
QoS-Aware Proactive Data Replication for Big Data Analytics in
Edge Clouds

Qiufen Xia

qiufenxia@dlut.edu.cn

Dalian University of Technology

Dalian, Liaoning, China

Luyao Bai

bailuyao1997@outlook.com

Dalian University of Technology

Dalian , Liaoning, China

Weifa Liang

wliang@cs.anu.edu.au

Australian National University

Canberra, ACT, Australia

Zichuan Xu

z.xu@dlut.edu.cn

Dalian University of Technology

Dalian, Liaoning, China

Lin Yao

yaolin@dlut.edu.cn

Dalian University of Technology

Dalian, Liaoning, China

Lei Wang

lei.wang@dlut.edu.cn

Dalian University of Technology

Dalian, Liaoning, China

ABSTRACT
We are in the era of big data and cloud computing, large quantity

of computing resource is desperately needed to detect invaluable

information hidden in the coarse big data through query evaluation.

Users demand big data analytic services with various Quality of

Service (QoS) requirements. However, cloud computing is facing

new challenges in meeting stringent QoS requirements of users due

to the remoteness from its users. Edge computing has emerged as

a new paradigm to address such shortcomings by bringing cloud

services to the edge of the operation network in proximity of users

for performance improvement. To satisfy the QoS requirements of

users for big data analytics in edge computing, the data replication

and placement problem must be properly dealt with such that user

requests can be efficiently and promptly responded. In this paper,

we consider data replication and placement for big data analytic

query evaluation. We first cast a novel proactive data replication

and placement problem of big data analytics in a two-tier edge

cloud environment, we then devise an approximation algorithm

with an approximation ratio for it, we finally evaluate the proposed

algorithm against existing benchmarks, using both simulation and

experiment in a testbed based on real datasets, the evaluation results

show that the proposed algorithm is promising.

KEYWORDS
Data replication and placement; big data analytics; edge clouds;

query evaluation

ACM Reference Format:
Qiufen Xia, Luyao Bai, Weifa Liang, Zichuan Xu, Lin Yao, and Lei Wang.

2019. QoS-Aware Proactive Data Replication for Big Data Analytics in Edge

Clouds. In 48th International Conference on Parallel Processing: Workshops
(ICPP 2019), August 5–8, 2019, Kyoto, Japan. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3339186.3339207

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICPP 2019, August 5–8, 2019, Kyoto, Japan
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7196-4/19/08. . . $15.00

https://doi.org/10.1145/3339186.3339207

1 INTRODUCTION
Cloud platforms have been receiving ever-growing attentions in

recent years to provide services in a wide range of information tech-

nology (IT) domains, and offer on-demand processing, storage and

bandwidth resources. Many services have been deployed on clouds

and generate big data there, the big data are analyzed to obtain

hidden valuable information for business advantages and decision-

makings. However, cloud computing is facing new challenges in

meeting the quality of service (QoS) requirements of emerging ap-

plications, such as augmented reality, autonomous vehicles, timely

query evaluation for big data analytics, to name a few. We argue

that the most pressing requirement of those emerging applications

is response latency, which is the time duration from submitting a

request to the cloud to receiving the query result by the request user.

The remote cloud data centers are not appropriate for achieving

small response latencies, as it could suffer from limitations due to

high transmission latency and risk of heavy workload as well as

network bottlenecks.

One promising solution to tackle the mentioned challenges is

Edge Computing, which can exploit processing and storage capa-

bilities at the edge of the network as near as possible to end-users.

In this regard, the deployment of edge cloudlets in network access

points can achieve remarkable benefits in terms of low-latency

interactions and economic computing resource. Query evaluation

for big data analytics demands large quantity of computing re-

source and low response latency, by leveraging edge computing

technologies, the response time to big data analytics queries can

be significantly reduced. To this end, an important approach is

to proactively replicate a large dataset to multiple data centers or

cloudlets so that query users can obtain their desired query results

within their specified time duration.

Although data replication and placement can improve system

performance, it does not necessarily imply that more replicas will

lead to better system performance, due to the fact that the mainte-

nance of data consistency between the original dataset and its slave

replicas in the network does incur cost. To maximize the benefit

of query processing and dataset replications, strategic replicating

and placing replicas of each dataset in a two-tier edge cloud is

crucial. One fundamental problem thus is how to place the replicas

of datasets to different data centers or cloudlets in the two-tier

edge cloud so that big data analytics queries can be evaluated, the

https://doi.org/10.1145/3339186.3339207
https://doi.org/10.1145/3339186.3339207

ICPP 2019, August 5–8, 2019, Kyoto, Japan Xia and Bai, et al.

volume of datasets demanded by admitted queries is maximized,

without violating the resource capacity constraints and delay re-

quirements of users. Notice that, one main reason that we aim to

maximize the volume of datasets demanded by admitted queries is

as follows. Cloud service providers such as Amazon offer users a

pay-as-you-go approach for pricing [3], maximizing the volume of

datasets demanded by admitted queries means that users pay more

for evaluating queries to the cloud service providers who can thus

obtain maximum income.

Several studies on data replication and placement have been

conducted in the past [1, 6, 26]. However, most these studies consid-

ered neither data replications of the generated big data [1, 26] nor

QoS requirements of users [1, 6, 26]. In addition, there are several

investigations on query evaluation and data placement [17, 20].

Although some of them considered the data transmission cost, they

did not incorporate the QoS requirements of users [17], or data

replications and placements [20]. In this paper, we study proactive

data replication and placement of query evaluation for big data

analytics in a two-tier edge cloud with the aim to maximize the

volume of datasets demanded by admitted queries while meeting

users’ QoS requirements, subject to various resource capacities on

an edge cloud network.

The main contributions of this paper are as follows.

• We first formulate a novel proactive QoS-aware data repli-

cation and placement problem for big data analytic query

evaluation in a two-tier edge cloud environment. We aim

to maximize the volume of datasets demanded by admitted

queries while meeting users’ end-to-end delay requirements.

• We then propose an efficient approximation algorithm with

provable approximation ratio for the problem through a

primal-dual dynamic update technique.

