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Abstract—In this paper we investigate the network lifetime
maximization problem in a delay-tolerant wireless sensor net-
work with a mobile sink by exploiting a nontrivial tradeoff
between the network lifetime and the data delivery delay. We
formulate the problem as a joint optimization problem that
consists of finding a trajectory for the mobile sink and designing
an energy-efficient routing protocol to route sensing data to the
sink, subject to the bounded delay on data delivery and the
given potential sink location space. Due to NP-hardness of the
problem, we then propose a novel optimization framework, which
not only prolongs the network lifetime but also improves the other
performance metrics including the network scalability, robust-
ness, and the average delivery delay. We finally conduct extensive
experiments by simulations to evaluate the performance of the
proposed algorithm against other heuristics. The experimental
results demonstrate that the proposed algorithm outperforms the
others significantly in terms of network lifetime prolongation.

I. INTRODUCTION

Wireless sensor networks (WSNs) consist of several hun-

dreds to thousands of battery-powered sensors that are en-

dowed with a multitude of sensing modalities including multi-

media (e.g., video, audio) and scalar data (e.g., temperature,

pressure, light, infrared). The strong demand for WSNs has

been spurred by numerous applications that require in-situ,

unattended, high-precision, and real-time observation over

the monitored region [1], [16]. Although there have been

significant progress in sensor fabrications including processing

design and computing, advances of battery technology still lag

behind, making energy resource the fundamental constraint in

WSNs. To maximize the network lifetime, energy conservation

in such networks is of paramount importance. In conventional

sensor networks, there is only a single stationary sink (a base

station), that has unlimited power supply serving as the gate-

way between the network and users. The sink functionalities

typically include gathering data from the sensors via multi-hop

relays, performing data processing, and returning query results

to users. The sink is often placed in a strategic location in the

monitoring region to enable the network operating as long as

possible.
Most early studies in WSNs focused on the improvement

of network performance based on this stationary sink archi-

tecture. However, this stationary sink data gathering paradigm

suffers the following major drawbacks that degrade the net-

work performance. One is the single sink neighborhood prob-

lem, where the sensors within one-hop from the sink have to

relay data for other remote sensors. As a result, these sensors

consume much more energy than that of the others. Once they

run out of energy, the network is partitioned and the sink will

be disconnected from these remote sensors. In particular, with

the increase of network size, the single sink neighborhood

problem becomes worse. Another is network connectivity. It is

compulsory that a network consisting of a stationary sink and

the sensors should be connected; otherwise, the data generated

by the sensors in a fragment different from the one in which

the sink is located will not be collected by the sink ultimately.

In some sparse sensor deployment scenarios, it is very difficult

to ensure that all sensors and the sink are in a single fragment

due to the restriction of physical obstacles or other geographic

constraint (e.g., a water pond) on the sink deployment.

To cope with the single sink neighboring problem, one

strategy is to deploy a mobile sink instead of stationary sink for

data gathering. Thus, the energy consumption of each sensor

can be balanced through the motion of the sink. Also, each

sensor can send its data to the sink within a certain number

of hops when the sink approaches the sensor. Consequently,

the relaying data workload of each sensor will be decreased,

and its energy consumption will be reduced. In this paper,

we aim to find a trajectory for the mobile sink such that

the network lifetime is maximized, subject to the following

constraints: (i) the space of potential sojourn locations of

the mobile sink. In practice, whether the mobile sink will

sojourn at a location is determined by several factors. For

instance, it is inappropriate to let the sink stop at a barrier

location that obstructs the wireless communication between

itself and sensors or an inaccessible location like a water pond.

Therefore, we assume that the sink is only allowed to stop at

some anchor locations and we refer to these locations as the

potential sink locations. Such information is usually given by

users a priori. (ii) The tolerant delay on data delivery. As the

buffer size of each sensor is very small, the amount of data

it can store therefore is limited. To minimize the data loss

due to data overflow in the buffer, the maximum tolerant data

delivery delay for each sensor must be bounded. To establish

the relationship between the network lifetime and the tolerant

delay on data delivery, a controllable parameter h will be used,

which is the upper bound on the number of hops from each
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sensor to its nearest sink location. The choice of h thus plays a

