user request can be served
by only one center [3], and ‘splittable’ indicates that the user
request can be served by multiple centers [14].

Although there are some similarities between cache or
sever placement problem [15], [21] and the cloudlet placement
problem studied in the paper, there are two essential differences
between them. First, existing studies assumed that either there
is no capacity constraint on each cache server, or the capacity
of each cache server is identical, while we consider cloudlets
with computing capacity constraint. Second, the problem scale
is different, and there may be a huge number of user requests in
a large-scale WMAN, e.g., several millions in a metropolitan
city, since there are increasingly a large number of mobile
users. To simply apply an existing algorithm [3] to solve the
cloudlet placement problem, we must divide the user requests
at each AP into many virtual APs with each virtual AP
corresponding to one user request and then apply the algorithm.
Therefore, the existing algorithm in [3] is not applicable to the
problem of concern in this paper due to its poor scalability.
New algorithm must be devised to deal with a large number
of user requests. We will address this scalability by applying
a novel scaling technique, which can significantly reduce the
time complexity of the proposed algorithm, while the quality
of the solution is still guaranteed.

The main contributions of this paper are as follows. We first
study multiple cloudlet placements with different computing
capacities in a large-scale WMAN deployed in a metropolitan
region, by formulating a novel capacitated cloudlet placement
problem with the objective of minimizing the average cloudlet
access delay between mobile users and the cloudlets serving
their requests. We then show that the problem is NP-hard,
and propose a fast, scalable heuristic solution. In addition, we
also devise a novel approximation algorithm with a guaranteed
approximation ratio for a special case of the problem where
all cloudlets have identical computing capabilities. When all
cloudlets have been placed, we propose an efficient online
algorithm for user request assignment to cloudlets. We finally
evaluate the performance of the proposed algorithms through
experimental simulation. The simulation results demonstrate
that the proposed algorithms are very promising.

The rest of the paper is organized as follows. Section II
reviews related work. Section III introduces the system model
and problem definitions. Section IV provides a fast yet scalable
heuristic, and section V devises an approximation algorithm
if all cloudlets have identical capacities. Section VI devises
an online algorithm for user request assignment. Section VII
evaluates the performance of the proposed algorithms by
experimental simulation, and Section VIII concludes the paper.

II. RELATED WORK

Although most studies in literature mainly focused on
offloading mobile user tasks to remote clouds [10], [22],
cloudlets have been quickly gaining recognition as alternative

offloading destinations due to their short response time [4], [6],
[8], [9], [12], [11], [16], [18], [20]. For example, the system
Odessa [16] was designed to enable interactive mobile applica-
tions while satisfying crisp response time requirements of the
applications. Hoang et al. [8] proposed a linear programming
solution for the task offloading problem by considering the
QoS requirements of mobile users with an aim to maximize
the revenue of a service provider. Xia et al. [20] devised a
novel online algorithm for admitting user requests to a cloudlet
dynamically.

Despite the increasing momentum of cloudlet research in
Mobile Computing, the problem of cloudlet placement within a
network has largely been overlooked. Previous works typically
assumed that cloudlets are used in small private WLANs such
as in campuses, buildings, or even at office floors. In such
a setting, it can be argued that the placement of cloudlets is
trivial. Wherever the cloudlet is placed, the small network size
implies that the communication delay between the cloudlets
and their users is negligible. However, the cloudlet placement
in large-scale WMANs is non-trivial, as WMANs typically
covers large cities, and can have millions of users with hun-
dreds, even thousands of APs. In such a WMAN, a user could
be a significant number of hops away from its nearest cloudlet.
Thus, the average cloudlet access delay between a user and the
cloudlet serving the user can adversely affect the experience of
using the service. As a result, placing cloudlets with different
processing capacities to some strategic locations in a WMAN
is imperative to minimize the average cloudlet access delay
and fully utilize the capability of the cloudlets.

III. PRELIMINARIES

In this section we introduce the system model, followed by
defining the problem precisely.

A. System model
We focus on the cloudlet placements in a WMAN that is

a computer network providing wireless Internet coverage for
mobile users in a large-scale metropolitan area. The network
is often owned and operated by the local government as public
infrastructures [13]. We believe cloudlets are particularly suit-
able for the WMAN. Firstly, metropolitan areas have a high
population density, meaning that cloudlets will be accessible
by a large number of mobile users. This improves the cost-
effectiveness of cloudlet deployment as they are less likely to
be idle. Secondly, due to the size of the network, the service
provider can take advantage of economics of the scale when
offering cloudlet services through the WMAN, making cloudlet
services more affordable to the general public.