• We finally evaluate the performance of the proposed algo-

rithm through experimental simulations and in a testbed

using real datasets. The simulation results show that the per-

formance of the proposed algorithm is promising, placing

significantly higher volume of datasets demanded by queries

admitted compared to some existing work.

• To the best of our knowledge, this is the first time that the

proactive QoS-aware data replication and placement prob-

lem for big data analytics query evaluation in two-tier edge

clouds is considered, and an efficient approximation algo-

rithm is devised.

The remainder of this paper is organized as follows. Section 2 in-

troduces the system model and problem definition, followed by an

approximation algorithm for the problem in Section 3. The per-

formance evaluation of the proposed algorithm is conducted in

Section 4. The related work is presented in Section 5, and conclu-

sions are given in Section 6.

2 PRELIMINARIES
In this section, we first introduce the system model. We then give

notations on big data analytics evaluation in the two-tier edge cloud

under QoS requirements of users. We finally define the problem

precisely.

2.1 System model
We consider a two-tier edge cloud G = (BS ∪ SW ∪ CL ∪ DC,E),
which consists of a set BS of base stations through which users

connect to edge cloudlets, a set SW of switches in a Wireless Met-

ropolitan Area Network (WMAN), a set CL of edge cloudlets co-

located with some switches in SW , and a set DC of data centers

located at different geographical locations that are connected to

the WMAN via the Internet to/from gateway nodes in SW .

These edge cloudlets, switches (or access points), and data centers

are inter-connected by a set E of communication links, and e ∈ E is

a link between two cloudlets, two switches, a cloudlet and a switch,

or a gateway node and a data center.

Let CLi be an edge cloudlet in CL, and DCj be a data center

in DC . The computing resource of each edge cloudlet CLi and
each data center DCj can be used for processing data to evaluate

queries, while their storage resource is used to store the query

results and data replicas. The quantity of available computing re-

source of each data center or edge cloudlet is limited, especially

for cloudlets which usually consist of several servers to fit into

small machine rooms located in metropolitan areas. Denote by

B(DCj) and B(CLi) the computing capacities of data center DCj
and cloudlet CLi , respectively. Denote by A(CLi) and A(DCj) the

available computing resources of edge cloudletCLi and data center
DCj at the moment. Evaluating queries of big data analytics in edge

cloudlets and data centers consumes their computing resources.

Let rm be the amount of computing resource allocated to process

a unit data. We do not restrict the capacity of storage resource of

cloudlets and data centers, as the storage resource usually is abun-

dant and inexpensive, compared with the expensive computing

resource [26].

The processing and transmission of data in G consume comput-

ing and bandwidth resources of edge clouds and thus incur process-

ing and transmission delays. Let d(CLi) and d(DCj) be the delays

incurred by processing a unit data per unit computing resource in

cloudlet CLi and data center DCj and dt (e) the transmission delay

on link e ∈ E for transferring a unit data.

For simplicity, let V = {CL ∪ DC}, and each node vl ∈ V
represents either an edge cloudlet or a data center. An example of

a two-tiered edge cloud G is illustrated in Fig. 1.

2.2 Big data processing in the edge cloud
With the wide adoption of cloud services, enterprise users usually

have large scale of legacy services being outsourced to remote data

centers, and these services generate large volume of data from their

outsourced services, such as web logs, click streams, sensory data.

Meanwhile, with the support of network service providers, more

and more cloud services are deployed in edge cloudlets within the

proximity of users to reduce the response time. To obtain valuable

information and interesting patterns from such big data generated

by services deployed at data centers and cloudlets, users may con-

duct analysis on big data that are stored in remote data centers and

edge cloudlets by issuing queries.

Performing big data analytics in remote data centers causes

very high latency, because large volume of intermediate results

generated by processing the big data need to be transferred to

edge cloudlets and join with the intermediate results there, the

QoS-Aware Proactive Data Replication for Big Data Analytics ICPP 2019, August 5–8, 2019, Kyoto, Japan

Figure 1: An example of a two-tier edge cloud G.

delay requirements required by users may be violated ultimately.

Therefore, proactively replicating big data from the remote cloud to

edge cloudlets is an effective way to reduce data transmission delay

and guarantee the timeliness of big data analytics. Meanwhile, the

computing capacity of an edge cloudlet is very limited, it takes long

time to evaluate queries, sometimes the computing resource of an

edge-cloudlet even cannot satisfy the resource demands of big data

query evaluation, so the big data generated in edge cloudlets can be

proactively placed to the remote data centers and processed there,

thereby reducing the processing delay to guarantee the timeline

of queries and satisfying the computing resource requirements of

queries. We thus assume that the big data and their replicas can be

replicated to the edge cloudlets or remote data centers in advance,

such that the delay incurred by the joint analysis of datasets or

transmission of intermediate results is no greater than the delay

requirements of queries.

Let S be the collection of datasets generated by all services in

remote data centers, denote by Sn a dataset inS, where 1 ≤ n ≤ |S|
with |S| representing the number of datasets in S. Denote by qm
a query for big data analytics. Each query qm usually requires to

be evaluated based on a collection of datasets. Let S(qm) be the
collection of datasets required by query qm .

Evaluating a query qm is to abstract the intermediate results

from its requested datasets that possibly are in different data centers

or cloudlets, and aggregate the intermediate results at the home

location of the query. Let hm be the home location of query qm ,

which can be a data center or a cloudlet. Without loss of generality,

we assume that the size of an intermediate result on each dataset Sn
evaluated by query qm is a fraction size αnm of Sn , i.e., αnm · |Sn |,
where αnm is with 0 < αnm ≤ 1 [21] and |Sn | is the volume of

dataset Sn .

2.3 User QoS requirements
As we consider query evaluation for big data analytics within strin-

gent delay requirements, we refer to the delay requirement of a
query as its quality of service (QoS) requirement, where the delay
experienced by the query is defined as the duration from the query

is issued to the evaluation result is received. Since the size of a

query is usually small, the transfer delay of the query from a user

location to the edge cloud network is negligible.