key role in exploring the tradeoff between the network lifetime

and the delay on data delivery. Intuitively, the smaller the

value of h, the more the number of sojourn locations, and

the longer the trajectory will be. Consequently, a longer delay

on data delivery follows. In this paper we strive to achieve the

finest tradeoff between the network lifetime and the tolerant

delay on data delivery when employing a mobile sink for data

gathering. Specifically, we aim to find an optimal trajectory for

the mobile sink and to devise a routing protocol that routes

sensing data to the mobile sink when the sink traverses along

the trajectory such that the network lifetime is maximized,

subject to the maximum tolerant delay on data delivery. The

novelty of this study provides a joint optimization framework

that strives a non-trivial tradeoff between the network lifetime

and the tolerant delay on data delivery.

The main contributions of this paper are as follows. We

first formulate a joint optimization problem, namely the hop-

constrained mobile sink problem. Due to the NP-hardness of

the problem, we then propose a novel optimization framework,

consisting of finding a feasible trajectory for the mobile sink

and devising an energy-efficient routing protocol for data

collection. The proposed optimization framework not only

improves network performance including the network lifetime,

network scalability, and the average delay on data delivery,

but also enhances the robustness of the network, since all

sensing data generated by sensors can be collected by the

mobile sink regardless of network connectivity. We finally

conduct extensive experiments by simulations to evaluate

the performance of the proposed algorithm against the other

heuristics. The experimental results demonstrate that the pro-

posed algorithm outperforms the others significantly in terms

of network lifetime prolongation.

The remainder of the paper is organized as follows. Sec-

tion II provides the literature survey on the sink mobility

for network lifetime prolongation. Section III introduces the

system model and defines the problem precisely. Section IV

proposes a novel heuristic algorithm for the problem, and

Section V evaluates the performance of the proposed algorithm

through experimental simulations, and Section VI concludes

the paper.

II. RELATED WORK

Extensive studies of network lifetime maximization by

exploiting sink mobility have been conducted in the past

several years. For example, Luo and Hubaux [14] formulated

the network lifetime maximization problem into a min-max

problem in a circle with sensor uniform-distribution and

derived a nice solution. Gandham et al. [7] made the first

attempt to determine specific sink movements for energy

conservation, by employing K ≥ 1 mobile sinks to collect

sensing data for a monitoring region. They presented an ILP

(integer linear program) model to determine the locations of

the K mobile sinks within one round with an objective to

minimize the maximum energy consumption among nodes or

the total energy consumption, assuming that the potential sink

location space is given. Wang et al [20] considered a joint

optimization problem of determining the sink movement and

its sojourn time at certain nodes in a grid network so that

the network lifetime is maximized. They proposed an ILP

solution for the problem, assuming that a half the workload

of each node flow along its horizontal and another half flow

along its vertical links towards the current location of the sink.

Luo et al. [15] later considered a joint optimization problem

of data gathering by proposing a two-stage scheduling: First,

the mobile sink visits the “anchor” locations one by one and

sojourns at each of them for a short sampling period. During

this stage, the sink collects the power consumption of all

nodes and builds the sojourn time profile at the anchor point.

The sink then solves an ILP formula, using the given sojourn

time profiles. Basagni et al. [3] considered a more realistic

model for network lifetime maximization by incorporating two

realistic constraints on mobile sinks: the maximum distance

at its each movement and the minimum sojourn time at each

sojourn location. To reduce the data loss due to the sink motion

from one location to another, it is assumed that the moving

distance of the sink from its current location to its next one

is bounded, and the sink sojourns at each chosen location for

at least a certain amount of time. Then the problem is to find

a trajectory for the sink that maximizes the network lifetime.

They first formulated the problem as a mixed integer linear

program, and then proposed a simple, distributed heuristic.

In contrast, to eliminate the energy consumption of sensors

on relaying data, Sugihara and Gupta [18], [19] considered

one-hop data collection and the travel time scheduling of a

single mobile sink. They formulated the problem as a traveling

salesman problem and schedule the travel time at each edge

in the tour to maximize the amount of collected data. Xing et
al. [21] proposed a rendezvous-based data collection approach

that exploits the controlled sink mobility and the capacity

of in-network data caching through bounding the total travel

distance of the mobile sink. They developed two approxima-

tion algorithms to minimize the sum of the consumed energy

of all involved sensors, assuming that the collected data at

each relay node is aggregated into a single packet prior to its

transmission. Guney et al. [9] formulated the sink trajectory

problem as a joint optimization problem that aims to identify

the optimal sink locations and information flow path between

sensors and sinks. They formulated the problem as a mixed

integer linear programming and developed several heuristics

for it. Liang et al. [11], [12] incorporated the travel distance

of the mobile sink into the network lifetime maximization

problem and proposed heuristics. Liang et al. [10] later ex-

tended their work on a single mobile sink to multiple sinks.

