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Abstract—In this paper, we study the use of a wireless charging
vehicle (WCV) to replenish energy to sensors in a wireless sensor
network so that none of the sensors will run out of its energy,
where sensor batteries can be recharged. Specifically, we first
propose a flexible on-demand sensor energy charging paradigm
that decouples sensor energy replenishment and data collection
into separate activities. We then formulate an optimization prob-
lem of wireless charging with an aim to maximize the ratio of the
amount of energy consumed for charging sensors to the amount of
energy consumed on traveling of the WCV as the WCV consumes
its energy on both traveling and sensor charging. We also devise a
novel algorithm for scheduling the tours of the WCV by jointly
considering the residual lifetimes of sensors and the charging
ratio of charging tours. We finally evaluate the performance of
the proposed algorithm by conducting simulation. Experimental
results show that the proposed algorithm is promising, and can
improve the energy charging ratio of the WCV significantly.

I. INTRODUCTION

Wireless sensor networks (WSNs) have played a key role

in structural health monitoring, environmental sensing, target

tracking, etc [13]. As sensors in conventional WSNs are pow-

ered by batteries, their limited battery energy has hampered

the large scale deployment of WSNs for long-term monitoring

purposes. There have been a flourish of energy conservation

techniques developed in the past decade to elongate the

lifetime of WSNs by minimizing the energy consumption of

sensors or balancing energy expenditures among sensors [1].

Despite lots of efforts, the lifetime of WSNs still remains

a main performance bottleneck in the real deployment of

WSNs as energy conservation cannot prevent sensors from

depleting their energy. To ensure that a sensor network can

operate for long periods, energy replenishment to its sensors

is necessitated. Extensive efforts on replenishing energy to

sensors have been taken in the past decade. In general, existing

energy replenishment approaches can be classified into sensor

replacement, energy harvesting, and wireless energy charging.

However, sensor replacement and energy harvesting methods

are very limited in practice, since deploying new sensors is not

only costly but also environmentally unfriendly [8], while the

amount of energy harvested and the harvesting rate of each

sensor is hard to predict due to the time-varying nature of

renewable energy resources [5].
The recent breakthrough of a wireless energy transfer tech-

nique based on strongly coupled magnetic resonances has

attracted scientists’ attention [3]. Kurs et al.[3] showed that

it is feasible to efficiently transfer electric energy from one

storage device to another without any plugs or wire lines.

Wireless energy charging becomes a very promising approach

to prolong the lifetime of WSNs since it can provide steady

and high charging rates to sensors.

In this paper we study the use of a wireless charging vehicle

(WCV) to replenish energy to sensors in a large-scale wireless

sensor network so that none of the sensors in the network will

fail due to its energy expiration. We propose a flexible on-

demand sensor energy charging paradigm that only is there a

need for charging some sensors that will run out of energy

soon, the WCV then travels to the vicinities of the sensors

and replenishes them wirelessly. Unlike existing studies that

ignore the energy consumption of the WCV [7], [9], [10],

[14], we consider an optimization problem that maximizes

the ratio of the amount of energy consumed by the WCV

for charging sensors to its energy consumption on traveling

for a given monitoring period. The challenges to tackle this

problem are: when should the WCV start a new charging tour?

which sensors are to be included in each tour? and what is the

charging order of the sensors in each tour?

The main contributions of this paper can be summarized

as follows. We first propose a flexible sensor energy charging

model that decouples energy replenishment from data collec-

tion, in which energy consumption rates of sensors are allowed

to vary over time and the WCV can adaptively replenish sensor

energy. Under the proposed energy replenishment model, we

then formulate an optimization problem with the objective of

maximizing the charging ratio of the WCV, while ensuring

that none of sensors will run out of energy. We thirdly devise

a novel heuristic algorithm for the optimization problem. We

finally conduct extensive experiments by simulations to evalu-

ate the performance of the proposed algorithm. Experimental

results show that the proposed algorithm can significantly

improve the charging ratio of the WCV.