Each query may require multiple datasets or datasets’ replicas

placed at different locations, the processing datasets and trans-

mitting intermediate results can be performed in parallel among

different datasets, therefore the delay experienced by qm demand-

ing multiple datasets is the maximum sum of the delays incurred

in processing a dataset and transmitting the intermediate results

of the dataset in S(qm) accessed by qm , i.e., arдmax{(d(vl) · |Sn | +
dt (pvl ,hm) · |Sn | · αnm)}. Denote by dqm the maximum tolerable

delay of query qm , that is to say, dqm is the QoS in terms of delay

requirement of query qm . To make datasets in the two-tier edge

cloud highly available, reliable and scalable, the datasets usually

have several replicas, while in order to reduce the cost for data

consistency, we thus assume that each dataset Sn has at most K
replicas in the system with K ∈ Z+, the replication of datasets

to data centers or cloudlets are conducted in advance before the

evaluation of queries, and the delay incurred by dataset replications

is not accounted into the QoS requirement of queries.

2.4 Problem definition
Given a collection S of datasets, a set of queries Q = {qm | 1 ≤
m ≤ M} for big data analytics, and a two-tier edge cloud network

G = (BS ∪ SW ∪ V ,E), where V = CL ∪ DC , the computing

resource of each node vl ∈ V is capacitated. Different queries have

different QoS requirements.

The proactive data replication and placement problem for query
evaluation of big data analytics in the two-tiered edge cloud network
G is to place at most K replicas for each dataset Sn ∈ S to cloudlets

or data centers in advance such that the volume of placed datasets

demanded by admitted queries is maximized while meeting the

delay requirements of all admitted queries, subject to the computing

resource capacities on edge cloudlets and data centers, where K is

a given small integer with K ≥ 1.

Here, a query is admitted if the QoS requirement of the query

can be satisfied and the computing capacity of each cloudlet and

data center is not violated, the admitted queries will be evaluated

by the cloudlets or data centers. Notice that, we here only consider

the proactive replication and placement for static data, as for the

dynamic aspect of data, we set a threshold, which is a ratio of the

volume of new generated data to the volume of original data at a

time point. When the ratio of the volume of new generated data

achieves the threshold, an update operation is made between the

original data and its replicas to keep data consistent in the whole

network.

3 AN APPROXIMATION ALGORITHM FOR
PROACTIVE DATA REPLICATION AND
PLACEMENT

In this section, we first give an overview of the proposed algorithm,

we then formulate an Integer Linear Programming (ILP) solution to

the proactive data replication and placement problem for query eval-

uation of big data analytics, and devise an approximation algorithm

with an approximation ratio by the primal-dual dynamic-update

technique, we finally analyze the correctness and time complexity

of the approximation algorithm.

ICPP 2019, August 5–8, 2019, Kyoto, Japan Xia and Bai, et al.

3.1 Algorithm overview
In the proactive data replication and placement, each query can

demand several datasets each time, and a dataset can be demanded

bymultiple different queries at each time. It is NP-hard [5] to find an

optimal solution for the problem. However, for a special case where

each query demands only one dataset, there is an approximation

algorithm based on the primal-dual dynamic-update technique.

Therefore for a general case where each query demands multiple

datasets, we can also get an approximation algorithm by invoking

the proposed approximation algorithm in the special case.

3.2 Integer linear programming
We formulate the problem as an integer linear programming (ILP).

We first define a set of decision variables. Recall that, in the problem,

there are a set Q of queries and a collection S of datasets, these

queries demand datasets for evaluation with different delay require-

ments, some replicas of the datasets should be created and placed at

appropriate locations inG , such that the volume of dataset replicas

demanded by admitted queries is maximized while satisfying the de-

lay requirements of the queries, subject to the capacity constraints

on data centers and edge cloudlets. As maintaining data consistency

between an original dataset Sn ∈ S and its replicas incurs cost, we

assume that each dataset has at most K replicas in the edge cloud.

Therefore, the proactive data replication and placement problem

is equivalent to determining where the replicas of each dataset

should be proactively placed, and which queries should be assigned

to which data centers or edge cloudlets for evaluation. Recall that

V = CL ∪ DC is the set of edge cloudlets and data centers in G,
each location nodevl ∈ V is either an edge cloudlet or a data center,

1 ≤ l ≤ |CL ∪ DC |. We thus use a binary decision variable xnl
indicating whether a replica of dataset Sn is placed at a location

node vl in G. Similarly, we use a binary variable πml to indicate

whether a query qm is assigned to a location node vl to access the

replica of dataset Sn ∈ S(qm). Once a query qm is assigned to a

location node vl where the replicas demanded by qm are placed,

the processed intermediate results will be transferred to the home

location node hm of qm , via a shortest path whose transmission

delay is the minimum one.

We then formulate the objective of the proactive data replica-

tion and placement problem, which is to maximize the volume of

datasets demanded by admitted queries that can be expressed by

maximize
∑

qm ∈Q

∑
vl ∈V

|Sqm | · πml (1)

subject to the following constraints,∑
qm ∈Q

|Sqm | · rm · πml ≤ A(vl),∀ vl ∈ V (2)

πml − xqm l ≤ 0, ∀ qm ∈ Q and ∀ vl ∈ V (3)

|Sqm | · [d(vl) + dt (pvl ,hm) · αqm] · πml ≤ dqm ,

∀ qm ∈ Q , ∀ vl ∈ V (4)∑
vl ∈V

xnl ≤ K , ∀ Sqm ∈ S (5)

πml ∈ {0, 1}, (6)

xnl ∈ {0, 1}, (7)

where Constraint (2) ensures that the computing resource of node

vl allocated to evaluate queries that demand dataset Sqm is no

greater than the available computing resource of vl . Constraint (3)
ensures that only when the dataset Sn required by query qm is

placed at node vl , query qm can then be assigned to vl . Con-
straint (4) guarantees that the delay requirement dqm of each query

qm is met. Constraint (5) ensures that each dataset has at most K
replicas in G.

