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Abstract—Data centers, serving as infrastructures for cloud
services, are growing in both number and scale. However, they
usually consume enormous amounts of electric power, which lead
to high operational costs of cloud service providers. Reducing the
operational cost of data centers thus has been recognized as a
main challenge in cloud computing. In this paper we study the
minimum operational cost problem of fair request rate allocations
in a distributed cloud environment by incorporating the diversity
of time-varying electricity prices in different regions, with an
objective to fairly allocate requests to different data centers for
processing while keeping the negotiated Service Level Agreements
(SLAs) between request users and the cloud service provider
to be met, where the data centers and web portals of a cloud
service provider are geographically located in different regions.
To this end, we first propose an optimization framework for
the problem. We then devise a fast approximation algorithm
with a provable approximation ratio by exploiting combinatorial
properties of the problem. We finally evaluate the performance of
the proposed algorithm through experimental simulation on real-
life electricity price data sets. Experimental results demonstrate
that the proposed algorithm is very promising, which not only
outperforms other existing heuristics but also is highly scalable.

I. INTRODUCTION

With the rapid development of processing and storage tech-

nologies and the success of the Internet, computing resources

have become cheaper, more powerful and more ubiquitous-

ly available than ever before. This technological trend has

enabled the realization of a new computing model called

cloud computing, in which resources (e.g., software, platforms

and infrastructures) are provided as general utilities that can

be leased and released by users through the Internet in an

on-demand fashion. The emergence of cloud computing has

made a tremendous impact on the Information Technology (IT)

industry over the past few years, where large-scale data centers

have been built in different regions by cloud service provider-

s [8], [10]. Although cloud computing benefits users by

freeing them from setting and maintaining IT infrastructures,

it increases the operational cost of cloud service providers due

to the large quantity of electricity consumption. According to a

McKinsey report [11], a typical data center consumes as much

energy as 25,000 households per year, and the electricity bill

for data centers in 2010 is estimated over $11 billion and this

cost is almost doubled every five years, and the electricity cost

by major cloud service providers is 30%-50% percentage of

their total operational cost [15]. To minimize the operational

cost of data centers, lots of efforts have been taken recently,

and different approaches have been developed which include

Dynamic Voltage and Frequency Scaling (DVFS), dynamic

sizing data centers, and exploiting electricity price diversities.

Following the electricity market policies, the electricity prices

vary over time (e.g., they change from every 15 minutes to

every one hour), and usually are determined by the clearing

prices of the current supplies and demands. This creates

an opportunity for cloud service providers to reduce their

operational costs through dynamically allocating user requests

to these data centers with much cheaper electricity at that

moment. However, shifting user requests and the results of

the requests between the web portals and the data centers

consume a large amount of network bandwidth, and the cost of

this bandwidth consumption must be taken into account [21].

In addition to the costs of electricity and network bandwidth

consumption, it is very important for a cloud service provider

to provide quality services in order to avoid the penalties of

unfulfilled SLA agreements, thereby reducing the revenue loss

of the cloud service provider. In this paper we will use the

average service delay of each request as its QoS requirement,

and refer to it as the delay requirement. Specifically, we deal

with a fundamental operational cost optimization problem

in a distributed cloud computing environment with an aim

of maximizing the system throughput while minimizing the

operational cost and satisfying user SLAs, through exploring

electricity price diversities.

The main contributions of this paper are summarized as

follows. We consider minimizing the operational cost of a

distributed cloud service provider whose data centers are ge-

ographically located in different regions. We first formulate a

novel optimization problem, namely the minimum operational

cost problem for fair request rate allocations. We then develop

a combinatorial approximation algorithm with a provable ap-

proximation ratio, by reducing the problem to a minimum cost

multicommodity flow problem. We finally conduct extensive

experiments by simulation to evaluate the performance of the

proposed algorithm, using real-life electricity price data sets.

Experimental results demonstrate that the proposed algorithm

is effective and promising.

To the best of our knowledge, this is the first fast approx-

imate solution to the minimum operational cost problem in

distributed cloud environments by exploiting combinatorial

properties of the problem. The proposed algorithm is not only

highly scalable but also running fast in response to dynamic
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changes of electricity prices and request rates. In contrast,

most existing solutions formulated the problem or the similar

optimization problems as a mixed integer programming (MIP)

and solved the MIP through the randomness rounded technique

or the other heuristics. Thus, the accuracy of their solution is

not guaranteed, or is achieved at the expense of expensive

computation time. For the latter, even such an exact solution

is found, it may not be applicable due to the time-varying

nature of electricity prices and user request rates.