We consider a WMAN that consists of many wireless APs
at various strategic locations, where mobile users can access
public computing and storage resources in cloudlets located at
a set S of locations through their nearby APs. The network thus
can be represented by a connected, undirected graph G = (V ∪
S,E), where V is the set of APs and S is the set of potential
locations of cloudlets, and E is the set of links between two
APs in V or between an AP and a cloudlet located at a location
in S. Let n = |V | and m = |E|. Assume that |S| ≤ |V |.
In practice, some of the cloudlets usually are co-located with
the APs, i.e., S ⊆ V . There is a high-speed link in E or an
optical routing path between two APs or an AP and a cloudlet.
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The weight of the link represents the data transmission latency
between the its two endpoints (APs), and the latency between
an AP and a cloudlet is the accumulative latency of all edges
of the shortest path from the AP to the cloudlet. Associated
with each node in V , there is an integer weight w(v) (> 0),
representing the expected number of user requests using the
AP to access cloudlets in the network. As APs usually are
deployed at strategic locations such as shopping malls, train
stations, schools, and libraries, the expected number of user
requests w(v) per unit time at each AP v can be estimated
by its population density in that area, or can be derived from
historic AP access information.

Assume that there are K cloudlets with computing capaci-
ties c1, c2, . . . , cK respectively to be placed to the K locations
in S. For the sake of simplicity, we assume that the cloudlets
are co-located with some of the APs, i.e., S ⊆ V . We further
assume that K � |S| ≤ |V |. As the processing ability of
a cloudlet is typically proportional to its computing capacity,
the number of user requests admitted by the cloudlet at any
moment is proportional to its computing capacity. For the sake
of convenience, we here assume that each user request on
average takes one unit cloudlet capacity (e.g., virtual machine
(VM)) to process, where a user may request multiple VMs for
his/her tasks of an application [17]. Therefore, the assumption
that each request takes one unit cloudlet capacity can be easily
applied to various application scenarios.

Given the K cloudlets co-located with some locations in
S, mobile users can offload their tasks to the cloudlets through
their local APs. If a cloudlet is co-located with an AP, this will
lead to the minimum cloudlet access delay of users located at
that AP; otherwise, the mobile user requests will be relayed
to nearby cloudlets for further processing, this will result in a
cloudlet access delay due to the accumulative delay of multiple
hop relays. Fig. 1 illustrates a WMAN network.

Access Point

Access point co−located
with a cloudlet

Mobile users

Cloudlet B

Cloudlet C

Cloudlet A

Fig. 1. A WMAN G = (V,E) with K = 3 cloudlets.

B. Problem Definition
The capacitated cloudlet placement problem in a WMAN

G(V ∪ S,E) is thus defined as follows. Given the network
G, the expected number of user requests at each AP vj which
is a weight function w : V 7→ N, data transmission latencies
on links d : E 7→ R≥0, K (≥ 1) cloudlets with capacities
c1, c2, . . . , cK respectively, and a set S of potential locations
for the K cloudlets with S ⊆ V , the problem is to place the K
cloudlets to K locations in a configuration of S such that the
average cloudlet access delay between mobile users and the

cloudlets serving their requests is minimized, subject to that
the number of user requests serviced by each cloudlet is no
more than its processing capacity, where the cloudlet access
delay of a user request djl is the length of the shortest path
from its AP vj ∈ V to a cloudlet placed at location vl ∈ S
serving the request. In other words, the problem is to identify
K locations from |S| (≥ K) potential locations and place the
K cloudlets and to determine at which location the cloudlet
Ci with capacity ci should be placed such that the average
cloudlet access delay of the user requests from their APs to
their allocated cloudlets is minimized for all i with 1 ≤ i ≤ K.

The capacitated cloudlet placement problem is NP-hard by
a simple reduction from another NP-hard problem – the metric
K-median problem [3].

IV. ALGORITHM FOR THE CAPACITATED CLOUDLET
PLACEMENT PROBLEM

Due to the NP-hardness of the capacitated cloudlet place-
ment problem, we here devise an efficient heuristic for it.

We assume that the K cloudlets with different computing
capabilities have been sorted in decreasing order of capacity,
i.e., c1 ≥ c2 ≥ . . . ≥ cK . The proposed algorithm proceeds
iteratively. The K cloudlets are placed at K locations of the |S|
potential locations one by one, according to the decreasing or-
der of their capacities. Specifically, within iteration i, cloudlets
C1, C2, . . . , Ci−1 have already been placed, and cloudlet Ci
will be placed. Let vl(i) be the found location of cloudlet Ci.
It should not have been occupied by any placed cloudlet, which
implies that each potential placement location of cloudlet Ci
should be chosen from S \{vl(1), vl(2), . . . , vl(i−1)}. Also, this
location vl(i) for Ci needs to ‘cover’ as many user requests
from APs, while achieving the minimum average cloudlet
access delay of all the user requests covered by the location.
To find such a location for cloudlet Ci, determining which APs
should send their user requests to Ci is crucial, as requests from
different APs have different access delays. Our basic idea is to
place cloudlet Ci to a location that has the minimum cloudlet
access delay for all requests that will be routed at the location.
Notice that the user requests w(vj) at each AP vj may be
sent to multiple cloudlets if there is no enough computational
capacity left in Ci for processing all requests at AP vj , which
means that at each iteration of the algorithm there may exist
not-fully-covered APs (not all user requests from an AP have
been assigned to the first (i − 1) placed cloudlets). We sort
all not-fully-covered APs in increasing order of the delays
between these APs and the potential placement location vl
of cloudlet Ci, i.e., dlj for each such an AP vj . The first
least r APs with the total number of remaining user requests
exceeding the capacity ci of Ci is identified. All the requests
from these first r − 1 APs and some of the requests from the
rth AP will be sent to cloudlet Ci. That is, the number of user
requests packed by Ci is equal to its capacity ci. The detailed
algorithm is described in Algorithm 1.