Gatzianas and Georgiadis [8] formulated the optimal trajectory

problem for a mobile sink as a linear programing problem

and provided a distributed solution by utilizing Lagrangian

duality and the sub-gradient method. Note that the running

time of the proposed distributed algorithm depends on the

algorithm’s convergence rate. Yun and Xia [23] considered

the network lifetime maximization problem, assuming that

each sensor does not require to send its data immediately
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when they are generated, instead the data can be stored at

the sensor temporarily and be transmitted when the mobile

sink is at the most favorable location to achieve the maximum

network lifetime. They formulated the problem as a mixed

integer programming problem, subject to the bounded delay

constraint, and proposed a flow-based optimization framework.

III. PRELIMINARIES

A. System model

In this paper we consider a wireless sensor network G =
(N ∪ L, E) consisting of n = |N | stationary sensors, where

L is the set of potential sink locations. Notice that for a given

network, we assume that the mobile sink only stops at some

strategic locations and avoids obstacles like big rocks, water

ponds, and so on. N is the set of sensors. E is the set of

links. There is a link between two sensors or a sensor and

the sink if they are within the transmission range of each

other, assuming that |L| < n. For the sake of simplicity, we

assume that the transmission ranges of both the sink and the

sensors are identical. The locations of sensors are fixed and

known a priori. Assume that all sensors have identical data

generation rates ra. We further assume that the mobile sink has

unlimited energy supply and can sojourn at any location in L
for data gathering. Without loss of generality, for each sensor

node, only its energy consumption on wireless communication

will be considered, i.e., the energy consumption on data

transmission and data reception will be taken into account, its

other energy consumptions including sensing and computation

will be ignored [17]. The network lifetime is defined as the

first sensor failure time due to its energy depletion [4].

Given a potential sink location s ∈ L, let N1(s) =
{u | (u, s) ∈ E , u ∈ N} be the set of one-hop neighboring sen-

sors of the sink located at s and Nh(s) the set of neighboring

sensors of the sink at s within h-hop, where Nh(s) = {v | the

number of hops from v ∈ N to s is no more than h}. Given

any sink location s ∈ L, the calculation of Nh(s) is as follows.

A partial Breath-First-Search tree rooted at s is constructed

layer by layer (hop by hop), and the expansion continues

until all nodes in layer h are explored. The set of sensors

contained in the partial BFS tree is refereed to as Nh(s). To

bound the delay on data delivery, we assume that there is a

given value Dmax, which is the maximum tolerant delay of

any sensor. For a given sensor vi ∈ N , its buffer size Buff

usually is fixed, the maximum amount of data it can hold

without overflow thus is rati ≤ Buff, then, the maximum

tolerant delay on data delivery by sensor vi without data loss

is upper bounded by ti ≤ Buff
ra

, 1 ≤ i ≤ n. Thus, we may set

Dmax = min{ ti | 1 ≤ i ≤ n} if no data loss is expected

when the mobile sink traverses along the trajectory for data

gathering.

B. Problem definition

The hop-constrained mobile sink problem in a wireless

sensor network G(N ∪ L, E) is to find an optimal trajectory

for the mobile sink consisting of sink locations in L such that

the network lifetime is maximized, subject to the following

constraints: (i) each sensor can send its data to one sink

location in the trajectory within h ≥ 1 hops; (ii) the maximum

tolerant delay on data delivery is bounded by a given value

Dmax, or the length of the trajectory bounded by L, assuming

that the sink travels at a constant speed v, i.e., Dmax = L
v .

