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Abstract—Wireless energy charging has emerged as a very
promising technology for prolonging sensor lifetime in Wire-
less Rechargeable Sensor Networks (WRSNs). Existing studies
focused mainly on the ‘one-to-one’ charging scheme that a
sensor can be charged by a single mobile charger at each
time, this charging scheme however suffers from poor charging
scalability and inefficiency. Recently, another charging scheme
- the ‘multiple-to-one’ charging scheme that allows multiple
sensors to be charged simultaneously by a single charger, becomes
dominant and can mitigate charging scalability and improve the
charging efficiency. Most research studies on this latter scheme
focused on the use of a mobile charger to charge multiple
sensors simultaneously. However, for large scale WRSNs, it is
insufficient to deploy just a single mobile charger to charge
many lifetime-critical sensors, and consequently sensor expiration
durations will increase dramatically. Instead, in order to charge
as many as lifetime-critical sensors, the use of multiple mobile
chargers for charging sensors can speed up sensor charging
significantly, thereby reducing their expiration durations and
improving the monitoring quality of WRSNs. However, this
poses great challenges to schedule multiple mobile chargers
for sensor charging at the same time such that the longest
delay among the chargers is minimized due to multiple critical
constraints. One such an important constraint in multiple mobile
chargers is that each sensor cannot be charged by more than
one mobile charger at each time, otherwise, the sensor cannot
receive any energy from either of the chargers. In this paper we
address this challenge by first formulating a novel longest delay
minimization problem that is NP-hard. We then devise the very
first approximation algorithm with a provable approximation
ratio for the problem. We finally evaluate the performance
of the proposed algorithm through experimental simulations.
Simulation results demonstrate that the proposed algorithm is
very promising, which outperforms the other heuristics in various
settings.

Index Terms—Wireless rechargeable sensor networks; multi-
node energy charging; multiple mobile chargers; multiple charg-
ing tour scheduling; charging delay minimization; approximation
algorithms; maximal independent set.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) have been widely ap-
plied in various domains, from military surveillance, disaster

forecasting to cutting-edge smart homes, and smart cities [4],
[16]. They all rely on ubiquitous sensors to capture multi-
dimensional data from surrounding objects for various pur-
poses. However, a sensor is usually powered by an on-
board battery with limited energy capacity, sensor lifetime
prolongation remains a critical issue [14]. Although energy
harvesting technologies [6], [21], [23] have been proposed to
accumulate energy from ambience, such as solar and wind
energy, these methods are sensitive to environments, thus they
cannot provide stable energy to sensors.

Wireless energy charging was proposed to address energy
issues in WSNs [8], [17], [22], [31]. It can be achieved by
charging a nearby sensor with a Mobile Charging Vehicle
(MCV). This technology possesses many advantages as it does
not require direct contact between the mobile charger and
the sensor, or even it does not require line-of-sight (LOS)
as long as the charging device is within the wireless energy
transmission range of the mobile charger. Also, compared
to renewable energy harvesting, wireless energy transfer can
provide stable energy to sensors. This charging process can
be applied in an on-demand manner when devices request
to be charged. The powerfulness of wireless energy charging
technology brings about broad commercial applications [3],
[19], [25], [32].

Despite wireless energy transfer is a promising technique
to prolong sensor lifetime, the energy charging efficiency and
scalability of this technique has been explored in the past. For
example, Kurs et al. [9] proposed a multi-node wireless energy
charging scheme, where multiple sensors can be charged
simultaneously by properly tuning operation frequencies of
both the sender and the receiver coils.

Most research studies on the multi-node charging scheme
focused on the use of a single mobile charger to charge
multiple sensors simultaneously [7], [15], [18], [20], [28].
However, for a large scale WRSN, it is insufficient to deploy
only a single mobile charger to charge many lifetime-critical
sensors, as it still takes a long time (e.g., 30-90 minutes) to
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fully charge a commercial sensor battery, and consequently
sensor expiration durations will increase dramatically [24],
[31]. Instead, in order to charge many lifetime-critical sensors
as early as possible, the use of multiple mobile chargers can
speed up sensor charging and reduce the expiration durations
of sensors, thus improve the monitoring quality of the sensor
network.

The adoption of multiple mobile chargers with each charg-
ing multiple sensors simultaneously in WRSNs poses great
challenges. (i) How to schedule the charging tours of multiple
mobile chargers to ensure that all lifetime-critical sensors can
be charged as soon as possible? (ii) How to ensure in such
scheduling that each sensor will not be charged by more than
one MCV at any time? A sensor may be in the coverage ranges
of multiple MCVs located at different locations, but the sensor
cannot be charged by two or more mobile chargers at the same
time, due to the facts that (1) the sensor cannot receive any
energy from either of the chargers; or (2) overcharging a sensor
will damage its recharging battery. For example, Fig. 1 shows
that sensor u will be charged by two chargers simultaneously
if they stay at locations v1 and v2, respectively, at the same
time. (iii) What is the charging duration of each MCV at
each of its charging locations to ensure that all sensors in
its charging coverage range will be fully charged? As a sensor
could be in the coverage ranges of multiple MCVs at different
charging locations, some sensors have been already charged
when an MCV moves to a location in which the sensor is in its
charging coverage range. In this paper, we will address these
three challenges by developing efficient solutions for them.

The novelty of this paper focuses on efficient charging
multiple sensors simultaneously in a WRSN, by deploying
multiple mobile chargers instead of only a single charger. To
the best of our knowledge, we are the first to formulate a
novel scheduling problem of the longest delay minimization
problem that aims to charge multiple sensors simultaneously,
by employing K ≥ 1 mobile chargers and finding a closed
charging tour for each of the K mobile chargers, while
meeting an important constraint that each sensor cannot be
charged by two or more mobile chargers at the same time. We
develop the very first approximation algorithm for the problem
through exploring the combinatorial property of the problem,
and design and analysis technique in the development of the
approximation algorithm may have independent interest in
other approximation algorithms developments.