The rest of the paper is organized as follows. Section II

reviews related work. Section III introduces the system model

and problem definition. Section IV devises a heuristic algo-

rithm for the problem. Section V evaluates the performance

of the proposed algorithm, and Section VI concludes the paper.978-1-4799-4912-0/14/$31.00 c© 2014 IEEE
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II. RELATED WORK

With the advance on efficient wireless energy transfer

technology based on strongly magnetic resonances, wireless

energy replenishment has been adopted for the lifetime pro-

longation of WSNs in literature [7], [9], [10], [14], [11],

[12], [4], [6]. Most of these studies considered sensor energy

replenishment and data flow routing jointly. For example,

Shi et al. [7], [9], [10] employed a WCV periodically to

travel in a monitoring area to charge each sensor per tour.

They studied an optimization problem of maximizing the

ratio of the vacation time of the WCV over the renewable

energy cycle time, assuming that the data generation rate

of each sensor does not change over time. Zhao et al. [14]

proposed a joint design framework of energy replenishment

and data gathering by exploiting sink mobility, in which they

employed a multi-functional vehicle to periodically patrol a

sensor network to charge sensors and collect sensing data.

These mentioned joint consideration of energy replenishment

and data flow routing may have limited applications in practice

due to the flow conservation assumption at each sensor. The

flow conservation assumption ignores an important fact of data

aggregation at intermediate nodes, which is one of the most

efficient operations in WSNs to reduce data traffic volume

since sensing data from different sensors are usually temporal-

spatially correlated [2]. In contrast, we here decouple the

sensor energy replenishment from data routing. The WCV only

passively charges sensors that will run out of their energy soon.

There are also recent studies that considered passive energy

replenishment to sensors. Xu et al. [11] proposed constant

approximation algorithms for scheduling k mobile chargers

to replenish a set of to-be-charged sensors, such that the

maximum time spent among the k chargers is minimized. Xu

et al. [12] devised an approximation algorithm for scheduling

multiple mobile chargers to maintain the perpetual operation

of a sensor network, so that the total traveling distance of the

mobile vehicles is minimized. Liang et al. [4] proposed an

approximation algorithm for minimizing the number of mobile

vehicles needed for charging a set of to-be-charged sensors,

under the energy capacity constraint on each mobile vehicle.

Ren et al. [6] employed a mobile charger to charge on-demand

sensors under the travel distance constraint. Orthogonal to

these works, we devise an efficient charging scheduling al-

gorithm to maintain the sensor network operating perpetually,

such that the ratio of the amount of energy consumed by

the WCV for charging sensors to its energy consumption on

traveling for a certain given period is maximized. This ratio

is critical to reduce the WSN maintenance cost.

III. PRELIMINARIES

A. Network model

We consider a WSN deployed for a monitoring purpose

in a two-dimensional space. We represent the network by an

undirected graph G = (V ∪{b}∪{d}, E;w), where V is a set

of static sensors with n = |V |, b is a stationary base station,

and d is a depot at which a wireless charging vehicle (WCV)

is located. For any two nodes in V ∪ {b} ∪ {d}, there is an

edge (or a link) e in E between them with their Euclidean

distance w(e). For any simple cycle C in G, denote by w(C)
the weighted sum of the edges in C, i.e., w(C) =

∑
e∈C w(e).

B. Energy consumption model of sensors

We assume that each sensor vi ∈ V is powered by a

chargeable battery with energy capacity Bi, and it consumes

its energy when performing various operations including sens-

ing, processing data, data transmission, etc. Assume that the

energy consumption rate of sensor vi at time t is ρi(t).
Each sensor is able to monitor its own energy status such as

its residual energy and energy consumption rate periodically

(e.g., every a few hours). Each sensor adopts a lightweight

prediction technique to estimate its energy consumption rate

in the near future. Specifically, each sensor vi can calculate

its predicted energy consumption rate ρ̂i(t+ 1) at time t+ 1
as ρ̂i(t+1) = α ·ρi(t)+ (1−α) · ρ̂i(t), where 0 < α < 1 is a

weighted factor, ρi(t) and ρ̂i(t) are the sampled and predicted

energy consumption rates of sensor vi at time t, respectively.

