
Throughput Maximization and Resource
Optimization in NFV-Enabled Networks

Zichuan Xu†, Weifa Liang‡, Alex Galis†, and Yu Ma‡
† Department of Electronic and Electrical Engineering, University College London, London, UK

‡ Research School of Computer Science, Australian National University, Canberra, ACT 2601, Australia
z.xu@ucl.ac.uk, wliang@cs.anu.edu.au, a.galis@ucl.ac.uk, u5108648@anu.edu.au

Abstract—Network function virtualization (NFV) has been
emerging as a new paradigm to enable elastic and inexpen-
sive network services in modern computer networks, through
deploying flexible virtualized network functions (VNFs) running
in virtual computing platforms. Different VNFs can be chained
together to form different service chains, to meet various user
data routing demands for different network services. In this
paper we consider provisioning network services in an NFV-
enabled network that consists of data centers for implementing
VNF instances of service chains and switches. We study the
throughput maximization problem with the aim to admit as many
user requests as possible while minimizing the implementation
cost of the requests, assuming that limited numbers of instances
of each service chain have been stored in data centers. We first
propose an optimal algorithm for the problem if all requests have
identical packet rates; otherwise, we devise two approximation
algorithms with probable approximation ratios, depending on
whether the packet traffic of each request is splittable. We finally
conduct experiments to evaluate the performance of the proposed
algorithms by simulations. Experimental results show that the
proposed algorithms achieve at least 15% more throughput than
that of a greedy algorithm.

I. INTRODUCTION

Network services provided by the telecommunications indus-
try traditionally make use of dedicated devices and equipment to
implement various network functions, such as network address
translation (NAT), firewall, and intrusion detection, to name a
few. To meet ever-growing traffic demands on network services,
network service providers must continuously purchase, add and
operate new physical equipment into their operational networks.
This does require not only high and rapidly changing skills
for technicians operating and managing the equipment, but
also dense deployments of network equipment, leading to
high CAPEX and OPEX. For example, it is expected that the
total CAPEX of worldwide network service providers reaches
US$374 billion in 2019 [10] and this cost still grows at a rate
of 1.3 percent each year. Underpinned by the techniques of
computing virtualization in cloud computing, network resource
virtualization, Network Functions Virtualization (NFV) has
been emerging as a technology to reduce the high CAPEX and
OPEX of network providers [3], [9], [13], [17], by deploying
networking services as software in Virtual Machines (VMs).

In this paper we consider an NFV-enabled network that
consists of data centers and switches interconnected by links,
providing various network services as virtualized network
functions (VNFs) in the data centers. Since the primary goal
of network service providers is to maximize their profits by
fully utilizing their resources, one fundamental problem for
them is to efficiently allocate VNFs such that the network
throughput is maximized, while the cost of realizing requests
is minimized. This is a fundamentally challenging problem.

Unlike conventional service requests without service chain
requirements, a user request for network services here requires
that its traffic is steered along a sequence of VNFs in the
orders of its service chain, prior to its destination. Furthermore,
different requests have different stringent end-to-end delay
requirements. Meeting such stringent user requirements is
crucial to guarantee the quality of network services and user
satisfication.

There are several studies focusing on the provisioning of
network services via the NFV technique [8], [9], [14], [18],
[20]. Some of them aim to developing novel architectures and
building systems for NFV-enabled networks by formulating In-
teger Linear Programming (IPL) solutions to optimize network
performance, e.g., network throughput [3], [12], [20]. Such
ILP solutions however suffer from poor scalability when the
problem size is quite large. Others either do not consider either
the end-to-end delay requirement of user requests or ignore
the computing resource constraint [9]. This can significantly
degrade the quality of network services. Therefore, efficient and
scalable algorithms with performance guarantees are urgently
needed to enable the NFV technique in networks.

Unlike the mentioned studies, we study the throughput
maximization problem in an NFV-enabled network under the
assumption that limited numbers of instances of service chains
have been instantiated in data centers in advance. We aim to
admit as many user requests as possible while minimizing
their implementation costs and meeting their end-to-end delay
requirements. We will develop efficient and scalable optimal
and approximation algorithms with performance guarantees for
the problem.

The main contributions of this paper are as follows. We first
formulate the throughput maximization problem in an NFV-
enabled network consisting of multiple data centers and switch
nodes, and show that the problem is NP-hard. We then devised
an optimal solution when all requests have identical packet
rates. Otherwise, we propose two approximation algorithms
with provable approximation ratios, depending on whether the
packet traffic of each request is splittable. We finally evaluate
the performance of the proposed algorithms.

The rest of the paper is organized as follows. Section II
reviews related work. Section III introduces the system model
and notations, and define the problem. Section IV proposes an
optimal algorithm for a special case of the problem when all
requests have identical packet rates; otherwise approximation
algorithms are proposed in Section V. Section VI evaluates the
performance of the proposed algorithms through simulations,
and Section VII concludes the paper.