To collect sensing data from sensors to the mobile sink, we

here adopt the forest consisting of routing trees, where each

tree can be treated as cluster and the tree root is the cluster

head. A routing tree rooted at a sink location s is formed by

including all sensors in Nh(s). Thus, the sensors in G are

organized into a forest of routing trees, in which each tree

is rooted at a sink location on the trajectory of the mobile

sink, and the depth of each tree is bounded by a parameter h,

the sink only sojourns at tree roots (sink locations), and the

total travel time of the sink except sojourning is bounded by

Dmax. Assume that the mobile sink is able to collect all the

data stored at each cluster on no time when it approaches

the cluster head. Notice that parameter h is a controllable

parameter, which quantifies the extent of multi-hop routing

and represents the maximum number of hops from a sensor to

the sink. In other words, assuming that there are |L| potential

sink locations L = {s1, s2, . . . , s|L|}, the hop-constrained

mobile sink problem is to find a trajectory consisting of sink

locations in a subset S′ ⊆ L, such that the network lifetime is

maximized, provided that the trajectory length is bounded by

L, each sensor is no more than h hops from its root, and all

sensors are covered by the sink locations in the trajectory, i.e.,⋃
s∈S′ Nh(s) = N , where a sensor is “covered” if the number

of hops from it to one of the sink locations in the trajectory is

no more than h. Let k = |S′|, the sensors in the network are

partitioned into k = |S′| clusters, and a routing tree Ts rooted

at cluster head s ∈ S′ will be used for collecting the sensing

data in the cluster.

Since we assume that there are unlimited energy supplies

to the mobile sink in comparison with the initial capacity

of sensors, the network lifetime will be determined by the

energy consumption of sensors, while the sensors near to a

sink location are usually the bottleneck sensors in terms of

energy consumption, since they have to relay data for other

remote sensors and their energy consumption on relaying is

proportional to the amount of data relayed. To prolong the

network lifetime is thus to balance the energy consumption

(workload) of bottleneck sensors. Let F = {Ts | s ∈ S′} be

the forest of routing trees, where Ts is a routing tree rooted at

sink location s. Denote by dtTs
(v) the number of descendants

of sensor v ∈ N in Ts and CT (s) the set of children of s in

Ts. Recall that the data generation rate of each sensor is ra.

Then, the energy consumption of sensor v in Ts on wireless

communication per time unit is

ecTs
(v) = ra · [(dtTs

(v) + 1) · et + dtTs
(v) · er], (1)

when the sink is located at s, where et and er are the amounts

of power consumed by transmitting and receiving a unit-length

of data, assuming that no data aggregation at each relay node is

allowed. It can be seen that the value of ecTs(v) is proportional

to the value of dtTs(v).
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The hop-constrained mobile sink problem is NP-hard, by

considering one of its special cases where h = 1, L = N
and the length L of the sink trajectory is given, the problem

becomes the Traveling Salesman Problem with Neighborhoods

(TSPN) that a salesman sends his products to his customers

directly or to the neighbors of the customers with an aim to

minimize the total travel cost. It is well known that TSPN is

NP-complete [2], the problem of concern thus is NP-hard, too.

IV. HEURISTIC ALGORITHM

Since the problem is NP-hard, we instead propose a novel

heuristic for it that takes both the maximum tolerant delay and

the network lifetime into consideration through a controllable

parameter h. To this end, we decouple this joint optimization

problem into two following subproblems: finding a feasible

trajectory and devising an energy-efficient routing protocol.

A. Finding a hop-constrained trajectory

Given an integer h ≥ 1, let C = {Nh(s) | s ∈ L} be the

collection of sets derived from set L of potential sink locations,

in which each set Nh(s) is a h-hop neighboring set of the

mobile sink at location s. The proposed algorithm proceeds

iteratively. Within each iteration, a new sink location will be

added to the trajectory if the resulting trajectory still meets the

delay constraint. In case there are multiple sink locations to

choose, choose one with the maximum ’benefit’ with respect

to (w.r.t) the current trajectory, where the benefit of a sink

location w.r.t the current trajectory will be defined later. This

procedure continues until either the delay constraint is violated

or all the sensors are covered.