Given the predicted energy consumption rate ρ̂i(t+1) and the

amount of residual energy rei(t) of sensor vi at time t, it can

estimate its residual lifetime li(t) as li(t) = rei(t)/ρ̂i(t+ 1).

C. Sensor energy replenishment paradigm

We propose a flexible sensor energy replenishment

paradigm for the network as follows. When the residual

lifetime of each sensor falls below a given threshold ∆T , it

sends a charging request to the base station. Once receiving

a charging request from a sensor, the base station then com-

mands the WCV located at the depot to replenish energy to the

sensor sending the request and some other sensors by applying

a scheduling algorithm. The WCV will perform the charging

task specified by a command sent from the base station, which

includes the sensors to-be-charged and the charging order of

the sensors. Assume that the WCV travels at a constant speed

s, and it consumes an amount of energy ζ on traveling per

unit distance. We here consider a point-to-point charging, i.e.,

to charge a sensor efficiently, the WCV must be within the

vicinity of the sensor. When the WCV replenishes energy

to a sensor node, it will charge the sensor to its full energy

capacity. Furthermore, assume that U is the output power of

the WCV, and η is its wireless transferring efficiency which is

a constant with 0 < η < 1. Then, it takes (Bi− rei(t))/(ηU)
time for the WCV to fully charge sensor vi, where t is the

time point that the WCV begins charging sensor vi. When the

WCV completes its current charging tour, it returns the depot

for recharging itself and waiting for its next charging tour.

A sensor usually consumes its energy slowly as we consider

a monitoring application scenario. We thus assume that the

energy draining of a sensor during a charging tour is negligible

when comparing with the energy capacity of the sensor.

D. Problem definition

We note that it is unnecessary to charge each sensor per

charging tour as the energy consumption rates of different
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sensors may vary significantly. For example, since sensors near

the base station have to relay data for other remote sensors,

their energy consumption rates are much faster than that of the

others, from this observation it can be seen that a naive strategy

of charging all sensors per tour will significantly increase the

traveling distance of the WCV. It thus is critical to schedule

the WCV by jointly taking the energy consumption rate of the

WCV and geographical locations of sensors into consideration.

Given the WSN, the energy consumption model of sensors,

the energy charging paradigm, and a monitoring period T
(T typically is quite long), the charging ratio maximization

problem is to find a series of the WCV’s charging tours that

can maintain the sensors operating during T , such that the

ratio of the amount of energy consumed by the WCV for

charging the sensors to its energy consumption on traveling

is maximized. Specifically, assume that there are k charging

tours C1(t1), C2(t2), · · · , Ck(tk) for the WCV charging the

sensors during the period T , such that none of the sensors

runs out of its energy, where tour Cj(tj) contains the depot d
and at least one sensor to be charged, the WCV starts charging

sensors in tour Cj(tj) at time tj , and 0 < tj < T . Denote by

Epayload
T and Eoverhead

T the amounts of energy consumed by

the WCV for charging sensors and traveling during T , respec-

tively, i.e., Epayload
T =

∑k

j=1

∑
vi∈Cj(tj)

(Bi−rei(tj))/η and

Eoverhead
T =

∑k

j=1 ζ ·w(Cj(tj)), where rei(tj) is the amount

of residual energy of sensor vi at time tj , and w(Cj(tj)) is the

length of tour Cj(tj). We aim to maximize the ratio ratioT
of Epayload

T to Eoverhead
T , i.e., ratioT = Epayload

T /Eoverhead
T .

The ratio ratioT characterizes the efficiency of the charging

tours for maintaining the WSN operating for period T .

IV. HEURISTIC ALGORITHM FOR THE CHARGING RATIO

MAXIMIZATION PROBLEM

In this section, we devise a novel heuristic algorithm

for the charging ratio maximization problem. Given a

period T , the algorithm delivers a series of charging

tours C1(t1), C2(t2), · · · , Ck(tk) at different time points

t1, t2, · · · , tk, where 0 < t1 < · · · < tk < T and the WCV

replenishes the sensors in the tour Cj(tj) one by one.