Theorem 1: Given a WMAN G = (V ∪ S,E), the ex-
pected number of user requests w(v) at each AP v ∈ V ,
and K cloudlets C1, C2, . . . , CK with processing capacities
c1, c2, . . . , cK , respectively, there is a fast, scalable algorith-
m for the capacitated cloudlet placement problem, which
takes O(Kn2 log n + nm) time, assuming that w(v) ≤
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Algorithm 1 Greedy_Heuristic
Input: WMAN network G = (V ∪S,E), the number w(vj) of user requests

at each AP vj ∈ V , the communication delay of each edge in E, K
cloudlets with given capacities c1, c2, . . ., and cK respectively, and the
set S (⊆ V ) of potential locations for the K cloudlets.

Output: the placement locations of the K cloudlets.
1: U ← S; /* all potential locations of cloudlet placements*/
2: L← ∅; /* the set of cloudlets that have been placed*/
3: Compute all pairs of shortest paths for each pair of APs in the network;
4: Sort the cloudlet capacity in decreasing order, i.e., c1 ≥ c2 ≥ . . . ≥ cK ;
5: for i← 1 to K do
6: /* place the cloudlet with capacity ci to one location in U */
7: delaymin ←∞;
8: l(i)← 0; /* the location for cloudlet Ci */
9: AP cloudleti ← ∅; /* the set of APs whose user requests are already

been allocated to Ci */
10: for each location vl ∈ U do
11: /* if cloudlet Ci with capacity ci is placed in location vl, identify

a subset of APs, AP cloudletil from V \AP cloudlet that have
not been assigned to any cloudlet yet */

12: AP cloudletil ← ∅;
13: Sort all not-fully-covered APs in increasing order of the access

delay between the APs and the potential location vl of cloudlet Ci,
i.e., dlj for each AP vj ∈ V \AP cloudlet;

14: Find the least r APs in the sorted AP sequence such that the total
number of user requests of these r APs exceeds the capacity of Ci;

15: Add all the first r − 1 APs to AP cloudletil, meaning that the
user requests from these APs are routed to Ci;

16: Route a portion zir of the user requests w(vr) of the rth AP to
Ci, where zir = ci −

∑
vj∈AP cloudletil

w(vj);
17: w(vr)← w(vr)− zir /* remaining user requests at the rth AP*/;
18: Delayil ←

∑
vj∈AP cloudletil

dljw(vj) + dlrzir ;
19: if Delayil < delaymin then
20: l(i)← l, and delaymin ← Delayil;
21: AP cloudleti ← AP cloudletil;
22: Ci is placed at location vl(i) and all user requests from each AP ∈

AP cloudleti will be covered;
23: L← L ∪ {< vl(i), Ci >}, U ← U \ {vl(i)};

min1≤i≤K{ci} for any v ∈ V and K ≤ |S| ≤ |V |, where
n = |V | and m = |E|.

Proof: The analysis of the time complexity is straightfor-
ward, omitted.

V. APPROXIMATION ALGORITHM FOR A SPECIAL
CAPACITATED CLOUDLET PLACEMENT PROBLEM

In this section, we deal with a special case of the problem
where all the K cloudlets have identical capacities c (i.e.,
c1 = c2 = · · · = cK = c) and S = V . This special case
is still NP-hard, which can be reduced from the capacitated
K-median problem, in which each AP has only one user
request [3], through dividing the user requests at each AP into
many virtual APs with each virtual AP having one user request.
This however suffers from poor scalability, due to the large
numer of user requests at each AP. To address this issue, we
first introduce the capacitated K-median problem, and then
devise an approximation algorithm by applying a non-trivial
scaling technique.

A. The capacitated K-median problem
Given a set of locations VU with each location j ∈ VU

having a demand wj ≥ 0 to be served, K centers with each
having a service capacity M , and the service cost dij for a
center at location i serving one unit of demand from location
j, the capacitated K-median problem is to find K different
locations in VU to place the K centers and allocate the demand

wj of each location j ∈ VU to a placed center such that the
total service cost is minimized, subject to that the total demand
served by each center is no more than its capacity M and the
demand of each location j ∈ VU must be served by one center
only, where the service costs are non-negative, symmetric, and
satisfy the triangle inequality.

Theorem 2: [3] There is an approximation algorithm for
the capacitated K-median problem in a metric space, which
delivers an approximate solution with an approximation ratio
16 in the service cost, while the total demand served by each
center is no more than 4 times of the capacity M of the center.