IEEE ICC 2017 SAC Symposium SDN & NFV Track

978-1-4673-8999-0/17/$31.00 ©2017 IEEE

II. RELATED WORK

Much recent attention has been focusing on the placement of
virtualized network functions (VNF) [14], [4], traffic steering
given placed network functions [17], joint traffic steering
and VNF placement [9], and dynamic network function
chaining [20]. For example, Qazi et al. developed SIMPLE [17]
that enforces high-level routing policies for middlebox-specific
traffic, they however did not consider virtualization or dynamic
network function placements. Martins et al. [14] introduced
a platform to improve network performance, by revising
existing virtualization technologies to support the deployment
of modular, virtual middleboxes on lightweight VMs. Qu et
al. [18] studied the problem of delay-aware scheduling and
resource optimization with NFV in a virtual network. Wang et
al. [20] studied the problem of dynamic network function
composition, and proposed a distributed algorithm, using
Markov approximation method for the problem. However, most
of the mentioned studies that are designed for communication
networks may not be suitable for an NFV-enabled network
consisting of multiple data centers, since they assumed that each
network function is solely used by a user request. Although
there are extensive studies on resource allocations for Virtual
Machines (VMs) [15], [19], most of them do not jointly
consider routing and VNF placement. Their solutions thus
cannot be directly applied into NFV-enabled networks.

There are several studies focusing on the provisioning of
network services in cloud platforms [3], [8], [9], [12]. Most of
them focused on a single data center [8], [9], [12]. Li et al. [12]
aim to provide real-time guarantees for user requests in a data
center. Gu et al. [8] investigated dynamic service chaining in
an NFV market of a single data center, by devising efficient
and truthful auction mechanisms and assuming some of the
instantiated network functions can be reused by later requests.
Their solutions however may not be applicable to an NFV-
enabled network with geo-graphically distributed data centers.
They focused on developing Integer Linear Programming (ILP)
solutions or simulated annealing algorithms that are not scalable
or take prohibitively long time to converge.

III. PRELIMINARIES

In this section, we first introduce the system model and
notations, and then define the problem precisely.

A. System model
We consider a network G = (V ∪ DC, E) operated by a

cloud service provider, where V is the set of switches, DC
is the set of data centers connected to some of the switches,
and |DC| � |V |. E is the set of links between switches
and switches and data centers. Each data center DCi ∈ DC
has limited computing and storage resources to implement
network functions in software that run in Virtual Machines
(VMs), referred to as VNFs. An ordered sequence of VNFs
is defined as a service chain [20], the service chains of all
user requests are classified into K types. There are a given
number of instances for each type of service chains in each data
center. Provisioning such service chain instances at different
data centers incurs different costs, as servers in different data
centers have different amounts of energy consumptions [21],
[22], [23], [24]. Furthermore, data transfers at each link e ∈ E

incur transmission delays. Let de be the delay of implementing
a unit packet along link e. Figure 1 is an example of a software-
defined network.

Fig. 1. An NFV-enabled network G with a set DC = {DC1, DC2, DC3}
of data centers that are connected by a set V = {v1, v2, v3} of switches.

B. Service chains, user requests, and SLA requirements

We consider K types of service chains with each type
of service chains having a different sequence of VNFs. We
assume that the number of instances for each type of service
chains has been instantiated at each data center DCi, and these
instances can be reused by later requests. Let SCk

i be the set
of instances of type-k service chains at data center DCi, and
denote by |SCk

i | the number of instances of a type-k service
chain at DCi with 1 ≤ k ≤ K. Following existing studies [3],
[8], we assume that each instance SCk

i of a type-k service
chain in data center DCi represents an atomic network service.
Therefore, each service chain instance is allocated with enough
computing resources that can process a minimum packet rate
ρ, and different instances of the same type in DCi can be
composed together to handle requests with higher packet rates.

We consider a request rj that routes packets from a source
node sj to a destination node tj with a given packet rate ρj ,
such that its traffic passes through one instance of a type-
k of service chains. Furthermore, request rj usually has an
end-to-end delay requirement that specifies the maximum time
experienced by its traffic from the source node to the destination
node in terms of both the processing delay at a data center
and the transfer delay at links. Let Dj be the end-to-end delay
requirement of rj . Assuming an instance SCk

i of type-k service
chains at data center DCi is assigned to process the traffic of
rj , then the delay experienced by rj from sj to tj consists of
the transfer delay d(sj , DCi) from sj to DCi, the processing
delay d(SCk

i) by instance SCk
i at data center DCi, and the

transfer delay d(DCi, tj) from DCi to tj . The end-to-end
delay requirement Dj of rj is

d(sj , DCi) + d(SCk
i) + d(DCi, tj) ≤ Dj , (1)

For simplicity, rj is represented by rj = (sj , tj ;SC
k, ρj , Dj)

C. Cost model

Cloud service providers provide network services on a pay-
as-you-go basis [21], [22], [23], [24], and aim to maximize
their profits through minimizing the cost of implementing
requests. Specifically, the implementation cost of request rj =
(sj , tj ;SC

k, ρj , Dj) consists of the cost of computing resource
consumption, i.e., the use of an instance of type-k service
chains at a data center DCi, and the communication cost
of transferring its traffic from sj to the data center DCi for

IEEE ICC 2017 SAC Symposium SDN & NFV Track

processing then transferring the processed data from DCi to
its destination tj . Let c(SCk

i) be the cost of implementing an
instance of a type-k service chain of rj in DCi, and c(e) be
the cost of transferring a unit packet rate for request rj through
link e ∈ E. To utilize bandwidth resources in an economical
way, we assume that the traffic of request rj is routed via
shortest paths from its source to the chosen data center DCi

and from DCi to its destination tj , i.e., psj ,DCi and pDCi,tj .
Then, the implementation cost c(rj) of rj in the network is

c(rj) = min
1≤i≤|DC|

{ρj
(
c(SCk

i)+
∑

e∈psj,DCi

c(e)+
∑

e∈pDCi,tj

c(e)
)
},

(2)
where py,z is the shortest path in G from node y to node z,
and ρj is the packet rate of request rj .