The main contributions of this paper are as follows. We
first formulate a novel longest charge delay minimization
problem by adopting K ≥ 1 mobile chargers with each
enabling to charge multi-node simultaneously while ensuring
that no sensor can be charged by more than one MCV at
each time. We aim to minimize the longest delay among
the K MCVs, by finding a charging tour for each of the
K mobile chargers, where the total delay of an MCV is the
sum of the charging duration at each location and the travel
delay in its charging tour. We then devise an approximation
algorithm with a constant approximation ratio for the problem.
We finally evaluate the performance of the proposed algorithm
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Fig. 1. An example of multi-node energy charging by two mobile chargers,
where sensor u will be charged by the two chargers simultaneously if they
stay at locations v1 and v2, respectively, at the same time.

through experimental simulations. Simulation results show that
the proposed algorithm is promising. Especially, the longest
charging delay among the K MCVs by the proposed algorithm
is at least 65% shorter than those by existing algorithms.

The rest of the paper is organized as follows. Section II
reviews related work. Section III introduces notions, notations,
and the problem definition. The NP-hardness of the defined
problem is also shown in this section. Section IV deals with
the longest charging delay minimization problem. Section V
analyzes the proposed algorithm. Section VI evaluates the
performance of the proposed approximation algorithm empir-
ically, and Section VII concludes the paper.

II. RELATED WORK

Wireless energy transfer technology based on strongly mag-
netic resonances [8] has been regarded as a breakthrough
technology for lifetime prolongation of sensors in wireless
rechargeable sensor networks (WRSNs) in literature [2], [18],
[22]. Several studies on wireless energy charging have been
conducted, by applying a mobile charger to charge sensors
one by one in WRSNs [5], [15], [18], [24]. For example,
Shi et al. [22] theoretically studied applying this technique to
charge sensors in WSNs by periodically dispatching a mobile
charging vehicle such that the network can operate perpetually.
Liang and Luo [11] studied multiple mobile chargers for
sensor charging under the one-to-one charging scheme, for
which they proposed a heuristic by a reduction to a series
of minimum maximum matching problems. However, that
algorithm cannot be extended for the problem under one-
to-many charging scheme, as the constraint that a sensor
cannot be charged by more than one MCV at any time does
not exist in the one-to-one charging scheme. There is not
any guarantee on the solution delivered by their algorithm,
this implies that the solution may be far from the optimal
one. Wu et al. [26] formulated a cooperative charging prob-
lem by using multiple mobile chargers to charge sensors
such that none of the sensors will run out of energy. They
aimed to minimize energy consumption of mobile chargers
by leveraging genetic algorithms. Xu et al. [30] considered
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sensor charging by employing multiple mobile chargers, and
proposed an approximation algorithm for finding a charging
tour for each mobile charger such that all sensors are charged
and their total expiration duration is minimized, assuming
that different sensors have different energy depletion rates.
Liang et al. [13], [14] considered an optimization problem
of minimizing the number of mobile chargers to charge a
set of sensors, assuming that the energy capacity of each
mobile charger is limited. They developed an approximation
algorithm for the problem. Also, Liang et al. [15] studied the
charging utility maximization problem, and proposed efficient
approximation algorithms for the problem under both full
charging and partial charging models.

All mentioned studies so far is under one-to-one charging
scheme, i.e., each mobile charger can only charging one
sensor, and this charging does not affect the other sensor.
However, this scheme is neither energy-efficient nor scalable.
There is another charging scheme refereed as the multi-node
charge scheme, or one-to-many charge scheme where a single
mobile charger can charge all sensors within its charging
range. Under this later scheme, Xie et al. [28] were the
first to study multi-node wireless energy charging in WRSNs
by periodically dispatching a mobile charger. They aimed
to minimize energy consumption of the mobile charger by
minimizing sojourn time at each stopping point. They [29]
later further considered the use of a mobile charger for both
sensor charging and data collection with the aim of minimizing
the energy consumption of the whole network under the
constraints that none of the sensors will not run out of energy
and all collected data can be relayed to the base station. For
both mentioned studies, they assumed that the traveling path
of the mobile charger is given in advance. However, planning a
the traveling path by choosing sojourn locations for the mobile
charger is non-trivial in multi-node charging scenarios. Ma et
al. [18] recently considered the multi-node charging scheme
for a single MCV, by proposing a framework to measure the
charging utility gain of each charged sensor, and proposed
heuristic and approximation algorithms for maximizing the
charging utility gain, subject to the energy capacity of the
mobile charger. They studied the finding of a charging closed
tour for a single MCV with different optimization objectives
under different assumptions, including the energy capacity of
the mobile charger, not all requesting charging sensors will
be charged in the end due to the energy constraint on the
mobile charger. In addition, Khelladi et al. [7] investigated an
on-demand multi-node charging problem. They aimed at mini-
mizing the number of stopping points and energy consumption
for a mobile charger in its charging tour. Different from the
optimization objectives and assumptions in [7], [18], in this
paper we will investigate multiple MCVs for sensor charging.
We aim to charge all sensors while the longest charge delay
among the MCVs is minimized. The key challenge to tackle
this multiple mobile chargers scheduling problem lies in an
important constraint. That is, each sensor cannot be charged
by more than one MCV at any time; otherwise, the sensor will
be damaged due to overdose energy on it simultaneously or

it cannot be charged at all due to receiving different charge
energy frequencies from multiple MCVs at the same time.

III. PRELIMINARIES

In this section, we first introduce the system model, notions
and notations. We then define the problem precisely.

A. Network model

We consider a Wireless Rechargeable Sensor Network Gs =
(V,E) consisting of a set V of stationary sensors distributed
over a two-dimensional space, E is the set of edges, there is an
edge between two sensors if they are within the transmission
range of each other. There is a fixed base station, which is
the sink node for sensor data collection. Each sensor v ∈ V
is powered by an on-board rechargeable battery with energy
capacity Cv , sensors consume their energy on sensing, data
processing, and data transmission. Denote by REv the residual
energy of sensor v when it requests for charging. Without loss
of generality, we assume that there is sufficient energy supply
to the base station, it thus has no energy constraint.