The remainder of the paper is organized as follows. Sec-

tion II briefly introduces related works, followed by in-

troducing the system model, the problem definition, and a

well-known approximation algorithm in Section III. An op-

timization framework and an approximation algorithm for the

problem are proposed in Section IV. Section V conducts

experiments to evaluate the performance of the proposed

algorithm through simulations, and the conclusion is given in

Section VI.

II. RELATED WORK

A global cloud service provider (e.g. Google) usually de-

ploys many data centers in different geographical regions for

resource saving and convenience. To achieve energy efficiency

for such cloud service providers, a promising approach is to

explore the time-varying electricity prices in these regions

where the data centers are located at. However, minimizing

the energy consumption of geographically distributed data

centers is essentially different from that of a single data center,

this poses a new challenge to design efficient algorithms

for energy management in such geographically distributed

data centers, and several efforts have been taken in the past

several years [15], [2], [16], [17], [6], [12], [20], [13], [14].

For example, Qureshi et al. [15] initialized the study by

characterizing the energy expense per unit of computation due

to fluctuating electricity prices. They empirically showed that

the exploration of electricity price diversity may save millions

of dollars per day. Buchbinder et al. [2] considered the energy

optimization through migrating jobs among data centers and

devised an online algorithm to reduce the electricity bill. Guo

et al. [6] made use of the Lyapunov optimization technique

to reduce the electricity bill of data centers, using temporary

energy storages like UPS. Le et al. [12] devised a general

framework to manage the usage of “brown energy” (produced

via carbon-intensive means) and “green” energy (renewable

energy) with the aim of reducing environmental effects on

huge amount of energy consumed by the data centers. Zhang

et al. [20] investigated the problem of geographical request

allocation to maximize the usage of renewable energy under

a given operation budget. Liu et al. [13], [14] dealt with

the energy sustainability of data centers by exploring sources

of renewable energy and geographical load-balancing. They

demonstrated the necessity of the storage of renewable ener-

gies. The most closely related studies to the work in this paper

are due to Rao et. al [17], [16], [18]. They [17], [16] consid-

ered the minimum operational cost problem in distributed data

centers through exploring the diversity of electricity prices,

by formulating the problem as a mixed integer programming

(MIP) and providing a heuristic to the MIP. They also proposed

a flow-based algorithm for the MIP [18].

Most existing studies in literature on geographical request

allocation subject to diverse electricity prices and bandwidth

costs focused on solving a constrained optimization problem

with one or multiple constraints [17], [16], [18], [20]. Howev-

er, finding an exact solution usually takes a much longer time

due to highly computational complexity. The solution based on

the MIP thus is only suitable for a small or medium network

size and not scalable. Even if such a solution is found, it may

not be applicable in the reality due to time varying nature of

both electricity prices and request rates in the system.

III. PRELIMINARIES

In this section we first introduce the system model and

notations. We then define the problem precisely. We finally

introduce a fast approximation algorithm for the minimum cost

multicommodity flow problem which will be used later.

A. System model

We consider a distributed cloud computing environment that

consists of a set of geographically distributed data centers

DC = {DCi | 1 ≤ i ≤ N} and a set of web portals

WP = {WPj | 1 ≤ j ≤ M}. Each data center DCi is

equipped with hundreds of thousands of homogeneous servers

with Ni = |DCi|, and denote by μi the service rate of each

server in DCi for each i, where 1 ≤ i ≤ N . Each web

portal WPj serves as a front-end server that directly receives

requests from the users, performs request rate allocations

to data centers. Each data center and every web portal can

communicate with each other through the Internet. Each user

sends its requests to its nearby web portal and the requests are

then forwarded to different data centers. The requests allocated

to a data center are initially stored in its M/M/n waiting

queue [9] prior to being processed. To respond to time-varying

request rates and electricity prices, the time is assumed to be

slotted into equal time slots. The request rate allocation will

be performed at each time slot.

Let rj ∈ Z be the request rate at web portal WPj at a

time slot t. For the sake of convenience, in this paper we

assume that each time slot is one hour so that the servers in

data centers will not be turned on and off quite often, given

the significant wear-and-tear cost of power-cycling. Associated

with each user request, there is a tolerant delay requirement

which in certain extent represents the negotiated SLA between

the user and the cloud service provider.