D. Problem definition

Given a network G = (V ∪DC, E), let R be a set of requests
with each being represented by rj = (sj , tj ;SC

k, ρj , Dj)). The
throughput maximization problem in G is to admit as many
requests in R as possible while minimizing the accumulative
implementation cost of all admitted requests, subject to network
resources capacity constraints.

The decision version of the throughput maximization prob-
lem is NP-Complete, by a polynomial time reduction from the
partition problem [5]. Specifically, given a set S of positive
integers, the partition problem is to decide whether the integers
in S can be partitioned into two subsets S1 and S2 such that the
sum of the numbers in S1 equals the sum of the numbers in S2.
Given any instance of the partition problem, we can construct
a special case of the throughput maximization problem in a
network G without considering implementation costs and end-
to-end delay requirements of users, by adding a request for
each integer in S with packet rate as the value of the integer
and including two data centers with equal numbers of instances
of a single type of service chains that can process a total packet
rate that equal to the half of the sum of the integers in S. A
solution to the partition problem will return a feasible solution
to the throughput maximization problem, without taking into
account the implementation costs and request end-to-end delay
requirements.

IV. ALGORITHM WITH IDENTICAL PACKET RATES

We consider the problem when all requests have identical
packet rates ρ by devising an optimal algorithm.

A. Overview of the algorithm

Assuming that each request rj with the minimum packet rate
ρ denotes that one instance of its required type-k service chain
is enough to process its traffic. Maximizing the throughput of
network G thus is to admit as many requests as possible,
by assigning each admitted request rj to one instance of

its type-k service chain, without violating the number |SCk
i |

of instances of a type-k service chain at data center DCi.
The basic idea of the proposed algorithm is to transfer the
throughput maximization problem in G into the minimum-cost
maximum flow problem in an auxiliary graph G′ = (V ′, E′).
The solution to the latter in turn will return a feasible solution
to the former.

B. Algorithm

Given a set R of requests to be admitted by G, we now
construct the auxiliary graph G′ = (V ′, E′) as follows.

We first construct the node set V ′ of G′. For each data center
DCi, we add K service chain nodes into V ′ with each service
chain node SCk

i corresponding the set of instances of type-k
service chains, i.e., V ′ = V ′ ∪ {SCk

i | 1 ≤ k ≤ K, and 1 ≤
i ≤ |DC|}. For each request rj ∈ R, a request node rj is
added into V ′ too, i.e., V ′ = V ′ ∪{rj}. Furthermore, a virtual
source s0 and a virtual sink t0 is added into V ′.

We then add edges into set E′ of G′, and set edge capacities
and costs. There is a directed edge from the virtual source s0 to
each request node rj , i.e., E′ = E′∪{〈s0, rj〉 | 1 ≤ j ≤ |R|};
its cost is set to zero, and capacity is set to 1. Also, there is
a directed edge 〈rj ,SCk

i 〉 in E′ from each request node rj
to a service chain node SCk

i if the sum of the transfer delay
from its source sj to DCi, the process delay at DCi, and the
transfer delay from DCi to tj meets the delay requirement

Dj of request rj . The cost of edge 〈rj ,SCk
i 〉 is set to the

implementing cost of request rj at DCi, i.e., c(〈rj ,SCk
i 〉) =

ρ(
∑

e∈psj,DCi
c(e)+

∑
e∈pDCi,tj

c(e)+c(SCk
i)). The capacity

of edge 〈rj ,SCk
i 〉 is set to 1. In addition, there is an edge

〈SCk
i , t0〉 from each type of service chain node SCk

i to the
virtual sink t0. Its cost is zero, and its capacity is set to |SCk

i |,
i.e., the number of available instances of a type-k service chain
in DCi. Fig. 2 illustrates an example of G′.

s0 t0

r1

r2

r3
2

2

2

Fig. 2. A constructed auxiliary graph G′ based on a network with two data
centers DC1 and DC2 and three requests to be admitted, i.e., r1, r2, and r3,
where requests r1, r2, and r3 require instances of type 1, 2, and 3 service
chains, respectively, and DC2 is too far from the source of r1 to meet its
delay requirement.

Having constructed the auxiliary graph G′, the problem then
is to find an integral minimum-cost maximum flow f in G′
from s0 to t0 without violating the capacity constraints of
edges in G′. The detailed algorithm is given in Algorithm 1.

C. Algorithm analysis

We now analyze the performance of the proposed algorithm.