Assume that the first j−1 tours so far have been scheduled

at time points t1, t2, · · · , tj−1, respectively. Initially, we can

assume that j = 1. We now determine the next time point tj
and next charging tour Cj(tj). As the problem is an NP-hard

optimization problem, we decouple it into three subproblems

and deal with each subproblem separately. In other words, we

will address the following three questions. (1) When does the

WCV begin its next charging tour? (2) Which sensors should

be included in the charging tour? (3) What is the charging

order of sensors in the charging tour? In the following, we first

provide the basic idea of the proposed algorithm, followed by

elaborating the detailed algorithm.

A. Basic idea

The basic idea of the algorithm is as follows. The WCV

will start its next charging tour as late as possible, as long as

each sensor is charged before it depletes its energy. Thus, more

energy can be charged into sensors and the charging ratio can

be significantly improved. To this end, we compute a critical

residual lifetime lcritical for each sensor sending its charging

request to the base station. When the base station receives a

charging request from a sensor, it activates the next charging

tour of the WCV, by applying the proposed algorithm to find

a set of sensors to-be-charged in the forthcoming tour. The

algorithm selects the set of to-be-charged sensors by jointly

considering their residual lifetimes and the charging ratio of

the tour of selected sensors. In other words, the algorithm

may include sensors whose residual lifetimes are far more

than lcritical and have not yet sent their charging requests. The

algorithm finally determines the charging order of the selected

sensors through finding a shortest closed tour consisting of all

selected sensors and the depot.

B. Detailed algorithm

The proposed algorithm consists of calculating a critical

residual lifetime lcritical for each sensor and selecting sensors

to be charged for the forthcoming tour in the following.

1) Setting a critical residual lifetime lcritical for each

sensor: Recall that when the residual lifetime of one sensor

falls below a given threshold lcritical, the WCV will start

to charge some sensors. To ensure that each sensor will be

replenished before running out of its energy, we compute the

longest duration of the WCV for charging all sensors in the

network as follows. Let wTSP be the length of the shortest tour

visiting all sensors and the depot. Then, the maximum duration

for the WCV finishing one charging tour is wTSP

s
+
∑n

i=1
Bi

ηU
,

where s is the traveling speed of the WCV and
∑n

i=1
Bi

ηU

is the maximum amount of time consumed for charging all

sensors in the network. To ensure that no sensors will fail, we

conservatively let lcritical =
wTSP

s
+

∑n
i=1

Bi

ηU
.

2) Selecting sensors to be charged: Selecting sensors to be

charged in the next tour consists of two phases. In the first

phase, we choose sensors to be charged by their emergency

of residual lifetimes. To this end, the algorithm selects the

sensors with residual lifetime no more than the threshold of

residual lifetimes ∆T , where ∆T ≥ lcritical. The rationale

behind this is that the WCV can consume much less energy

on traveling for charging those sensors that will deplete their

energy soon (e.g. residual lifetime is no more than ∆T ) in

one charging tour rather than replenishing them separately in

multiple charging tours. In the second phase, the algorithm se-

lects some sensors from the residual sensors with an objective

to maximize the charging ratio of the forthcoming charging

tour. We do this by considering whether it is beneficial to

charge some sensors that are geographically close some of

the selected sensors, though their residual lifetime are not so

short (more than ∆T ). Denote by S1 and S2 the sets of sensors

selected in Phase one and two, respectively. The WCV will

charge all sensors in set S = S1 ∪ S2 in its forthcoming tour.

The rest is to deal with the second phase. In this phase,

the algorithm finds a charging tour C including all sensors

from S1 and a subset S2 of V − S1 such that the charging

ratio is maximized, where the charging ratio of a charging
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tour C at time t is defined as: ratio(C) =
∑

vi∈C(Bi −
rei(t))/(ηζw(C)). This metric characterizes the amount of

energy consumed by the WCV charging sensors for each unit

energy that is consumed on traveling. We aim to find a tour

C with the maximum charging ratio ratio(C) as follows.

Recall that S1 is the set of sensors chosen in Phase one,

we define R = V − S1. We then select a subset S2 of R and

compute a tour C that contains all nodes in S1∪S2∪{d} such

that ratio(C) is maximized. We construct the set S2 greedily.