3.3 An approximation algorithm
We consider the above ILP for the proactive data replication and

placement problem as the Primal problem. We first calculate the

Dual of the Primal, we then devise an approximation algorithm

for the Dual problem. To be specific, we define four dual variables

θl , yml , ηml and µqm , then the dual of the Primal problem can be

formulated as

min
∑
vl ∈V

A(vl) · θl +
∑

qm ∈Q

∑
vl ∈V

dqm · ηml +
∑

qm ∈Q
K · µqm (8)

subject to the following constraints,

|Sqm | · rm · θl + yml + |Sqm | · [d(vl) + dt (pvl ,hm) · αqm]

·ηnl ≥ |Sqm |, ∀ qm ∈ Q and ∀ vl ∈ V (9)∑
Sqm ∈S

µqm −
∑

qm ∈Q
yml ≥ 0, ∀ vl ∈ V (10)

θl ≥ 0, (11)

yml ≥ 0, (12)

ηml ≥ 0, (13)

µqm ≥ 0. (14)

The primal complementary slackness conditions are as follows:

• For each query qm ∈ Q and each node vl ∈ V , if πml > 0

then

|Sqm | · rm · θl + yml + |Sqm | · [d(vl)+

dt (pvl ,hm) · αqm] · ηnl = |Sqm |
(15)

• For each node vl , if xqm l > 0 then∑
Sqm ∈S

µqm −
∑

qm ∈Q
yml = 0 (16)

We apply the complementary slackness approach to the approx-

imation algorithm by defining relaxed complementary slack-
ness. The relaxed primal complementary slackness conditions are

as follows:

• For each query qm ∈ Q and each node vl ∈ V , if πml > 0

then

|Sqm | ≤|Sqm | · rm · θl + yml + |Sqm | · [d(vl)+

dt (pvl ,hm) · αqm] · ηnl ≤ β · |Sqm |
(17)

• For each node vl , if xqm l > 0 then∑
Sqm ∈S

µqm −
∑

qm ∈Q
yml = 0 (18)

QoS-Aware Proactive Data Replication for Big Data Analytics ICPP 2019, August 5–8, 2019, Kyoto, Japan

Algorithm 1An approximation algorithm Appro-S for the proactive
data placement problem where a query demands only one single
dataset each time.
Input: The set Q of queries, the set S of datasets, the set V of

nodes in the two-tier edge cloud.

Output: The maximum volume of datasets demanded by admitted

queries.

1: Q ′ ← ∅ // set of admitted queries ;

2: V ′ ← ∅ //set of nodes where the replicas of the datasets are
placed;

3: S′ ← ∅ // set of placed replicas;

4: θ ← 0, y ← 0,η ← 0,µ ← 0;

5: N ← 0 //the volume of datasets demanded by admitted queries;

6: while each µqm ≤ K or Q ′ , Q do
7: Uniformly increase µqm by 1 in a unit time, that is we create

one replica of dataset Sqm demanded by qm ;

8: Increase yml uniformly, i.e., increase yml by 1 in a unit time.

After a while, Eq. 10 becomes tight, that is

∑
Sqm ∈S µqm −∑

qm ∈Q yml = 0, i.e., µqm − yml = 0 as each query qm only

demands one single dataset Sqm each time;

9: Increase uniformly all θl and ηnl simultaneously, that is in a

unit time θl and ηnl increase 1. After a while Eq. 9 becomes

tight, it means we have yml = |Sqm | − |Sqm | · rm ·θl − |Sqm | ·
[d(vl) + dt (pvl ,hm) · αqm] · ηnl ;

10: Add qm intoQ ′, remove qm fromQ , that isQ ′ ← Q ′∪{qm },
and Q ← Q \ {qm };

11: Add Sqm into S′, i.e., S′ ← S′ ∪ {Sqm };
12: Add vl into V

′
, i.e., V ′ ← V ′ ∪ {vl };

13: Declare that query qm and Sqm are assigned to node vl ;
14: N ← N + |Sqm |;
15: Return N .

Observations: From the dual we can observe the meanings of

dual variables: θl means the computing cost for evaluating qm
on node vl ; yml represents the cost by assigning qm to vl ; ηml
is the cost for satisfying the delay requirement of qm , if qm is

assigned to nodevl ; µqm is the cost for creating a replica of a dataset

demanded by query qm . Based on the observations, for a special

case where a query demands only one single dataset, we can devise

an approximation algorithm that calculates the placed datasets S′

and admitted queries Q ′, and satisfies the delay requirements of

queries. For simplicity, we refer algorithm 1 as Appro-S.
Notice that approximation algorithm Appro-Sworks in a special

case where each query demands only one single dataset. In contrast,

for a general case where each query demands multiple datasets

each time, we can still use algorithm Appro-S to derive another

approximation algorithm, that is once a query demands a dataset

we invoke algorithm Appro-S. The specific algorithm is detailed in

algorithm 2, which is referred as Appro-G.

Theorem 1. The approximation algorithm Appro-S gives an ap-
proximation ratio arдmax(|Q |, |V |/K), the approximation algorithm
Appro-G gives an approximation ratio arдmax(|Q | · |S|, |V | · |S|/K),
where |Q | is the number of queries in the system, |V | is the number

Algorithm 2An approximation algorithm Appro-G for the proactive
data placement problem where a query demands multiple datasets
each time.
Input: The set Q of queries, the set S of datasets, the set V of

nodes in the two-tier edge cloud.

Output: The maximum volume of datasets demanded by admitted

queries.

1: N ′ ← 0 // the total volume of datasets demanded by admitted

queries;

2: N ← 0 // the volume of datasets demanded by admitted queries

in Appro-S;
3: for each qm ∈ Q and each dataset Sn ∈ S(qm) do
4: Invoke algorithm 1 ;

5: N ′ ← N ′ + N ;

6: Return N ′.

of cloudlets and data centers, |S| is the number of datasets, and K is
the maximum number of replicas of each dataset.

Proof. Let θ , y, η and µ be the returned dual-feasible solution.

To prove the approximation ratio, we need to compare the max-

imum volume of datasets demanded by admitted queries of the

approximated solution, which is

∑
qm ∈Q

∑
vl ∈V |Sqm |, to the cost

of the dual feasible solution (θ , y, η and µ), which is

∑
vl ∈V A(vl) ·

θl +
∑
qm ∈Q

∑
vl ∈V dqm · ηml +

∑
qm ∈Q K · µqm .