Theorem 1. Given a network G(V ∪ DC, E) with a set V of
switch nodes, a set DC of data centers that are interconnected
by switches, a set R of requests that have identical packet
rates ρ, and a set SCk

i of instances of a type-k service chain
at data center DCi, there is an algorithm for this special case
of the throughput maximization problem, i.e., Algorithm 1,
which delivers an optimal solution.

Proof. We first show that the algorithm delivers a feasible
solution. This is to show a minimum cost maximum flow

IEEE ICC 2017 SAC Symposium SDN & NFV Track

Algorithm 1 Optimal
Input: A network G(V ∪ DC, E), a set R of requests, an identical atomic

packet rate ρ of all requests in R, and a set SCk
i of instances of type-k

service chains in each data center DCi ∈ DC.
Output: Admit or reject each request in R, and an assignment of admitted

requests to instances of service chains in data centers in DC.
1: Construct an auxiliary graph G′ = (V ′, E′) from network G(V ∪DC, E),

by adding a virtual source s0, a virtual sink t0, a request node rj for each

request in R, and a service chain node SCk
i for instances of a type-k

service chain in each data center DCi, and adding an edge from s0 to
each request node rj , an edge from each request node rj to a type-k
service chain node SCk

i if the delay requirement of rj can be met, an

edge from each service chain node SCk
i to virtual sink t0;

2: Set edge costs and capacities for each edge in E′, by setting the capacity
of the edge from each request node rj to each service chain node SCk

i ,

i.e., 〈rj ,SCk
i 〉, to 1, the capacity of edge from each service chain node

SCk
i to its corresponding data center node DCi to |SCk

i |, and the capacity
of edge from each data center node DCi to t0 to |R|. The cost of edge
〈rj ,SCk

i 〉 is set to ρ(c(SCk
i)+

∑
e∈psj,DCi

c(e)+
∑

e∈pDCi,tj
c(e)),

and the cost of edge 〈SCk
i , t0〉 is set to 0, and its capacity is set to |SCk

i |;
3: Find a minimum cost maximum flow f in the auxiliary graph G′ by

applying the algorithm in [1];
4: The requests that are assigned into service chain node SCk

i in the flow f
will be processed by an instance of a type-k service chain in data center
DCi;

5: All other requests that are not assigned in flow f will be rejected;
6: return The assigned service chain for each admitted request, and requests

that are rejected.

f from s0 to t0 in G′ corresponds a feasible assignment of
requests to data centers in DC, and the delay requirement
of each admitted request is met. Since the capacity of edge
〈SCk

i , DCi〉 is set to |SCk
i | that is the number of available

instances of type-k service chains in DCi, each of the requests
that are assigned to SCk

i in flow f will have an instance
to process its traffic. In addition, it is clear that the delay
requirement of an admitted request will be met, because there
will not be an edge from a request node rj to a data center
that cannot meet its delay requirement in G′.

We then show that the algorithm delivers an optimal solution
in polynomial time. The edge capacities of the constructed
auxiliary graph G′ are integral values. Following the well-
known integrality property for the minimum-cost maximum
flow problem [1], there is an integral minimum-cost maximum
flow f , which can be found in polynomial time. That is, for
each request node rj and each service chain node SCk

i at data

center, the flow frj ,SCk
j

from rj to SCk
j is either 0 or 1, as the

capacity of edge 〈rj ,SCk
j 〉 is 1.

V. APPROXIMATION ALGORITHMS WITH DIFFERENT

PACKET RATES

We now consider the throughput maximization problem
where different requests may have different packet rates. We
first devise an approximation algorithm for the problem by
assuming that the total packet rate of the requests is no larger
than the one that can be processed by the available instances
of service chains of all data centers, that is

∑
rj∈R ρj ≤∑

DCi∈DC,1≤k≤K |SCk
i | · ρ, if the traffic of each request

is splittable. Otherwise, we propose another approximation
algorithm by extending the proposed approximation algorithm.

A. Approximation algorithm with splittable traffic
The basic idea of the algorithm is that we first treat each

request into a number of virtual requests with each having a

Algorithm 2 Appro-Split
Input: A network G(V ∪ DC, E), a set R of requests with each request rj

having a packet rate ρj , a set SCk
i of instances of type-k service chains

at each data center DCi ∈ DC, and the minimum packet rate ρ that can
be processed by each service chain instance.

Output: Admit or reject each request in R, and an assignment of admitted
requests to instances of service chains in the data centers in DC.

1: Let ρmax and ρmin be the maximum and minimum packet rates of all
requests in R, respectively;

2: Assume that ρ = ρmin;
3: Divide each request rj ∈ R into γj (=

ρj
ρ

) virtual requests

r′j1, r′j2, ..., r′jγj
with each virtual request having a packet rate of

ρ, assuming that ρj is dividable by ρ;
4: Construct an auxiliary graph G′′ = (V ′′, E′′) following the construction

procedure of algorithm 1, i.e., steps 1 and 2 in algorithm 1.
5: Set the capacities for edges 〈s0, rj〉 and 〈rj ,SCk

i 〉 to γj , and the
capacities, costs of all other edges are the same as those in G′;

6: Find a minimum-cost multicommodity flow f ′ from s0 to t0 in G′′ by
invoking the algorithm due to [6], by considering each rj as a commodity
with demand γj that needs to be routed from s0 to t0 in G′′;

7: For each request rj , its traffic may be processed by its required instances
in multiple data centers, if its demand is routed into multiple data centers
in flow f ′;

8: return The assigned service chain for each admitted request, and the
requests that are rejected.

minimum packet rate ρ, and then transfer the problem into a
minimum-cost multicommodity problem in an auxiliary graph
G′′ = (V ′′, E′′). The construction of G′′ is similar to the
auxiliary graph G′ = (V ′, E′) in Section IV, with slightly
different edge capacity settings.