We assume that there is a depot for mobile charging vehicles
(MCVs), this depot may or may not be co-located with the
base station, and there are K (≥ 1) MCVs located at the depot.
Each MCV has a charging rate η and constant travel speed s.
Each sensor sends a charging request to the base station when
its residual energy falls below a threshold, and the base station
then identifies a set Vs ⊆ V of lifetime-critical sensors for
energy charging [31]. The base station starts scheduling the
MCVs by finding a charging closed tour for each of them and
dispatches them for sensor charging along their planned tours.
The MCVs will return the depot for recharging themselves
when they finish their charging tasks.

B. Multi-node wireless energy charging, mobile chargers and
their charging tours

The technique of wireless energy transfer to multiple sen-
sors simultaneously was invented by Kurs et al. [9]. They
showed that the overall energy efficiency can be significantly
improved by proper tuning of the coupled resonators when
multiple receivers instead of a single receiver are charged
simultaneously. This multi-node wireless energy charging
technique is a promising technique that can address both
charging efficiency and scalability for large-scale wireless
rechargeable sensor networks. In this paper, we will adopt this
multi-node energy charging scheme, where multiple sensors
can be charged simultaneously if they are within the energy
transmission range of a mobile charger.

To maintain long-term operations of WRSNs and minimize
the expiration durations of sensors, multiple MCVs usually
are employed to charge the sensors in Vs, where each mobile
charger is equipped with a wireless charger that can charge
multiple sensors simultaneously. We assume that all mobile
chargers are located at a depot v0 initially, which may or may
not be co-located with the base station. The mobile chargers
are dispatched from the depot v0 by the base station for sensor
charging through travelling along the scheduled closed tours
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for them. Ideally, a mobile charger can stop at any location
in the monitoring area for sensor charging, and each stop
location is referred to as a sojourn location of the mobile
charger. However, this introduces infinite numbers of potential
sojourn locations for mobile chargers. For the sake of problem
tractability, we assume that mobile chargers can only stop at
the locations co-located with sensors.

As we consider multi-node charge simultaneously, once an
MCV stops at a location, it can charge all sensors within
its energy transmission range. However, one very critical
constraint in the scheduling of the K MCVs for their charging
tours is that if there is a sensor within the charging ranges of
two or more MCVs, the sensor cannot be charged by these
MCVs at the same time. Fig. 1 is an illustrative example of
multi-node energy charging by two mobile chargers. It can be
seen that sensor u will be charged by two mobile chargers
simultaneously, if the two chargers replenish sensor energy at
v1 and v2 at the same time. This constraint makes the charging
tour scheduling of MCVs become very difficult.

When a mobile charger stops at a sensor node v ∈ Vs, sensor
v and its neighbors in Nc(v) within its energy charging range γ
can be simultaneously charged, where Nc(v) = {u | d(u, v) ≤
γ, u ∈ Vs, u 6= v}, d(u, v) is the Euclidean distance between
sensor nodes u and v, and γ is the mobile charger’s charging
radius, e.g., γ = 2.7 m [9]. Denote by N+

c (v) = {v}∪Nc(v),
only all sensors in N+

c (v) have been fully charged, the mobile
charger can move to the next sojourn location for its sensor
charging. For the sake of convenience, we assume that energy
leaking of sensors during this multi-node charging process
is negligible, and a mobile charger has sufficient energy for
traveling and sensor charging per charging tour as we employ
enough number of MCVs for sensor charging as needed. The
base station serves as not only the data collector of the network
but also the scheduler of mobile chargers. When one mobile
charger finishes its charging tour, it will return the depot to
replenish energy for its next charging tour. Each charging tour
Ck of a mobile charger k is a closed tour including the depot.

C. Problem definition

In this paper, we formulate the following multiple mobile
chargers tour scheduling problem, by leveraging the multi-
node charging technique. Given a set Vs of on-demand charg-
ing sensors, each sensor v ∈ Vs has a energy capacity Cv
and its current residual energy REv , let tv be the charging
duration for charging sensor v to its full capacity by a mobile
charger vehicle, then tv is defined as follows.

tv =
Cv −REv

η
, (1)

where η is the charging rate of a mobile charger.
Assume that an MCV located at v can charge all sensors

within its transmission range. To ensure that all sensors in the
range will be fully charged, the longest charge duration of the
MCV at v is upper bounded by

τ(v) = max
u∈N+

c (v)
{tu}. (2)

We assume that there are K mobile chargers located at a
depot initially. Each mobile charger at its sojourn location
can charge multiple sensors simultaneously as long as these
sensors are within its charging radius γ.

Let u and v be the two sojourn locations that two MCVs
are currently located respectively, assuming that two MCVs
arrive at their sojourn locations u and v at time points su and
sv respectively, then their charging finish time are fu = su +
τ ′(u) and fv = sv + τ ′(v). We say that these two MCVs are
overlapping with each other at u and v if there is a sensor w ∈
N+
c (u) ∩N+

c (v) in their charging overlapping area and their
charging time intervals [su, fu] and [sv, fv] overlap with each
other, i.e., [su, fu] ∩ [sv, fv] 6= ∅, or sensor s will be charged
by the both MCVs at any time point of [su, fu] ∩ [sv, fv].
This implies that it is prohibited that two MCVs at u and v
can charge sensors at the mentioned time intervals.

Definition 1: Given a set of sensors Vs to be charged with
each sensor v ∈ Vs having its residual energy REv , there are
K mobile chargers (MCVs) to charge the sensors, the longest
charge delay minimization problem in the wireless sensor
network G = (Vs, Es) then is to find a closed charging tour
Ck = 〈vk,i0 , vk,i1 , vk,i2 , . . . , vk,ik〉 including the depot vk,0
for each mobile charger k such that the longest charging delay
among the K mobile chargers is minimized, subject to that no
sensor can be charged by two mobile chargers simultaneously,
assuming that vk,i0 is the depot with 1 ≤ k ≤ K.