Given a data center DCi containing Ni servers with the

average service rate μi per server, denote by rj,i ∈ Z the

request rate from web portal WPj to data center DCi. Let

Pri be the probability of requests waiting in the queue, then

the average delay of a request in DCi is [17], [13], [14]

Di(Ni,
M∑

j=1

rj,i) =
Pri

Niμi −
∑M

j=1 rj,i
, (1)
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where we assume that there always are requests in the waiting

queue of DCi, i.e., Pri = 1. To meet the negotiated SLA of

each request in DCi, the average waiting time of all requests

in it is no greater than the user tolerant delay. Otherwise, it

will incur the late penalty due to the violation of the specified

SLA. Worst of all, the users may no longer use the cloud

service provided by the cloud service provider in the future.

B. Electricity cost model

The electricity markets typically have the structures of both

regulated utility and deregulated wholesale. In the regulated

electricity market, the electricity price is fixed during a day and

may have on-peak and off-peak prices, while in the deregulated

electricity market, the electricity price varies over time. Denote

by pi(t) the electricity price per unit energy at time slot t at

which data center DCi is located. The electricity cost incurred

by data center DCi for the duration of time slot t is determined

by the amount of power it consumed and the electricity price.

Let Ei(t) be the total energy consumption of data center DCi

at time slot t. Assuming that the load among the servers in

each data center is well balanced, Ei(t) thus is proportional

to the energy consumption per request in DCi. Let αi be the

average energy consumed per request in it which is a constant.

Then the power consumption in data center DCi at time slot

t is

Ei(t) = αi

M∑

j=1

rj,i, (2)

and the electricity cost at data center DCi at time slot t is

pi(t)Ei(t) = pi(t)αi

M∑

j=1

rj,i. (3)

C. Network bandwidth cost

Most existing studies assumed that allocating requests to

data centers is transparent and does not incur any cost on

the communication bandwidth usage, as stateless requests

from the web portals normally consist of simple jobs and

can be enclosed by small data packages. However, a cloud

service provider may lease the bandwidth from an ISP for its

data transfer between the web portals and the data centers,

a charge of occupying the bandwidth during the acquisition

or construction phase of communication links (e.g. TCP/IP

links) will be applied [21]. We thus assume that the bandwidth

consumption cost is proportional to the number of requests.

Since the cloud service provider may lease bandwidths with

different data transfer rates between web portals and data

centers according to the request loads at web portals, the

cost of bandwidth consumption by transferring a request from

different web portals is different. Let pbj denote the bandwidth

cost of transferring a single request from WPj to any data

center. Then, the total cost of transferring requests from web

portal server WPj to all data centers is

pbj

N∑

i=1

rj,i. (4)

D. Problem definition

The minimum operational cost problem for fair request rate
allocations for the cloud service provider at time slot t is to

allocate a fractional request rate rj,i ∈ Z from each web portal

WPj to each data center DCi such that the operational cost∑N
i=1 pi(t)αi

∑M
j=1 rj,i+

∑M
j=1 p

b
jrj,i is minimized while the

system throughput
∑N

i=1

∑M
j=1 rj,i is maximized (or equiva-

lently the number of servers ni at each DCi to be switched

on) and all allocated requests are served within their SLAs,

subject to that
∑N

i=1 rj,i ≤ rj and 0 ≤ ni ≤ Ni for all i
and j with 1 ≤ i ≤ N and 1 ≤ j ≤ M . In other words, the

objective is to make each web portal have the same proportion

of number of requests to be served and this proportion λ is as

large as possible while the associated cost is minimized, i.e.,

to maximize
∑M

j=1 λ·rj =
∑N

i=1

∑M
j=1 rj,i where 0 ≤ λ ≤ 1.