We now detail the approximation algorithm. Let ρmax and
ρmin be the maximum and minimum packet rates of requests
in R, respectively. Without loss of generality, we assume that
γ = ρmax

ρmin
is a given constant and the packet rate ρj of request

rj is dividable by rmin. We further assume that ρ = ρmin.
We then treat each request into multiple virtual requests with
each having a minimum packet rate ρ, by treating each request
rj as γj (=

ρj

ρ) virtual requests r′j1, r′j2, ..., r′jγj
with each

virtual request having a packet rate of ρ.
We then construct the auxiliary graph G′′(V ′′, E′′), by letting

V ′′ = V ′ and E′′ = E′. The only difference between G′′ and
G′ is the capacities for edges 〈s0, rj〉 and 〈rj ,SCk

i 〉, which
are both set to γj . The capacity and cost settings for all other
edges are the same as those in G′.

Given the constructed auxiliary graph G′′, we consider each
request rj as a commodity with demand γj that need to be
routed from s0 to t0 in G′′. We then find a minimum-cost
multicommodity flow f ′ in G′′, by using the fast approximation
algorithm due to Garg and Könemann’s algorithm [6]. The
obtained flow f ′ corresponds to a splittable assignment of
the virtual requests of each request into the data centers in
network G. The details of the proposed algorithm is shown in
Algorithm 2.

B. Approximation algorithm with unsplittable traffic
If the traffic of each request is not splittable, the solution

delivered by Algorithm 2 is infeasible, since the virtual
requests of each request may be assigned to different data
centers for processing. To modify the solution to make it
feasible, we perform adjustments such that the traffic of each
admitted request is implemented by its service chain in a single
data center. This however may violate the number of instances
of service chains in that data center. To avoid such violations,

IEEE ICC 2017 SAC Symposium SDN & NFV Track

Algorithm 3 Appro-Unsplit
Input: A network G(V ∪ DC, E), a set R of requests with each request rj

having a packet rate ρj , a set SCk
i of instances of type-k service chains

at each data center DCi ∈ DC, and the minimum packet rate ρ that can
be processed by each service chain instance.

Output: Admit or reject each request in R, and an assignment of admitted
requests to instances of service chains in the data centers in DC.

1: Invoke Algorithm 2 to obtain a solution that may assign the virtual
requests of each request rj into multiple data centers for processing;

2: For each request rj , let DC1, ..., DCl, ..., DCL be the L data centers
to which its virtual requests are assigned. Denote by DCl0 be the data
center that is assigned with the highest number of virtual requests of rj ;

3: Move the virtual requests of rj that are assigned to other data centers to
data center DCl0 ;

4: return The assigned service chain for each admitted request, and the
requests that are rejected.

we can scale down the number of available instances of a type
of service chain in each data center DCi ∈ DC by a factor,
and then apply Algorithm 2 and later adjustment. The detailed
algorithm description is given below.

We first scale down the number of instances of type-k
service chains at each data center DCi by |DC|, that is the

number of instances in set SCk
i is

⌊ |SCk
i |

|DC|
⌋
. We then apply

Algorithm 2. To obtain a feasible solution from the one
obtained by Algorithm 2, we modify the solution by merging
the virtual requests derived from a single request to one of
their assigned data centers. Specifically, for each request rj
whose virtual requests are assigned to multiple data centers.
Let DC1, ..., DCl, ..., DCL be the L data centers to which
the virtual requests of rj are assigned, where 2 ≤ l ≤ |DC|.
Denote by DCl0 be the data center with the maximum number
of virtual requests of rj . We merge the virtual requests assigned
to other data centers to the ones in data center DCl0 . The
proposed approximation algorithm is described in Algorithm 3.

C. Algorithm analysis

We now analyze the performance of algorithms 2 and 3.

Theorem 2. Given a network G(V ∪ DC, E) with a set R of
requests with each having a packet rate of ρj , and a set SCk

i

of instances of type-k service chains with each being able to
process a minimum packet rate ρ, assume that the ratio of the
maximum packet rate ρmax and minimum packet rate ρmin

of all requests is a given constant and ρ = ρmin. There is
an approximation algorithm for the throughput maximization
problem, i.e., Algorithm 2, that delivers a feasible solution
with a throughput being (1− 3ε) times of the optimal while
the implementation cost is optimal, in time O∗(K2|DC|2|R|2+
(|V |+ |DC|)2)1, where ε is the accuracy parameter in Garg
and Könemman’s algorithm with 0 < ε ≤ 1/3.

Proof. Clearly, the solution obtained is feasible if the traffic
of each request rj is allowed to be split into different data
centers, following Theorem 1. In terms of the approximation
ratio, since the solution obtained by Garg and Könemman’s
algorithm directly translates into a feasible solution to the
throughput maximization problem, the approximation ratio
thus is the same as the Garg and Könemman’s algorithm, i.e.,
at least 1− 3ε times of the optimal [6].