Recall that a sensor v ∈ N is covered by the mobile sink at

location s if the number of hops from v to s is no more than

h; otherwise, v is uncovered if none of any sink locations in

the trajectory can cover it. Given a solution, if not all sensors

are covered, the solution is infeasible. To obtain a feasible

solution to the problem, the value of h is increased by one

and the above procedure is applied again, it continues until

a feasible solution obtained. Specifically, initially all sensors

in N are uncovered and the set of the chosen sink locations

S′ consists of the depot location only, assuming no sensor is

covered by the mobile sink at the depot. Within each iteration,

the proposed algorithm selects a sink location s in L−S′ if it

brings the maximum benefit, b(s), which is defined as follows.

b(s) = max
s′∈S′,s∈L−S′

{ |Nh(s)−Nh(s) ∩Nh(S
′)|

d(s, s′)
}, (2)

where d(s, s′) is the Euclidean distance between s and s′ and

Nh(S
′) = ∪s′∈S′Nh(s

′) is the set of covered sensors by sink

locations in S′. Once s is chosen, every sensor in Nh(s) now

is covered by s if it has not been covered yet.

As a result, a feasible solution is obtained, which can be

further refined by adding as many sink locations as possible

to it until the delay constraint is violated, because the more the

sink locations added to the trajectory, the less the load among

bottleneck sensors share, and the longer the network lifetime

will be. The detailed algorithm for finding the optimal trajec-

tory will be shown in algorithm Find_Feasible_Tour,

in which there are two procedures: Test_Feasible which

returns either a “true” or a “ fail” value by examining whether

an obtained solution is feasible; and Augment which refines

the feasible solution (a found trajectory) further by adding

more sink locations as long as the delay constraint still holds.

These procedure are described as follows.

Algorithm 1 Test Feasible
Input: T1, S1, Dmax;

Output: ‘true′ or ‘false′.

1: Find an MST T1 in a complete graph K[S1] in S1, where

the weight of an edge is their Euclidean distance;

2: Construct a bipartite graph GB = (X,Y,EB) based on

T1, where X and Y are sets of odd-degree vertices in T1.

There is an edge EB between x ∈ X and y ∈ Y with

weight d(x, y) if x �= y;

3: Find a minimum weighted perfect matching M in GB ;

4: Find a trajectory with length L′ derived from T1∪M such

that each location appears in L′ once;

/* Let D(L′) = L′
v be the delay of L′ */;

5: if D(L′) > Dmax then
6: return false
7: else
8: return true.

9: end if

Algorithm 2 Augment
Input: L′, S′, Dmax;

Output: L′, S′.

1: S ← L− S′;
2: indicator ←′ true′; /* can the trajectory be extended? */

3: while indicator do
4: Choose a location s ∈ S such that 
L(s) =

mins′∈S{L(TMST [S
′ ∪{s′}])−L(TMST [S

′])}, where

L(TMST [V
′]) is the trajectory length derived from

an MST of K[V ′] by nodes in V ′. Clearly, L′ =
L(TMST [S

′]);
5: L′′ ← L(TMST [S

′ ∪ {s′}]);
6: if D(L′′) < Dmax then
7: S ← S − {s}; S′ ← S′ ∪ {s}; L′ ← L′′;
8: else
9: indicator ←′ false′;

10: end if
11: end while
12: return (L′, S′).

Having the above two routines, we now provide the detailed

description of algorithm Find_Feasible_Tour. For con-

venience, we refer to this algorithm as FFT.
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Algorithm 3 Find Feasible Tour
Input: N ,L, Dmax;

Output: A solution (L′, S′, h).

1: h← 1;

2: T ← ∅ /* The trajectory is derived by traversing a tree T
and performing shortcut, using the triangle inequality */

3: S ← L; /* set of available sink locations */

4: flag ←′ true′; /* is the solution feasible? */

5: while flag do
6: U ← N ; /* set of uncovered sensors */

7: S′ ← {s0}; /* set of sink locations */

8: C ← {Nh(s) | s ∈ L};
9: while (U �= ∅) and (S �= ∅) do

10: choose a location s ∈ S with maximum benefit b(s)
by Eq. (2);

11: if Test Feasible(T ∪{(s′, s)}, S′ ∪{s}, Dmax) then
12: T ← T ∪{(s′, s)}; /* Add the edge to T , where s′

is such a location in S′ that leads to the maximum

benefit of location s */

13: S′ ← S′ ∪ {s}; U ← U −Nh(s); S ← L− S′;
14: else
15: S ← S − {s};
16: end if
17: end while
18: if (U = ∅) then
19: flag ←′ false′; /* all sensors are covered */

20: Let L′ be the length of a trajectory derived from an

MST of the complete graph K[S′];
21: call Augment (L′, S′, Dmax);

22: else
23: h← h+ 1; /* an infeasible solution */

24: end if
25: end while
26: return a solution (L′, S′, h);

In the following we analyze the running time of algorithm

FFT.