E. The minimum cost multicommodity flow problem

Given a directed graph G(V,E;u, c) with capacities u :
E �→ R+ and costs c : E �→ R≥0, assume that there are k
source-destination pairs (si, ti; di) where di is the amount of

demands to be routed from its source node si to its destination

node ti for all i with 1 ≤ i ≤ k. Let B (> 0) be a given

budget and |fi| the amount of flow fi sent from si to ti.
The minimum cost multicommodity flow problem in G is to

find a largest λ such that there is a multicommodity flow fi
routing λ · di units of commodity i from si to ti for each i
with 1 ≤ i ≤ k, subject to the flow constraint and the budget

constraint
∑

e∈E c(e) · f(e) ≤ B, where f(e) =
∑k

i=1 fi(e).
The optimization framework given by Garg and Könemann

is as follows. It first formulates the problem as a linear

programming LP, then finds an approximate solution to the

duality DP of LP that returns an approximate solution to the

original problem. Let Pi be the set of paths in G from si to ti,
and let P = ∪k

i=1Pi. Variable fp represents the flow on path

p ∈ P . The linear programming formulation of the problem

LP is

LP: max λ
s.t.

∑
e∈p fp ≤ u(e) ∀e ∈ E,∑L
i=1

∑
p∈Pi

∑
e∈p(fp · c(e)) ≤ B,∑

p∈Pi
fp ≥ λ · di ∀i, 1 ≤ i ≤ k,

fp ≥ 0 ∀p ∈ P ,

0 ≤ λ ≤ 1.

The dual linear programming DP of LP is described as

follows, where l(e) is the length on every edge e ∈ E and φ
is viewed as the length of the cost constraint B.

DP: min D(l, φ) =
∑

e∈E l(e)u(e) +B · φ,

s.t.
∑

e∈p(l(e) + c(e) · φ) ≥ zi ∀p ∈ Pi,∑k
i=1 di · zi ≥ 1,

l(e) ≥ 0 ∀e ∈ E,

zi ≥ 0 ∀i, 1 ≤ i ≤ k.

Specifically, Garg and Könemann’s optimization framework

for the DP proceeds in a number of phases, while each phase

is composed of exactly k iterations, corresponding to the k
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commodities. Within each iteration, there are a number of

steps. Initially, l(e) = δ
u(e) for each e ∈ E, φ = δ/B,

zi = minp∈Pi
{l(p) + c(p)φ}, where c(p) =

∑
e∈p c(e), δ =

(
1−ε
|E|

)1/ε
, and ε is the increasing step of the length function in

each iteration. In one phase, let i be the current iteration, the

algorithm will route di units of flow of commodity i from si
to ti within a number of steps. In each step, it routes as much

fraction of commodity i as possible along a shortest path p
from si to ti with the minimum l(p) + c(p)φ. The amount

of flow sent on p is the minimum one umin among the three

values: the bottleneck capacity of p, the remaining demand

d′i of commodity i and B/c(p). Once the amount of the flow

umin has been routed on p, the dual variables l and φ are then

updated: l(e) = l(e)(1 + εumin

u(e) ) and φ = φ(1 + εumin·c(p)
B ).

The algorithm terminates when the value of the objective

function D(l, φ) ≥ 1. A feasible flow is finally obtained by

scaling the flow by log1+ε
1
δ [7].

Theorem 1: (see [7]) There is an approximation algorith-

m for the minimum cost multicommodity flow problem in

G(V,E;u, c) with k commodities to be routed from their

sources to their destinations, which delivers a solution with

an approximation ratio of (1−3ε) while the associated cost is

the minimum. The algorithm takes O∗(ε−2m(k +m)) time1,

where m = |E| and ε is a given constant with 0 < ε ≤ 1/3.

IV. AN APPROXIMATION ALGORITHM FOR THE MINIMUM

OPERATIONAL COST PROBLEM

In this section we first propose a novel optimization frame-

work for the minimum operational cost problem. We then

develop a fast approximate solution to the problem based on

the optimization framework, through a reduction to a mini-

mum cost multicommodity flow problem whose approximate

solution will return a feasible solution to the original problem.

A. An optimization framework

Given a distributed cloud computing environment, to allo-

cate user requests from different web portals to different data

centers such that the system throughput is maximized while

the operational cost of processing the requests is minimized.

An auxiliary flow network Gf = (Vf , Ef , uf , cf ) at a time

slot t is constructed as follows. Vf = {DCi | 1 ≤ i ≤
N} ∪ {WPj | 1 ≤ j ≤ M} ∪ {s0, t0} is the set of nodes

and s0 and t0 are the virtual source and destination nodes.

Ef = {〈s0,WPj〉 | 1 ≤ j ≤ M} ∪ {〈WPj , DCi〉 | 1 ≤ j ≤
M, 1 ≤ i ≤ N} ∪ {〈DCi, t〉 | 1 ≤ i ≤ N} is the set of

directed edges.