1O∗(f(n)) = O(f(n) · logO(1) n)

We now analyze the running time of the proposed algorithm.
It can be seen that the algorithm consists of two phases: (1) the
construction of auxiliary graph G′′, and (2) invoking Garg and
Könemman’s algorithm. Phase (1) takes O(|V ∪ DC|2) time,
while phase (2) takes O∗(ε−2m(n+m)) time [6], where m =
|E′′| and n = |V ′′|, while |V ′′| = |R|+ (K +1)|DC|+2 and
|E′′| = O(|R|(1+K|DC|)+(K+1)|DC|) = O(K ·|R|·|DC|)
, the running time of Algorithm 2 thus is O∗(K2|DC|2|R|2 +
(|V |+ |DC|)2).

Theorem 3. Given a network G(V ∪ DC, E) with a set R of
requests with each having a packet rate of ρj , and a set SCk

i

of instances of type-k service chains with each being able to
process a minimum packet rate ρ, assume that the ratio of the
maximum packet rate ρmax and minimum packet rate ρmin

of all requests is a given constant and ρ = ρmin. There is
an approximation algorithm for the throughput maximization
problem, i.e., Algorithm 3 that delivers a solution that achieves
a throughput of at least 1−3ε

|DC| times of the optimal with the
implementation cost being no more than |DC| times of the
optimal, where |DC| can be considered as a given constant
with |DC| � |V |.
Proof. Clearly, the solution is feasible, as (1) each admitted
request is assigned to an instance of its type of service chains,
and (2) its end-to-end delay requirement is met, following
similar derivation in Theorem 1.

We now show the approximation ratio on the throughput
of Algorithm 3. Since the available number of each type of
service chain at a data center is scaled down by a factor of
|DC|, it is clear that the throughput achieved by Algorithm 3

is no less than
(1−3ε)
|DC| times of the optimal.

We finally analyze the approximation ratio on the implemen-
tation cost of the solution by Algorithm 3. Denote by c the
implementation cost by Algorithm 3 of all admitted requests,
and cj the implementation cost of request rj . Let c′ be the
implementation cost due to Algorithm 2 by treating rj as
� ρj

ρmin
	 number of virtual requests. Note that c is achieved

by merging the virtual requests of rj that are assigned to
different data centers. Specifically, if the virtual requests of
rj are assigned to data centers DC1, ..., DCl, ..., DCL, all
other virtual requests are assigned to data center DCl0 that is
assigned with the highest number of virtual requests. Let c′kl
be the implementation cost of the virtual requests assigned to

service chain SCk
l at data center DCl. Clearly,

∑L
l=1 c

′k
l > ckl0 .

After moving all virtual requests to DCl0 , the implementation
cost of a unit packet rate will be the same as that of DCl0 ,
while the cost ckl will depend on how many virtual requests are
moved from DCl to DCl0 . In the worst case there are γ

L < γ
2

virtual requests in data center DCl that are moved to DCl0 ,
since 2 ≤ L ≤ |DC|. Therefore, ckl ≤ ckl0 . This means that
the implementation cost cj of rj at DCl0 , can be maximally
L · ckl0 < |DC| · ckl0 , i.e., cj < |DC| · ckl0 . We then have

c′ =
∑
rj∈R

L∑
l=1

c′kl ≥
∑
rj∈R

ckl0 , since

γj∑
l=1

c′kl > ckl0 ,

>
∑
rj∈R

cj
|DC| , since cj < |DC| · ckl0 , ≥ c

|DC| . (3)

IEEE ICC 2017 SAC Symposium SDN & NFV Track

In other words, we have c ≤ |DC|c′, meaning that the
implementation cost of admitted requests will be no greater than
|DC| times of the cost by the solution achieved through treating
each request rj as γj virtual requests. Let c∗ be the optimal
cost of the optimal solution to the throughput maximization
problem. Denote by c′∗ the optimal cost of the solution by
treating each request as a number of virtual requests. According
to Theorem 2, we have c′ = c′∗. Clearly, c′∗ < c∗ as each
virtual request of a request is moved to the service chain with
the maximum implementation cost of all the virtual requests.
We thus have c ≤ |DC|c′ = |DC|c′∗ < |DC|c∗. This means
that the implementation cost of the solution by Algorithm 2 is
no more than γ times of the cost of the optimal solution.

VI. SIMULATIONS

In this section, we evaluate the performance of the proposed
algorithms through experimental simulations.