B. Approximation algorithm
We now devise an approximation algorithm for this special

capacitated cloudlet placement problem. The strategy we adopt
is to reduce the problem to the capacitated K-median problem,
an approximate solution to the latter will form a base for the
approximate solution to the problem through a proper transfor-
mation. It can be seen from Theorem 2 that if the number of
user requests from all APs is polynomial of the number of APs
n in the WMAN, the special capacitated cloudlet placement
problem can be reduced to the capacitated K-median problem,
by replicating the w(vj) user requests at each AP vj into w(vj)
virtual nodes with each virtual node corresponding to a user
request. An approximate solution to the latter in turn returns
an approximate solution to the former. Otherwise (e.g., the
number of user requests is exponential of the number of APs
n), the running time of this method may not be polynomial. Let
N0 be a basic unit of the number of user requests, where N0

is an integer with 1 ≤ N0 ≤ minvj∈V {w(vj)} and N0 ≤ c.
Thus, each AP vj ∈ V with w(vj) expected user requests
will have nj = bw(vj)/N0c units. Similarly, each cloudlet Ci
will have a capacity of c′ = dc/N0e units. By adopting an
appropriate value N0, the total number of units

∑
vj∈V nj for

all user requests in the system becomes polynomial in terms
of the number of APs n.

Given the original graph G = (V,E), the expected number
of user requests at each AP w : V 7→ N, the data transmission
delay between every two APs d : E 7→ R≥0, and the
K cloudlets with each having a capacity c, we construct
an auxiliary complete graph GU = (VU , EU ) as follows.
For each AP vj with w(vj) expected user requests, we add
nj = bw(vj)/N0c virtual nodes v1j , v

2
j , . . . , v

nj

j into VU with
each serving as a source node and having the demand of 1.
There is an edge e in EU for each pair of virtual nodes vxi and
vyj in VU . The weight of edge e = (vxi , v

y
j ) ∈ EU is the delay

between APs vi and vj in G for transmitting N0 user requests
(i.e., N0dij) between them if vi 6= vj , and 0 otherwise.

The problem now is to place the K cloudlets with identical
capacities c′i in VU to cover all source nodes such that the
weighted sum of the edges between placed cloudlets and their
covered source nodes is minimized. This is the capacitated
K-median problem, which can be solved by an approximation
algorithm due to Charikar et al. [3]. Having the approximate
solution, a feasible solution to the special capacitated cloudlet
placement problem then can be obtained. That is, the K
cloudlets will be placed at the K locations in the approximate
solution. For each AP vj with nj = bw(vj)/N0c virtual nodes
v1j , v

2
j , . . . , v

nj

j in GU , assume that vlj is allocated to a cloudlet
deployed at location i in the approximate solution, then N0
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user requests at AP vj will be assigned to the cloudlet at
location i, where 1 ≤ l ≤ nj . The remaining w(vj)−N0 · nj
user requests at vj will be assigned to a nearest cloudlet with
the minimum accumulative delay among the cloudlets to which
the virtual nodes v1j , v

2
j , . . . , v

nj

j are allocated. The detailed
algorithm description is given in Algorithm 2.
Algorithm 2 Appro
Input: a WMAN G = (V,E), the number w(vj) of user requests at each AP

vj ∈ V , the delay d(e) of each edge e ∈ E, K cloudlets with a uniform
capacity c, and a positive integer N0 with 1 ≤ N0 ≤ minvj∈V {w(vj)}
and N0 ≤ c.

Output: The placement locations of the K cloudlets.
1: Construct an auxiliary graph GU = (VU , EU ) from G, where nj =
bw(vj)/N0c virtual nodes are added to VU and each of them is treated
as a ‘source node’ with demand of 1 for each AP vj ∈ V with w(vj)
user requests, and an edge e between any two virtual nodes vxi and vyj in
VU is added to EU and its weight is N0dij if vi 6= vj and 0 otherwise;

2: Find an approximate solution for the capacitated K-median problem in
GU (Vu, EU ), by applying the algorithm due to Charikar et al. [3];

3: Place the K cloudlets to the locations in the approximate solution;
4: For each virtual node vlj of AP vj , assign N0 user requests at AP vj to

the cloudlet to which the node vlj is allocated in the approximate solution;
5: Assign the rest w(vj)−N0nj user requests at AP vj to a nearest cloudlet

among the cloudlets to which the nj virtual nodes of AP vj are allocated.

C. Algorithm Analysis
We analyze the approximation ratio of the proposed ap-

proximation algorithm Appro through Theorems 3 and 4.
Let G′ = (V ′, E′; d′) be another graph that is identical

to the original graph G = (V,E; d), i.e., V ′ = V , E′ = E,
and d′ij = dij for any two APs vi and vj in V . However,
assume that the number of user requests at each AP vj′ in
G′ is bw(vj)/N0cN0, which is no more than the number of
user requests w(vj) at AP vj in G, i.e., bw(vj)/N0cN0 ≤
w(vj). We then deploy the K cloudlets in network G′ while
the capacity of each cloudlet Ci now is d cN0

eN0, not c. It is
obvious that d cN0

eN0 ≥ c. For each AP vj′ in G′, we can split
its bw(vj)/N0cN0 user requests into nj = bw(vj)/N0c blocks
with each block containing N0 requests exactly.