The capacity and cost of each edge in Ef are defined

in the following. Associated with each edge 〈s0,WPj〉 for

each WPj ∈ WP , its capacity u(s0,WPj) is the number

of requests rj submitted to web portal WPj at time slot t,
and its cost is zero. Associated each edge 〈WPj , DCi〉 for

each WPj ∈ WP and each DCi ∈ DC, its capacity is

infinity and its cost is the cost sum of network bandwidth

consumed between WPj and DCi and electricity consumed

1O∗(f(n)) = O(f(n) logO(1) n)

for processing a request, which is pi(t)αi + pbj . Associated

with each edge 〈DCi, t〉 for each DCi ∈ DC, its cost is

zero, and its capacity u(DCi, t) is the maximum number of

requests that can be processed by DCi at time slot t without

violating the average delay Di of these requests, assuming

that the service rate of each server is μi. The key here is how

to transfer this delay requirement of requests into the edge

capacity that corresponds to the processing ability of DCi.

Notice that the number of requests waiting at the queue of

DCi must be limited, as a longer queue will lead to a longer

waiting time and the average delay constraint Di may not be

met. To prevent this occurs, the number of requests allocated

to DCi,
∑M

j=1 rj,i, must be upper bounded by the following

inequality.
M∑

j=1

rj,i ≤ �Niμi − 1

Di
�, (5)

where Ni is the number of servers used for processing

the requests with the service rate μi. The capacity of edge

〈DCi, t0〉 thus is u(DCi, t0) = �Niμi − 1
Di
� for all i with

1 ≤ i ≤ N . Fig. 1 is an illustration of the flow network Gf .
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Fig. 1. Flow network Gf = (Vf , Ef , u, c).

B. Algorithm
We now propose a fast approximate solution to the mini-

mum operational cost problem in a distributed cloud comput-

ing environment, through a reduction to the minimum cost

multicommodity flow problem in Gf , where there are M
commodities to be routed from their source nodes WPj to

a common destination node t0 with demands rj , represented

by a triple (WPj , t0; rj) for all j with 1 ≤ j ≤ M such

that the system throughput
∑M

j=1 λrj is maximized while the

associated operational cost is minimized, where 0 ≤ λ ≤ 1.
Following Garg and Könemann’s optimization framework

for the minimum cost multicommodity flow problem [7], the

value of λ can be obtained. Meanwhile, a flow fj with value

of |fj | = λ · rj for each commodity j is obtained too. Since

the value |fj | of flow fj is no more than log1+ε
1+ε
δ times the

capacity of the most congested edge in Gf , a feasible flow f ′j
with value of |f ′j | = |fj |

log1+ε
1+ε
δ

is then obtained by scaling flow

f by log1+ε
1+ε
δ for all j, 1 ≤ j ≤ M . Having the feasible

flow f ′(e) at each edge e ∈ Ef , the number of servers to be

switching on in each DCi, ni, can then be determined, which

is ni = 

∑M

j=1 f ′(WPj ,DCi)

μi
+ 1

μiDi
�, while the average delay
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Di of all allocated requests will be met. The minimum cost

for the feasible flow f ′ thus is
∑

e∈Ef
c(e) · f ′(e).

The detailed description of algorithm for the minimum

operational cost problem is given in Algorithm 1.

Algorithm 1 Request Allocations at time slot t
Input: A set of data centers {DCi | 1 ≤ i ≤ N}, a set of

web portals {WPj | 1 ≤ j ≤ M}, request arrival rate

rj at web portal WPj for each j with 1 ≤ j ≤ M , the

set {pi(t) | 1 ≤ i ≤ N} of electricity prices for all data

centers, the set {pbj | 1 ≤ j ≤ M} of bandwidth costs,

and the accuracy parameter ε with 0 < ε ≤ 1.

Output: The minimum operational cost C, the request as-

signment {rj,i | 1 ≤ j ≤ M, 1 ≤ i ≤ N} such

that
∑N

i=1

∑M
j=1 rj,i is maximized and the number of

servers ni (≤ Ni) in each DCi to be switched on, where∑N
i=1 rj,i ≤ rj .