Lemma 1: Given a wireless sensor network G(N ∪ L, E)
and a tolerant delay of data delivery Dmax, algorithm FFT can

deliver a feasible solution that takes O(n·l3 logD+m·l logD)
time, where D is the diameter of the network, l = |L|, n =
|N |, and m = |E|.

Proof: We analyze the time complexity of algorithm FFT
by assuming that h is fixed first. Following the proposed

algorithm, the calculation of the collection C at Step 8 takes

O((m+n)l) time. Step 10 takes O(l2n) time, while the dom-

inant time step is Step 11 calling routine Test_Feasible
for finding a perfect matching in GB , which takes O(l3)
time. The number of iterations between Step 9 to Step 17

is l. Routine Augment takes O(l4). Thus, algorithm FFT
takes O(l3 · n · h + l4 · h + l ·m · h) time. As can be seen,

when h approaches the diameter D of the network, only one

sink location suffices, which will cover all sensors within D
hops, and the algorithm will terminate. However, the running

time of algorithm FFT can be further improved by a binary

search on h in order to find a minimum h to meet the delay

constraint Dmax, 1 ≤ h ≤ D. Thus, algorithm FFT takes

O(l3 · n logD +m · l logD) time since l ≤ n.

B. A routing protocol for data gathering

Let S′ be the set of chosen sink locations in the found

trajectory by algorithm FFT with k = |S′|. We now build a

forest of load-balanced routing trees to minimize the energy

consumption among the sensors with the aim of maximizing

the network lifetime.

Notice that the data generation rate ra of each sensor is iden-

tical, the energy consumption of each sensor is proportional

to the number of its descendants in the routing tree rooted at

s when the mobile sink is located at s, following Eq. (1). To

maximize the network lifetime is equivalent to minimize the

maximum energy consumption among bottleneck sensors. To

do so, a forest consisting of load-balanced routing trees will

be built. Each routing tree rooted at a sink sojourn location has

the two properties: (i) the number of hops from each sensor of

it to the root is no more than h; and (ii) the maximum energy

consumption among the children of the root is minimized.

Such a load-balanced routing tree can be constructed by an

algorithm in [22], which briefly is described as follows. A

virtual node r is created and the k sink locations in the found

trajectory are compressed into the virtual node, any neighbor

(sensor) of the sink at a chosen location in the original network

now becomes a neighbor of r, a load-balanced routing tree T
in the resulting network rooted at r is then found.

To find k load-balanced routing trees rooted at the k chosen

sink locations such that the load among them is balanced,

we reduce this problem to a load-balanced semi-matching

problem [13] which is defined as follows. Given a node-

weighted bipartite graph GXY = (X,Y,EXY , w), where

X and Y are the sets of nodes, EXY is the set of edges

between nodes in X and Y , and w is a non-negative weight

function on nodes in Y , assuming |X| ≤ |Y |. The load-

balanced semi-matching problem in GXY is to find a semi-

matching MXY such that each node y ∈ Y has a parent

node x ∈ X and the maximum weight among the nodes

in X is minimized, where the weight of a node x ∈ X is

w(x) =
∑{w(yi) | yi ∈ Y, (x, yi) ∈ MXY }. Note that the

load-balanced semi-matching problem is NP-hard, and there

is an approximation algorithm for it [13].

To reduce our problem to the load-balanced semi-

matching problem, a node-weighted bipartite graph GB =
(S′, V1, E

′, w′) is constructed, where V1 is the set of children

of the virtual node r in T . There is an edge (s, v) ∈ E′

if the sink at location s ∈ S′ is within the transmission

range of sensor v ∈ V1. For each v ∈ V1, w′(v) is the

number of nodes in the subtree Tv of T rooted at v including

node v itself. Let MB be an approximate solution of the

load-balanced semi-matching in graph GB by applying the

approximation algorithm due to Low [13]. Then, for each

matched sensor v which is an endpoint of a matched edge

in MB , its another endpoint in S′ is the root of a load-
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balanced tree, and the subtree Tv of T rooted at v will be

part of the load-balanced routing tree. Thus, the sensors in

the network are partitioned into k load-balanced routing trees

rooted at the k chosen sink locations. Each sensor can relay

data to its root (a sink location) within h hops, and the load

at each sink location is well balanced. In summary, algorithm

Find_Load_Bala_Forest for finding an energy-efficient

routing protocol is described as follows.