As described in algorithm Appro-S, after some recurrence, we

have qm and vl which make µqm − yml = 0, based on formula (10)

we have

|Sqm | ≤
(
|Sqm | · rm · θl + µqm+

|Sqm | · [d(vl) + dt (pvl ,hm) · αqm] · ηnl
)
, (19)

then we have∑
qm ∈Q

∑
vl ∈V

|Sqm | ≤∑
qm ∈Q

∑
vl ∈V

|Sqm | · rm · θl +
∑

qm ∈Q

∑
vl ∈V

µqm

+
∑

qm ∈Q

∑
vl ∈V

|Sqm | · [d(vl) + dt (pvl ,hm) · αqm] · ηnl

=
∑
vl ∈V

A(vl) · θl ·

∑
qm ∈Q |Sqm | · rm

A(vl)
+

∑
qm ∈Q∑

vl ∈V
dqm · ηnl ·

|Sqm | · [d(vl) + dt (pvl ,hm) · αqm]

dqm

+
∑

qm ∈Q
K · µqm ·

|V |

K

≤
∑
vl ∈V

A(vl) · |Q | +
∑

qm ∈Q

∑
vl ∈V

dqm · ηnl+∑
qm ∈Q

K · µqm ·
|V |

K
(20)

Therefore, the approximation ratio of algorithm Appro-S ismax{|Q |, |V |K }.
As each query can maximumly demand |S| datasets at each time,

ICPP 2019, August 5–8, 2019, Kyoto, Japan Xia and Bai, et al.

so the approximation ratio of algorithm Appro-G is arдmax(|Q | ·
|S|, |V | · |S|/K). □

4 PERFORMANCE EVALUATION
In this section, we evaluate the performance of the proposed algo-

rithms Appro-S and Appro-G, and investigate the impact of impor-

tant parameters on the algorithmic performance, by both simula-

tions and a proof-of-concept in a real test-bed using real datasets.

4.1 Experimental environment
For simulation, we consider a two-tier edge cloud consisting of 6

data centers, 24 cloudlets and 2 switches, there is a link between

each pair of nodes (data centers, cloudlet, and switches) with a

probability of 0.2, generated by the GT-ITM tool [8]. The delay The

computing capacities of each data center and cloudlet are randomly

drawn from a value interval [200, 700] and [8, 16] units (GHz) [26]

respectively. Each user produces several Gigabytes of data, we thus

emulate the volume of the dataset generated by each user is in the

range of [1, 6] GB [26], and the amount of computing resource

assigned to the processing of 1GB data is a value in the range of

[0.75, 1.25] GHz [2, 4]. The numbers of datasets and queries in

the system are randomly drawn in the range of [5, 20] and [10,

100], respectively. The number of datasets required by the query is

randomly drawn from interval [1, 7]. Taking the transfer delay in

real cables into consideration, the QoS in terms of delay requirement

of each query depends on the size of dataset demanded by the query,

the reason is to avoid some users who demand more dataset require

the same delay as users who demand few dataset. Unless otherwise

specified, we will adopt the default settings in our experiments.

Each value in the figures is the mean of the results by applying

each mentioned algorithm on 15 different topologies of the two-tier

edge cloud.

We evaluate the performance of the proposed algorithms against

two benchmarks. The first benchmark adopts a greedy strategy, it

selects a data center or cloudlet with largest available computing

resource to place a replica of a dataset. If the delay requirement

cannot be satisfied, it then selects a data center or a cloudlet with

the second largest available computing resource to place the replica.

This procedure continues until the query is admitted or there are

already K replicas of the dataset in the system. Another benchmark

is from an existing work [10] that places K replicas for each dataset

at data centers or cloudlets, if the delay requirement of the query

can be satisfied by evaluating the replica at the data center or the

cloudlet. This procedure continues until the query is admitted or

there are already K replicas of the dataset in the system. It then

makes a graph partitioning with maximum volume of datasets

demanded by admitted queries. For simplicity, we refer to the two

benchmarks as Greedy-S and Graph-S for the special case where
each query only demands a single dataset, while for the general

case where each query demands multiple datasets we refer to them

as Greedy-G and Graph-G, respectively.
In addition, we also evaluate the proposed algorithms in a real

testbed. For which, we leased a number of virtual machines from

a cloud service provider DigitalOcean [9]. These virtual machines

are located at geo-distributed locations. A two-tier edge cloud is

deployed by making use of both the leased virtual machines and

local servers, based on which we evaluate the proposed algorithms

against an existing work [13]. The benchmark work first calculates

the popularity of a node (cloudlet and data center) according to

the ratio of the number of dataset replicas on the node to the to-

tal number of dataset replicas of all nodes. It then selects a node

with the highest popularity for each dataset, and places a replica

of the dataset if the delay requirement of a query can be satisfied;

otherwise, if then selects another node with the second highest

popularity to place the replica; this procedure continues until the

query is admitted or there are already K replicas of the dataset.

As we consider the special case where each query only demands

one single dataset and a general case where each query demands

multiple datasets, we thus refer to the benchmark as algorithm

Popularity-S for the special case and Popularity-G for the gen-

eral case for simplicity, respectively.

4.2 Performance evaluation of different
algorithms by simulations

(a) The volume of datasets demanded by admitted

queries.

(b) The system throughput.

Figure 2: The performance of different algorithms Appro-S,
Greedy-S and Graph-S in terms of the volume of datasets
demanded by admitted queries and the system throughput,
where each query demands a single dataset each time.