Let V (Ck) = {vk,ij | 1 ≤ j ≤ k} be the set of node
locations in the closed tour Ck. Then, ∪Kk=1V (Ck) ⊆ Vs,
∪Kk=1 ∪v∈V (Ck)N

+
c (v) = Vs and V (Ci)∩V (Cj) = {vk,i0} if

i 6= j, where v1,i0 = v2,i0 = . . . = vK,i0 is the depot of the
K MCVs.

Let τ ′(vk,il) be the actual charge time of mobile charger k
at a sojourn location vk,il in its closed tour Ck. Then

τ ′(vk,il) = max
u∈N+

c (vk,il
)\∪l−1

j=1N
+
c (vk,ij

)
{tu}. (3)

It can be seen that τ ′(vk,il) ≤ τ((vk,il), as some sensors
in the charging range of MCV k at its sojourn location vk,il
may have been charged by the mobile charger itself or other
mobile chargers prior to arriving its current sojourn location.
The charge delay of mobile charger k along Ck thus is

T ′(k) =

ik−1∑
l=0

(τ ′(vk,l) + d(vk,l, vk,l+1)/s) + d(vk,ik , vk,0)/s, (4)

Let T (k) be the upper bound on the delay T ′(k)
of mobile charger k on its charging tour Ck =
〈vk,i0 , vk,i1 , vk,i2 , . . . , vk,ik〉. Then,

T (k) =

ik−1∑
l=0

(τ(vk,il)+d(vk,il , vk,il+1)/s)+d(vk,ik , vk,0)/s, (5)

where d(vk,l, vk,il+1
)/s is the travel time of mobile charger

k from its current sojourn location vk,il to its next sojourn
location vk,il+1

with a constant speed s.
Clearly, T ′(k) ≤ T (k). The longest charge delay minimiza-

tion problem then is to find K node-disjoint closed tours for
the K MCVs (all sojourn locations form the set of nodes for
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k-node-disjoint closed tours) to cover all sensor nodes v ∈ Vs
such that the longest delay max1≤k≤K{T ′(k)} among the K
closed tours is minimized, subject to that no sensor can be
charged by two or more mobile chargers at the same time,
i.e., no two MCVs at their sojourn locations are overlapping
at any time during their charging periods. The rationale behind
the problem definition is that we aim to make each requested
sensor to be charged as soon as possible to reduce its potential
expiration time.

Notice that the longest delay minimization problem is NP-
hard, since the well-known NP-hard TSP problem can be
reduced to it. Due to limited space, the proof of the NP-
hardness of the problem is omitted.

IV. APPROXIMATION ALGORITHM FOR THE LONGEST
DELAY MINIMIZATION PROBLEM

In this section we consider K MCVs employed, we have
the following algorithm.

We construct a charging graph Gc = (Vs, E), where Vs is
the set of to-be-charged sensors, and there is an edge between
two sensors in E if their distance is no greater than the
charging range γ.

A. Find a partial solution without overlapping

In the proposed algorithm, in order to charge all sensors,
we first find a maximal independent set (MIS) SI in charging
graph Gc, SI ⊆ Vs. Then, the distance between any nodes u
and v in SI is strictly larger than the charging range γ. Also,
each node in SI is a potential sojourn location of one MCV
among the K MCVs for charging unless all sensors covered
by the node (or it represents the sojourn location) have been
charged by other MCVs already.

We then construct another graph H = (SI , EH), where
SI is the set of nodes and there is an edge (u, v) ∈ EH
between two nodes if N+

c (u) ∩N+
c (v) 6= ∅. Thus, each edge

in EH indicates that the distance between its two endpoints is
strictly larger than γ but less than 2γ. Let V ′H be a maximal
independent set of graph H , then we observe that for any two
nodes in V ′H , there will be no overlapping between any MCVs
at these two locations at any time.

We finally find K node-disjoint closed tours in the set
V ′H such that the longest delay among the K closed tours
is minimized. However, even for this special case of the
problem where only a subset ∪v∈V ′HN

+
c (v) ⊂ Vs of sensors,

it is NP-hard. We instead can find an approximate solution
to this special problem [14]. Denote by C1, C2, . . . , CK the
initial K closed tour, where Ck = 〈vk,i0 , vk,i1 , . . . , vk,ik〉 and
∪kk=1V (Ck) = V ′H .

Now, given the current setting {C1, C2, . . . , CK}, the charg-
ing finish time f(vk,il) of each node vk,il in a closed tour Ck
is defined as

f(vk,il) =

l−1∑
j=0

(d(vk,ij , vk,ij+1)/s+τ ′(vk,ij ))+τ ′(vk,il), (6)

where s is the travel speed of MCV k.

B. Extend the partial solution

The rest is to determine whether each node u ∈ SI \ V ′H
should be inserted into one of the K closed tours. Node u
can be either removed from the consideration if its coverage
area (or an MCV located at it for sensor charging) N+

c (u) has
been covered by the nodes in ∪Kk=1 ∪v∈V (Ck)N

+
c (v) already,

or inserted to one of the K closed tours. However, inserting a
node in to one of the closed tours is challenging as we need
to consider two critical issues.

One is that node u cannot be arbitrarily inserted to any
closed tour; otherwise, assuming that u is inserted to a closed
tour in a position between two neighboring nodes v1 and v2 of
the closed tour, then the travel distance between v1 and u and
the travel distance between u and v2 may become very large,
implying that it will take a long time for an MCV traveling
from v1 to v2 through node u. Instead, u should be inserted
to one of its neighbors vi in H , and the distance between u
and vi is strictly less than 2γ by the construction of graph H .

Another is that the insertion of node u into a closed tour
should still maintain the sensor charging property for all
charging tours, ensuring the charging scheduling still to be
feasible. That is, no sensor will be charged by two MCVs at
the same time. Otherwise, this important constraint might be
violated.

In the following we deal with the insertion of node u ∈ SI \
V ′H into a closed tour while maintaining the solution obtained
is feasible.

For a node u ∈ SI \V ′H , if N+
c (u) ⊆ ∪Kk=1∪kl=1N

+
c (vk,il),

then all sensors covered by an MCV at u will be charged
by the K MCVs along their closed tours built so far. Node u
thus will not be considered as a sojourn location of any mobile
charger. Otherwise, the neighboring set of node u in graph H
can be expressed as follows.