Algorithm 4 Find Load Bala Forest
Input: N , S′, h;

Output: A load balanced forest with the trees rooted at

chosen sink locations.

1: Construct a new network G′ by compressing all nodes in

S′ into a virtual node r, and all neighbors of nodes in S′

become the neighbors of r in G′;
2: Construct an approximate, load-balanced tree T in G′

rooted at r, using an algorithm by Xu and Liang [22];

3: Construct a node-weighted bipartite graph GB ;

4: Find an approximate, load-balanced semi-matching MB in

GB , using an algorithm by Low [13]. Thus, each sensor

matches with a sink location in S′;
5: Form a load-balanced tree rooted at s for each s ∈ S′ by

merging related subtrees according to the matched edges;

6: return {Ts | s ∈ S′}.

We thus have the following theorem.

Theorem 1: Given a wireless sensor network G(N ∪L, E)
and the maximum tolerant delay on data delivery Dmax, there

is an algorithm for the hop-constrained mobile sink problem

in G, which takes O(l3 · n logD +m · l logD +m · n log n)
time, where D is the diameter of the network, n = |N | is the

number of sensors, and m = |E| is the number of links.

Proof: Following Lemma 1, the trajectory finding takes

O(l3 · n logD + m · l logD) time. The time complexity of

algorithm Find_Load_Bala_Forest for finding a for-

est consisting of load-balanced routing trees is O(mn log n)
time [22], the theorem follows.

For the sake of convenience, we refer to the proposed

heuristic for the hop-constrained mobile sink problem as

algorithm HCMK for short.

V. PERFORMANCE EVALUATION

In this section we evaluate the performance of the proposed

algorithm for the hop-constrained mobile sink problem and

investigate the impact of constraint parameters: the potential

sink location space L, the maximum number of hops from

each sensor to a sink location h, and the maximum tolerant

delay on data delivery Dmax, on the network lifetime through

experimental simulations.

A. Simulation environment

We consider a wireless sensor network consisting of 100 to

600 sensors which are randomly deployed in a 100m× 100m

square region in our default setting. The potential sink lo-

cations in L are also randomly generated with the default

setting |L| = 100. The transmission range R of each sensor

is fixed at 25 meters and its initial energy capacity IE is

100Jules . In all our experiments we adopt the energy con-

sumption parameters of real sensors - MICA2 motes [6], where

et = 14.4×10−6J/bit and er = 5.76×10−6J/bit. We assume

that the data generation rate is ra = 1bit/s. Together with

these parameters, the network lifetime can be calculated using

Eq. (1). Each value in figures is the mean of the results by

applying each mentioned algorithm to 15 different network

topologies of the same size. We assume that the speed of the

sink is fixed to be 1m/s.

B. Other heuristics

We here propose the other two heuristics for the hop-

constrained mobile sink problem, which will serve as the

benchmark purpose. The only difference between these two

heuristics and algorithm HCMK lies in the trajectory finding

stage.

The first heuristic Delete_Sink is described as follows.

Assume that an initial trajectory contains all locations in

L, which may not be feasible due to the violation of the

delivery delay constraint. We modify this solution to make

it become either a feasible solution or an infeasible solution.

The algorithm keeps removing a redundant sink location
iteratively from the current solution until either the delay on

the resulting trajectory is no greater than Dmax or no feasible

solution exists. Specifically, it proceeds as follows. An initial

solution is S′ = L, assuming that all sensors are covered

by the sink locations in L within h hops with a certain h,

1 ≤ h ≤ n − 1. It then finds an MST TMST (K[S′]) in a

complete graph K[S′] induced by the nodes in S′, the weight

associated with each edge in K[S′] is the Euclidean distance

between its two endpoints. It thirdly transforms TMST (K[S′])
into a trajectory, consisting of nodes in S′, using the triangle