We first evaluate the proposed algorithm Appro-S against al-

gorithms Greedy-S and Graph-S by varying the network size for

the special case where each query demands a single dataset each

time, in terms of the volume of datasets demanded by admitted

queries and the system throughput which is a ratio of the number

of admitted queries to the total number of queries in the system. It

can be seen from Fig. 2(a) and Fig. 2(b) that the volume of datasets

QoS-Aware Proactive Data Replication for Big Data Analytics ICPP 2019, August 5–8, 2019, Kyoto, Japan

demanded by admitted queries is over 4 times than that by algo-

rithm Greedy-S and 2 times than that by algorithm Graph-S, the
system throughput by Appro-S is 15% higher than that by algo-

rithm Greedy-S and 10% higher than that by Graph-S, respectively.
The rationale behind is that Appro-S places the replicas of datasets

from an overall perspective, it jointly considers data replication

and query assignment by smartly finding appropriate number and

placement locations of replicas for each dataset, it also fully utilizes

the available computing resource and the delay requirements of

queries when placing replicas. Whereas Greedy-S intends to place

a replica at a location with largest available computing resource

while pays less attention to the delay requirement when choosing

locations to place replicas; similarly Graph-S places replicas at lo-
cations under the constraints of location (data center or cloudlets)

capacities and delay requirements of queries, it then use graph

partitioning with maximum volume of datasets demanded by ad-

mitted queries, it thus can better user the resources of locations

compared with Greedy-S but not fully make use of the resources

and admit as many queries as possible compared with Appro − S .
Notice that when the network size is too high, e.g., 200, the system

throughput and volume of datasets demanded by admitted queries

slightly decrease, this is because when the network size is too large,

transmission delay of some paths from evaluation locations to home

locations of queries has a higher probability to increase which may

violate the delay requirements of some queries, thereby reducing

the system throughput and the volume of datasets demanded by

admitted queries.

(a) The impact on the volume of datasets de-

manded by admitted queries.

(b) The impact on the system throughput.

Figure 3: Impacts of the maximum number of datasets de-
manded by each query on the performance by Appro-G,
Greedy-G and Graph-G.

We then evaluate the proposed algorithm Appro-G against al-

gorithms Greedy-G and Graph-G by varying the network size for

the general case where each query demands multiple datasets each

time, in terms of the volume of datasets demanded by admitted

queries and the system throughput. It can be seen from Fig. 3(a)

and Fig. 3(b) that the volume of datasets demanded by admitted

queries is 5 and 1.7 times than those by algorithms Greedy-G and
Graph-G, respectively. The system throughput by Appro-G is 2.1

and 1.5 times than those by algorithms Greedy-G and Graph-G,
respectively. The arguments are the same as that in Fig. 2, we do

not repeat here.

(a) The volume of datasets demanded by admitted

queries.

(b) The system throughput.

Figure 4: The performance of different algorithms Appro-G,
Greedy-G and Graph-G in terms of the volume of datasets
demanded by admitted queries and the system throughput,
where each query demands multiple datasets each time.

Impact of the maximum number of datasets demanded by
each query on the algorithmic performance: We now eval-

uate the impact of the maximum number of datasets demanded

by each query by varying the number from 1 to 6 for the general

case where each query demands multiple datasets each time, on

the performance of algorithms Appro-G, Greedy-G and Graph-G,
in terms of the volume of datasets demanded by admitted queries

and the system throughput. Notice that we did not evaluate the im-

pact of the maximum number of datasets demanded by each query

on the algorithmic performance for the special case, as a query

only demands a single dataset each time for the special case. For

simplicity, we refer to the maximum number of datasets demanded

by each query as F . From Fig. 4(a) we can see that the system

throughput of three algorithms decreases with the growth of F ,

ICPP 2019, August 5–8, 2019, Kyoto, Japan Xia and Bai, et al.

the rationale is that a query could be admitted by the system, only

when the delay for evaluating all datasets demanded by the query

is no greater than the delay requirement of the query, that is to say,

the more number of datasets is demanded by a query, the harder

the QoS requirements of queries would be satisfied, so the harder

the query would be admitted. Although the system throughput

decreases with the growth of F , the volume of datasets demanded

by admitted queries firstly increases with the growth of F from 1 to

5, and then slightly decreases after F = 5. The reason is that before

F = 5, the total number of datasets demanded by admitted queries

increases as queries demand more datasets, however when F is

6, so many queries are rejected by the system due to the violated

delay requirements, the volume of datasets demanded by admitted

queries thus decreases. It can be clearly seen that the volume of

datasets demanded by admitted queries and system throughput by

algorithm Appro-G is higher than those by algorithms Greedy-G
and Graph-G, the reasons are similar those of Figs. 2(a) and 2(b).

(a) The impact of K on the volume of datasets

demanded by admitted queries.

(b) The impact of K on the system throughput.

Figure 5: Impacts of the maximum number K of replicas of
each dataset on the performance by Appro-G, Greedy-G, and
Graph-G in terms of the volume of datasets demanded by ad-
mitted queries and the system throughput.

Impacts of the maximum number K of replicas on the algo-
rithmic performance: We then evaluate the impact of the maxi-

mum number K of replicas of a dataset by varying K from 1 to 7 for

the general case where each query demands multiple datasets each

time, on the performance of Appro-G, Greedy-G and Graph-G in

terms of the volume of datasets demanded by admitted queries and

the system throughput. From Fig. 5(a) and Fig. 5(b) we can see that

the volume of datasets demanded by admitted queries and system

throughput are increasing with the growth of the value of K , the
rationale is that as more replicas of each dataset are placed in the

system, the delay requirements of queries are easier to be satis-

fied, thus the system throughput and volume of datasets demanded

by admitted queries increase. Obviously, the volume of datasets

demanded by admitted queries and system throughput achieved

by Appro-G are significantly higher than those by Greedy-G and

Graph-G. The reason is that Appro-G places the replicas of datasets
from the perspective of all the system to optimize the use of system

resources, it jointly considers data replication and query assignment

by smartly finding appropriate number and placement locations of

replicas for all datasets, it also fully utilizes the available comput-

ing resource and the delay requirements of queries when placing

replicas.

4.3 Performance evaluation in a real test-bed
We now evaluate the performance of the proposed algorithms in

a real testbed that is composed of virtual machines in different

geo-locations that are provided by a cloud service provider, and a

controller that executes the proposed algorithms.

Testbed settings:We lease 20 virtual machines (VMs) from a cloud

service provider DigitalOcean [9], these VMs are located at loca-

tions San Francisco, New York, Toronto, and Singapore. It must

be mentioned that since we focus on the replica placement in a

two-tier edge cloud, we use 4 VMs to represent data centers, and 16

VMs to represent cloudlets in the edge cloud networkG , we also use
a local server as a controller to control the running of algorithms

and 2 switches. Although the scale of each node representing a data

center in this testbed may not be comparable to a large-scale data

center, the implementation can be easily extended to a test-bed

with large-scale data centers. An illustration of the testbed is in

Fig. 6.