NH(u) = N ′H(u) ∪N ′′H(u), (7)

where N ′H(u) ⊂ ∪Kk=1V (Ck), and N ′′H(u) is the set of nodes
that have not been assigned to any of the K closed tours.

We claim that N ′H(u) 6= ∅; otherwise, node u should have
been included in V ′H already. Thus, without loss of generality,
in the rest of our discussion, we assume that N ′H(u) 6= ∅.

For each sensor u ∈ SI\V ′H , we consider the latest charging
finish time fN (u) of its neighbors in N ′H(u), i.e.,

fN (u) = max
vk,j∈N ′H(u)

{f(vk,j)}, (8)

where sensor vk,j is charged in tour Ck and f(vk,j) is its
charging finish time.

We sort the nodes in SI \ V ′H in increasing order of their
latest neighbor charging finish times. Assume that the sorted
sequence is u1, u2, . . . , unI

, then
fN (u1) ≤ fN (u2) ≤ · · · ≤ fN (unI

), where nI = |SI \ V ′H |.
We deal with the potential insertions of nodes

u1, u2, . . . , unI
into the K closed tours one by one.

Assume that u is the next to-be inserted node. We distinguish
our discussion into two cases.
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Case (i). ∃k such that N ′H(u) ⊂ V (Ck) with 1 ≤ k ≤ K,
i.e., all the neighbors of u in H are in a single closed tour
Ck.

Case (ii). The nodes in N ′H(u) are in at least two or more
closed tours among the K the closed tours.

We now consider Case (i). Recall that each node vk,ij in
closed tour Ck has its charging finish time f(vk,il) with 1 ≤
k ≤ K and 0 ≤ j ≤ k. Assume that N ′H(u) ⊂ V (Ck0), where

k0, j0 = arg max
k,j
{f(vk,ij ) | vk,ij ∈ N ′H(u)}. (9)

We first insert node u just after node (location) vk0,ij0 in
closed tour Ck0 , and calculate the charging duration of MCV
k0 at location u as follows.

τ ′(u) = max
v∈N+

c (u)\∪
v′∈∪K

k=1
V (Ck)

N+
c (v′)
{Cv −REv

η
}. (10)

We then recalculate the charging finish time of all nodes in
Ck0 , i.e., the charging finish time of each node in Ck0 will be
updated, due to the insertion of node u. In other words, we
only update the charging finish time of each node after node
vk0,ij0 . That is, the charging finish time of the newly inserted
node u in Ck0 is

f(u) = f(vk0,ij0 ) + d(vk0,ij0 , u)/s+ τ ′(u). (11)

For every other node vk0,il in Ck0 with j0 < l ≤ k, we
have

f(vk0,il) = f(vk0,il) + d(vk0,ij0 , u)/s+ d(u, vk0,ij0+1)/s

− d(vk0,ij0 , vk0,ij0+1
)/s+ τ ′(u). (12)

The rationale behind the handling of Case (i) is that MCV
k0 at location u is only overlapping with itself at the other
locations v′ ∈ N ′H(u) in closed tour Ck0 , and some sensors
in N+

c (u) have already been charged by MCV k0 or the other
MCVs prior to MCV k0 moving to the location u, and the
charging duration of MCV k0 at location u is τ ′(u). Notice
that location u in Ck0 has the largest charging finish time,
compared with the charging finish time of any other neighbor
v′ ∈ N ′H(u) of u in Ck0 . Thus, no sensor will be charged by
two MCVs at the same time.

The rest is to deal with Case (ii) nodes as follows. Consider
a being considered node u in Case (ii). Let

k0, j0 = arg max
k,j
{f(vk,ij ) | vk,ij ∈ N ′H(u)}. (13)

We first insert node u to closed tour Ck0 just after node (the
location) vk0,ij0 in closed tour Ck0 . The charging duration of
MCV k0 at location u is τ ′(u) can be calculated by Eq. (11).
We then recalculate the charging finish time of all nodes in
closed tour Ck0 by Eq. (12), which is almost identical to Case
(i), omitted.

The rationale of node insertion in Eq. (13) is that if it is
inserted into a location which is a neighbor of u in H a closed
tour that the charging finish time is not the maximum one
among its neighbors, then it is very likely that there will be
overlapping between MCV k0 at location vk0,ij0 and another

MCV located at its neighbor in H in another closed tour. In
other words, the charging intervals of these two MCVs will be
overlapping and if a sensor is within their overlapping area, it
will be charged by both of them at the same time.

Notice that once node u is inserted to a closed tour Ck0
after node vk0,ij0 , we update not only the charging finish time
of each of the nodes after node vk0,ij0 in the closed tour Ck0 ,
but also the latest neighbor charging finish time of the nodes
in SI \ V ′H that have not been inserted.

The proposed algorithm is given in Algorithm 1.

V. ALGORITHM ANALYSIS

In this section, we analyze the approximation ratio of the
proposed algorithm, Algorithm 1. We observe that the
value of an optimal solution of the longest delay minimization
problem in a subset V ′ ⊆ Vs of sensors is no greater than the
value of the optimal solution of the longest delay minimization
problem in a set Vs. We thus make use of the optimal solution
of the problem in a special subset ∪u∈V ′HN

+
c (u) of Vs as

the approximate estimation on the optimal solution of the
problem in set Vs, and then derive the approximation ratio of
the proposed approximation algorithm for the longest delay
minimization problem in Vs as follows.

Recall that V ′H is a maximal independent set of graph H .
Each node v in V ′H thus covers a set of sensors, and the
coverage areas of any two nodes in V ′H are not overlapping
with each other. We define the following optimization problem.