We consider two types of the special cloudlet placement
problem in graph G′(V ′, E′): the first one is that each user
request can be allocated to any cloudlet; and the second one is
that the whole N0 user requests of each block must be allocated
to a single cloudlet but the user requests in different blocks can
be allocated to different cloudlets. In the following we show
that the costs of the optimal solutions to these two different
types of cloudlet placement problems are equal.

Theorem 3: Denote by OPT1 and OPT2 the costs of the
optimal solutions to these two types of the special cloudlet
placement problem, respectively, we have OPT1 = OPT2.

Proof: It can be seen that OPT1 ≤ OPT2, since the
optimal solution to the second type of the special cloudlet
placement problem is a feasible solution to the first type one.
The rest is to show that OPT2 ≤ OPT1.

Denote by X1 and X2 the optimal solutions to the first
and second types of the special cloudlet placement prob-
lem, respectively. Assume that the K cloudlets are placed
at locations i1, i2, · · · , iK in solution X1. Recall that the
bw(vj)/N0cN0 user requests at AP vj′ have been split into
nj = bw(vj)/N0c blocks with each block containing N0

requests exactly. Let nr =
∑
vj∈V nj be the total number

of blocks in G′ that can be represented by b1, b2, · · · , bnr
,

respectively. Let B = {b1, b2, · · · , bnr
} be the set of the nr

blocks and I = {i1, i2, · · · , iK} the set of the K cloudlet
locations in solution X1.

We construct an auxiliary flow graph Gf = ({s}∪B∪ I ∪
{t}, Ef ) from the nr blocks in B and the K locations in I
as follows. There is a directed edge in Ef from source s to
each block bj ∈ B with a capacity of 1 and a cost d′′sj = 0.
For each block bj ∈ B and each location il ∈ I , there is a
directed edge in Ef from bj to il with a capacity of 1 and
a cost d′′jl = djlN0 (i.e., the total delay of transmitting the
N0 user requests from block bj to the cloudlet located at il).
Furthermore, there is an edge in Ef from each location il ∈ I
to sink t with a capacity of d cN0

e units and a cost d′′lt = 0.
Given a flow f from s to t in graph Gf ({s} ∪ B ∪

I ∪ {t}, Ef ), the cost of the flow is defined as
∑
e∈Ef

fe ·
d′′e . Following the assumption that the number of user re-
quests in G is no more than the total capacity of the K
cloudlets, i.e.,

∑
vj∈V w(vj) ≤ K · c, we then have nr =∑

vj∈V bw(vj)/N0c ≤ Kd cN0
e, and the value of a maximum

flow in Gf from s to t is nr.
Consider the minimum cost maximum flow problem in Gf

that is to find a maximum flow from s to t in Gf with
the minimum cost [1]. From the optimal solution X1 to the
first type of the special cloudlet placement problem, we can
construct a fractional maximum flow f (not necessarily having
the minimum cost of the flow) to the minimum cost maximum
flow problem in Gf , i.e., for the N0 user requests in each
block bj , assume that there are xji user requests of the N0

requests allocated to the cloudlet located at i ∈ I , the fractional
flow fji from block bj to location i is xji

N0
. It can easily

be verified that the cost of this fractional flow is OPT1.
On the other hand, notice that the capacity of each edge in
graph Gf is integral. Following the well-known integrality
property for the minimum cost maximum flow problem [1],
there is an integral minimum cost maximum flow f∗ for the
problem. That is, for each block bj ∈ B and each location
il ∈ I , the flow f∗jl from bj to il is either 0 or 1 as the
capacity of edge (bj , il) is 1. Denote by D(f∗) the cost of
flow f∗, i.e., D(f∗) =

∑
e∈Ef

f∗e ·d′′e . Then, D(f∗) ≤ OPT1,
since the solution X1 is a feasible solution to the minimum
cost maximum flow problem in Gf . Also, we know that this
integral maximum flow f∗ corresponds to a feasible solution
with cost D(f∗) to the second type of the special cloudlet
placement problem. As X2 with cost OPT2 is an optimal
solution to the problem, then OPT2 ≤ D(f∗). Therefore,
we have OPT2 ≤ D(f∗) ≤ OPT1. By combining the above
discussions, we have OPT2 = OPT1.

Having Theorem 3, we are ready to analyze the approxi-
mation ratio of Algorithm 2

Theorem 4: Given a WMAN G = (V,E) with each AP
vj ∈ V having w(vj) user requests and K cloudlets with
identical capacity of c, there is an approximation algorithm
for this special cloudlet placement problem, which delivers an
approximate solution with an approximation ratio of 16(1+ε),
while the number of user requests served by each cloudlet is
no more than 8(1+δ)c, where ε = maxvj∈V { 1

bw(vj)/N0c} ≤ 1,
δ = N0

c ≤ 1, N0 is a positive integer with 1 ≤ N0 ≤
min
vj∈V
{w(vj)}, and N0 ≤ c.
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Proof: We first analyze the approximation ratio of
Algorithm 2 as follows. Denote by OPT the optimal
(or minimum) total delay for the special capacitated cloudlet
placement problem with each cloudlet having identical capaci-
ty in the original graph G(V,E). Denote by OPTU the optimal
total service cost for the capacitated K-median problem in
the auxiliary graph GU (VU , EU ). Following the construction
of GU and Theorem 3, OPTU is no more than OPT as the
number of user requests njN0 at each AP vj in GU is no more
than the number of user requests w(vj) at AP vj in G, i.e.,
bw(vj)/N0cN0 ≤ w(vj), and the capacity d cN0

eN0 of each
cloudlet in GU is no less than the capacity c of the cloudlet in
G, i.e., d cN0

eN0 ≥ c. Following Theorem 2, the cost (or the
total delay) of the approximate solution delivered by the ap-
proximation algorithm for the capacitated K-median problem
in graph GU is no more than 16 · OPTU . Denote by Dj the
total delay incurred by the assigning the njN0 user requests at
AP vj to their allocated cloudlets in the approximate solution.
Then,