Each time we pick such a sensor from R that can maximally

increase the charging ratio. This procedure continues until

either the charging ratio cannot be further improved or R
becomes an empty set. Specifically, S2 = ∅ initially. We

pick one sensor from R and add it into S2 iteratively. In

each iteration, we first compute a shortest tour C including

nodes in S1 ∪ S2 ∪ {d} and the charging ratio ratio(C) of

tour C. Then, for each node v in R, we also compute a

shortest tour Cv that includes nodes in S1 ∪ S2 ∪ {d, v} and

the charging ratio ratio(Cv) of Cv . Denote by vmax the node

with the maximum ratio(Cv) among the nodes in R, i.e.,

vmax = argmaxv∈R{ratio(Cv)}. We pick node vmax from

R and add it to S2 if ratio(Cvmax
) > ratio(C), and this

procedure continues until R becomes empty. We describe the

detailed algorithm in Algorithm 1.

Algorithm 1 MaxRatio

Input: G = (V ∪{b}∪{d}, E), energy capacity B : V 7→ R
+,

residual lifetime l : V 7→ R
+, and ∆T .

Output: A closed charging tour C
1: S1 ← ∅; S2 ← ∅;
2: Select sensors with residual lifetime less than ∆T into S1;

3: R← V − S1; tag ←′ true′;
4: Compute a shortest tour C visiting nodes in S1 ∪ {d};
5: Compute ratio(C) of tour C.

6: while R 6= ∅ and tag do

7: Select a node vmax from R such that the shortest tour

Cvmax
visiting nodes in S1 ∪ S2 ∪ {d, vmax} has the

maximum charging ratio ratio(Cvmax
);

8: if ratio(Cvmax
) > ratio(C) then

9: S2 ← S2 ∪ {vmax}; R← R− {vmax};
10: C ← Cvmax

; ratio(C)← ratio(Cvmax
);

11: else

12: tag ←′ false′;
13: end if

14: end while

15: return C.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed

algorithm through experimental simulations.

A. Experimental environment setting

A WSN consisting of from 100 to 500 sensors are randomly

deployed in a 500m × 500m area. The base station is at the

center of the area while the depot is located at one corner

of the square. The battery capacity Bi of each sensor vi is

randomly drawn from the interval [500, 1000]. The energy

transfer efficiency of the mobile vehicle is η = 80% and the

vehicle consumes ζ = 1 unit energy per unit traveling distance.

We consider two different distributions of sensor energy

consumption rates: the linear distribution and the random

distribution. In the linear distribution, the energy consumption

rate ρi of sensor vi is proportional to its distance to the

base station. The nearest sensors to the base station have the

maximum energy consumption rates ρmax and the farthest

sensors have the minimum energy consumption rates ρmin.

While in the random distribution, the energy consumption rate

ρi of each sensor vi ∈ Vs is randomly chosen from an interval

[ρmin, ρmax], where ρmin = 1 and ρmax = 10.

To evaluate the performance of the proposed algorithm

we also implement other two algorithms for the problems:

Greedy and PeriodicCharging. In the Greedy algo-

rithm, each time the WCV performs a charging task, it only

charges sensors with lifetime less than ∆T in each charging

tour. While in the PeriodicCharging algorithm, the WCV

will replenish each sensor in the network to its full capacity

when there is a charging need. The entire monitoring period is

T = 10, 000. We set ∆T as the minimum charging cycle τmin,

i.e., ∆T = τmin = minni=1{
Bi

ρi
}. Each value in figures is the

average of the results by applying each mentioned algorithm

to 20 different network topologies of the same network size.

B. Performance evaluation of different algorithms

We first evaluate the performance of the three algorithms

by varying network size n. Fig. 1 studies the performance of

the proposed algorithm MaxRatio against that of algorithms

Greedy and PeriodicCharging, by varying the network

size from 100 to 500 under the random and the linear settings.

Fig. 1(a) clearly shows that algorithm MaxRatio always

outperforms the other two, and the performance gap among

them grows bigger and bigger with the growth of network size.