Definition 2: Given a set V ′H of nodes and a depot v0 in a
2-D metric space, each node v ∈ V ′H has a charging duration
τ(v), assume that there are K MCVs at the depot initially,
the travelling time of a mobile charger between two nodes u
and v with constant traveling speed s is d(u, v)/s, i.e., each
edge (u, v) has a travel delay weight d(u, v)/s, the K-optimal
closed tour problem is to find K (≥ 1) node-disjoint closed
tours except that the depot will be contained by all K closed
tours such that the longest delay among the K closed tours
is minimized, subject to that the union of nodes in the K
closed tour is V ′H , where the total delay of a closed tour is the
weighted sum of nodes and edges in the tour.

Notice that the k-optimal closed tour problem is NP-hard,
and there is a 5-approximation algorithm for the K-optimal
closed tour problem due to Liang et al. [14]. The solution
to the K-optimal closed tour problem is exactly an optimal
solution to the longest delay minimization problem in a set
V ′ (= ∪u∈V ′HN

+
c (u)) of sensors, and for any two nodes u

and v in V ′H , N+
c (u) ∩ N+

c (v) = ∅ and d(u, v) ≥ 2γ, i.e.,
there is no overlapping between any two MCVs located at
any two nodes in V ′H at any time.

Denote by L′OPT and LOPT the optimal solutions of the
longest delay minimization problem in sets ∪u∈V ′HN

+
c (u) and

Vs, respectively. It can be seen that L′OPT ≤ LOPT . Let L be
the solution delivered by an approximation algorithm for the
K-optimal closed tour problem in V ′H . Then,

L ≤ 5 · L′OPT ≤ 5 · LOPT . (14)
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Algorithm 1 Algorithm Appro
Input: A set of sensors Vs to be charged, a depot v0, K mobile

charging vehicles with each having an energy charging range γ
and a traveling speed s.

Output: K closed charging tours C1, C2, . . . , CK with each
including the depot v0 such that the longest delay closed tour
among the K closed tour is minimized.

1: Construct a charging graph Gc = (Vs, E), where there is an edge
between two vertices in E if their distance is no greater than the
charging radius γ;

2: Find a Maximal Independent Set SI in Gc. Thus, if there is an
MCV at each vertex v ∈ SI to charge all sensors in N+

c (v) =
{u | u ∈ V,& d(u, v) ≤ γ} for a duration τ ′(v) which is defined
in Eq.(3). Thus, all sensors in N+

c (v) will be charged;
3: Construct another auxiliary graph H = (SI , EH) where SI is an

MIS of Gc, and there is an edge (u, v) ∈ EH if there N+
c (v)∩

N+
c (u) 6= ∅, i.e., if there are two MCVs located at u and v, they

are overlapping with each other when they charge at the same
time;

4: Find an MIS V ′H of graph H;
5: Find K node-disjoint closed tours with each tour containing the

depot of MCVs and the union of the nodes in these tours is
V ′H . Let C1, C2, . . . , CK be the K node-disjoint closed tours
delivered by an approximation algorithm for K-optimal closed
tour problem due to Liang et al. [14];

6: Calculate the charging duration at each node v in Ck; i.e.,
τ ′(v)← τ(v); and its charging finish time f(v) by formulas (11)
or (12);

7: U ← SI \V ′H ; /* the set of potential sojourn locations of the K
mobile chargers */

8: for U 6= ∅ do
9: Pick a node u ∈ U with the smallest latest neighbor charging

finish time, i.e., u = argminu∈U{fN (u)};
10: if N+

c (v) ⊆ ∪K
k=1 ∪k

l=1 N
+
c (vk,il) then

11: /* location u will not be considered */;
12: else
13: if all neighbors of u in H are in a single Ck0 for some k0

with 1 ≤ k0 ≤ K then
14: /* Case (i) */
15: Identify the location of u in closed tour Ck0 by Eq (9),

calculate the charging duration τ ′(u) of MCV k0 at u
and insert u just after node vk0,ij0

in Ck0 ;
16: Recalculate the charging finish time of all the nodes after

node vk0,ij0
in Ck0 , and the latest neighbor charging

finishing time of nodes in U \ {u};
17: else
18: /* Case (ii): the neighbors of u in H are in at least two

closed tours */
19: Identify the location of u in closed tour Ck0 by Eq. (13),

calculate the charging duration τ ′(u) of MCV k0 at
location u, and insert node u just after node vk0,ij0

in
Ck0 ;

20: Recalculate the charging finish time of each node in Ck0 ,
and the latest neighbor charging finishing time of nodes
in U \ {u};

21: end if
22: end if
23: U ← U \ {u};
24: end for
25: return The K charging tours C1, C2, . . . , CK .

Denote by ∆H the maximum degree of graph H =
(SI , E

′). Let Ck be any charging closed tour obtained after
considering the nodes in V ′H initially by applying the approx-
imation algorithm due to Liang et al. [14]. We then add nodes
u ∈ SI \ V ′H in cases (i) and (ii) to the K closed tours. We
finally estimate the length (delay) of each closed tour in the
end by showing that the length (delay) of each Ck is no greater
than constant times of the initial delay of Ck as follows.

Consider a node v in the initial closed tour of Ck, then the
cardinality of its neighborhood in H is |NH(v)| ≤ ∆H and
the distance of each its neighbor from v is strictly less than 2γ;
otherwise, there will be no overlapping between their coverage
areas, following the definition of graph H .

The analysis on the length of the final closed tour Ck,
compared with its initial length L0

k is given by the following
lemma.

Lemma 1: The length of Ck is upper bounded by (∆H +
1) · L0

k.
Proof: As the initial length L0

k of Ck is no less than
2γ · |V (Ck)|, the traveling time of MCV k on Ck is no less
than 2γ · |V (Ck)|/s. The traveling time of MCV k on the final
closed tour Ck after inserting nodes in cases (i) and (ii) to the
closed tour thus is upper bounded by∑

v∈V (Ck)

2γ · (|NH(v)|+ 1)

≤ 2γ · (∆H + 1) · |V (Ck)| ≤ (∆H + 1) · L0
k, (15)

i.e, the traveling time of MCV k along its tour Ck is (∆H+1)
times the traveling time on the initial closed tour Ck.

We then analyze the total charging time in Ck. The initial to-
tal charging time of MCV k in Ck is TC0

k =
∑
v∈V (Ck)

τ(v),
as the coverage area by each node in Ck are not overlapping
with each other.