1: Construct an auxiliary flow network Gf , in which there

are M commodities in Gf to be routed from their sources

to the destination t0, {(WPj , t0, rj) | 1 ≤ j ≤M};
2: B ←∑M

j=1 rj · (max1≤i≤N{pi(t)}αi + pbj);
/* The upper bound on the total cost*/

3: Let f ′j be the feasible flow of each commodity j delivered

by applying Garg and Könemann’s algorithm for the

minimum cost multicommodity flow problem to Gf , and

let f ′(e) be the fraction of the feasible flow on each edge

e ∈ Ef ;

4: for each web portal WPj ∈ WP do
5: for each data center DCi ∈ DC do
6: rj,i ← �f ′(WPj , DCi)�;
7: end for
8: end for
9: ni ← 


∑M
j=1 f ′(WPj ,DCi)

μi
+ 1

μiDi
�;

/* the number of servers in DCi to be turned on */

10: C ←∑
e∈Ef

c(e) · f ′(e).

C. Algorithm complexity analysis and correctness

In the following we first show that the average delay of any

request allocated to data center DCi is no greater than Di

for all i with 1 ≤ i ≤ N . We then analyze the performance

and computational complexity of the proposed algorithm as

follows.

Lemma 1: For each request from any web portal allocated

to a data center DCi, then the average delay of the request in

DCi is no more than Di for all i with 1 ≤ i ≤ N .

Proof: Following Eq. (5), the capacity u(ei) for each

edge ei = 〈DCi, t〉 ∈ Ef represents the maximum number of

requests that can be served by DCi while their average delay

requirement Di is met. We show this claim by contradiction.

Let f ′(ei) be the fraction of the feasible flow f ′ on edge

ei, then f ′(ei) ≤ u(ei) = �Niμi − 1
Di
� by flow constraints.

We now assume that at least one request among the f ′(ei)
requests cannot be served by DCi within the delay Di, which

means the average delay of the requests in DCi is strictly

greater than Di when all its servers are switched on, i.e.,

f ′(ei) > u(ei) = �Niμi − 1
Di
�. This contradicts the fact that

f ′(ei) ≤ u(ei) = �Niμi − 1
Di
�, the lemma then follows.

Theorem 2: Given a distributed cloud computing environ-

ment consisting of M web portals and N data centers located

in different geographical regions with time-varying electricity

prices, there is a fast approximation algorithm for the mini-

mum operational cost problem for fair request rate allocations,

which delivers a system throughput no less than (1−3ε) times

the optimum while its cost is the minimum. The algorithm

takes O∗(ε−2M2N2) time, where ε is a given constant with

0 < ε ≤ 1/3.

Proof: Since the auxiliary flow network Gf (Vf , Ef , u, c)
consists of |Vf | = M+N+2 nodes and |Ef | = MN+M+N
edges, the construction of Gf takes O(|Vf | + |Ef |) time.

Following Theorem 1, Garg and Könemann’s algorithm takes

O∗(ε−2M2N2) time to solve the minimum cost multicom-

modity flow problem in Gf where there are M commodities

to be routed from their sources to a common destination t0, and

the solution obtained (i.e., the system throughput) is (1− 3ε)
times the optimum. Thus, Algorithm 1 takes O∗(ε−2M2N2)
time and the solution delivered is (1− 3ε) times the optimum

in terms of the system throughput.

Following the definition of the minimum cost multicom-

modity flow problem, the solution f ′ is a feasible solution to

the minimum cost multicommodity flow problem, and B is

an upper bound on the optimal budget of the problem, thus,

the associated cost for the feasible flow f ′ is the minimum

one. In the rest we show that the cost of f ′ is no more than

the optimal cost C∗ of the optimal flow f∗ for the minimum

operational cost problem as follows.

Let P∗ be the union of sets P∗(WPj , t0), where each

routing path p ∈ P∗(WPj , t0) routes part of the demands

rj from WPj to t0. and let P∗(WPj , t0) be the set of routing

paths of the optimal flow f∗j , then P∗ = ∪M
j=1P∗(WPj , t0).