∑
vj∈V Dj ≤ 16 ·OPTU . Since the rest w(vj)− njN0

(≤ N0) user requests at AP vj are assigned to the nearest
cloudlet among the cloudlets to which the njN0 user requests
are allocated, the total delay incurred by these w(vj)− njN0

user requests is no more than Dj

njN0
N0 =

Dj

nj
. Therefore, the

total delay of assigning all user requests to the K cloudlets
is no more than

∑
vj∈V (Dj +

Dj

nj
) =

∑
vj∈V Dj(1 +

1
nj
) ≤

(1 + ε)
∑
vj∈V Dj ≤ (1 + ε)16 · OPTU ≤ (1 + ε)16 · OPT ,

where ε = maxvj∈V { 1
nj
} = maxvj∈V { 1

bw(vj)/N0c} ≤ 1.

We then show that the number of user requests served by
each cloudlet in the solution delivered by Algorithm 2 is no
more than 8(1+δ)c, where δ = N0

c ≤ 1. Following Theorem 2,
the number of user requests allocated to each cloudlet is no
more than 4d cN0

eN0 ≤ 4( c
N0

+1)N0 = 4(1+N0

c )c = 4(1+δ)c
in the approximate solution delivered by the approximation
algorithm in [3]. We show that after having assigned the rest
w(vj) − njN0 (≤ N0) user requests from each AP vj to the
cloudlets, the number of user requests served by each cloudlet
is no more than twice the number prior to this assignment. As-
sume that for a deployed cloudlet Ci, it processes user requests
from APs v1, v2, · · · , vp before assigning the remaining user
requests. Following Algorithm 2, cloudlet Ci will process
no less than N0 user requests from each of these p APs. Since
there are no more than N0 remaining user requests at each of
the p APs, the number of user requests assigned to cloudlet
Ci thus is no more than 8(1 + δ)c.

Notice that if the capacity of each cloudlet is not allowed
to be overloaded, we may set the capacity of each cloudlet to
a value of c

8(1+δ) instead of c, then apply the approximation
algorithm for this new capacity. Following Theorem 4, none
of the cloudlet will violate its original capacity c.

VI. ONLINE USER REQUEST ASSIGNMENT

The proposed algorithm for the capacitated cloudlet place-
ment problem so far assumed that the expected number of user
requests of each AP is given, based on historic information.
However, in reality, once the K cloudlets have been placed,
the workloads of different cloudlets may be different over
time, some of them may be overloaded while others are light-
loaded or idle. On the other hand, the actual number of user
requests from each AP may not be necessarily consistent with

its expected number and is very likely to vary over time. Thus,
there may have such situations where the actual number of
user requests from some APs is much below their expected
figures, while the actual number of user requests from the
other APs may be above their original figures. It is obvious
that dispatching much over than the expected number of user
requests from an AP to its designated overloading cloudlet
is not a smart choice. Instead, some of these requests can
be assigned to other light-loaded cloudlets for processing.
Consider such dynamic behaviors of both user requests and
the workloads of the K cloudlets, in this section we deal with
the online assignment problem of user requests to minimize the
average cloudlet access delay of mobile users, assuming that
the K cloudlets have already been placed. We assume that the
time is slotted into equal time slots, and the admission of new
user requests is taken in the beginning of each time slot.