Figure 6: The topology of the testbed with leased VMs.

Datasets: The datasets used in the experiment are mobile appli-

cation usage information from 3 million anonymous mobile users

for a period of three months. We divide the data into a number of

datasets according to the data creation time, and randomly distrib-

ute the datasets into the data centers and cloudlets of the testbed.

Big data analytic queries are issued to find some evaluation results:

QoS-Aware Proactive Data Replication for Big Data Analytics ICPP 2019, August 5–8, 2019, Kyoto, Japan

such as the most popular applications, at what time the found ap-

plications would be used, and the usage pattern of some mobile

applications, etc.

Results: We first evaluate the performance of the proposed algo-

rithm Appro-S against a benchmark Popularity-S for the special

case where a query demands one single dataset each time by vary-

ing the maximum number of datasets demanded by each query.

Due to page limits, we here put only a set of figures about the

impact of the maximum number F of datasets demanded by each

query on the performance of algorithm Appro-S against benchmark

Popularity-S illustrated in Fig. 7. From Figs. 7(a) and 7(b) we can

see that, algorithm Appro-S outperforms algorithm Popularity-S
by delivering a higher volume of datasets demanded by admitted

queries and system throughput. We can see that the volume of

datasets demanded by admitted queries increases with the growth

of F from Fig. 7(a), and the system throughput decreases as the

value of F increases from Fig. 7(b), the arguments are similar with

those in Figs. 4(a) and 4(b).

(a) The volume of datasets demanded by admitted

queries by Appro-S and Popularity-S on the

real testbed.

(b) The system throughput by Appro-S and

Popularity-S on the real testbed.

Figure 7: The performance evaluation of the proposed algo-
rithm Appro-S against benchmark Popularity-S on the real
testbed for the special case.

We then investigate the performance of the proposed algorithm

Appro-G against benchmark Popularity-G for a general casewhere
each query demands multiple datasets each time, by varying the

number K of dataset replicas. Comparably, because of page limits

and pattern similarity, we here put only one set of figures about

the impact of the maximum number K of replicas of each dataset

on the algorithmic performance. It can be seen from Figs. 8(a) and

8(b) that Appro-G achieves a higher volume of datasets demanded

by admitted queries and a higher system throughput than those

by Popularity-G. The rationale behind is that Appro-G places the

replicas of datasets from the perspective of the whole system by

smartly finding appropriate number and placement locations of

replicas for all datasets, it also fully utilizes the available computing

resource and the delay requirements of queries when placing repli-

cas. The volume of datasets demanded by admitted queries and the

system throughput increase with the growth of K . This is because
as more replicas of each dataset are placed in the system, the delay

requirements of queries are easier to be satisfied, thus the volume

of datasets demanded by admitted queries and system throughput

increase.

(a) The volume of datasets demanded by admitted

queries by Appro-G and Popularity-G on the

real testbed.

(b) The system throughput by Appro-G and

Popularity-G on the real testbed.

Figure 8: The performance evaluation of the proposed algo-
rithm Appro-G against benchmark Popularity-G on the real
testbed for the general case.

5 RELATEDWORK
Several studies on data placement and query evaluation have been

conducted in the past [1, 6, 7, 17, 18, 20, 22–26], and the others

focused on multi-layered network architecture and edge clouds for

dealing with big data [11, 14–16, 27]. Most of these studies either

did not consider data replications of generated big data [1, 11, 14–

16, 20, 26, 27] or ignored the QoS requirement of users [1, 6, 17, 23,

26], or some of them only considered traffic cost while neglecting

other costs [17].

For example, Baev et. al. [6] considered a problem of placing

replicated data in arbitrary networks to minimize the total storage

ICPP 2019, August 5–8, 2019, Kyoto, Japan Xia and Bai, et al.

and access cost. Golab et al. [10] studied a data placement problem

to determine where to store the data and where to evaluate data-

intensive tasks with a goal to minimize the data traffic cost. Kayyoor

et. al [17] addressed a problem of minimizing average query span,

which is the number of servers involved in answering a query. They

ignored other costs and QoS requirements of users [6, 17], and did

not consider data replications [10]. Agarwal et al. [1] proposed a

data placementmechanismVolley for geo-distributed cloud services

to minimize the user-perceived latency. Xia et. al [26] considered a

big data management problem in distributed cloud environments to

maximize the system throughput while minimizing the operational

cost of service providers. No data replications and QoS require-

ments of users are discussed in the two works [1, 26]. Pu et al. [20]
presented a system for low latency geo-distributed analytics, which

used an heuristic to redistribute datasets among the data centers

prior to queries’ arrivals, and placed the queries to reduce network

bottlenecks during the query’s execution. Heintz et al. [12] studied
the tradeoff between the delay and errors of obtained results in

streaming analytics in an architecture consisting of a single center

and multiple edge servers. In the study [20], authors did not con-

sider data replications of datasets. The work in [16] considered a

layered architecture for the satellite-based data center infrastruc-

ture, and big data storage by leveraging such data centers. The

authors [14, 15] studied a service provisioning problem in the edge

cloud network, with an objective to maximize the profit of network

operators. No data replication is considered in these works [14–16].

In contrast, we studied the proactive QoS-aware data replication

and placement problem for query evaluation of big data analytics

in a two-tier edge cloud environment, where the number of replicas

of big datasets should be appropriately determined and the loca-

tions to place the replicas should be strategically selected, with an

objective to maximize the volume of datasets demanded by admit-

ted queries such that the service providers can obtain maximum

benefits by offering a pay-as-you-go pricing approach to process

the datasets, while meeting the QoS requirements of queries and

resource capacity constraints.