inequality and the minimum weighted perfect matching. It is

well known that the length of the trajectory is at most twice of

the weighted sum of the edges in TMST (K[S′]). Recall that

L(TMST (K[S′])) is the length of the trajectory transformed

from tree TMST (K[S′]). It then checks whether the delay

constraint is violated. If not, the solution is a feasible solution,

we are done. Otherwise, more sink locations in the current

solution need to be removed. To this end, we check whether

there is a redundant sink location in the solution, where a sink

location is referred to redundant if the sensors covered by it

within h-hops are still been covered by the other sink locations

in the solution, i.e., a sink location s ∈ S′ is a redundant sink

location if Nh(s)∩Nh(S
′−{s}) = Nh(s). If there is no such

a redundant sink location, the procedure terminates and the

solution is infeasible. We increase h by 1, and repeat the above

procedure again. Otherwise, if there are multiple redundant

sink locations to choose, choose the one s whose removal

results in the maximum delay reduction ∇D(s), where

∇D(s) =
L(TMSTK[S′])− L(TMSTK[S′ − {s}])

v
(3)
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It finally examines whether
L(TMST (K[S′−{s}])

v ≤ Dmax.

The second heuristic Set_Cover is almost identical to

algorithm Delete_Sink. The only difference is the choice

of set S′. Here S′ is obtained by applying the set cover

algorithm [5] to identify a subset of sink locations of set L,

assuming that Nh(s) is given for all s ∈ L. Let S′ ⊆ L be

the set of chosen locations, the rest is identical to algorithm

Delete_Sink, omitted.

C. Impact of h, L, and L on network performance

In the following we evaluate the performance of the pro-

posed heuristic against the other mentioned heuristics in terms

of network lifetime. We study the impact of parameters h, the

maximum tolerant delay Dmax, the space of potential sink

locations L, and network size n on the network lifetime.

Impact of L and n on the network lifetime: We first

investigate the impact of the length of the trajectory L and

network size n on the network lifetime by varying L from

100 to 350 with the increment of 50. Given the maximum

tolerant delay Dmax on data delivery, as Dmax = L
v and the

speed v of the mobile sink is fixed, we can use the length of

the trajectory L instead of Dmax to evaluate its impact on the

network lifetime. Fig. 1 illustrates the network lifetime under

different values of L and n.

Fig. 1 shows that a longer delay leads to a longer network

lifetime since a longer delay implies that there are more sink

locations in the trajectory and consequently there are fewer

hops from each sensor to the root of its routing tree, which is

further illustrated by Fig. 2 as follows.
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Fig. 2. Impact of parameter h on the trajectory length

Fig. 3 plots the performance curves of different algorithms

when n is fixed at 300, from which it can be seen that

algorithm HCMK achieves a much longer network lifetime than

both algorithm Delete_Sink and algorithm Set_Cover.

Impact of hop h and n on the network lifetime: We then

study the impact of the number of hops h and the network

size n on the network lifetime, and Fig. 4 shows that when

n is fixed, a larger h will lead to a shorter network lifetime

since each children of the root of each routing tree will bear
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Fig. 3. Performance of different algorithms when n = 300.

a heavier load. Similarly, with the increase of network size n
while fixing h, the network lifetime drops, too.

Fig. 5 plots the performance curves of different algorithms

when h is fixed to 3, from which it can be seen that the

network lifetime delivered by algorithm HCMK is a much

longer than these of both algorithm Delete_Sink and

algorithm Set_Cover when the stringent delay constraint

is imposed.
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Fig. 5. Performance of different algorithms when h = 3.

VI. CONCLUSION

In this paper we have studied the tradeoff between the

tolerant delay on data delivery and the network lifetime in

a wireless sensor network with a mobile sink, by proposing a

novel joint optimization framework. Due to the NP-hardness

of the problem, we then devised a heuristic consisting of

finding a hop-constrained trajectory for the mobile sink and

an energy-efficient routing protocol for routing sensing data

to the mobile sink when it traverses along the trajectory,

subject to the maximum tolerant delay on data delivery. We

finally conducted extensive experiments by simulations to

evaluate the performance of the proposed algorithm against

the other heuristics. The experimental results demonstrate that

the proposed algorithm outperforms the others significantly in

terms of network lifetime prolongation.
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Fig. 1. Impact of L (or Dmax) and n on the network lifetime.
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Fig. 4. Impact of h and n on the network lifetime
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