The total charge time of MCV k after inserting nodes of
cases (i) and (ii) in the closed tour Ck is∑
v∈V (Ck)

∑
u∈NH(v)

τ ′(u) +
∑

v∈V (Ck)

τ ′(v)

≤
∑

v∈V (Ck)

τ(v) +
∑

v∈V (Ck)

∑
u∈NH(v)

τ ′(u)

≤
∑

v∈V (Ck)

τ(v) + |V (Ck)| ·∆H · τmax

≤ TC0
k + TC0

k ·∆H ·
τmax
τmin

since TC0
k ≥ |V (Ck)| · τmin

≤ TC0
k · (1 + ∆H ·

τmax
τmin

), (16)

where τmax = maxv∈Vs
{τ(v)} and τmin = minv∈Vs

{τ(v)}
are the longest and shortest charging durations of any mobile
charger at any sojourn locations.

The total charge delay of MCV k along the closed tour Ck
thus is

TC0
k · (1 + ∆H ·

τmax
τmin

) + (∆H + 1) · L0
k/s (17)

≤ (1 + ∆H ·
τmax
τmin

) · (TC0
k + L0

k/s). (18)
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Fig. 2. An illustration of a disk R(u, 2γ) and all nodes (locations in SI

with radius γ (black dots) that each coverage area is overlapping with the
one by node u, where Cu is the circumference of a cycle centered at u with
radius of 2γ, while the red zigzag tour consists of all nodes in the band area
between the internal and outside circumferences of center u.

Let D0
k be the longest delay in the initial K closed tour

Ck. Recall that L′OPT and LOPT are the optimal solu-
tions to the longest delay minimization problem in sets Vs
and ∪u∈V ′HN

+
c (u), respectively. Then, D0

k ≤ 5 · L′OPT by
the approximation algorithm for the K-optimal closed tour
problem [14]. We also know that L′OPT ≤ LOPT . Thus,
D0
k ≤ 5 · LOPT , while the longest delay of MCV k on the

final closed tour Ck is no greater than (1 + ∆H · τmax

τmin
) ·D0

k.
Therefore, the value of the approximate solution delivered by
the proposed approximation algorithm is

(1 + ∆H ·
τmax
τmin

) ·D0
k ≤ (1 + ∆H ·

τmax
τmin

) ·5 ·LOPT . (19)

The rest is to show that ∆H · τmax

τmin
is a constant. Thus,

the approximation ratio ρ of the proposed approximation
algorithm is constant, by the following lemma.

Lemma 2: ∆H ≤ d2 · 4πγγ e = d8πe.
Proof: Following the construction of graph H , the dis-

tance between any neighbor v ∈ NH(u) of node u ∈ SI in H
and node u is no less than (1 + ε)γ but less than 2γ, where ε
is a value no less than zero.

Consider nodes v1, v2 and v3 which are the three neighbors
of u in H , and the coverage area of each of them is overlapping
with the coverage area of node u, as illustrated in Fig. 2.

Then, nodes v1, v2, and v3 must be located in the band
area of con-centered at u with radii γ and 2γ, respectively.
Assuming that both v1 and v2 are nearby the circumference
Cu of the cycle centered at u with radius 2γ, and they are
two neighbors in the blue zigzag line. The distance between
any of two nodes among u, v1, v2, and v3 is at least (1 + ε)γ
with ε > 0 as they all are in SI , while SI is an independent
set of graph Gc. Thus, all neighbors of node u in H must
be in the band area, and the maximum number of neighbors
of u in H is bounded by a constant 2 · 4πγγ ≤ 8π, i.e., the
number of nodes in the red zigzag line. In other words, the
maximum degree ∆H of any node u in H is upper bounded
by the number of neighbors in the band area of node u, i.e.,
∆H ≤ d8πe.

Theorem 1: Given a wireless rechargeable sensor network in
a plane and a set Vs of sensors required to be charged, assume
that each sensor v ∈ Vs with energy capacity Cv and residual

energy REv when the sensor sent out its charging request.
There are K homogeneous mobile charging vehicles with K ≥
1 with constant speed s, each mobile charger has a wireless
energy transmission range γ with charging efficiency η, and
charge all sensors within his energy transmission range. It is
also assumed that it is not allowed that a sensor can be charged
by two MCVs at the same time. There is an approximation
algorithm with a constant approximation ratio ρ for the longest
delay minimization problem, and the algorithm takes O(|Vs|3)
time, where ρ = 40π · τmax

τmin
+1 = O(1), τmax and τmin are the

longest and shortest charging durations of a mobile charger at
a sojourn location.

Proof: We have shown that the longest delay among
the K closed tours is no more than (1 + ∆H · τmax

τmin
) · L

by Inequality (18), where L is the longest delay closed tour
among the K closed tours. The approximation ratio of the
proposed approximation algorithm thus is ρ (= 1 + ∆H ·
τmax

τmin
· 5 = 40π · τmax

τmin
+ 1), which is a constant if the ratio

of the longest charging duration τmax to the shortest charging
durations τmin of MCVs at any locations is a constant, this
assumption is true in a real setting where each to-be-charged
sensor has consumed a significant amount of its energy. For
example, assume that each sensor sends a charging request if
its residual energy falls below 20% of its energy capacity, then
the ratio of τmax to τmin is no more than 1

1−20% = 1.25.
The analysis of the time complexity of the approximation

algorithm is omitted, due to the limited space.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithm through experimental simulations.

A. Experimental environment settings

We consider a wireless rechargeable sensor network with
size from 200 to 1,200 sensors randomly distributed in a 100×
100 m2 square. Assume that the base station and the depot
of MCVs are co-located at the center of the monitoring area.
The energy capacity of the battery of each sensor is set as 10.8
kJ [22]. The data sensing rate bi of each sensor vi is randomly
chosen from an interval [bmin, bmax] with bmin = 1 kbps and
bmax = 50 kbps, respectively. We adopt a real sensor energy
consumption model from [12]. The wireless energy transfer
range γ of each MCV is set at 2.7 m [7]. The number of
MCVs K in the network is set from 1 to 5. Each MCV travels
at a speed of s = 1 m/s and its energy charging rate η is set at
2 W . The charging duration of an energy-empty sensor then is
10.8 kJ
2 W = 10.8 kJ

2 J/s = 1.5 hours. We consider the monitoring of
the sensor network for a period TM of one year. To evaluate the
performance of the proposed algorithm Appro for the longest
charge delay minimization problem, we adopt the following
four benchmarks.