The idea behind the proposed algorithm for the online
assignment problem of user requests in network G is to reduce
the problem to the minimum-cost maximum flow problem in
another auxiliary flow network G′ and the solution to the latter
in turn will return a solution to the former. Specifically, the
flow network G′ is derived from the WMAN G = (V,E)
and the K cloudlet placement sites. For the sake of con-
venience, assume that the K cloudlets have been placed at
AP locations v1, v2, . . . , vK , respectively, and the cloudlet Ci
with capacity ci is placed at location vi, 1 ≤ i ≤ K. Let
S = {v1, v2, . . . , vK} be the set of the locations of the placed
K cloudlets. Assuming time is divided into equal time slots,
there are w(vj , t) user requests that need to be assigned from
AP vj to the system in the beginning of time slot t, where
vj ∈ V . The network flow graph G′ = ({a}∪V ∪S∪{b}, E′)
is constructed from G = (V,E) as follows. There is a ‘virtual
source’ a and a ‘virtual sink’ b in G′. For each AP vj ∈ V ,
there is a directed edge in E′ from source a to vj with a
capacity of w(vj , t) (i.e., the number of user requests that needs
to be scheduled at AP vj at time slot t) and a cost of 0. For
each AP vj ∈ V and each cloudlet vi ∈ S, there is a directed
edge in E′ from vj to vi with a sufficiently large capacity
and a cost of dji (i.e., the shortest delay of transmitting a
user request from AP vj to cloudlet vi). Furthermore, for each
cloudlet vi ∈ S, there is a directed edge in E′ from vi to sink b
with a capacity of c′i(t) (i.e., the residual processing capacity of
cloudlet vi at time slot t) and a cost of 0. Note that the capacity
of each edge in network G′ is integral. Following the well-
known integrality property for the minimum-cost maximum
flow problem [1], there is an integral minimum-cost maximum
flow for the problem in G′. That is, the number of assigned
user requests in the flow from each AP vj to each cloudlet
vi is an integer. Such a user request assignment thus not
only maintains load-balancing among the K cloudlets but also
keeps the average cloudlet access delay of the user requests
minimized. Also, there is a polynomial algorithm for the
minimum-cost maximum flow problem [1]. As a result, we
obtain an online algorithm for the request assignment problem,
which is referred to as Algorithm Online_Assignment.

VII. PERFORMANCE EVALUATION

A. Experiment Settings
We assume that the WMAN G(V,E) consists of 200 APs

and there is an edge between every pair of nodes with a

575



0 50 100 150 200
network size n

10

20

30

40

50

60

av
er

ag
e 

cl
o
u
d

le
t 

ac
ce

ss
 

  
  

  
  
 d

el
ay

 (
m
s
)

Random
Top-K
Heuristic

0 50 100 150 200
10

20

30

40

50

60

(a) Average cloudlet access delay

0 50 100 150 200
network size n

0.001

0.01

0.1

1

10

100

ru
n
n
in

g
 t

im
e 

(s
e
c
)

Random
Top-K
Heuristic

0 50 100 150 200
0.001

0.1

10

(b) Running time

Fig. 2. The performance of algorithms Heuristic, Random, and Top-K
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Fig. 3. The performance of algorithms Heuristic, Appro, Random, and Top-K with identical processing capacity

probability of 0.02. The network is generated by a popular tool
GT-ITM [7]. We assume that the number of cloudlets is 10%
of the number of APs in G, i.e., K = 10% ·200 = 20. Assume
that S is the placement space of the K cloudlets and S = V .
The expected number of user requests w(v) at each AP v ∈ V
is randomly drawn from a value interval of [100, 1,000] [13].
Let Rsum be the total expected number of user requests,
then Rsum =

∑
v∈V w(v). The capacity of each cloudlet is

randomly drawn in a value interval of [1,000, Rsum], and
assume that the sum of capacities of the K cloudlets is no
less than the total expected number of user requests Rsum. The
delay of each link in G is a value randomly generated between
5ms and 50ms [17]. We also investigate the running time of
the proposed algorithms, where the actual running time of each
algorithm is the average of the running times of the algorithm
for 15 times on a desktop with 2.66 GHz Intel Core 2 Quad
CPU and 8GB RAM. Each value in figures is the mean of the
results by applying each algorithm to 15 different combination
of network topologies, edge weights, and the number of user
requests at each AP. Unless otherwise specified, these default
parameters will be adopted in our simulation.

We compare the performance of algorithms Heuristic
and Appro against two heuristic algorithms: one is to place
the K cloudlets to APs randomly; the other is to place the K
cloudlets to the top-K APs, where an AP is a top-K AP if its
number of user requests is one of the top-K values, which are
referred to as algorithms Random and Top-K, respectively.

B. Performance Evaluation of Different Algorithms
We first evaluate the performance of different algorithms.

We investigate the performance of algorithm Heuristic

against that of other algorithms Random, and Top-K by
varying the number of APs n from 10 to 200 while fixing
the ratio of the number of cloudlets to the number of APs
at 0.1, i.e., K/n = 0.1. Fig. 2 (a) plots the curves of the
average cloudlet access delays delivered by the algorithms,
from which it can be seen that algorithm Heuristic sig-
nificantly outperforms the other two algorithms Random and
Top-K, and algorithm Top-K is only slightly better than
algorithm Random. Specifically, the average cloudlet access
delay delivered by algorithm Heuristic is less than those
delivered by algorithms Random and Top-K by 25% and
30%, respectively.

We then study the scalability of different algorithms, by
varying the number of APs n from 10 to 200, while keeping
K
n = 0.1. Fig. 2 (b) illustrates the running time curves of
algorithms Heuristic, Random, and Top-K, respectively,
from which it can be seen that algorithm Heuristic exhibits
excellent efficiency and scalability, which takes less than one
second to find a feasible solution in a WMAN of 200 APs.

C. Performance Evaluation of the Approximation Algorithm
We also study the performance of algorithms Heuristic,

Appro, Random, Top-K, and K-median when each
cloudlet has an identical capacity, by varying the number of
APs n from 10 to 200 while fixing K/n = 0.1.