A. Experiment Settings
We consider networks that are generated by the tool GT-

ITM [7]. The transmission delay of a link varies between 2
milliseconds (ms) and 5 ms [11]. The costs of transmitting
and processing 1 GB (approximately 16,384 packets with each
having size of 64 KB) of data are set within [$0.05, $0.12]
and [$0.15, $0.22], respectively, following typical charges
in Amazon EC2 with small variations [2]. We consider five
categories of network functions: Firewall, Proxy, NAT, IDS,
and Load Balancing (LB). The processing delay of a packet
for each network function is randomly drawn from 0.045 ms
to 0.3 ms [14], and the processing delay of a service chain
instance is the total processing delay of its network functions,
where each service chain instance has at most five network
functions. The number of service chain types K is 5. The
number of each type of service chains in a data center is
randomly drawn from [10, 50]. The minimum packet rate of
a service chain instance is set to 400 packets/second [14].
Each request rj ∈ R is generated as follows, given a network
G = (V ∪ DC, E), two nodes from V are randomly drawn
as its source sj and destination tj . Its packet rate ρj is
randomly drawn from 400 to 4, 000 packets/second [12], the
delay requirement varies from 10 ms to 100 ms [16], and its
type of service chains is randomly assigned from one of the
five types. The running time is obtained based on a machine
with a 3.40GHz Intel i7 Quad-core CPU and 16 GiB RAM.
Unless otherwise specified, these parameters will be adopted
in the default setting.

We compare the proposed algorithms with a greedy algorithm
that aims to maximize the throughput by admitting requests
with small packet rates first. Specifically, the greedy algorithm
first sorts the requests in increasing order of their packet rates.
It then assigns the requests one by one, through implementing
each request in a data center that not only meets its delay
requirement but also has the maximum number of available
service chain instances. For simplicity, we refer to this greedy
algorithm as algorithm Greedy.

B. Performance evaluation with identical packet rates
We first study the performance of algorithms Optimal and

Greedy by varying the number of switches |V | of network

50 100 150 200 250
Network size

500

600

700

800

900

1,000

T
hr

ou
gh

pu
t

Optimal
Greedy

(a) Throughput

50 100 150 200 250
Network size

6

8

10

12

14

16

18

20

C
os

t

Optimal
Greedy

(b) Cost

50 100 150 200 250
Network size

0

50000

1e+05

1.5e+05

2e+05

2.5e+05

3e+05

R
un

ni
ng

 ti
m

e

Optimal
Greedy

(c) Running time

Fig. 3. The performance of algorithms Optimal and Greedy.

G from 50 to 250, fixing the switch-to-datacenter ratio
|V |
|DC|

at 10. Fig. 3 shows the results, and from Fig. 3 (a) and 3 (b)
we can see that algorithm Optimal achieves a throughput
at least 30% percent more than that by algorithm Greedy,
while Optimal has a higher implementation cost for all the
admitted requests. The reason is that algorithm Greedy selects
the data center with the most available number of service chain
instances, leading to some requests being rejected due to that
their nearby data centers (that can meet delay requirements) do
not have enough available number of service chain instances
to implement the requests. Furthermore, as shown in Fig. 3 (a),
the throughputs by all algorithms increase when the network
size varies from 50 to 150 and then decrease when the network
size is larger than 150. The rationale behind is that, with the
increase of network size, more service chain instances will
be available to admit more requests as more data centers will
be available; however, when the network size keeps growing,
each request with higher probabilities of being implemented in
longer paths with more links, thereby increasing the probability
of being rejected due to the violation of its delay requirement.
In addition, it can be seen from Fig. 3 (c) that algorithm
Optimal takes more time than that by algorithm Greedy to
deliver a much better solution.

C. Performance evaluation with different packet rates

We first study the performance of algorithms
Appro-Split and Greedy by varying the network
size from 50 to 250 while fixing the switch-to-datacenter
ratio at 10. We can see from Fig. 4 (a) that the number of
requests admitted by algorithm Greedy is around 80% of
that by algorithm Appro-Split while more than 20% cost
spent by algorithm Appro-Split. For example, when the
network size is 100, algorithm Appro-Split admits around
200 more requests than that by algorithm Greedy.

We finally compare the performance of algorithm
Appro-Unsplit with that of algorithm Greedy by varying
network size from 50 to 250 while fixing the switch-to-
datacenter ratio at 10. We can see from From Fig. 5 it can be
seen that algorithm Appro-Unsplit achieves a 15% more
throughput than that by algorithm Greedy. Furthermore, by

IEEE ICC 2017 SAC Symposium SDN & NFV Track

50 100 150 200 250
Network size

100

200

300

400

500

T
hr

ou
gh

pu
t

Appro-Split
Greedy

(a) Throughputs

50 100 150 200 250
Network size

10

15

20

25

30

35

40

C
os

t

Appro-Split
Greedy

(b) Costs

50 100 150 200 250
Network size

0

20,000

40,000

60,000

80,000

1e+05

R
un

ni
ng

 ti
m

e

Appro-Split
Greedy

(c) Running times

Fig. 4. The performance of algorithms Appro-Split and Greedy.

comparing the performance of algorithm Appro-Split and
algorithm Appro-Unsplit in Fig. 4 and Fig. 5, it can be
seen that algorithm Appro-Split admits more requests than
algorithm Appro-Unsplit.

50 100 150 200 250
Network size

60

80

100

120

140

160

180

200

T
hr

ou
gh

pu
t

Appro-Unsplit
Greedy

(a) Throughputs

50 100 150 200 250
Network size

5

10

15

20

C
os

t

Appro-Unsplit
Greedy

(b) Costs

50 100 150 200 250
Network size

0

50,000

1e+05

1.5e+05

2e+05

R
un

ni
ng

 ti
m

e

Appro-Unsplit
Greedy

(c) Running times

Fig. 5. The performance of algorithms Appro-Unsplit and Greedy.