(i) In algorithm Earliest Deadline First with K MCVs
(K-EDF), it first sorts to-be-charged sensors by their residual
lifetimes in increasing order, then partitions the sensors into
multiple groups with each group having K sensors (except
that the last group may have less K sensors), finally assigns
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the K sensors in each group to the K MCVs such that the sum
of the traveling distances of the K MCVs from their current
locations to the K sensors are minimized.

(ii) In algorithm NETWRAP [24], each MCV selects the next
to-be-charged sensor that has the minimum weighted sum of
the travel time from the MCV to the sensor and the residual
lifetime of the sensor, a tie is broken arbitrarily if a sensor is
selected by multiple MCVs.

(iii) In algorithm K-minMax [14], it finds K node-disjoint
closed tours to visit to-be-charged sensors, such that the
longest delay among the K tours is minimized. Algorithm
K-minMax delivers a 5-approximate solution.

(iv) In algorithm AA [24], it first partitions the to-be-charged
sensors into K groups by applying the K-means algorithm,
and each MCV charges the sensors in one group. Each MCV
charges a proportion of sensors in its assigned group before
their energy expirations, so as to maximize the total amount
of energy charged to sensors minus the total traveling energy
cost of the charger.

The value in each figure is the mean of the results out of
100 WRSN instances with the same network size.

B. Experimental results
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Fig. 3. Performance of algorithms Appro, K-EDF, NETWRAP, AA,
K-minMax by varying the network size n from 200 to 1,200, and there
are K = 2 mobile chargers.

We first evaluate the performance of algorithms Appro,
K-EDF, NETWRAP, AA, and K-minMax, by varying the
network size n from 200 to 1, 200 and there are K = 2
mobile chargers in the sensor network. Fig. 3(a) shows that
longest tour duration of the K = 2 charging tours delivered
by the proposed approximation algorithm Appro is much
shorter than those delivered by the existing four algorithms.
For example, the longest tour durations of algorithms Appro,
K-EDF, NETWRAP, AA, and K-minMax are around 24, 68,
80, 137, 67 hours, respectively, when there are n = 1, 200
sensors in the network. Then, the longest tour duration by
algorithm Appro is at least 1 − 24

67 = 65% shorter than
those by the other four mentioned algorithms. Fig. 3(a) also
demonstrates that the longest tour duration by each of the five
algorithm increases with the growth of the network size n. The
rationale behind is that more sensors are needed to be charged
in a larger network, and the charging duration of each charging
tour will be prolonged.

Fig. 3(b) plots the average dead duration per sensor by
different algorithms in the monitoring period TM (i.e., one

year) of the sensor network, when the network size n increases
from 200 to 1,200. It can be seen from Fig. 3(b) that the
average sensor dead duration by algorithm Appro is no more
than 40 minutes when there are n = 1, 200 sensors, while
the average sensor dead durations by algorithms K-EDF,
NETWRAP, AA, and K-minMax are 1,700, 3,200, 7,300, and
1,500 minutes, respectively, which are significantly higher than
the proposed algorithm.
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Fig. 4. Performance of algorithms Appro, K-EDF, NETWRAP, AA,
K-minMax by varying the maximum data rate bmax from 10 kbps to
50 kbps in a network with n = 1, 000 sensors and K = 2 mobile chargers,
while bmin = 1 kbps.

We then study the algorithm performance by varying the
maximum data rate bmax from 10 kbps to 50 kbps in a network
with n = 1, 000 sensors and K = 2 mobile chargers, while
bmin = 1 kbps. It can be seen that sensor energy consumption
rates grow with a larger data rate, and thus there will be more
to-be-charged sensors in each charging tour. Fig. 4(a) shows
that the longest tour duration by algorithm Appro is no more
than 22 hours, while the longest tour durations by the other
four algorithms are at least 40 hours when bmax = 50 kbps.
Fig. 4(b) demonstrates that the average sensor dead duration
by algorithm Appro is only 5 minutes, whereas the average
sensor dead durations by algorithms K-EDF, NETWRAP, AA,
and K-minMax are 80, 370, 1,100, 77 minutes, respectively,
when bmax = 50 kbps.
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Fig. 5. Performance of algorithms Appro, K-EDF, NETWRAP, AA,
K-minMax by varying the number of mobile chargers K from 1 to 5, in a
network with n = 1, 000 sensors.

We finally investigate the performance of the five algo-
rithms, by increasing the number of mobile chargers K from
1 to 5, in a network with n = 1, 000 sensors. Fig. 5(a)
demonstrates that the longest tour duration by each of the
algorithms decreases significantly when K increases from 1
to 2, but the decease becomes slower for more chargers, i.e.,
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a larger value of K. Also, it can be seen from Fig. 5 that both
the longest tour duration and average sensor dead duration by
algorithm Appro are much shorter than those by the other
existing algorithms.

VII. CONCLUSION

In this paper we studied the use of multiple mobile chargers,
instead of only a single charger, to charge sensors, thereby
speeding up sensor charging and reducing their expiration
durations, where each charger can replenish multiple sen-
sors simultaneously within its energy charging range. We
formulated a novel longest charge delay minimization problem
through finding charging tours for K mobile charging vehicles
such that the longest total time spent among the tours is
minimized, subject to that no sensors can be charged by two
or more mobile chargers at the same time. Since the problem
is NP-hard, we then devised the very first approximation
algorithm with a provable approximation ratio for it. We finally
evaluated the performance of the proposed algorithm through
experimental simulations. Simulation results demonstrate that
the proposed algorithm is very promising, and outperforms the
other heuristics in various settings.
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