6 CONCLUSIONS
In this paper, we studied query evaluation of big data analytics in

a two-tier edge cloud network through efficient and effective data

replication and placement with the aim to maximize the volume

of datasets demanded by admitted queries, subject to computing

resource capacities on data centers and edge cloudlets, while meet-

ing various delay requirements of user queries. To this end, we first

formulated a novel QoS-aware data replication and placement prob-

lem of query evaluation for big data analytics. We then proposed

an efficient approximation algorithm with provable approximation

ratio for the problem. We finally evaluated the performance of the

proposed algorithm through experimental simulations in a real

testbed based on real datasets. Simulation results demonstrate that

the proposed algorithm achieves several times higher volume of

datasets demanded by admitted queries and system throughput

than existing works.

ACKNOWLEDGEMENT
Thework of Qiufen Xia and ZichuanXu is partially supported by the

National Natural Science Foundation of China (Grant No. 61802047,

61802048, 61772113, 61872053), the fundamental research funds

for the central universities in China (Grant No. DUT19RC(4)035,

DUT19RC(5)001, DUT19GJ204), and the “Xinghai Scholar” Program

at Dalian University of Technology, China.

REFERENCES
[1] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan. Volley: au-

tomated data placement for geo-distributed cloud services. Proc. of NSDI, USENIX,
2010.

[2] https://aws.amazon.com/ec2/, accessed in Jan. 2019.

[3] https://aws.amazon.com/pricing/?nc1=h_ls, accessed in Jan. 2019.

[4] https://aws.amazon.com/s3/, accessed in Jan. 2019.

[5] H. An, M. Singh, and O. Svensson. LP-based algorithms for capacitated facility

location. Proc. of FOCS’14, IEEE, 2014.
[6] I, Baev, R. Rajaraman, and C. Swamy. Approximation algorithms for data placement

problems. SIAM J. on Computing, Vol.38, No.4, pp.1411-1429, 2008.
[7] M. W. Convolbo, J. Chou, and S. Lu. DRASH: A data replication-aware scheduler

in geo-distributed data centers. Proc. of CloudCom, IEEE, 2016.

[8] K. Calvert, and E. Zegura. Gt-itm: georgia tech internetwork topology models.

[9] Digital Ocean. https://www.digitalocean.com, accessed in Jan. 2019.

[10] L. Golab, M. Hadjieleftheriou, H. Karloff, and B. Saha. Distributed data placement

to minimize communication costs via graph partitioning. Proc. of SSDBM, ACM,

2014.

[11] S. Guo,D. Zeng, L. Gu, and J. Luo. When green energy meets cloud radio access

network: joint optimization towards brown energy minimization. Mobile Networks
and Applications, Springer, pp.1-9, 2018.

[12] B. Heintz, A. Chandra, and R. K. Sitaraman. Trading timeliness and accuracy in

geo-distributed streaming analytics Proc. of SoCC, ACM, 2016.

[13] T. Hou, G. Feng, S. Qin, and W. Jiang. Proactive content caching by exploiting

transfer learning for mobile edge computing. International Journal of Communica-
tion Systems, Vol, 31, No. 2, 2017.

[14] H. Huang, and S. Guo Adaptive service provisioning for mobile edge cloud. ZTE
Communications, Vol. 15, No. 2, pp.1-9, 2017.

[15] H. Huang, and S. Guo Service provisioning update scheme for mobile application

users in a cloudlet network Proc. of ICC, IEEE, 2017.
[16] H. Huang, S. Guo, and K. Wang. Envisioned wireless big data storage for low-

earth-orbit satellite-based cloud. IEEE Wireless Communications, Vol.25, No.1,
pp.26-31, 2018.

[17] A. K. Kayyoor, A. Deshpande, and S. Khuller. Data placement and replica selection

for improving co-location in distributed environments. Computing Research

Repository (CoRR), arXiv:1302.4168, 2012.

[18] P. Li , S. Guo, T, Miyazaki, X. Liao, H. Jin, A. Y. Zomaya, and K. Wang. Traffic-

aware geo-distributed big data analytics with predictable job completion time.

IEEE Trans. on Parallel and Distributed Systems, Vol.28, No.6, pp.1785-1796, 2017.
[19] H. Li, H. Xu, and S. Nutanong. Bohr: similarity aware geo-distributed data

analytics. Open Access Media, USENIX, 2017.
[20] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl, and I. Stoica.

Low latency analytics of geo-distributed data in the wide area. Proc. of SIGCOMM,

ACM, 2015.

[21] S. Rao, R. Ramakrishnan, A. Silberstein, M. Ovsiannikov, and D. Reeves. Sailfish:

a framework for large scale data processing. Proc. of SoCC, ACM, 2012.

[22] W. Xiao, W. Bao, X. Zhu, and L. Liu. Cost-aware big data processing across geo-

distributed data centers. IEEE Trans. on Parallel and Distributed Systems, Vol.28,
No.11, pp.3114-3127, 2017.

[23] Q. Xia, W. Liang, and Z. Xu. The operational cost minimization in distributed

clouds via community-aware user data placements of social networks. Computer
Networks, Vol.112, pp.263-278, 2017.

[24] Z. Xu and W. Liang. Operational cost minimization for distributed data centers

through exploring electricity price diversity. Computer Networks, Vol. 83, pp.59-75,
Elsevier, 2015.

[25] Z. Xu, W. Liang, and Q. Xia. Electricity cost minimization in distributed clouds by

exploring heterogeneities of cloud resources and user demands. Proc. of ICPADS’15,
IEEE, 2015.

[26] Q. Xia, Z. Xu, W. Liang, and A. Zomaya. Collaboration- and fairness-aware big

data management in distributed clouds. IEEE Trans. on Parallel and Distributed
Systems, Vol.27, No.7, pp.1941-1953, 2016.

[27] S. Yu, M. Liu, W. Dou, X. Liu, and S. Zhou. Networking for big data: A survey.

IEEE Communications Surveys & Tutorials, Vol. 19, No.1, pp. 531-549, 2017.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 System model
	2.2 Big data processing in the edge cloud
	2.3 User QoS requirements
	2.4 Problem definition

	3 An approximation Algorithm for Proactive Data Replication and Placement
	3.1 Algorithm overview
	3.2 Integer linear programming
	3.3 An approximation algorithm

	4 Performance Evaluation
	4.1 Experimental environment
	4.2 Performance evaluation of different algorithms by simulations
	4.3 Performance evaluation in a real test-bed

	5 Related work
	6 Conclusions
	References