Let f ′j be the feasible flow obtained by Algorithm 1. Let

P(1)(WPj , t0) be a subset of P∗(WPj , t0) such that the value

of the flow of routing paths in it is equal to |f ′j |, i.e., there

is the same fraction of demands dj as the feasible flow f ′j
routed from WPj to t0. Note that one of the routing paths in

P(1)(WPj , t0) may need to reduce its flow in order to reach

the value |f ′j |. We then have

∑

e∈Ef

f ′(e) · c(e) ≤
M∑

j=1

∑

e∈p∈P(1)(WPj ,t0)

f (1)(e) ∗ c(e), (6)

as the feasible flow f ′ delivered by Algorithm 1 is a

minimum cost multicommodity flow, where |f (1)(e)| is

the sum of flows in ∪M
j=1P(1)(WPj , t0) on edge e ∈

Ef . Meanwhile,
∑M

j=1

∑
e∈p∈P(1)(WPj ,t0)

f (1)(e) · c(e) ≤
∑M

j=1

∑
e∈p∈P∗(WPj ,t0)

f∗(e) · c(e) = C∗, because the left

hand side is part of the right hand side. Thus,
∑

e∈Ef
f ′(e) ·

c(e) ≤∑M
j=1

∑
e∈p∈P(1)(WPj ,t0)

f (1)(e) ∗ c(e) ≤ C∗, and the

cost associated with the feasible flow f ′ is the minimum.
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V. PERFORMANCE EVALUATION

In this section we evaluate the performance of the proposed

algorithm through experimental simulations, using real-life

electricity price data sets.

A. Simulation environment
We consider a cloud environment consisting of five data cen-

ters and six web portals, where each data center hosts 15,000

to 25,000 homogeneous servers with identical operating power

of 350 Watts. The service rate of servers μi in different data

centers are different, which vary from 2.75 to 3.25, while the

bandwidth cost of allocating a request from a web portal to a

data center varies from $0.03 to $0.06 per hour. The maximum

request rates of web portals are from 60,000 to 70,000. Table I

summarizes the properties of the data centers and web portals.

The accuracy parameter ε is set to 0.1. The running time is

based on a desktop with 2.66GHz Intel Core 2 Quad CPU and

8GB RAM. Unless otherwise specified, in the following we

adopt this default setting and refer to the proposed algorithm

as algorithm Fair.

TABLE I
DATA CENTERS AND WEB PORTALS

Data Centers Location Number

of

Machines

Service

rate (reqs

/second)

Operating

Power

(Watts)

DC1 Mountain View,

CA

15,000 2.75 350

DC2 Council Bluffs,

IA

15,000 2.75 350

DC3 Boston, MA 20,000 3 350

DC4 Houston, TX 25,000 3.25 350

DC5 Lenoir, NC 25,000 3.25 350

Web portals Location Maximum

request

rate

Bandwidth cost ($/hr)

WP1 Seattle 70,000 0.05

WP2 San Francisco 70,000 0.04

WP3 Dallas 63,000 0.03

WP4 Chicago 63,000 0.04

WP5 New Mexico 60,000 0.06

WP6 Denver 60,000 0.05
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Fig. 2. Two types of request arrival patterns at each web portal.

The request model: In real applications the request rate of a

web portal during a day usually starts to rise at around 9:00am,

reaching a peak at around 12:00pm and leveling off before

6:00pm. This request arrival pattern is similar to a lognormal

process [1] which is referred to the lognormal request arrival
pattern. However, due to some unexpected social events, a

web portal may receive ‘burst’ requests at a certain time

period. These burst requests usually exceed the processing

capability of data centers, and this request rate may not change

during that time period. We refer to this type of request arrival

pattern as the uniform request arrival pattern. We will evaluate

the performance of the proposed algorithm, using these two

different request arrival patterns as illustrated in Fig. 2. In our

simulation, notice that the curves of request arrival rates from

web portals are shifted according to their time zones.
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Fig. 3. Electricity prices of different data centers in Table I

Electricity prices for data centers: The average electricity

price per hour at each data center is calculated, according to

the raw electricity price data obtained from US government

agencies [4], [5], and the electricity prices at the data centers

are shifted according to their time zones. Fig. 3 depicts the

curves of electricity prices of the five data centers listed in

Table I.

B. Algorithm performance evaluation

We first investigate the operational cost of the solution

delivered by algorithm Fair. The average operational costs

of algorithm Fair during 24 hours are 1,900,490.82 and

3,331,993.98 for the lognormal and uniform request arrival

patterns, respectively. To further investigate whether this cost

C is optimal, we decrease the budget B in algorithm Fair
by a certain percentage β of its current cost C where β varies

from 0.95 to 0.99. With this new budget B′ = β · C, if

algorithm Fair is able to deliver another feasible solution

while maintaining the current system throughput, then the cost

C is not optimal to the problem. Fig. 4 depicts the impact of

β on the system throughput, from which it can clearly be seen

when the budget B is below C, the system throughput drops

below its current level accordingly. Thus, the operational cost

C is optimal.