VII. CONCLUSION

In this paper we investigated the throughput maximization
problem in an NFV-enabled network, where limited numbers
of instances of each type of service chains are instantiated
at its data centers. We first proposed an optimal algorithm
for a special case of the problem where all requests have
identical packet rates. We also devised two approximation
algorithms with provable approximation ratios for the problem
when different requests different packet rates, depending on
whether the traffic of each request is splittable. Experimental
results demonstrated that the performance of the proposed
algorithms outperform a greedy algorithm by achieving at
least 15% more throughput. It must be mentioned that the

proposed algorithms can be easily integrated into network
resource orchestrators as they achieve near-optimal throughput
in a scalable and efficient way.

ACKNOWLEDGEMENT

The work done by Zichuan Xu and Alex Galis in this paper
was partially supported by 5G Exchange innovation project
(https://5gex.tmit.bme.hu) and by SONATA innovation project
(http://sonata-nfv.eu) co-funded by the European Union under
the Horizon 2020 EU Framework Programme.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows: Theory, Algorithms,
and Applications, Prentice Hall, 1993.

[2] Amazon Web Services, Inc. Amazon ec2 instance configuration. https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/ebs-ec2-config.html.

[3] G. Cheng, H. Chen, H. Hu, Z. Wang, and J. Lan. Enabling network function
combination via service chain instantiation. Computer Networks, Vol. 92, pp.396–
407, Elsevier, 2015.

[4] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca. The dynamic
placement of virtual network functions. Proc. of the Network Operations and
Management Symposium (NOMS), IEEE, 2014.

[5] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory
of NP-Completeness. W.H. Freeman, 1997.

[6] N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity flow
and other fractional packing problems. Proc. of FOCS’98, IEEE, 1998.

[7] http://www.cc.gatech.edu/projects/gtitm/.
[8] S. Gu, Z. Li, C. Wu, and C. Huang. An efficient auction mechanism for service

chains in the NFV market. Proc. of INFOCOM’16, IEEE, 2016.
[9] M. Huang, W. Liang, Z. Xu, M. Jia, and S. Guo. Throughput maximization in

software-defined networks with consolidated middleboxes. Proc. of LCN’16, IEEE,
2016.

[10] IHS. http://www.infonetics.com/pr/2015/1H15-Service-Provider-Capex.asp.
[11] S. Knight et al. The internet topology zoo. J. Selected Areas in Communications,

Volume 29, pp. 1765–1775, IEEE, 2011.
[12] Y. Li, L. T. X. Phan, and B. T. Loo. Network functions virtualization with soft

real-time guarantees. Proc. of INFOCOM, IEEE, 2016.
[13] L. Mamatas, S. Clayman, and A. Galis. Information exchange management as

a service for network function virtualization environments. IEEE Transactions on
Network and Service Management, Vol. 13, No. 3, pp. 564-577, IEEE, 2016.

[14] J. Martins et. al. ClickOS and the art of network function virtualization. Proc. of
NSDI ’14, USENIX, 2014.

[15] X. Meng, V. Pappas, and L. Zhang. Improving the scalability of data center
networks with traffic-aware virtual machine placement. Proc. of INFOCOM’10,
IEEE, 2010.

[16] Microsoft. Plan network requirements for Skype for business. https://technet.
microsoft.com/en-us/library/gg425841.aspx, 2015.

[17] Z. A. Qazi, C. C. Tu, L. Chiang, R. Miao, V. Sekar, M. Yu. SIMPLE-fying
middlebox policy enforcement using SDN. Proc. SIGCOMM ’13, ACM, 2013.

[18] L. Qu, C. Assi, and K. Shaban. Delay-aware scheduling and resource optimization
with network function virtualization. To appear in IEEE Transactions on Commu-
nications, IEEE, 2016.

[19] V. Shrivastava, P. Zerfos, K. Lee, H. Jamjoom, Y. Liu, and S. Banerjee. Application-
aware virtual machine migration in data centers. Proc. of INFOCOM’11, IEEE,
2011.

[20] P. Wang, J. Lan, X. Zhang, Y. Hu, and S. Chen. Dynamic function composition
for network service chain: Model and optimization. Computer Networks, Vol. 92,
pp. 408–418, Elsevier, 2015.

[21] Z. Xu and W. Liang. Minimizing the operational cost of data centers via
geographical electricity price diversity, Proc. of 6th IEEE International Conference
on Cloud Computing, IEEE, 2013.

[22] Z. Xu and W. Liang. Operational cost minimization for distributed data centers
through exploring electricity price diversity. Computer Networks, Vol. 83, pp.59-75,
Elsevier, 2015.

[23] Z. Xu, W. Liang, and Q. Xia. Electricity cost minimization in distributed clouds by
exploring heterogeneities of cloud resources and user demands. Proc. of ICPADS’15,
IEEE, 2015.

[24] Z. Xu, W. Liang, and Q. Xia. Efficient embedding of virtual networks to distributed
clouds via exploring periodic resource demands. To appear in IEEE Transactions
on Cloud Computing, Vol.XX, IEEE, 2016.

IEEE ICC 2017 SAC Symposium SDN & NFV Track

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