Specifically, the charging ratio of algorithm MaxRatio is

about 8% and 10% higher than that of Greedy when network

size is between 100 and 500, while the ratio can reach 35% and

45% higher when comparing with PeriodicCharging.

Note that the charging ratios of these three algorithms go up

when there are more sensors in the network since the WCV

can replenish more sensors during each charging tour. Fig. 1(b)

shows that the performance of the three algorithms in the linear

setting behave similarly as them in the random setting.
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Fig. 1. Performance of different algorithms by varying network size n when
ρmin = 1 and ρmax = 10.

We then examine the impact of the variance of sensor energy

1272



consumption rates by varying ρmax from 1 to 10 and fixing

ρmin at 1. Fig. 2 plots the performance of the three algorithms

in a WSN with 300 sensors by varying the maximum energy

consumption rate ρmax. Both Fig. 2(a) and Fig. 2(b) show

that the charging ratio of algorithm MaxRatio is higher than

that of Greedy and PeriodicCharging. It can be noticed

that the charging ratios of the three algorithms decrease with

the increase of the maximum energy consumption rate ρmax.

The rationale behind the phenomenon is that the variance of

energy consumption rates increases with a larger ρmax. Then,

the WCV scheduled by algorithm MaxRatio or Greedy will

replenish less sensors during each charging tour, while the

WCV scheduled by algorithm PeriodicCharging must

charge all sensors in each charging tour, including those

with plenty of residual lifetime. In spite of dropping in the

performance, the charging ratios of algorithm MaxRatio

and Greedy decline much slower than that of algorithm

PeriodicCharging as the WCVs scheduled by these two

algorithms do not often charge the sensors with low energy

consumption rates.
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Fig. 2. Performance of different algorithms by varying maximum energy
consumption rate ρmax when n = 300 and ρmin = 1.

We finally investigate the impact of energy threshold ∆T
of a sensor to be chosen on the performance of the algorithms

by varying ∆T from 0.1τmin to 2τmin, where τmin =
minni=1{

Bi

ρi
} is the minimum charging cycle among sensors.

Fig. 3 shows that the charging ratio of algorithm MaxRatio

is the best among the three algorithms. It is interesting to

see that the charging ratios of algorithms MaxRatio and

Greedy increase first and then go down, and they achieve

the best performance when ∆T = τmin, while the charging

ratio of PeriodicCharging does not vary too much with

the change of ∆T . The reason behind is that, in algorithms

MaxRatio and Greedy, the WCV will replenish those sen-

sors with residual lifetimes less than ∆T in each charging tour.

Then, there will be no charging requests from sensors during

the following min{∆T, τmin} time when the WCV completes

its current charging tour, where τmin is the minimum charging

cycle among sensors. Therefore, when ∆T is less than τmin,

the WCV does not need to charge sensors in the following ∆T
time and the WCV can consume less energy on traveling, thus

the charging ratios of the two algorithms increase. However,

when ∆T grows larger than τmin, a bigger ∆T does not result

in a less frequent charging of the WCV. On the other hand,

with a larger ∆T , the WCV has to charge more sensors in

each charging tour, which prolongs the length of the tour. The

reason that the charging ratio of PeriodicCharging does

not change with ∆T is that the WCV must visit and replenish

all sensors regardless of their residual lifetimes.
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Fig. 3. Performance of different algorithms by varying ∆T when n = 300,
ρmin = 1, and ρmax = 10.

VI. CONCLUSIONS

In this paper, we employed a wireless charging vehicle

(WCV) to wirelessly replenish sensor energy in a WSN to

respond to charging requests from sensors, so that none of the

sensors will run out of energy, thereby the WSN can operate

perpetually, for which we first formulated a charging ratio

maximization problem for maximizing the ratio of the amount

of energy consumed by the WCV for charging sensors to its

energy consumption on traveling, we then devised a heuristic

solution. We finally conducted extensive experiments by simu-

lations to evaluate the performance of the proposed algorithm.

Experimental results demonstrated that the proposed algorithm

is efficient, scalable, and insensitive to the variance of sensor

energy consumption rates.
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