Fig. 3 (a) depicts the average cloudlet access delay by
algorithms Appro, Heuristic, Top-K, and Random. It
can be seen from the figure that the average cloudlet access
delay by algorithm Appro nearly approaches the optimal one,
and the gap between them is only from 5% to 10%. Fig. 3 (a)
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Fig. 4. The impact of number of cloudlets K on the performance of algorithms Heuristic, Appro, Top-K, and Random.

clearly indicates that the performance of algorithm Appro
is significantly better than those of algorithms Heuristic,
Top-K, and Random. Specifically, the average cloudlet access
delay by algorithm Appro is 10% to 20% less than that by
algorithm Heuristic, and nearly 50% less than those by
algorithms Top-K and Random. In terms of the running
time, it can be seen from Fig. 3 (b) that algorithm Appro
takes a few more minutes than that of the other algorithms to
find a feasible solution. Although algorithm Random takes the
least time to deliver a feasible solution, its solution is worse
than other algorithms. In addition, algorithm Appro performs
marginally worse than that of algorithm K-median in terms
of the average cloudlet access delay (Fig. 3(a)), while it runs
much faster than algorithm K-median. For example, when
the network size n = 200, the running time of algorithm
Appro is only about 15 seconds while the running time of
K-median is as high as 600 seconds.

We then study the impact of the number of cloudlets K
on the performance of mentioned algorithms Heuristic,
Appro, Top-K, and Random, by varying K from 20 to
100 when fixing n at 200. Figures 4 (a) and 4 (b) illustrate
the curves of the average cloudlet access delay of different
algorithms with and without uniform capacity, from which
it can be seen that the average cloudlet access delays in
the solutions by algorithms Heuristic and Appro are
much lower than those by algorithms Top-K and Random.
Furthermore, it can be seen from Fig. 4 that the average
cloudlet access delay by each mentioned algorithm decreases
with the growth of K, since each request has more chances to
be sent to its nearest cloudlet for processing, with the growth
of the number of cloudlets.

D. Performance Evaluation of the Online Assignment Algo-
rithm

We finally investigate the performance of algorithm
Online_Assignment by varying the monitoring periods.
The actual number of requests at each AP within each time slot
follows the following two distributions: (1) uniform distribu-
tion within an interval [(1−ρ)w(v), (1+ρ)w(v)], where ρ is a
constant with 0 < ρ < 1 and its default value is set to 0.4 [2];
and (2) Zipf’s distribution. Let wsum(t) be the total actual
number of requests by all APs at time slot t, and assume that all
APs are ranked in decreasing order of their expected numbers
of requests. The actual number of requests of the AP i thus
is wsum(t) 1/i∑|V |

j=1 1/j
. In the following, we evaluate the perfor-

mance of algorithm Online_Assignment of different mon-
itoring periods, assuming that cloudlet placements are obtained
with the knowledge of the expected and actual numbers of user
requests, which are named by Online_Assignment_Exp
and Online_Assignment_Act, respectively.

Figures 5(a) and 5(b) plot the curves of average cloudlet
access delay by algorithms Online_Assignment_Exp,
Online_Assignment_Act with actual number of
user requests generated from the uniform distribution.
We can see that the performance of algorithm
Online_Assignment_Exp is only marginally worse
than algorithm Online_Assignment_Act, and their
performance gap is insignificant, with the increasing of the
length of the monitoring period. For example, Fig. 5(a)
shows that the average cloudlet access delay by algorithm
Online_Assignment_Exp is only from 5% to 10%
higher than that by algorithm Online_Assignment_Act.
Although such gaps in Figures 5(c) and 5(d) are higher, the
average cloudlet access delays are still around 10% better
than the average performance of algorithm Top-K (Figures 2
and 3). Thus, Fig. 5 indicates that the cloudlet placements
found by algorithms Heuristic and Appro based on
the expected numbers of user requests are good enough to
deal with the scenarios where the actual number of user
requests are not consistent with the expected ones. Notice that
the running time of the online request assignment is much
smaller than that of K cloudlet placement the former is a
subproblem of the latter, which takes around 110 milliseconds
for a network size 200, compared with around 10 seconds for
placing K cloudlets into the network by algorithm Appro.
Due to the space limit, the running time of the online
assignment algorithm is omitted.

VIII. CONCLUSION

Cloudlets have been emerged as an important technology
that can extend the computing capabilities significantly of
resource-constrained mobile devices. In this paper we first
studied the capacitated cloudlet placement problem in a large-
scale Wireless Metropolitan Area Network with the objective
to minimize the average cloudlet access delay between mobile
users and the cloudlets serving their requests. We then pro-
posed a fast, scalable heuristic solution. We also devised a nov-
el approximation algorithm with a guaranteed approximation
ratio for a special case of the problem where all cloudlets have
identical computing capabilities. Furthermore, we proposed an
efficient algorithm for user request assignment to cloudlets
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following Zipf distribution
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Fig. 5. Performance of algorithms Online_Assignment_Exp and Online_Assignment_Act

when all cloudlets have been placed. We finally evaluated
the performance of the proposed algorithms by experimental
simulations. The simulation results showed that the proposed
algorithms are very promising.
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