We then evaluate the performance of algorithm Fair
under both lognormal and uniform request arrival patterns, by

incorporating time varying electricity price diversity. Fig. 5 (a)
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(a) The number of active servers under the log-
normal request arrival pattern
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(b) The number of active servers under the uni-
form request arrival pattern
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Fig. 5. The performance evaluation of algorithm Fair with time-varying electricity prices.
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Fig. 4. The impact of the budget B = β ·C on the system throughput where
C is the cost of the solution by Fair when the budget B ≥ C.

shows that under the lognormal request arrival pattern, al-

though the data center located in Lenoir has a nearly identical

processing capability as that of the data center in Houston,

it contains a fewer servers to be switched on due to the high

electricity price there. However, Fig. 5 (b) indicates that under

the uniform request arrival pattern, almost all servers in all data

centers are to be switched on, as the sum of the number of

requests from all web portals is greater than the aggregative

processing capability of these data centers. Fig. 5 (c) plots that

for both request arrival patterns, the operational costs vary over

time. Particularly, the operational costs are much higher from

10am to 6pm, since the electricity prices during this period

are normally higher than those in other time periods as shown

in Fig. 3.

We thirdly evaluate the system throughput and fairness

provided by algorithm Fair by varying the accuracy pa-

rameter ε from 0.05 to 0.1. Notice that with this setting, all

requests under the lognormal request arrival pattern can be

processed immediately by the data centers as their aggregative

processing capability is much larger than the accumulative

request load from all web portals. The rest thus focuses only

on the performance of algorithm Fair under the uniform

request arrival pattern. To investigate how far the system

throughput delivered by algorithm Fair from the optimal

one OPT , we use the maximum flow in Gf from s0 to t0
as an upper bound on OPT . It must be mentioned that this

upper bound estimation is very conservative because it does

not consider the budget constraint. Fig. 6 (a) plots the curve of

the system throughput while Fig. 6 (b) depicts the throughput

approximation ratio curve by algorithm Fair. From Fig. 6 (b)

it can be seen that the throughput ratio by algorithm Fair is

no less than 0.96 when ε = 0.05, and this value decreases with

the increase of ε. With different accuracy values ε, the running

time of algorithm Fair is different too, which is illustrated

in Fig. 6 (c). Obviously, a larger ε will result in a shorter

running time. Fig. 7 depicts the percentage of numbers of

requests from each web portal WPj allocated to data centers,

λj =
∑N

i=1 rj,i/rj by algorithm Fair under the uniform

request arrival patter. It can be seen that the solution delivered

by the algorithm maintains the request rate fairness among the

web portals.
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Fig. 7. The percentage of numbers of requests from each web portal allocated.

We finally study the scalability of algorithm Fair by

assuming that there is a ‘virtual’ large scale cloud service

provider consisting of from 10 to 20 data centers randomly

deployed in some of 48 potential states in the States and one

data center is deployed in each chosen state. We evaluate the

scalability of algorithm Fair by varying the number of data

centers from 10 to 20 while keeping the request rate of each
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Fig. 6. The performance of algorithm Fair under the uniform request arrival pattern with different accuracy values ε.

web portal unchanged. We set ε to be 0.1. The electricity price

for each data center is randomly selected from a prior given

set of electricity prices. The time zone of each data center

is randomly chosen from GMT-8 to GMT-5. Fig. 8 indicates

that algorithm Fair takes at most 8 seconds and 4 seconds to

find a solution to allocate all coming requests during 24 hours

under both uniform and lognormal request arrival patterns,

respectively.
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Fig. 8. The scalability of algorithm Fair under both lognormal and uniform
request arrival patterns.

VI. CONCLUSION

In this paper, we considered the minimum operational cost

problem for fair request rate allocations in a distributed cloud

service environment, by incorporating time-varying electricity

prices and request rates, for which we first proposed an opti-

mization framework. We then developed a fast approximation

algorithm with a provable approximation ratio. We finally

conducted extensive experiments by simulation to evaluate the

performance of the proposed algorithm, using real-life electric-

ity price data sets. The experimental results demonstrate that

the proposed algorithm is very promising.
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